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Abstract

In this work, we develop gradient boosting machines (GBMs) for forecasting the SYM-H index multiple hours ahead using

different combinations of solar wind and interplanetary magnetic field (IMF) parameters, derived parameters, and past SYM-H

values. Using Shapley Additive Explanation (SHAP) values to quantify the contributions from each input to predictions of the

SYM-H index from GBMs, we show that our predictions are consistent with physical understanding while also providing insight

into the complex relationship between the solar wind and Earth’s ring current. We also perform a direct comparison between

GBMs and neural networks presented in prior publications for forecasting the SYM-H index by training, validating, and testing

them on the same data. We find that the GBMs have a comparable root mean squared error as the best published black-box

neural network schemes and GBMs have better Heidke Skill Scores at predicting strong storms.
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Key Points:9

• We adapt gradient b o osting machines (GBMs) for forecasting the SYM-H index10

multiple hours ahead.11

• We quantify feature contributions using Shapley additive explanation (SHAP) val-12

ues to explain mo del predictions.13

• Our prop osed metho d has similiar accuracy to existing metho ds, while b eing more14

interpretable.15
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Abstract16

In this work, we develop gradient b o osting machines (GBMs) for forecasting the SYM-17

H index multiple hours ahead using different combinations of solar wind and interplan-18

etary magnetic field (IMF) parameters, derived parameters, and past SYM-H values. Us-19

ing Shapley Additive Explanation (SHAP) values to quantify the contributions from each20

input to pre dic tions of the SYM-H index from GBMs, we show that our predictions are21

consistent with physical understanding while also providing insight into the complex re-22

lationship b etwe en the solar wind and Earth’s ring curre nt. In particular, we found that23

feature contributions vary dep ending on the storm phase. We also p erform a direct com-24

parison b etween GBMs and neural networks presented in prior publications for forecast-25

ing the SYM-H index by training, validating, and testing them on the same data. We26

find that the GBMs have a comparable ro ot mean squared e rror as the b est publis he d27

black-box neural network schemes.28

Plain Language Summary29

Forecasting geomagnetic indices is crucial for mitigating p otential effects of severe30

geomagnetic s torms on critical infrastructures such as p ower grids. In this work, we adopt31

a machine learning metho d for SYM-H prediction hours ahead with various combina-32

tions of solar wind & interplanetary magnetic field parameters, past SYM-H values, and33

other derived parameters. The feature imp ortance quantification that we derive provides34

imp ortant, new insight into the complex relationship b etween the s olar wind and the Earth’s35

ring current.36

1 Introduction37

Geomagnetic storms are the largest geomagnetic disturbances, during which severe38

space weather threats can o ccur and disrupt our technological so ciety. During geomag-39

netic storms, peta joules of energy enter the Earth’s magnetosphere from the solar wind,40

of which vast ma jority is stored in the ring current in the inner magnetosphere (Ganushkina41

et al., 2017). The ring current indices such as Dst and SYM-H provide essential infor-42

mation ab out the current strength and evolution as well as the energy budget, and thus43

are of crucial practical imp ortance (Sugiura & Kamei, 1991). These ring current indices44

have b een used in numerous space weather applications, such as in classification of storms,45

as inputs to empirical mo dels of the magnetospheric magnetic top ology (N. Tsyganenko,46

1989; N. A. Tsyganenko, 1995, 2002a, 2002b), as features representing the geomagnetic47

activity level for machine learning forecasting the ionospheric total e lectron content (Liu48

et al., 2020), as parameters used for forecasting of the radiation b elt energetic particle49

fluxes (Sakaguchi et al., 2015) and othe r magnetospheric quantities (Bortnik et al., 2018).50

Therefore, the ability to predict the ring current indices is crucial for space weather fore-51

casts and end-users.52

Several attempts have b ee n made to us e machine le arning metho ds to forecast the53

SYM-H index. Cai et al. (2010) and Bhaskar and Vichare (2019) used a Nonlinear Au-54

toRegressive with eXogeneous inputs (NARX) neural network to predict 5-minute av-55

erages of the SYM-H index one hour ahead using past SYM-H values, solar wind and56

IMF parameters as input. Cai et al. (2010) trained their neural ne tworks with data from57

67 geomagnetic storms from 1998 to 2006, while Bhaskar and Vichare (2019) used data58

from 25 additional geomagnetic storms from 2006 to 2013. With the goal of developing59

op erationally feasible mo dels, Siciliano et al. (2021) trained long short-term memory (LSTM)60

and convolutional (CNN) neural ne tworks to predict the SYM-H index one hour ahead61

using only IMF parameters and past SYM-H values as input. Collado-Villaverde et al.62

(2021) to ok a similar approach to predict the SYM-H index several hours ahead, while63

also considering the effects of omitting past SYM-H values as input on predictive p er-64

formance. Both Siciliano et al. (2021) and Collado-Villaverde et al. (2021) train and val-65
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idate their networks on 25 strong geomagnetic storms (Dst < -100 nT) from 1998 to 201766

and evaluate their p erformance using 17 strong test storms. To conduct a direct com-67

parison of predictive p erformance, we use the same storms and features to train and test68

our prop osed mo del. For the rest of this article, we will use the terms features and (mo del)69

inputs interchangeably. Comparison results are discussed in se ction 4.1.70

Many machine learning approaches have b een taken to forecast the Dst index and71

other geomagnetic indices such as the Kp index. Attempts to apply machine learning72

metho ds to fore cast the Dst index date back to the works of Lundstedt and Wintoft (1994),73

Gleisner et al. (1996), and Wu and Lundstedt (1997). These authors generally observed74

that the initial and main phases were m ore accurately predicted than the recovery phase75

when the Dst index is not used as an input due to the fact that the initial and main phases76

are more strongly correlated with solar wind prop erties. Pallo cchia et al. (2006) advo-77

cated for using only IMF parameters as inputs for op erational forecasting of the Dst in-78

dex b ecause in situ solar w ind plasma instruments tend to fail more often than s pac e-79

based magnetome ters. This was also the motivation for using only IMF paramete rs and80

past values to forec ast the SYM-H index in Siciliano et al. (2021) and Collado-Villaverde81

et al. (2021).82

Although the ma jority of machine learning approaches to fore casting geomagnetic83

indices use neural networks, other techniques have also b een prop osed: Chandorkar et84

al. (2017) investigated the use of Gaussian Pro cesses for forecasting the Dst index; Lu85

et al. (2016) compared the use of supp ort vector machines (SVM) with neural networks;86

Boynton et al. (2011) employed the Nonlinear AutoRegressive Moving Average with eX-87

ogeneous inputs (NARMAX) mo del to derive an analytic expression to forecast 1-hour-88

ahead Dst as function of its past values and of the history of a solar wind-magnetoshp ere89

coupling function. Xu et al. (2020) combined neural networks with SVM to construct90

an ensemble mo del using bagging to predict the Dst index up to six hours ahead. We91

also construct an ensemble mo del but use gradient b o os ting instead of bagging (see Bauer92

and Kohavi (1999) for a detailed comparison b etween b o os ting and bagging). Another93

difference is that we create an ens emble of many simple tree-based mo dels as opp osed94

to a few complex mo dels. A comprehensive review of machine learning mo dels for ge-95

omagnetic indexes can b e found in Camp ore ale (2019).96

Despite the fact that data-driven machine learning metho ds have made a lot of progress97

in many scientific fields and have b ecome p opular to ols, the lack of inte rpretability has98

b een a ma jor drawback. Even if machine learning metho ds have typically fo cused on pre-99

dictive p erformance, there has b een a recent surge in interest in making these metho ds100

more interpretable (Molnar et al., 2020). The development of interpretable machine learn-101

ing algorithms is of ke y imp ortance esp ecially in scie ntific fields such as space weather.102

Inspite of the fact that machine learning me tho ds have rep eatedly b een shown to out-103

p erform op erational mo dels empirically, these metho ds have not b een widely adopted104

in an op erational setting due to a lack of trust and skepticism from the space weather105

community (Camp oreale, 2019). Interpretability gives confidence to op erational forecast-106

ers that relevant physical pro cesses are captured to s ome degree and enco ded in a black-107

b ox mo del, hence reassuring of its generalizability and robustness versus rare events, which108

are the main fo cus of s pac e weather forec asting. Gray-box approaches, which combine109

physics-based mo dels with black-box mo dels, can also b e used to make machine le arn-110

ing metho ds for space weather forecasting more re liable (Camp oreale et al., 2020).111

Explainability can b e achieved by using either p ost-ho c explanation metho ds or112

intrinsically interpretable mo dels. Examples of intrinsically interpretable mo de ls include113

linear regression, decision trees, and generalized additive mo dels. Unfortunately, there114

is often a tradeoff b etween intrinsic m o del interpretability and predictive p erformance115

b ecause interpretable mo de ls tend to make strong sim plifying assumptions such as lin-116

earity or additivity. Recent efforts have b een made to close this gap, starting with ad-117

ditive mo dels that incorp orate two-way feature interactions (Lou et al., 2013). Post-ho c118
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explanation metho ds, to some extent, can b e used to explain the predictions made by119

more com plex mo dels, usually by constructing an approximate interpretable mo del af-120

ter training the original mo del. For an overview of interpretable machine learning meth-121

o ds, see Molnar (2019). Several intrinsically interpretable mo dels have previously b een122

prop osed for forecasting geomagnetic indices. Ayala Solares et al. (2016) prop osed a Non-123

linear Autoregressive with Exogeneous Inputs (NARX) mo del to forecast the Kp index124

where the contribution of each mo del term to the output can b e evaluated. Gu et al. (2019)125

prop osed an interpre table NARX mo del the forecast the AE index that also include s un-126

certainty analysis.127

In this work, we not only aim to obtain accurate predictions of the SYM-H index,128

but more imp ortantly, to learn if the data-driven approach can reveal insights on the phys-129

ical mechanisms. In turn, these insights could then b e used to inform future physics-based130

or grey-box mo dels. We achieve this by using a p ost-ho c explanation metho d known as131

Shapley Additive Explanations (SHAP) to quantify the contributions from each input132

on the predictions made by gradient b o osting machines (Lundb erg & Lee, 2017). SHAP133

has b een successfully used to explain predictions from tree-based mo dels in other scien-134

tific fields such as medicine (Lundb erg et al., 2018), solar p owe r forecasting (Kuzlu et135

al., 2020; Mitrentsis & Lens, 2021), finance (Bluwstein et al., 2020; Mokhtari et al., 2019),136

and atmospheric science (Stirnb erg et al., 2020). Section 3.2 continues this discussion137

on explainability and describ es the SHAP metho d in detail.138

The remainder of the pap er is organized as follows. In Section 2, we intro duce the139

data sources and our data pro cessing pro c edures. In Section 3, we describ e the gradi-140

ent b o osting machine, hyp erparameter tuning, and quantification of feature imp ortance.141

In Section 4, we provide results of our predictions, compare them with those published142

in the existing literature, and most imp ortantly, the new insights that we learn from the143

prediction mo del results. We conclude in Se ction 5 with a summary on key findings and144

some disc us sions on future work.145

2 Data146

The Disturbance Storm Time (Dst) index is computed as the H (magnetic north)147

comp onent p erturbation on equatorial magnetometers (Mayaud, 1980) on an hourly ba-148

sis, and is a characterization of a magnetic storm that has b een used historically. The149

Dst index represents the longitudinally averaged part of the external geomagnetic field150

measured at the equator (Sugiura, 1964). As the index includes only the field variation,151

during geomagnetically quiet times, it hovers around zero. The typical definition of a152

geomagnetic s torm is that the Dst index reaches values b elow − 50 nT.153

The SYM-H index is a high-time-resolution version of the original Dst index, and154

is given at 1-minute cadence (Iyemori, 1990; Wanliss & Showalter, 2006). The SYM-H155

index is compiled from 11 low- and mid-latitude magnetometer stations. Quiet time fields,156

including lo cal time and seasonal quiet time Sq current effects, are removed, and the resid-157

uals are averaged together, divided by the cosine of the co-latitude of the station to yield158

the comp onent parallel with the magnetic dip ole. Geomagnetic storms can b e c lassified159

based on the SYM-H values: mo derate ( − 100 nT < SYM-H < − 50 nT), intense ( − 250 nT160

< SYM-H < − 100 nT), and sup erstorms (SYM-H < − 250 nT).161

We extract the SYM-H index data from the OMNI datase t compiled at NSSDC162

(https://spdf.gsfc.nasa.gov) using the op en-source Python library swmfpy (King,163

2005; Al Shidi, Qusai, 2020). We use the level-2 solar wind plas ma and interplanetary164

magnetic field (IMF) parameters from the Advanced Comp osition Explorer (ACE) space-165

craft provided by the NASA Space Physics Data Facility ( https://cdaweb.gsfc.nasa166

.gov/index.html/) as inputs in our m o dels. The original dataset contains the IMF com-167

p onents from the ACE Magnetic Field Exp eriment (MAG) instrument (Smith et al., 1998)168
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at a 16-second cadence, as well as proton density, bulk sp eed, and ion temp erature from169

the SWEPAM suite (McComas et al., 1998), at a 64-second cadence. In addition to so-170

lar wind plasma and IMF parameters, we also include derived quantities, in particular171

the solar wind dynamic pressure and electric field, as we exp ect them to b e relevant in-172

put parameters for predicting geomagnetic storms (Newell et al., 2007).173

Explanation metho ds, such as SHAP, allow us to confirm or disprove these exp ec-174

tations. To remove some of the high frequency variation inhe rent in high time resolu-175

tion data and to eliminate minor data gaps, we average the SYM-H index, solar wind176

and IMF parameters to a 5-min time resolution. This was also done by Collado-Villaverde177

et al. (2021); Siciliano et al. (2021).178

For training and testing the GBMs discuss ed in section 3.1, we use 42 strong ge-179

omagnetic storms o ccurring b etween 1998 to 2018 which reached a minimum SYM-H in-180

dex value of less than − 100 nT. Information ab out these storms are given in tables 1 and 2.181

We use 5-fold cross validation to optimize hyp erparameters (see section 3.1) instead of182

using a separate set of storms for validation, which allows us to use more data for train-183

ing mo dels. Descriptive statistics for the training and test storms are given in tables A1184

and A2.185

Table 1. Storms used to train GBMs. These storms are identical to the ones used to train and

validate models in Collado-Villaverde et al. (2021).

Storm # Start date End date Min. SYM-H (nT)

1 1998-02-14 1998-02-22 -119
2 1998-08-02 1998-08-08 -168
3 1998-09-19 1998-09-29 -213
4 1999-02-16 1999-02-24 -127
5 1999-10-15 1999-10-25 -218
6 2000-07-09 2000-07-19 -335
7 2000-08-06 2000-08-16 -235
8 2000-09-15 2000-09-25 -196
9 2000-11-01 2000-11-15 -174
10 2001-03-14 2001-03-24 -165
11 2001-04-06 2001-04-16 -275
12 2001-10-17 2001-10-22 -210
13 2001-10-31 2001-11-10 -313
14 2002-05-17 2002-05-27 -113
15 2003-11-15 2003-11-25 -488
16 2004-07-20 2004-07-30 -208
17 2005-05-10 2005-05-20 -302
18 2006-04-09 2006-04-19 -110
19 1998-12-09 1998-12-19 -206
20 2012-03-01 2012-03-11 -149
21 1998-04-28 1998-08-05 -268
22 1999-09-19 1999-09-26 -160
23 2003-10-25 2003-11-03 -427
24 2015-06-18 2015-06-28 -207
25 2017-09-01 2017-09-11 -144

To predict SYM-H ∆ t hours ahead of time t, henceforth denoted as y(t+∆ t), we186

will consider different combinations of the features listed in table 3. We also c ons ide r lead187

times ∆ t of one and two hours. When the SYM-H index is inc luded, the observations188

from the previous one hour are used as input. We set the history length for all other fea-189
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Table 2. Storms used to test GBMs. These storms are identical to the ones used to test mod-

els in Collado-Villaverde et al. (2021).

Storm # Start time End time Min. SYM-H (nT)

26 1998-06-22 1998-06-30 -120
27 1998-11-02 1998-11-12 -179
28 1999-01-09 1999-01-18 -111
29 1999-04-13 1999-04-19 -122
30 2000-01-16 2000-01-26 -101
31 2000-04-02 2000-04-12 -315
32 2000-05-19 2000-05-28 -159
33 2001-03-26 2001-04-04 -434
34 2003-05-26 2003-06-06 -162
35 2003-07-08 2003-07-18 -125
36 2004-01-18 2004-01-27 -137
37 2004-11-04 2004-11-14 -393
38 2012-09-10 2012-10-05 -138
39 2013-05-28 2013-06-04 -134
40 2013-06-26 2013-07-04 -110
41 2015-03-11 2015-03-21 -233
42 2018-08-22 2018-09-03 -205

tures to b e either two hours, if the SYM-H index is included, or 30 hours, if the SYM-190

H index is excluded. The history length selections were motivated by Siciliano et al. (2021),191

who examined the co efficient of determination R2 that quantifies the amount of observed192

variance that is explained by the pre dictions as a function of the history length, when193

the SYM-H index was either included or excluded as an input. They found that R2 started194

to decrease when the history length was around 30 hours, if the SYM-H index was not195

included as input. When the SYM-H index was included as input, the R2 results for his-196

tory lengths of 90 to 180 minutes were similar, while R2 started to decrease for time in-197

tervals longer than 180 minutes.198

Table 3. Features used as input into our models.

Features History length (in hours)

Past SYM-H index (nT) 1
IMF:B x,B y,B z (nT) 2 or 30

Solar wind: Vx (km/s), ρ (amu/cm
3
),T (K) 2 or 30

Derived quantities: ρV 2
x (nPa), E s = max(0 ,−| Vx | B z)(mV/m ) 2 or 30

The different sets of features used as inputs are listed in table 4. Using different199

sets of features to train our mo dels allows us to investigate how the inclusion of certain200

features affects predictive p erformance and feature contributions. The choice to train our201

mo dels using only IMF parameters and past SYM-H (input set I1, table 4) was moti-202

vate d by the high p ercentage of missing observations for solar wind plasma parameters.203

For IMF parameters and solar wind velo city, there is les s than 2% of observations miss-204

ing within our sample. However, this p erce ntage is substantially higher (roughly 9%) for205

solar wind density and temp erature. Although our prop osed mo del handles missing data206

internally, we cho ose to im pute missing observations using linear interp olation (see sec-207

tion 3.4 in Chen and Guestrin (2016) for details).208
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Including solar wind plasma and derived parameters in input sets I3 and I4 allows209

us to investigate how these c ontribute to predictions. In particular, a sudden increase210

of dynamic pressure ρV 2
x can compress the magnetosphere and cause a p ositive jump in211

SYM-H, which typically happ ens at the b eginning of the geomagnetic storms (sudden212

storm com mencement). Another physically imp ortant parameter is the y comp onent of213

the interplanetary electric field E y = VxB z that characterizes the amount of north-south214

magnetic flux carried by the solar wind. Note that Vx < 0 in the geo centric-solar-magnetic215

(GSM) co ordinate system used here. The rectified electric field E s = max(0 , E y) is the216

same as E y when the IMF has a southward comp onent ( B z < 0), which facilitates the217

onset of dayside reconnection, and zero for northward IMF when dayside reconnection218

is limited to high latitudes b eyond the p olar cusps (Burton et al., 1975). Including E s219

would allow us to compare and contrast its contribution to predictions using the Bur-220

ton equation (T. P. O’Brien & McPherron, 2000; T. P. O’Brien, 2002).221

To examine how solar wind and IMF parameters influence predictions without knowl-222

edge of past SYM-H values, we train mo dels with input sets I2 and I4 which exclude past223

SYM-H values (see Table 4).224

Table 4. Various sets of features used as inputs to train our models.

Input set Feature s included

I1 IMF, past SYM-H
I2 IMF
I3 IMF/solar wind/derived quantities, past SYM-H
I4 IMF/solar wind/derived quantities

3 Methods225

3.1 Gradient Boosting Machines226

Gradient b o osting machines (GBMs), also known as gradie nt b o osted trees, have227

had considerable success in prediction tasks across a wide range of domains (Natekin &228

Knoll, 2013). Shwartz-Ziv and Armon (2021) recently p erformed a rigorous study show-229

ing GBMs outp erformed several neural network mo dels in terms of accuracy in classi-230

fication and regresssion problems with tabular data. GBMs are consistently used in the231

winning solutions of various machine learning prediction comp etitions like Kaggle, show-232

ing its effectiveness in a wide range of problems (Chen & Guestrin, 2016). In the space233

sciences, GBMs and other ensemble metho ds have recently b ee n used to predict ambi-234

ent solar wind flow (Bailey et al., 2021) and the Dst index (Xu et al., 2020).235

In contras t to algorithms that construct one com ple x mo del, gradient b o osting se-236

quentially c ons tructs simple prediction m o dels called base learners that improve up on237

previously constructed base learners and sums them together to obtain an ensemble mo del.238

This pro cess is analogous to how gradient descent optimizes weights in a neural network.239

Seen as a form of “functional gradient descent”, gradient b o osting minimizes an ob je c-240

tive func tio n by iterative ly adding a new base learner, usually a decision tree, that leads241

to the largest decrease in the loss function (Friedman, 2001). In the case of GBMs, the242

base learners are regression tre es, which are a highly interpretable class of machine learn-243

ing mo dels that mimic human decision-making but are often to o simplistic for most pre-244

diction problems when used alone. Fortunately, ensembles of regression trees, like GBMs,245

are capable of pro ducing highly accurate pre dic tions while still taking advantage of the246

interpretability of regression trees. In addition to gradient b o osting, bagging is another247

widely used ensemble metho d that constructs multiple base learners in parallel and ag-248

gregates them by averaging (Breiman, 1996).249
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The gradient b o osting machines that we use to forecast SYM-H have the form

y(t + ∆ t) =α+

M∑
m=1

Tm(I(t))+ϵ(t), t= 1 , . . . ,N, (1)

where I(t) is a vector of inputs used at time t; ϵ(t) is an error term at time t; Tm’s are
regression trees; M is the numb er of iterations (trees) in the training algorithm; N is the
numb er of timep oints; and α is a constant intercept term. I(t) dep ends on which input
set from table 4 is used. For instance, if input set I2 is used, I(t) =

(
B x(t), . . . , Bx(t−

115), By(t), . . . , By(t− 115), Bz(t), . . . , Bz(t− 115)
)
, where, for example, B z(t− 60) de-

notes the value of B z 60 minute s prior. The regression trees can b e written mathemat-
ically as

T (x) =wq(x), (2)

where w are the leaf weights of the tree; and q represents the tree structure by mapping250

an input to its corresp onding leaf no de index. Figure 1 shows the tree structure of one251

of the trees in a GBM that we trained.252

SYM-H(t)<-68.5

SYM-H(t)<-169.9

True

SYM-H(t)<-21.1

False

SYM-H(t)<-263.8 SYM-H(t)<-112.1 SYM-H(t)<-41.1 SYM-H(t)<-4.1

-312.1 -194.9 -135.89 -86.0 -52.1 -29.7 -13.3 3.7

Figure 1. Structure of the first tree T1 learned in a GBM trained with input set I3 to predict

the SYM-H index one hour ahead. The leaf nodes of the tree are shaded gray. The value in each

leaf node is its corresponding leaf weight. Left splits correspond to the inequality in the previous

node being true, and vice versa.

To train our GBMs, we use the op en-source framework XGBoost that constructs
the regression trees using gradient b o os ting and p enalizes trees that are overly complex
to avoid overfitting (Chen & Guestrin, 2016). More sp ecifically, at each iteration m , we
will construct a new regress ion tree Tm by minim iz ing the following ob jective function.

L (m)(Tm) =

N∑
t=1

{
y(t + ∆ t)−

[̂
y(m− 1)(t + ∆ t)+Tm(I(t))

]} 2

+

m∑
j=1

Ω(Tj), (3)

where ˆ y(m− 1)(t + ∆ t) =

m− 1∑
k=1

Tk(I(t)) and Ω( Tj) =γKj +
1

2
λ

Kj∑
k=1

w2
j,k. (4)
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In eq. (4),K j is the numb er of le af no des in Tj; wj,k’s are the leaf no de weights in Tj;253

and γ and λ are regularization hyp e rparamete rs. Ω is a regularization term that p enal-254

izes the complexity of the regression trees by limiting the numb er of leaf no des and shrink-255

ing the leaf weights. Increasing γ results in shallower trees while increasing λ leads to256

smaller leaf weights. An alternative m etho d for controlling tree size is to explicitly set257

the maximum tree depth. Besides increasing λ, we can also reduce the influence of in-258

dividual trees by scaling their leaf weights by a learning rate. It is typically imp ossible259

to enumerate over all tree structures when constructing each regression tree. XGBoost260

takes a greedy approach that starts from a single leaf and iteratively adds branches to261

the tree that results in the largest loss reduction. This ste p involves finding the optimal262

feature and value to split the tree. Algorithms for splitting the tree are describ ed in more263

detail in section 3 of Chen and Guestrin (2016).264

To reduce the risk of overfitting, we control mo del complexity by optimizing sev-265

eral hyp erparameters: learning rate, maximum tree depth, feature subsampling p ercent-266

age, minimum child weight, and numb er of b o osting iterations (trees). We optimize these267

hyp erparameters, except the numb er of iterations, using cross validation and a gradient-268

free optimization platform called Nevergrad (Rapin & Teytaud, 2018). To set the num-269

b er of iterations (trees), we monitor p erformance using cross validation at each iteration270

and terminate the algorithm when the p erformance stops improving. This technique is271

commonly referred to as early stopping in the machine learning literature (Zhang & Yu,272

2005). Cross validation is p erformed by first splitting the training storms in table 1 into273

5 sets. After that, we use each set for evaluation while training the mo del using the other274

4 sets. We rep eat this pro cedure four times until all sets have b een used for evaluation.275

Using cross validation, as opp ose d to a separate validation set, allows us to use more data276

when training the final mo del. The sp ec ific hyp erparameter values we set are given in277

table 5.278

Table 5. Hyperparameter values for training GBMs using the different input sets in table 4.

Input set Hyp erparameter Value

I1,I2 Learning rate 0.072
Max. tree depth 4
Min. child weight 4
Column subsampling % 0.78
# of trees 84

I3,I4 Learning rate 0.147
Max. tree depth 3
Min. child weight 2
Column subsampling % 0.894
# of trees 291

GBMs have several advantages over comp eting machine learning metho ds. GBMs,279

and tree-based metho ds in general, are invariant to monotonic transformations of the280

features so it is b etter equipp ed to handle inputs on different scales. A practical conse-281

quence of this prop erty is that the features don’t have to b e standardized b efore train-282

ing. GBMs are robust against issues arising from correlated features due to the greedy283

nature of gradient b o osting and how regression trees are constructed. A downside of tree-284

based mo dels for time series forecasting is that they pro duce predictions that are not smo oth285

due to the tree structure of the mo del (Hastie et al., 2001). This can b e seen in fig. 2,286

where the predictions from our GBM lo oks noisier than the ones from LSTM. Despite287

this prop erty, GBMs are still able to pro duce highly accurate predictions. Another dis-288

advantage is that regression trees do not extrap olate well so they may exhibit sp oradic289
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b ehavior when predicting with inputs that have values outside of the b ounds of the in-290

puts used for training. Fortunately, as seen in tables A1 and A2, the features in our test291

set are mostly within the b ounds of the features in the training set.292

GBMs can also suffer from over-sp ecialization, wherein trees added in later iter-293

ations tend to only impact the predictions of a few instances (Korlakai Vinayak & Gilad-294

Bachrach, 2015). This may make the mo del highly s ensitive to the contributions of the295

initially added tree s. This issue is combated, to some e xte nt, by selecting a small learn-296

ing rate. To further alleviate this issue, we use a technique for employing drop outs in297

GBMs intro duced by Korlakai Vinayak and Gilad-Bachrach (2015). Drop outs have b een298

used succe ssfully in neural networks, where a random subset of connections in the net-299

work is dropp ed during training (Srivastava et al., 2014). In the context of GBMs, at300

each training iteration, we replace ˆ y(m− 1) in eq. (3) with the sum of a random subset,301

instead of all, of the pre vious ly constructed trees and then normalize the newly constructed302

tree and dropp ed trees. Further details of this pro cedure can b e found at (Korlakai Vinayak303

& Gilad-Bachrach, 2015).304

3.2 Feature Importance305

Metho ds for computing feature contribution, or feature imp ortance, can b e cate-306

gorized as global versus lo cal and mo del-sp ecific versus mo del-agnostic. Global feature307

imp ortance scores are used to explain a mo del’s overall b ehavior across the entire train-308

ing dataset, while lo cal feature imp ortance scores tells you how individual fe atures con-309

tributed to a single prediction. Model-sp ecific feature imp ortance is provided directly310

by the mo del, while mo del-agnostic metho ds, such as SHAP, typically construct an ap-311

proximate interpretable mo del to e xplain predictions from the original mo del. For tree-312

based mo dels, global feature imp ortance can b e calculated using information gain (Breiman313

et al., 1984), permutation (Breiman, 2001), or split c ount (Chen & Guestrin, 2016). In314

this pap er, we will fo cus primarily on lo cal feature imp ortance as the contribution from315

each feature is like ly to vary over time dep ending on the storm phase.316

While there are several metho ds for computing lo cal feature contribution in tree-
based mo dels (Molnar, 2019), we chose to use Shapley additive explanation (SHAP) be-
cause of its desirable theoretical prop e rties (Lundb erg & Lee, 2017). SHAP is based on
Shapley values in co op erative gam e theory (Shapley, 1953), where they are used to fairly
distribute payoffs in a game among a coalition of players with unequal contributions. In
the case of SHAP, the payoff is the prediction and the players are the features. SHAP
b elongs to the class of additive feature attribution me tho ds which assumes the follow-
ing linear explanatio n mo del for an individual predic tion.

g (z) =ϕ0 +

p∑
i=1

ϕ izi, (5)

where ϕ0 is a reference value (e.g. mean); p is the numb er of input features; z =
(
z1 . . . zp

)′
,317

where zi is a binary variable indic ating whether feature i is present; and ϕ i is the con-318

tribution from feature i. SHAP yields the unique solution to eq. (5) that satisfies three319

desirable theoretical prop erties: lo cal accuracy, missingness, consiste nc y. The lo cal ac-320

curacy prop erty ensure s that the sum of feature c ontributions for given inputs sum up321

to the prediction. The consistency prop erty ensures that the SHAP value for a feature322

increases if the marginal contribution from that feature inc reases. Missingness is mainly323

a theoretical prop erty that says a missing feature has zero contribution. The only alter-324

native tree-sp ecific lo cal explanation metho d that we are aware of is Saabas (2014), which325

do esn’t have the consistency prop erty. SHAP values describ e a particular mo del’s decis ion-326

making pro cess base d on the data. Therefore, they can only b e used to gain insight into327

the data-generating pro cess when the mo del approximates the underlying pro cess well328

enough. Furthermore, the effect that multicolline arity has on SHAP values dep ends on329

the particular m o del used (in our case, GBMs).330
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Although SHAP values can, in theory, be computed for any black b ox mo del, they331

are more computationally efficient for tree-based mo dels like GBMs due to a mo del-sp ecific332

algorithm for computing exact SHAP values known as TreeSHAP (Lundb erg et al., 2019),333

which reduces the computational complexity from exp onential to p olynomial. For other334

complex mo dels like neural networks, computing SHAP values would require refitting335

the mo del with many subsets of features, which is impractical if training is exp ensive and336

more than a few features are used. Unfortunately, a downside of using TreeSHAP is that337

non-contributing features can p otentially have a non-zero contribution if they are cor-338

related with a contributing feature (Molnar, 2019).339

4 Results340

In this section, we will compare the predictive p erformance of GBMs with neural
networks develop ed by Siciliano et al. (2021) and Collado-Villave rde et al. (2021), ex-
plain mo del predictions using the metho ds discuss ed in section 3.2, and discuss how pre-
dictions vary when the different set of features listed in table 4 are used as inputs. To
evaluate the predictive accuracy of GBMs for forecasting the SYM-H index, we use the
ro ot mean square d error (RMSE) defined in eq. (6).

RMSE( y,ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (6)

The RMSE metric provides ins ight into how well predictions match obs ervations on av-341

erage so a lower value is b etter.342

To supplement the RMSE metric, we also use the forecast skill score (FSS) based
on mean squared error (Murphy, 1988) using the Burton equation describ ed in T. O’Brien
and McPherron (2000) as a baseline defined as

FSS( y,ŷ, yburton) = 1− MSE( y,ŷ)

MSE( y, yburton)
, (7)

where yburton denotes the predictions from the Burton equation and MSE( y,ŷ) = (1/n)
∑ n

i=1(yi−343

ŷi)
2. The Burton equation, which predicts the evolution of pressure-corrected Dst from344

the half-wave rectified solar wind motional electric field, is an appropriate baseline as it345

is derived from physical understanding and is thus also an interpretable metho d for pre-346

dicting the SYM-H index. The metric in eq. (7) evaluates the p erformance of mo del pre-347

dictions relative to the baseline predictions. If FSS is b etween 0 and 1 (inclusive), that348

means the considered mo del outp erforms the baseline. However, if FSS is negative, that349

means the considered mo del p erforms worse than the baseline.350

4.1 Comparison to existing methods351

In this section, we compare the predictions obtained using our mo del with the neu-352

ral networks develop ed in Siciliano et al. (2021) ( LSTM1/CNN1) and Collado-Villaverde353

et al. (2021) ( LSTM2) on the 17 test storms in table 2 using the RMSE metric. Collado-354

Villaverde et al. (2021) considers 1-2 hours ahead prediction, whereas Siciliano et al. (2021)355

only considers 1-hour. On the other hand, Siciliano et al. (2021) trains mo dels with and356

without the SYM-H index as an input, whereas Collado-Villaverde et al. (2021) only trains357

mo dels with SYM-H. We train GBM mo dels to predict 1-2 hours ahead with and with-358

out the SYM-H index as an input and compare them to the corresp onding neural net-359

work mo dels. All mo dels were trained using data from the sam e storms in table 1. The360

RMSE values and forecast skill scores for each test storm and all considered mo dels are361

shown in tables 6 to 9. Similar to Collado-Villaverde et al. (2021), we also compute the362

mean RMSE over all storms.363
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For each pre diction scenario, we p erform a paired t-test to determine if the mean364

difference in RMSEs across s torm s is statistically significant at a 5% significance level.365

A paired t-test can b e us ed to compare two p opulation means where you have two sam-366

ples with observations that can b e paired with one another. It amounts to p erforming367

a one-sample t-test on the differences of the paired observations. In our case, we can match368

the RMSEs of different m etho ds for the same storm together.369

4.1.1 1-hour ahead predictions370

Tables 6 and 7 show the RMSE values and forecast skill scores for 1 hr ahead pre-371

dictions with SYM-H included as an input using our GBM, LSTM1, LSTM2, and the372

simple p ersistence mo del. In this case, our GBM achieves the lowest mean and median373

RMSE among the considered mo dels. Our GBM mo del has a 0.448 nT (5.7%) lower RMSE374

than LSTM2, a 1.138 nT (13.3%) lower RMSE than LSTM1, and a 1.942 nT (20.8%)375

lowe r RMSE than the p ersiste nc e mo del. Furthermore, our GBM has the lowest RMSE376

and highest skill score for 14 out of 17 test storms (26-32, 35-38, 41, 42). Figure 2 shows377

the 1 hour ahead predictions from our GBM and LSTM2 during the main and recovery378

phases of the three strongest test storms with SYM-H < − 300 nT (31, 33, 37) along with379

the corresp onding prediction errors. The distribution of the prediction errors are roughly380

similiar for these three test storms. For the March 2001 storm (second row; fig. 2), our381

GBM was able to accurately predict the minimum SYM-H of around -400 nT that was382

reached around 06:00 to 12:00 UT Mar 31 even though the timing is slightly off. A sim-383

ilar plot and analysis for the p ersistence mo del is given in app endix A1.384

Table 6. RMSEs for 1-hour ahead prediction over the test storm set with our GBM model,

LSTM1 (Siciliano et al., 2021) and LSTM2 (Collado-Villaverde et al., 2021) neural networks,

Burton equation (T. O’Brien & McPherron, 2000) and simple persistence. Here, the GBM,

LSTM1, and LSTM2 were trained with past SYM-H and IMF parameters as inputs. The lowest

RMSE for each row is shown in bold .

Storm # GBM LSTM2 LSTM1 Burton Persistence

26 5.863 6.630 6.700 6.839 7.631
27 7.729 8.913 8.900 7.954 9.623
28 4.281 5.858 5.400 5.697 5.814
29 5.833 6.683 7.200 6.511 7.174
30 4.927 5.200 5.600 4.614 4.810
31 8.277 8.584 10.700 8.838 10.429
32 6.841 7.259 8.300 9.487 10.528
33 14.492 13.340 16.300 16.630 21.167
34 10.190 10.034 11.300 10.888 10.913
35 7.154 7.693 8.500 7.918 8.011
36 8.512 9.525 8.700 9.082 9.708
37 14.548 15.184 17.500 15.713 19.698
38 3.886 4.080 4.200 4.572 4.842
39 5.901 6.431 5.600 6.663 7.597
40 4.976 4.673 5.500 5.371 5.057
41 7.558 7.882 9.000 8.358 9.984
42 5.030 5.669 5.900 5.549 6.036

Mean 7.412 7.860 8.550 8.276 9.354
Median 6.841 7.259 8.300 7.918 8.011
Min. 3.886 4.080 4.200 4.572 4.810
Max. 14.548 15.184 17.500 16.630 21.167
Std. error 0.763 0.713 0.901 0.840 1.131
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Table 7. Forecast skill scores (using the Burton equation (T. O’Brien & McPherron, 2000) as

the baseline) for 1-hour ahead prediction over the test storm set with our GBM model, LSTM1

(Siciliano et al., 2021) and LSTM2 (Collado-Villaverde et al., 2021) neural networks. Here, the

GBM, LSTM1, and LSTM2 were trained with past SYM-H and IMF parameters as inputs. The

highest skill score for each row is shown in bold .

Storm # GBM LSTM2 LSTM1

26 0.143 0.031 0.020
27 0.028 -0.120 -0.119
28 0.249 -0.028 0.052
29 0.104 -0.026 -0.106
30 -0.068 -0.127 -0.214
31 0.063 0.029 -0.211
32 0.279 0.235 0.125
33 0.129 0.198 0.020
34 0.064 0.078 -0.038
35 0.096 0.028 -0.074
36 0.063 -0.049 0.042
37 0.074 0.034 -0.114
38 0.150 0.108 0.081
39 0.114 0.035 0.160
40 0.074 0.130 -0.024
41 0.096 0.057 -0.077
42 0.094 -0.022 -0.063

4.1.2 2-hour ahead predictions385

Tables 8 and 9 show the RMSE values and forecast skill scores for 2-hour ahead386

predictions from GBM and LSTM2 with past SYM-H included as an input. Our GBM387

mo del has a mean RMSE that is 3.585 nT (24.8%) lower than the m ean RMSE for the388

simple p ersistence mo del. However, the mean RMSE for our GBM mo del is .328 nT (3.1%)389

greater than the one for LSTM2. Moreover, LSTM2 has a lower RMSE and higher skill390

score for 8 out of the 17 test storms (31-33, 36, 37, 39-41).391

4.1.3 Predictions without past SYM-H392

When we omit the SYM-H index as an input to predict 1-hour ahead, our GBM393

outp erforms LSTM1 and has simliar p erformance as CNN1. Table 10 shows the RMSE394

for 1-hour ahead predictions from GBM, LSTM1, and CNN1 and 2-hour ahead pre dic-395

tions from GBM. Our GBM mo del has a 3.5 nT (15.4%) lower mean RMSE than LSTM1396

and a 1.6 nT (7.7%) lower me an RMSE than CNN1. Furthermore, the GBM mo del has397

the lowest RMSE for 11 out of 17 test storms. However, CNN1 achieves a lower RMSE398

for the 3 strongest test storms (33, 37, 40).399

4.1.4 Statistical significance400

Table 11 shows the p-values for the paired t-tests desc rib ed in the second paragraph401

of section 4.1. From this table, we can see that the mean differences in RMSE across s torms402

b etween GBM and comp eting metho ds for all prediction scenarios are statistically sig-403

nificant at a 5% significance level (p-value ≤ 0.05) except for 2 hr ahead prediction with404

LSTM2.405
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Table 8. RMSEs for 2-hour ahead prediction over the test storm set with our GBM model,

the LSTM2 neural network (Collado-Villaverde et al., 2021), Burton equation (T. O’Brien &

McPherron, 2000) and persistence. Here, the GBM and LSTM2 model were trained with past

SYM-H and IMF parameters as inputs. The lowest RMSE for each row is shown in bold .

Storm # GBM LSTM2 Burton Persistence

26 8.285 8.989 10.690 12.374
27 11.585 13.418 12.465 15.387
28 5.650 5.877 8.858 9.331
29 8.826 9.314 9.776 11.415
30 7.280 7.288 6.266 7.416
31 12.613 12.436 13.604 17.193
32 9.927 8.937 13.766 15.282
33 24.519 18.481 25.729 33.927
34 13.736 13.941 14.695 15.109
35 9.504 9.932 10.586 11.211
36 12.068 12.058 13.117 14.687
37 22.327 21.084 24.446 30.582
38 5.153 5.213 6.546 7.353
39 7.391 6.798 10.159 12.322
40 5.633 5.281 6.032 6.373
41 12.121 11.707 12.622 15.437
42 7.976 8.273 8.877 10.130

Mean 10.858 10.530 12.249 14.443
Median 9.504 9.314 10.690 12.374
Min. 5.153 5.213 6.032 6.373
Max. 24.519 21.0840 25.729 33.927
Std. error 1.310 1.077 1.338 1.808

4.2 Explaining predictions406

In this section, we explain how the input features we use contributed to our mo del’s407

predictions using the metho ds discussed in section 3.2. To obtain the contributions from408

each feature in table 3, we sum up the contributions from the history of that feature.409

Figure 3 shows the contributions to the 1-hour prediction from various features as410

a function of the SYM-H. Overall, the past SYM-H value dominates, which means that411

SYM-H varies smo othly at a 1-hour time scale. This also means that b eating the p er-412

sistence mo del is not easy. The second most imp ortant contribution comes from B z, which413

is exp ected based on its imp ortance in driving magnetic reconnection that allows energy414

entry into the magnetosphere. What is le ss exp ected is that the velo city Vx and the rec-415

tified electric field E s are much less imp ortant for the storm p eak values (SYM-H be-416

low − 100 nT). In fact, the third most imp ortant feature is the dynamic pressure ρV 2
x .417

One would exp ect the dynamic pressure to b e m ost imp ortant during the sudden storm418

commencement that pro duces a p ositive jump in SYM-H. Interestingly, the contributions419

of ρV 2
x and B z are comparable even for pre dic ting p ositive SYM-H, except for the most420

p ositive values. Overall, we find that past SYM-H and B z are the most imp ortant fea-421

tures. Density, velo city, the derived dynamic pressure and rectified electric field are com-422

parable. The rest of the features, such as B x, By and temp erature provide quite small423

contributions. Note that the re ctified E s is a less imp ortant contributo r than B z and the424

dynamic pressure, despite its physical significance of carrying the magnetic flux that in-425

duces dayside reconnection.426
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Table 9. Forecast skill scores (using the Burton equation (T. O’Brien & McPherron, 2000) as

the baseline) for 2-hour ahead prediction over the test storm set with our GBM model and the

LSTM2 neural network (Collado-Villaverde et al., 2021). Here, the GBM and LSTM2 model were

trained with past SYM-H and IMF parameters as inputs. The highest skill score for each row is

shown in bold .

Storm # GBM LSTM2

26 0.225 0.159
27 0.071 -0.076
28 0.362 0.337
29 0.097 0.047
30 -0.162 -0.163
31 0.073 0.086
32 0.279 0.351
33 0.047 0.282
34 0.065 0.051
35 0.102 0.062
36 0.080 0.081
37 0.087 0.138
38 0.213 0.204
39 0.272 0.331
40 0.066 0.125
41 0.040 0.072
42 0.101 0.068

Figure 4 shows the contribution of various features of the mo del that is not using427

past SYM-H. As exp ected, B z b ecomes the most imp ortant feature. Now velo city and428

density are the next most imp ortant features, esp ecially for mo derate values of SYM-429

H, and the dynamic pressure by itself do es not have enough information (unlike in the430

previous case that used past SYM-H). The rectified E s is still a rather small contribu-431

tor compared to B z. This can b e explained by jointly examining the contributions of B z432

and Vx: B z b ecomes more and more dominant for larger negative SYM-H values. On433

the other hand, the contribution of Vx p eaks at mo derate storm with SYM-H ab ove − 100434

nT, and its contribution tap ers off for the very strong storms. While the electric field435

E s combines these two terms, one can see that their contributions are most effective in436

different severity of storms or different phases of the storm, suggesting that considering437

them as indep e ndent variables rather than as a single parameter provides more insight438

into the underlying physics. The strong contribution of density for small and p ositive439

SYM-H values sp eaks to the imp ortance of density pulses that often are found at the lead-440

ing edges of solar wind structures impacting the Earth (Kilpua et al., 2017).441

4.2.1 November 2004 Storm442

We now lo ok into how the prediction is obtaine d during the strongest test storm.443

Figure 5 shows the abs olute and relative contributions of various features to the 1-hour444

and 2-hour ahead predictions of SYM-H during the Novemb er 2004 geomagnetic storm.445

The minimum SYM-H is close to − 400 nT for this extreme event, so the RMSE of ab out446

30 nT for 1-hour and 39 nT for 2-hour forecast are quite accurate (top row). The abso-447

lute and re lative contributions s hown in the subsequent rows vary s ubs tantially during448

the storm. From 18:00 to 20:45 UT (following the Storm Sudden Commence ment, SSC),449

the observed SYM-H is p ositive, and this is roughly captured by the mo del for 1-hour450

prediction, but is completely missed by the 2-hour forecast. This is not very surprising,451
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Table 10. RMSEs for 1- and 2-hour ahead predictions using only the IMF as input (I2) with

our GBM model and the LSTM1 and CNN1 models of Siciliano et al. (2021). For 1-hour ahead

predictions, the lowest RMSE in each row is shown in bold .

1-hour ahead 2-hour ahead

Storm # GBM LSTM1 CNN1 GBM

26 12.6 18.0 19.8 12.9
27 20.1 16.8 23.4 20.9
28 12.7 18.6 14.4 12.4
29 15.4 21.1 20.0 16.7
30 17.0 24.2 25.8 17.1
31 28.5 32.5 32.1 29.6
32 21.8 23.4 18.9 21.9
33 35.7 33.8 26.7 38.1
34 15.3 17.9 16.6 15.5
35 16.9 21.3 18.6 17.3
36 16.2 20.4 21.4 16.8
37 41.6 42.6 36.9 42.7
38 10.5 18.6 13.0 10.6
39 13.0 20.3 16.5 12.8
40 10.9 13.6 9.2 10.6
41 23.2 27.3 25.4 23.7
42 16.9 17.8 16.7 17.1

Mean 19.3 22.8 20.9 19.8
Median 16.9 20.8 19.9 17.1
Min. 10.5 13.6 9.2 10.6
Max. 41.6 42.6 36.9 42.7
Std. error 2.284 1.994 1.853 2.402
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Figure 2. 1-hour ahead predictions for the 3 strongest geomagnetic storms in the test set

during the main and recovery phases from our GBM (left column) and the LSTM2 developed

by Collado-Villaverde et al. (2021) (right column). The observed SYM-H (black), the predicted

SYM-H (blue) and the error (red) are shown for storms 31, 33, and 37 in the 3 rows, respectively.

since there is no information in the solar wind that would predict the sudden c ommence-452

ment prior to the arrival of the sho ck. The only reason the 1-hour prediction can get the453

SSC ab out half an hour rather than 1 hour late is the lead time provided by the time454

it takes the high sp eed solar wind to propagate from L1 to the Earth. The main con-455

tributors to the 1-hour prediction during this p erio d are the density and dynamic pres-456

sure, and to some extent the IMF B z. Based on our physical understanding, we would457

exp ect the dynamic pressure to b e a more imp ortant predictor than the density, but that458

is clearly not the case, perhaps asso ciated with the relatively constant value of the so-459

lar wind sp eed over that p erio d.460

During the main phase (22:00 Nov 7 to 06:00 Nov 8) of the storm, the SYM-H grad-461

ually drops to its minimum value ne ar − 400 nT. Focusing on the two-hour prediction,462

the relative contribution of B z p eaks around 22:00 on Novemb er 7, and 01:00 and after463

04:00 UT. The first p eak c orre sp onds to the time when B z decreases rapidly to nearly464

-50 nT value. The following p erio d of very intense southward IMF shows initially low465

contribution from B z, but then consistently high values with a p eak at 04:00 close to the466

SYM-H minimum demarking the end of the storm main phase. The contribution from467

B y, while generally low, has a broad p eak b etween 20:00 and 00 UT on Novemb er 7. Dur-468

ing that p erio d, B y is first p ositive and then turns strongly negative. As the B z is neg-469

ative during that time, the strong B y comp onent adds to the efficiency of the dayside470
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Table 11. P-values from paired t-tests for null hypothesis that the mean difference in RMSE

across storms for GBM vs. competing methods is zero.

1 hr ahead 2 hr ahead

LSTM2 0.008 0.419
LSTM1 0.000
Persistence 0.000 0.000
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Figure 3. Scatter plot of percentage contributions (y-axis) against SYM-H (x-axis) for all the

geomagnetic storms. The panels show the contributions of all considered features to the 1-hour

ahead GBM prediction. Each prediction is represented as black dots. Kernel density estimates

using a Gaussian kernel are shown in color with the corresponding color legend on the right of

each scatter plot.

reconnection pro cess, which may account for its indep endent role as a predictor. Finally,471

during the recovery phase the prior SYM-H dominate s (SYM-H evolution dominated by472

internal ring current loss pro cess es), with B z playing a secondary role.473

Figure 6 shows the contribution of features as a function of time when the prior474

SYM-H is not used. The RMSE values b ecome 33 nT and 37 nT for the 1 and 2-hour pre-475

dictions, resp ectively. For the 1-hour prediction, RMSE slightly increases by ab out 3 nT,476

but for the 2-hour prediction, RMSE decreases by roughly 2 nT. This suggests that there477

is no additional information from the 2-hour old SYM-H compared to what the mo del478

can infer from a longer history of L1 observations, at least for this event. If this held in479

general, it would put a prediction window limit on using past SYM-H for data assim-480

ilation purp oses. Another unexp ec ted result is that the 1-hour prediction misses the p os-481

itive SYM-H perio d despite using the dynamic pressure. This is in contrast with the 1-482

hour prediction that includes past SYM-H, which pro duced a larger p ositive SYM-H, al-483

though still lower than observed.484

The relative contributions (b ottom row) show a rather complicated and interest-485

ing pattern. In the initial storm p erio d 18:00 to 21:00 UT, when the observed SYM-H486

is p ositive, the main contributors are density and velo city. Once SYM-H go es negative,487

B z gradually b ecomes the main contributing feature with E s and, B x (for 1-hour pre-488

–18–
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Figure 4. Scatter plot of percentage contributions (y-axis) against SYM-H (x-axis) from solar

wind and IMF parameters for 1-hour ahead prediction from GBM using only solar wind and IMF

parameters as input. Each prediction is represented as black dots. Kernel density estimates using

a Gaussian kernel are shown in color with the corresponding color legend on the right of each

scatter plot.

diction) and B y (for 2-hour prediction) being the second and third most imp ortant. Once489

SYM-H drops b elow − 100 nT, the contribution from B z b ecomes dominant and this re-490

mains true during the whole recovery phase. The other features start to c ontribute more491

after 12:00 UT Nov 8 when B z turns p ositive. Even with p ositive B z, however, the main492

contributor remains B z. This shows that the rectified E s, which simply zero es out the493

electric field for p ositive B z, is throwing away p otentially imp ortant information.494

4.2.2 January 2004 Storm495

Next, we study the storm of January 2004 that has a minimum SYM-H of ab out496

-140 nT, so it is an intense storm, but not as extreme as the Novemb er 2004 sup er storm.497

As shown in figure 7, this is a very complicated storm due to the highly variable B z field498

in the CME sheath (00:00 UT to 11:00 UT Jan 22) preceding the magnetic cloud with499

consistently negative B z. The mo del prediction has 14.22 nT and 19.96 nT RMSE for500

the 1- and 2-hour predictions, resp ectively, which is quite go o d for such a complicated501

event. In the ICME sheath, the main contributor is the previous SYM-H followed by the502

dynamic pressure.503

The 1-hour ahead mo del predicts the jump of SYM-H from 0 to ab out +30 nT at504

2:00UT, which is ab out half a n hour late compared to observations. This cannot b e based505

on prior SYM-H that is obse rved 1 hour earlier, and it is clearly obtained from the dy-506

namic pressure as exp ected from physical understanding. The 2-hour prediction, how-507

ever, completely misses pre dicting p os itive SYM-H values (except for following the in-508

crease of the observed SYM-H with a 2-hour delay), similarly to the extreme event case.509

Between 01:00 and 11:00 UT the main contributors are the prior SYM-H and the510

dynamic pressure, with B z playing a minor role only. After 11:00 UT, however, B z turns511

consistently negative and it b e comes the main contributor of predicting the main phase512

of the storm 1 hour or 2 hours late r for the two mo dels, resp ectively. The 2-hour pre-513

diction also relies heavily on B y b etween 10 and 12:00 UT. A p ossible explanation is that514

the strong magnetic field in the magnetic cloud rotates, so a strong signal in B x or B y515

may b e a predictor for a strong, possibly negative, B z value that has strong geomagnetic516

impact.517
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5 Discussion and conclusions558

We apply an explainable machine learning metho d to quantify the contribution of559

prior SYM-H values, solar wind, IMF, and derived parameters to predictions of the SYM-560

H index 1 to 2 hours ahead. In particular, gradient b o osting machines (GBM) are used561

and the explanation is based on the TreeSHAP metho d. We showed that g radient b o os t-562

ing machines have similar, if not b etter, performance compared to the less explainable563

but highly effective LSTM metho d for forecasting the SYM-H index.564

From the quantified feature contributions, we were able to show that our prop osed565

mo del makes predictions in a physically consistent manner, while also challenging some566

of the commonly assumed relationships among the interplane tary magnetic field, the so-567

lar wind and the formation of Earth’s ring current. In particular, we found that past SYM-568

H and B z are the most imp ortant features overall but feature contributions vary dep end-569

ing on the storm phase and the storm itself. During the storm sudden commencem ent,570

past SYM-H, density, velo city, and to some extent, dynamic pressure and electric field,571

b ecame the main contributors to predictions. As SYM-H decreases during the main phase,572

past SYM-H and B z played an increasingly larger role.573

SHAP values revealed ways that our mo dels made pre dic tions during the two storms574

we investigated in detail: density and velo city had a larger indep endent contribution than575

dynamic pressure during the storm sudden commencement; B y had a non-negligible con-576

tribution during the storm sudden commence ment and main phase; and B z was a b et-577

ter predictor than the rectified E s. However, strong correlation among solar wind vari-578

ables (Borovsky, 2018) may affect how SHAP value s should b e interpreted. A physically579

imp ortant feature may have a small contribution if a highly correlated feature is present580

and has a large contribution. For example, from figs. 3 and 4, we see that the contribu-581

tion from Vx increases drastically when past SYM-H is omitted as an input, which is likely582

due to the correlation b etween SYM-H and Vx. Therefore, a low feature contribution should583

not simply b e interpreted to mean the corresp onding feature is not physically imp ortant584

without investigating how different features are correlated. Further efforts will b e made585

to investigate the robustness of these findings and to p erform a comparison of feature586

contributions for many different storms.587

Along with gray-box approaches, this work takes the first steps in making machine588

learning metho ds more reliable and trustworthy for op erational forec asting of geomag-589

netic activity. However, explanation metho ds like SHAP should b e used with caution,590

esp ecially in high-stakes decision making, as they do not always provide explanations that591

are faithful to the original mo del (Rudin, 2019). Thus, developing highly accurate but592

intrinsically interpretable mo dels should b e prioritized. In addition to interpretability,593

quantified uncertainty is also equally as imp ortant. Consequently, we will devote future594

efforts to developing interpretable metho ds for forecasting other typ es of geomag ne tic595

indices and geomagnetic activity that also estimate predictive uncertainty.596
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Appendix A597

A1 Graphical comparison with persistence model & Burton equation598

Figure A1 shows the 1 hour ahead predictions from our GBM (with past SYM-H599

and IMF parameters as input) and the p ersistence mo del during the main and recov-600

ery phases of the three strongest test storms with SYM-H < � 300 nT (31, 33, 37) along601

with the corresp onding prediction errors. The difference in prediction error b etween our602

GBM and the p ersistence mo del is most notable during the main phases of the three storms603

considered. For example, during the main phase of storm 37, the p ersistence mo del has604

prediction errors reaching > 100 nT which means it severely overpredicts SYM-H dur-605

ing the main phase. Meanwhile, our GBM has prediction errors b etween around -100 to606

40 nT, which means it tended to underpredict rather than overpredict SYM-H. Figure A2607

shows the 1 hour ahead predictions from our GBM and the Burton equation during the608

same tim e p erio ds. In these plots, the GBM seems to capture the timing of the storms609

slightly b etter than the Burton equation. However, they have similar predictive p erfor-610

mance during these three storms as shown by their RMSEs in table 6.611

A2 Descriptive statistics of solar wind & IMF parameters612

Table A1. Descriptive statistics for the solar wind and IMF parameters in the 25 storms used

for training listed in table 1. The minimum temperature (MK) is most likely a measurement

error.

Parameter Min. 25% Quantile Median 75% Quantile Max.

Bx (nT) -43.700 -3.131 0.340 3.378 34.681
By (nT) -51.968 -2.901 0.221 3.289 46.862
Bz (nT) -77.258 -2.296 -0.092 2.179 38.717
Vx (km/s) -1233.693 -539.489 -445.287 -384.021 -264.722
Density (amu/cm 2) 0.041 2.912 5.027 8.477 76.239
Temp era ture (MK) 0.0032 0.0385 0.0702 0.1262 1.0983

Table A2. Descriptive statistics for the solar wind and IMF parameters in the 25 test storms

listed in table 2. The minimum temperature (MK) is most likely a measurement error.

Parameter Min. 25% Quantile Median 75% Quantile Max.

Bx (nT) -48.717 -2.868 0.221 3.444 33.827
By (nT) -48.963 -2.816 -0.205 2.855 54.563
Bz (nT) -48.585 -2.357 -0.084 1.933 53.002
Vx (km/s) -887.784 -535.138 -424.304 -373.465 -251.481
Density (amu/cm 3) 0.295 2.760 4.424 7.643 113.982
Temp erature (MK) 0.0052 0.037 0.0658 0.122 0.9909
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Figure 5. 1-hour (left) and 2-hour (right) ahead predictions for the Nov. 2004 storm using

GBM trained on all considered features. The �rst row shows the observed (black) and predicted

(blue) SYM-H values. Rows 2-9 show the contributions from each feature (left axis, colored) and

its value (right axis, black). The percentage contributions are shown in the last row. The contri-

bution from past SYM-H on predictions is omitted, but its percentage contribution is implicitly

shown as the remaining white area in the last row.
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