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Abstract

Denitrification in the hyporheic zone (HZ) of river corridors is crucial to removing excess nitrogen in rivers from anthropogenic

activities. However, previous modeling studies of the effectiveness of river corridors in removing excess nitrogen via denitrification

were often limited to the reach-scale and low-order stream watersheds. We developed a basin-scale river corridor model for

the Columbia River Basin with random forest models to identify the dominant factors associated with the spatial variation of

HZ denitrification. Our modeling results suggest that the combined effects of hydrologic variability in reaches and substrate

availability influenced by land use are associated with the spatial variability of modeled HZ denitrification at the basin scale.

Hyporheic exchange flux can explain most of spatial variation of denitrification amounts in reaches of different sizes, while among

the reaches affected by different land uses, the combination of hyporheic exchange flux and stream dissolved organic carbon

(DOC) concentration can explain the denitrification differences. Also, we can generalize that the most influential watershed

and channel variables controlling denitrification variation are channel morphology parameters (median grain size (D50), stream

slope), climate (annual precipitation and evapotranspiration), and stream DOC-related parameters (percent of shrub area).

The modeling framework in our study can serve as a valuable tool to identify the limiting factors in removing excess nitrogen

pollution in large river basins where direct measurement is often infeasible.
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Abstract 25 

Denitrification in the hyporheic zone (HZ) of river corridors is crucial to removing excess 26 

nitrogen in rivers from anthropogenic activities. However, previous modeling studies of the 27 

effectiveness of river corridors in removing excess nitrogen via denitrification were often limited 28 

to the reach-scale and low-order stream watersheds. We developed a basin-scale river corridor 29 

model for the Columbia River Basin with random forest models to identify the dominant factors 30 

associated with the spatial variation of HZ denitrification. Our modeling results suggest that the 31 

combined effects of hydrologic variability in reaches and substrate availability influenced by 32 

land use are associated with the spatial variability of modeled HZ denitrification at the basin 33 

scale. Hyporheic exchange flux can explain most of spatial variation of denitrification amounts 34 

in reaches of different sizes, while among the reaches affected by different land uses, the 35 

combination of hyporheic exchange flux and stream dissolved organic carbon (DOC) 36 

concentration can explain the denitrification differences. Also, we can generalize that the most 37 

influential watershed and channel variables controlling denitrification variation are channel 38 

morphology parameters (median grain size (D50), stream slope), climate (annual precipitation 39 

and evapotranspiration), and stream DOC-related parameters (percent of shrub area). The 40 

modeling framework in our study can serve as a valuable tool to identify the limiting factors in 41 

removing excess nitrogen pollution in large river basins where direct measurement is often 42 

infeasible. 43 

Keywords: hyporheic zone, denitrification modeling, random forest model, stream size, and 44 

land use 45 

  46 



1. Introduction 47 

Air pollution, fertilizer use in agricultural lands, and wastewater effluents and polluted 48 

stormwater runoff from urban lands often result in stream nitrogen pollution, which also 49 

increases the frequency of eutrophication, hypoxia, and harmful algal blooms in lakes and 50 

estuaries (Boyer et al., 2006; Frei et al., 2020; Le Moal et al., 2019; Pinay et al., 2015, 2018). To 51 

lessen stream nitrogen pollution, we can reduce the nutrient loading or increase the nitrogen 52 

removal activity through in-stream nitrogen decay or the denitrification process in river corridors 53 

or soils (Frei et al., 2020; Pinay et al., 2018). Generally, denitrification is the most effective way 54 

to transform inorganic forms of excess nitrogen to a gas form (N2) emitted to the atmosphere 55 

(Boyer et al., 2006). However, with the importance of denitrification, there are still considerable 56 

uncertainties in modeling denitrification in terrestrial and aquatic systems (Groffman, 57 

Butterbach-Bahl, et al., 2009) due to the high spatial and temporal heterogeneity of key 58 

controlling factors (oxygen, nitrate, carbon and pH, temperature, etc.). Therefore, quantifying 59 

denitrification in river corridors with varying spatial and temporal scales is challenging, 60 

especially for the hyporheic zone (HZ) at large spatial scales (Lee-Cullin et al., 2018). 61 

Denitrification in the HZ varies with local conditions, including substrate availability (e.g., 62 

dissolved organic carbon (DOC), dissolved oxygen (DO) and nitrate), sediment properties (e.g., 63 

grain size), and hydrologic exchange flux/residence time (Kreiling et al., 2019; Seitzinger et al., 64 

2006; Fork and Heffernan 2014; Findlay et al., 2011; Boyer et al., 2006; Tank et al., 2008; 65 

Zarnetske et al., 2015). Large-scale drivers, including land use/cover and climate, can alter local 66 

conditions, for example agricultural and urban watersheds tend to have higher potential 67 

denitrification than undisturbed watersheds (Mulholland et al., 2008). However, the critical 68 

controlling factors may change with scale and land use. Kreiling et al. (2019) showed that stream 69 

nitrate availability is a crucial variable that controls the spatial variation of denitrification in the 70 

Fox River watershed in Wisconsin, a mixed land use landscape. Baker and Vervier (2004) 71 

showed that the concentration of low molecular weight organic acids is the best predictor for 72 

explaining spatiotemporal patterns of denitrification variables. Even though we know that the 73 

combined effects of hydrologic variability and substrate concentration control denitrification, it 74 

is unclear which factors become dominant and under what conditions. Bardini et al. (2012) used 75 

numerical modeling to demonstrate that streambeds can alternate between net nitrification and 76 

net denitrification states by varying physical and chemical constraints. In particular, their 77 



numerical simulation study showed that hydrologic variability is more important than reaction 78 

substrate availability (DOC and NO3
−) to drive such changes in streambed biogeochemical 79 

transformations. The relative importance of hydrologic and substrate variables may vary with 80 

land use and stream size; for example, a study by Myers (2008) found that, for a selected number 81 

of sites, denitrification in agricultural streams is limited by hyporheic exchange flux, while in 82 

forest streams it is limited by substrate availability. 83 

Previous denitrification studies are often limited to reach scale to lower order streams and 84 

have emphasized the importance of the role of lower order streams in denitrification (Alexander 85 

et al., 2000, 2007; Gomez-Velez et al., 2015; Tank et al., 2008). Due to the higher ratio of 86 

benthic surface-to-water volume and nutrient loading in lower order streams, denitrification's 87 

efficiency in lower order streams is higher than that of higher order streams (Wollheim, 2016). 88 

This result may be relevant to the empirical studies' sample bias, as Tank et al. (2008) pointed 89 

out in their meta-analysis that most stream nutrient uptake studies for NH4
+and NO3

− were 90 

conducted at streams with less than 200 l/s. Using a pulse tracer test method, Tank et al. (2008) 91 

also demonstrated that larger streams in the Upper Snake River (7th order and 12,000 l/s) have 92 

higher inorganic nitrogen uptake (NH4
+and NO3

−) than smaller streams. Ensign and Doyle (2006) 93 

analyzed the results of nutrient spiraling experiments spanning from 1st order to 5th order 94 

streams. They found that the cumulative uptake rate of NO3
− increases with stream orders. 95 

Similarly, a recent modeling study showed the potentially important role played by larger rivers 96 

in removing excess nitrogen (Wollheim, 2016). Therefore, it is vital to investigate further how 97 

stream size affects hyporheic exchange processes (Gomez-Velez & Harvey, 2014; Hotchkiss et 98 

al., 2015; Tank et al., 2008; Wollheim et al., 2006). Furthermore, many previous modeling 99 

studies did not separate the role of HZ denitrification from the whole-stream denitrification 100 

(Alexander et al., 2000, 2007, 2009; Schmadel et al., 2021; Wollheim, 2016), so studying HZ 101 

denitrification along streams with varying hydrologic and biogeochemical conditions is critical. 102 

Previously, few basin-scale numerical models have been developed to simulate the role of 103 

river corridors in removing excess nitrogen from streams and rivers (Alexander et al., 2007, 104 

2009; Curie et al., 2011; Fang et al., 2020; Gomez-Velez & Harvey, 2014). However, most of the 105 

basin-scale models are based on empirical reaction models, or the reaction parameters are 106 

estimated by fitting the empirical data (Alexander et al., 2000, 2009; Wise et al., 2019). For 107 

example, the Networks with Exchange and Subsurface Storage (NEXSS) used an empirical 108 



hydrogeomorphic model and a suite of hydraulic and groundwater models to compute the 109 

hyporheic exchange flux and residence time along river networks (Gomez-Velez et al., 2015; 110 

Gomez-Velez & Harvey, 2014). The NEXSS model determines potential denitrification based on 111 

the ratio of computed Damkohler number and river turnover length. However, this potential 112 

denitrification does not consider the limitation of substrate availability in the denitrification rate. 113 

The SPAtially Referenced Regressions on Watershed attributes (SPARROW) model was used to 114 

estimate in-stream removal of nitrogen in the Mississippi River Basin (Alexander et al., 2000, 115 

2007) and the Pacific regions (Wise et al., 2019). In-stream removal of nitrogen was estimated 116 

by fitting the model parameters with the measured mean nitrogen fluxes without considering 117 

explicitly nitrogen processes in streams. Also, this model does not separate the nitrogen removal 118 

from the water column and HZ. Thus, the sole contribution of the nitrogen removal from the HZ 119 

cannot be quantified. An integrated surface and subsurface model (Amanzi-ATS) was developed 120 

to compute aerobic respiration and denitrification in the HZ at the watershed scale (Jan et al., 121 

2021), but this study is still limited to demonstrating the capability of the watershed model to 122 

simulate the HZ processes and their impacts on stream water quality in an agriculture-dominant 123 

watershed. Applying the ATS model in a large river basin and understanding the important 124 

factors associated with denitrification is computationally too expensive. 125 

On the other hand, Fang et al. (2020) developed SWAT-MRMT-R, a model that couples the 126 

watershed water quality model, Soil and Water Assessment Tool (SWAT), with the reaction 127 

module from a flow and reactive transport code (PFLOTRAN). It can compute aerobic 128 

respiration and denitrification in the HZ. The model was successfully tested in the upper 129 

Columbia–Priest Rapids watershed in the Columbia River Basin (CRB). It showed that the 130 

spatial variation of HZ denitrification depends on a combination of varying hyporheic exchange 131 

and source locations of nitrate. 132 

While physically based numerical models can represent explicit mechanisms and simulate 133 

HZ denitrification at varying spatial and temporal scales, these models are computationally 134 

expensive (Ren et al., 2021) and require various data sources for model calibration (Chen et al., 135 

2021). As an alternative, machine learning approaches show high performance with limited data 136 

and capture complex relationships between inputs and outputs (Mori et al., 2019). In some cases, 137 

both approaches can be combined to gain further insight and predictability. For example, the 138 



model can be used to reveal the dominant process or features through variable importance 139 

analysis (Ren et al., 2020, 2021; Ward et al., 2022). 140 

In this study, we adopted the reaction network model from the SWAT-MRMT-R to study 141 

the role of the HZ in removing excess nitrogen at the basin scale. We applied this modeling 142 

framework to the CRB, covering a wide range of channel sizes and land uses. A detailed 143 

description follows in the methodology section. We used the CRB as a testbed to study the 144 

spatial variation of HZ denitrification at the basin scale. The developed basin-scale HZ river 145 

corridor model (RCM) aims to quantify the spatial variation of HZ denitrification across the 146 

reaches of the CRB. A random forest model, a machine learning approach, is then used to 147 

identify the dominant factors associated with the spatial variation of HZ denitrification at the 148 

basin scale (Figure 1). Specifically, we ask two questions: 149 

1. What dominant variables explain the spatial variation of HZ denitrification in the CRB? 150 

We hypothesized that (i) the relative importance of hydrologic variability and substrate 151 

availability can control the spatial variation of HZ denitrification and (ii) their 152 

significance may change with stream size and dominant land use. We built random forest 153 

models with key input variables and modeled denitrification results to test this 154 

hypothesis. With this approach, we identify the variables that can better explain the 155 

spatial variation of modeled denitrification across streams with different sizes and land 156 

uses. 157 

2. Which watershed/stream characteristics can better explain the spatial variation of HZ 158 

denitrification in the CRB? We extended our efforts to develop another random forest 159 

model to capture the modeled denitrification in the CRB with publicly available 160 

watershed and stream characteristic data. This random forest model can generalize which 161 

watershed/stream characteristics can better explain the spatial variation of the HZ 162 

denitrification in the CRB. 163 

 164 

2. Methodology 165 

This study uses the RCM to explore the spatial patterns of HZ denitrification across reaches 166 

with different sizes and land use in the CRB. Our main objective is to use the RCM as a virtual 167 

reality model, and the machine-learning models as surrogates that encapsulate the complexities 168 

of the physics-based model while identifying the importance of different variables that are not 169 



evident in the model conceptualization. We do not include a direct comparison of the modeled 170 

HZ denitrification and measurements; however, we believe that the RCM can capture the overall 171 

spatial patterns of the HZ denitrification because the model inputs and its reaction networks are 172 

based on well-established theory (Fang, et al., 2020; X. Song et al., 2018) and a physical-based 173 

model (Gomez-Velez et al., 2015; Gomez-Velez & Harvey, 2014) or measurements (Li et al., 174 

2017). The combination of the model-based predictions and a machine-learning approach (e.g., 175 

random forest) is used to improve our understanding of what variables of the model are 176 

associated with spatial patterns of the modeled denitrification across reaches with different sizes 177 

and land uses, and to develop a proxy model using measurable variables to reproduce the 178 

simulated patterns. 179 

2.1  Columbia River Basin 180 

The study site is the CRB (Figure 2), a large transboundary river basin with approximately 181 

5,230 m of relief and a drainage area of 620,000 km2. Here, we focus on 570,413km2 of the basin 182 

within the continental United States. We selected this fraction of the basin due to data 183 

availability. For example, only the U.S. CRB has data from the National Hydrography Dataset 184 

(NHD) Plus v2, and our spatial template and the hyporheic exchange and residence time 185 

estimates are only available for this region. 186 

The CRB can be divided into nine sub-river basins: (1) Lower Columbia; (2) Middle 187 

Columbia; (3) Upper Columbia; (4) Lower Snake; (5) Middle Snake; (6) Upper Snake; (7) 188 

Kootenai-Pend Oreille-Spokane; (8) Willamette; and (9) Yakima River (Figure 1b). The basin 189 

expands various climatic and land use/cover classes. For example, western Washington and 190 

Oregon have humid continental climate; eastern Washington and Oregon, and Idaho have a semi-191 

arid steep climate; and the Cascade Range in Washington and Oregon, and the Rocky Mountains 192 

in Idaho, Montana, and Wyoming have an alpine climate. The variations in climate are reflected 193 

in the annual precipitation, which ranges from 158 to 5,230 mm (based on 30 years of 194 

normalized PRISM data), and the mean annual temperature, which ranges from -3 to 12℃. The 195 

seasonal pattern of precipitation is very consistent with winter precipitation being dominant. 196 

Higher elevations are dominated by precipitation in the phase of snow, while in lower elevation 197 

regions precipitation falls primarily as rain. Major land use/cover (Figure 1c) is composed of 198 



33.7% forest land (33% evergreen forest and about 0.3 and 0.4% deciduous forest and mixed 199 

forest), 33% of shrub lands, 12% agriculture lands (10% croplands and 2% hay and pasture), and 200 

2.3% urban lands. 201 

2.2 Basin-scale hyporheic zone river corridor model 202 

The RCM used in this study is a simplified, spatially resolved, basin-scale model that couples 203 

carbon and nitrogen dynamics. We focus on simulating the spatial variation of HZ denitrification 204 

in the CRB (Figure A1). The model adopted the reaction network model from SWAT-MRMT-R 205 

(Fang, et al., 2020). Three microbially driven reactions, including two-step denitrification and 206 

aerobic respiration, are considered within the HZ (Table A1). Note that this model only simulates 207 

the HZ denitrification in the stream sediments without accounting for the denitrification process 208 

in water column. The detailed equations and descriptions are found in the appendix and Fang et 209 

al. (2020). Key model inputs are stream substrate concentrations (DOC, DO, and NO3
−), and HZ 210 

exchange flux and residence time. The model computes at hourly time steps to capture the fast 211 

reaction time characterizing the biogeochemical processes represented in Tables A1 and A2, but 212 

the model inputs are constant over time; thus, we consider that the modeled HZ denitrification 213 

represents long-term averaged conditions. The RCM computes mean annual NO3
− removal 214 

(kgN/day) at the scale of the NHDPLUS stream reaches over the simulation periods and scales it 215 

by stream surface area (m2), using two parameters (channel width and length). The stream length 216 

and width was derived from the NHDPLUS database (Schwarz et al., 2018), and the power 217 

relationship between measurement of instantaneous flow and bankfull width and NHD 218 

cumulative drainage area (Gomez-Velez et al., 2015), respectively. The model separately 219 

calculates the NO3
− removal amounts via vertical and lateral hyporheic exchange. To test the 220 

variation of mean annual NO3
− removal amounts between years, we ran the model over 10 years 221 

and found that after 2 years of simulation, the removal amounts reached a dynamic steady state 222 

(Figure S1). For our modeling analysis, the 2nd year simulation results were used. 223 

 Among model inputs, the exchange rate and residence time between stream and HZ were 224 

estimated using NEXSS (Gomez-Velez and Harvey 2014). The NEXSS model coupled empirical 225 

geomorphologic models with a suite of existing physical hyporheic exchange flux models; for 226 

example, NEXSS estimates the values of bankfull channel with discharge, median grain size 227 

(D50), channel slope, sinuosity, and regional head gradients along the NHDPLUS stream 228 



networks. In addition, physical hyporheic exchange modeling is used to predict the average 229 

hyporheic exchange flux, residence time distribution, and median residence time in the vertical 230 

and lateral direction. Vertical hyporheic flux represents exchange between channel water and 231 

bedforms, while lateral exchange flux represents exchange between channel water and river bars 232 

and meander banks. 233 

Stream substrate concentrations, including DOC, DO and NO3
− (Figure 3), are determined via 234 

empirical regression-based estimates or the output of the SPARROW 2012. For the stream NO3
− 235 

concentration, we used results of the 2012 SPARROW model 236 

(https://www.sciencebase.gov/catalog/item/5d407318e4b01d82ce8d9b3c). SPARROW is a 237 

statistical regression model and has been used to identify key pollutant sources and determine the 238 

role of in-stream process in removing nutrients at the regional scale (Alexander et al., 2007; 239 

Wise et al., 2019). SPARROW outputs include mean annual streamflow, total nitrogen loading, 240 

total phosphorous loading, and suspended solid loading at the NHDPLUS stream reaches. Since 241 

our RCM requires stream nitrate concentration, we calculated the mean annual total nitrate 242 

concentration by dividing the total nitrogen mean annual loading by the mean annual streamflow 243 

estimates and multiplying by the ratio of NO3
− to total nitrogen concentration. The ratio was 244 

computed based on the measured NO3
− and total nitrogen concentrations at the U.S. Geological 245 

Survey gauge stations in the CRB. To compute stream NO3
− concentration, the ratio of stream 246 

nitrate concentration to the total stream nitrogen was multiplied by the total nitrogen 247 

concentration. Detailed analysis is included in the supporting information. 248 

For stream DOC and DO concentrations, we developed multilinear regression models based 249 

on the NHD stream database (Schwarz et al., 2018) and the measured stream DOC/DO 250 

concentrations at the gauging stations in the CRB. The developed stream DOC concentration 251 

model is a function of the percentage of basin/catchment shrub areas (tshrub and logshrub), a 252 

basin agriculture area (logtargc) (stream DOC = -0.03 (tshrub) + 0.45 (logtargc) – 0.12 253 

(logshrub) + 3.15). Reaches with higher agriculture lands tend to have higher DOC 254 

concentrations, but those with higher shrub lands tend to have lower DOC concentrations. The 255 

developed stream DO concentration model is a function of basin soil bulk density 256 

(TOT_BDAVE), basin topographic wetness index (TOT_TWI), basin drainage area 257 

(TOT_BASIN), and catchment dam storage (logCAT_NID) (stream DO = -2.85 258 

(TOT_BDAVAE) – 0.49 (TOT_TWI) + 0.31 (logTOT_BASIN_AREA) + 0.12 (logCAT_NID). 259 



The reaches with higher drainage area and dam storage tend to have higher DO concentrations, 260 

but those with higher bulk density soil and wetted areas tend to have lower DO concentrations. 261 

The detailed procedures of building multiple regression models for spatial DOC/DO mean 262 

concentrations are included in the supporting information. 263 

2.3 Spatial variation of modeled hyporheic zone denitrification 264 

2.3.1 Reach- and basin-scale HZ denitrification within the CRB 265 

We quantified the spatial variability of mean annual NO3
− removal amount at the NHDPLUS 266 

reach- and sub-basin scale. We explored how the spatial patterns change with channel size and 267 

land use. This study classified the channel sizes in the three groups based on Strahler’s stream 268 

ordering system: (1) small streams (1st–3rd), (2) medium rivers (4th–6th), and (3) large rivers (7th–269 

12th). While the largest stream/river in the CRB is 9th order, the large rivers include the 7th to 9th 270 

orders in our analysis. To determine the dominant land use for each reach, we calculated the 271 

percentage of each land use (forest, urban, agriculture, and shrub) within the total upstream 272 

routed accumulated area. If the percentage of the drainage area for each land use type is larger 273 

than 80%, we assigned that type as the dominant land use. National Land Cover Database 2001 274 

land cover (https://www.mrlc.gov/) was used to calculate the percentage of each land cover. To 275 

simplify the classification, forest land use includes mixed, deciduous, and evergreen forest types; 276 

urban land use includes developed open spaces and developed low/medium/high density area; 277 

agriculture land use includes pasture/hay and cultivated crop areas; and shrub land use includes 278 

dwarf scrub and shrub/scrub. We quantified the difference in the mean daily HZ NO3
− removal 279 

amounts in the reaches with different sizes (small, medium, and large streams/rivers) and 280 

different land uses (forest, urban, agriculture, and shrub). The significance of the effect of land 281 

use and reach size on the mean daily HZ NO3
− removal amount was tested using the Kruskal-282 

Wallis test. 283 

2.3.2 Sensitivity of HZ denitrification to substrate concentrations 284 

The stream substrate concentrations at the NHDPLUS reach scale are estimated via the 285 

existing SPARROW model or measured stream DOC/DO concentration; therefore, their 286 

estimates are expected to have a high uncertainty that can affect the modeling results. To 287 

quantify the impact of substrate concentration on the model estimates, we create four seasonal 288 

stream DOC and DO concentration maps, and evaluate how the modeled NO3
− removal amount 289 



changes with different seasonal concentrations. The detailed descriptions of the seasonal 290 

substrate concentrations are included in the supporting information. We also apply the maximum 291 

and minimum of substrate concentrations and evaluate which limits the denitrification process in 292 

the reaches across the different sizes and land uses. For example, the maximum value of 293 

predicted DOC and NO3
− and minimum value of predicted DO concentration are applied to all 294 

reaches. 295 

2.3.3 Key factors controlling spatial variability of mean annual NO3
− removal at basin scale 296 

To evaluate the relative importance between hydrologic and substrate variables and modeled 297 

NO3
− removal in the CRB, we used variable importance analysis implemented in a random forest 298 

model to identify what factors are associated with the spatial variation of NO3
− removal amounts 299 

(Figure 1). A random forest model was built with the R “randomforest” package using the key 300 

input variables and modeled NO3
− removal amounts (kgN/m2/day), with 80% of samples used to 301 

train the random forest model and 20% used to test the model prediction. We used the R2 and 302 

mean squared error (MSE) to quantify the model prediction accuracy. 303 

The random forest model we developed was used to compute the partial dependence of each 304 

variable on the modeled NO3
− removal amount and to measure importance ranks of key input 305 

variables. We tested whether the ranks of variable importance vary across the reaches with 306 

different sizes and land uses. To measure the importance of key variables in the random forest 307 

model, we used Gini impurity measures to determine how well each tree is classified and the 308 

variance within each tree. Lower variance represents better classification of each variable. Also, 309 

to generalize which watershed and stream properties can better represent the spatial variation of 310 

HZ NO3
− removal amount in the CRB, we developed a random forest model with publicly 311 

available watershed/stream variables (Figure 1 and Table 1). The detailed information for each 312 

variable used in the random forest model is found in the supporting information (Table S4). The 313 

watershed and stream properties are based on the NHDPLUS database (Schwarz et al., 2018). 314 

 315 

3. Results 316 

3.1 Variation of hydrologic variability and substrate availability 317 

We computed the distribution of key model inputs of hydrologic/substrate variables in the 318 

reaches across orders and dominant land uses (Figure 4). In the following, we summarize our 319 



results, starting with the role of stream size and concluding with land use. Note that we excluded 320 

data for 9th order reaches given the small sample (only five). 321 

The inputs consistently vary with stream orders (Figure 4a-e). For example, for hyporheic 322 

exchange flux, the median flux increased from 1st to 5th order streams and decreased from 6th to 323 

8th order rivers. Median residence time increased from 1st to 8th. In contrast, median stream NO3
− 324 

concentrations did not display an obvious trend with channel size. For stream DOC and DO 325 

concentrations, the median values increased with stream order, while lower order streams had 326 

larger variation of DOC concentration than higher order streams/rivers. 327 

When considering land use, reaches in the forest land tended to have the highest hyporheic 328 

exchange fluxes, while those in the shrub land had the lowest values (Figure 5). For residence 329 

time, reaches in the shrub land had the longest residence time, while forest reaches had the 330 

shortest residence time. This is likely explained by the strong correlation between elevation and 331 

the drivers for hyporheic exchange. For substrate availability, reaches in the forest and shrub 332 

lands had relatively lower stream DOC and NO3
− but higher DO concentrations than the reaches 333 

in the urban and agricultural lands. Reaches in the agricultural lands had the highest DOC and 334 

NO3
−. The reaches in the forest land had the highest DO concentration, but those in the urban 335 

land had the lowest DO concentration. 336 

We also created the seasonal substrate concentration products, where the spatial patterns of 337 

the seasonal DOC do not change with the stream orders (Figure S2); for example, stream DOC 338 

increased with the stream orders. However, the relationship between stream DO and stream 339 

orders changed with the season. The median of the spring and summer DO concentrations did 340 

not vary with the stream orders, but the fall DO concentration decreased with the stream orders 341 

and winter DO concentrations increased. On the other hand, the effect of land use on seasonal 342 

DOC and DO was minor (Figure S3). For example, while reaches in forest and shrub lands had 343 

lower DOC than those in urban and agricultural lands for all seasons, reaches in the agriculture 344 

land had the highest DOC concentration, except for winter when urban reaches had the highest 345 

DOC. Similarly, spatial patterns of stream DO with different land use did not vary with season. 346 

3.2 Spatial variation of hyporheic zone 𝐍𝐍𝐍𝐍𝟑𝟑
− removal amounts via different flow paths 347 

We computed the mean annual HZ NO3
− removal amount (kgN/m2/day) via vertical and 348 

lateral hyporheic exchange, respectively (Figure 6). The spatial variations of HZ NO3
− removal 349 



were similar; the spatial correlation (as measured by the Spearman correlation coefficient) 350 

between the two estimates was 0.85. The vertical HZ NO3
− removal was about one order of 351 

magnitude higher than the lateral HZ NO3
− removal. The vertical HZ NO3

− removal ranged from 0 352 

to 0.33 kg N/m2/day and its mean value was 0.00032 kg N/m2/day, while the lateral HZ NO3
− 353 

removal ranged from 0 to 0.00517 kg N/m2/day and its mean value was 2.25e-0.5 kg N/m2/day. 354 

The ratio of vertical HZ NO3
− removal to the total HZ NO3

− removal ranged from 0.001 to 0.99, 355 

with a mean of about 0.78. The ratio increased with the stream orders. For example, median 356 

ratios of the 1st and 2nd order streams were about 0.67 and 0.83, respectively, and the median 357 

ratio of higher order rivers (> 5th) was close to 1. This result suggests that the HZ NO3
− removal 358 

tends to be more dominated by the vertical exchange in higher order streams and rivers. This is 359 

consistent with the modeling results from Gomez-Velez et al. (2015), where the potential 360 

denitrification (measured by the reaction significant factor) was higher via vertical hyporheic 361 

exchange than via lateral hyporheic exchange in the Mississippi River Basin. 362 

3.3 Spatial variation of hyporheic zone 𝐍𝐍𝐍𝐍𝟑𝟑
− removal amounts in reaches with different 363 

orders and land uses 364 

We quantified the HZ NO3
− removal amount (kgN/m2/day) across the reaches with different 365 

orders and land uses (Figures 7, S4, and S5). Modeled NO3
− removal amounts have an unimodal 366 

function of stream/river orders (or sizes); medium-sized rivers (4th–6th orders) had the highest 367 

NO3
− removal amounts (Figure 7a). Among the reaches with different land uses, forest reaches 368 

have the largest NO3
− removal amounts (Figure 7b), urban reaches have the second largest, and 369 

shrub reaches have the least NO3
− removal amounts. Their differences were all statistically 370 

significant when using the Kruskal-Wallis test, and the p-value of the two tests were all less than 371 

2.2e-16. We also tested the impact of seasonal substrate concentrations on the spatial variation of 372 

NO3
− removal amounts (Figures S4 and S5). Using seasonal substrate concentration does not 373 

change the spatial relationship between modeled HZ NO3
− removal amounts and stream/river 374 

orders; for example, medium-sized rivers still had the largest NO3
− removal amounts with 375 

different seasonal substrate concentrations (Figure S4). However, with seasonal concentrations, 376 

rank of the HZ NO3
− removal amounts changes with different land uses; for example, urban 377 

reaches had the largest NO3
− removal amounts with fall substrate concentrations, while forest 378 



reaches had the largest NO3
− removal amounts in spring. The difference of forest and urban 379 

reaches in NO3
− removal amounts were not statistically significant in summer and winter. 380 

3.4 Influence factors on spatial variation of hyporheic zone 𝐍𝐍𝐍𝐍𝟑𝟑
− removal amounts 381 

To identify the factors that play a dominant role in the spatial variations of the HZ NO3
− 382 

removal, we developed a random forest model with the inputs and HZ NO3
− removal amounts. 383 

The partial dependence plots (Figure S6) showed that stream DOC, residence time, and exchange 384 

flux had strong nonlinear relationships with the modeled NO3
− removal across different sized 385 

streams and rivers. Modeled NO3
− removal increased with stream DOC and exchange flux, but it 386 

decreased with residence time. For reaches with different dominant land uses, exchange flux and 387 

residence time had a strong positive and negative relationship with the HZ NO3
− removal 388 

amounts, respectively. For all reaches, stream DOC had a high positive nonlinear relationship 389 

with the HZ NO3
− removal amounts, while stream NO3

− and DO had a weak nonlinear 390 

relationship. 391 

The variable importance analysis using our random forest model showed that hydrologic 392 

variables were more important in explaining HZ NO3
− removal amount spatial variation than 393 

substrate variables (Figure 8). Among the hydrological variables, hyporheic exchange flux was 394 

the most important variable and residence time was second most important in all sizes of reaches. 395 

Among the substrate variables, stream DOC was the most important. Similarly, the hyporheic 396 

exchange flux and residence time were the most and second most important variables for reaches 397 

with different land uses, respectively. While residence time was always the second most 398 

important variable across the reaches with different land uses, among the substrate variables, the 399 

stream DOC was the most important in all reaches except for the shrub reaches. For the shrub 400 

reaches, the stream NO3
− showed higher importance than the stream DOC. 401 

We evaluated the impact of substrate availability on the HZ NO3
− removal amount in reaches 402 

across the different sizes and land uses (Figure 9). On average, removing substrate concentration 403 

limits tended to increase HZ NO3
− removal amounts. Among substrate availability, applying the 404 

maximum DOC concentrations most increased the HZ NO3
− removal for all sized reaches and 405 

with different land uses, while maximum NO3
− concentrations least increased HZ NO3

− removal 406 

amounts. Among the reaches with different land uses, shrub reaches showed the largest increase 407 



in HZ NO3
− removal by removing DOC limits. Agricultural reaches showed the least increase by 408 

removing the substrate limits. Among the different sized reaches, small streams showed the 409 

largest increases in HZ NO3
− removal amount. This result suggests that stream DOC is the most 410 

limiting substrate to NO3
− removal, especially for the reaches with relatively lower DOC 411 

concentrations (Figures 4 and 5). 412 

3.5  Relationship between watershed/stream characteristics and 𝐍𝐍𝐍𝐍𝟑𝟑
− removal amounts 413 

With the publicly available watershed and stream properties data, we developed another 414 

random forest model to predict the HZ NO3
− removal amounts in the CRB to generalize which 415 

watershed/stream characteristics can better explain the spatial variation of the HZ denitrification. 416 

We built random forest models using the HZ NO3
− removal amounts via vertical, lateral, and total 417 

hyporheic exchange, respectively. Each model showed high predictive accuracy, with R2 values 418 

greater than 0.96 and MSE values less than 0.06 (Figure 10a and Table 2). The variable 419 

importance plots showed that for the lateral NO3
− removal amounts, D50, annual precipitation, 420 

annual evapotranspiration, and stream slope were the most important variables (Figure 10b); 421 

while for vertical NO3
− removal amounts, D50, annual precipitation, annual evapotranspiration, 422 

vegetation index, and percent of shrub area were the most important variables (Figure 10c). For 423 

total NO3
− removal amounts, D50, annual precipitation, annual evapotranspiration, and percent of 424 

shrub area were the most important variables (Figure 10d). The D50, stream slope variables, and 425 

annual precipitation were highly associated with the hyporheic exchange rate since the variables 426 

were used to calculate streambed hydraulic conductivity in NEXSS (Gomez-Velez et al., 2015). 427 

The percent of shrub area was a key predictor in estimating stream DOC concentrations 428 

(Figures 4 and S9). The results of variable importance supported that the HZ NO3
− removal 429 

amount increased with hyporheic exchange flux, which positively correlated with streambed 430 

hydraulic conductivity (or D50). The modeled NO3
− removal was also sensitive to the available 431 

DOC concentrations, which was negatively correlated to the percent of shrub area. To test how 432 

well our random forest model can be applied to the sub-basin in the CRB, we also built a random 433 

forest model with the same input data. As with the CRB, the most important variable for each 434 

sub-basin was all D50 (Figure S10), and the second most influential variable was mean annual 435 

precipitation or basin area, or bankfull width, depending on sub-basins. 436 

 437 



4. Discussion 438 

4.1  Key controls on spatial hyporheic zone denitrification variations 439 

This study used the basin-scale RCM and random forest models to identify key factors 440 

associated with spatial variation of HZ denitrification in the CRB. Results showed that 441 

hydrologic variables were more important than substrate variables in explaining the spatial 442 

variation of HZ denitrification in reaches across different sizes and land uses. Among the 443 

selected hydrologic variables, hyporheic exchange flux was the most important variable for all 444 

reaches with different sizes and land uses. Among the substrate variables, stream DOC was 445 

considered the most important. Previous studies showed hydrologic variables can explain HZ 446 

denitrification. For example, the annual runoff variable can explain 91% of nitrogen attenuation 447 

from 49 watersheds in northwestern France among 13 biogeochemical and 12 hydrologic proxies 448 

(Frei et al., 2020). The stream depth was used to explain in-stream nitrogen loss rates in many 449 

studies (Alexander et al., 2000). The residence time and exchange flux or its combination were 450 

used to explain the potential denitrification capacity in different river basins (Gomez-Velez et al., 451 

2015; Gomez-Velez & Harvey, 2014; Harvey et al., 2019). The importance of stream DOC in 452 

regulating HZ denitrification has been highlighted previously. Zarnetske et al. (2011) showed 453 

that labile DOC limits the HZ denitrification through reach-scale experiments. Also, Jan et al. 454 

(2021) showed through numerical experiments at the watershed scale that DOC was a limiting 455 

factor when exchange flux becomes higher and stream nitrate concentration was less sensitive, 456 

which is similar to the substrate sensitivity analysis result (Figure 9). Hester et al. (2014) showed 457 

that surface DOC, groundwater NO3
−, and hydraulic conductivity of streambeds were the most 458 

sensitive parameters affecting the HZ denitrification through numerical experiments. 459 

Among the different sized reaches, medium rivers (4th–6th orders) had the highest 460 

denitrification due to the largest exchange flux. The literature shows mixed results in the effects 461 

of reach size on denitrification (Alexander et al., 2007, 2009; Tank et al., 2008; Wollheim et al., 462 

2006). In our modeling, the highest exchange flux in the medium-sized rivers was mainly due to 463 

the coarser grain size (or higher hydraulic conductivity) of the streambed sediment. While the 464 

stream DOC, which limits denitrification, increased with stream orders (or sizes) in the CRB 465 

(Figures 4 and S2), the spatial pattern of hyporheic exchange flux controlled the relationship 466 

between denitrification amounts and reach sizes. The potential difference between studies may 467 



be due to the spatial variation of sediment hydraulic conductivity along the different reach sizes 468 

between the river basins if the effect of substrate availability has less influence on denitrification 469 

than hydrologic variables. Also, our modeling study showed that hydrologic variables were more 470 

important in determining the spatial variation of denitrification in the stream networks than 471 

substrate variability. Thus, the hyporheic exchange attributed to the streambed hydraulic 472 

properties determined the effect of reach sizes. 473 

Among the four dominant land use types, forest reaches had the highest HZ denitrification 474 

due to the highest hyporheic exchange flux (Figure 5b). The urban reaches had the second largest 475 

denitrification. However, the rank in difference of forest and urban reaches in HZ denitrification 476 

vary with seasonal substrate concentrations; for example, in fall, urban reaches had larger 477 

denitrification than forest reaches. Therefore, the substrate concentration can be important in the 478 

denitrification process, especially for the forest reaches where the denitrification is limited by 479 

sources rather than transport. 480 

Agricultural reaches had the largest DOC and NO3
− and the second lowest DO concentration. 481 

These reaches, however, were characterized by lower denitrification than forest and urban 482 

reaches. Lower denitrification in the agricultural reaches was mainly due to lower exchange flux. 483 

Shrub reaches showed the lowest exchange flux and substrate concentration, so they had the 484 

lowest denitrification amounts. This limiting factor on HZ denitrification in streams with 485 

different land uses is consistent with the result of Myers (2008), who showed that among nine 486 

streams in western Wyoming, agriculture and forest reaches had the lowest and highest exchange 487 

fluxes, respectively, while agricultural reaches had higher DOC and NO3
− concentrations than 488 

forest reaches. However, the agricultural reaches showed the highest denitrification due to 489 

highest substrate availability (e.g., organic matters) in the hyporheic sediments, even though the 490 

modeled exchange flux was the lowest in the agricultural reaches. Also, a study by Mulholland et 491 

al. (2008), using data from nitrogen stable isotope tracer experiments across 72 streams and eight 492 

regions, obtained results that contrast with ours, i.e., urban streams had the highest denitrification 493 

rate, while agricultural streams had the second largest denitrification rate, and forest streams had 494 

the lowest denitrification rate. 495 

Our modeling study showed that agricultural reaches had lower denitrification than urban and 496 

forest reaches due to the lowest hyporheic exchange. Interestingly, the two studies showed 497 

opposite results, even though they shared the same limiting factor on denitrification in 498 



agricultural and forest reaches. The differences can be explained by the representative time scale 499 

implicit in our model, which represents long-term average conditions. The experimental study of 500 

Myers (2008), on the other hand, represents short-term conditions. Similarly, the difference in 501 

both substrate concentration and exchange flux between reaches with different land uses may 502 

determine denitrification. In our modeling study, while forest reaches showed the largest 503 

denitrification in most scenarios, in fall the urban reaches showed higher denitrification than 504 

forest reaches when the highest DOC concentration was observed. Therefore, our modeling 505 

results suggest that the combination of substrate concentration and hydrologic exchange 506 

determine the difference of HZ denitrification in the reaches with different land uses. 507 

4.2  Generalization of important watershed/stream variables in controlling HZ 508 

denitrification 509 

This study used a machine-learning approach (i.e., random forest model) to improve our 510 

understanding of which watershed/stream variables can better explain the spatial variation of HZ 511 

denitrification in the CRB. This approach is a powerful tool to predict complex systems, but due 512 

to low interpretability, machine learning is considered a box model. However, our modeling 513 

study demonstrated that our random forest models successfully captured sub-basin/basin-scale 514 

modeled denitrification, and the selected important variables all represented the dominant 515 

processes that controlled denitrification across streams with different sizes and land uses. 516 

Our random forest model showed very high prediction accuracies; R2 values are greater than 517 

0.96 and MSE values are less than 0.06. This result suggests that the random forest model with 518 

publicly available watershed and stream properties data can capture key variables controlling 519 

basin-scale spatial denitrification variation, even though there are complex interactions between 520 

many processes/variables determining the spatial variation of HZ denitrification. 521 

Also, the variable importance analysis showed that the stream morphological parameters 522 

(D50 and stream slope), climate (annual precipitation and evapotranspiration), and stream DOC 523 

(percent of shrub area) can explain most HZ denitrification variability. D50 and stream slope 524 

were highly correlated with the modeled exchange flux used in this study. The percent of shrub 525 

area was one of two predictor variables in stream DOC concentration, which was a major 526 

limiting substrate concentration in the modeled denitrification. Our study demonstrates that our 527 

random forest model and a small number of key watershed/stream variables (D50, stream slope, 528 



precipitation/evapotranspiration, and land cover), which are fairly easy to measure or 529 

characterize, can be used to determine the spatial variation of HZ denitrification at the basin 530 

scale, without explicit and complex numerical modeling. Therefore, the important variables and 531 

random forest model we developed can be used as a hypothesis testing tool for spatial variation 532 

of HZ denitrification at the basin scale and as a sampling design tool for large-scale HZ 533 

experimental studies. 534 

4.3  Implications for role of hyporheic zone in river corridor processes under future climate 535 

changes 536 

In the CRB, it is expected that future climate change will increase winter/spring flow, 537 

decrease summer flow (Hamlet et al., 2013), and increase stream water temperature (Ficklin et 538 

al., 2014). The sensitivity of hydrologic changes to future climate change will also vary between 539 

sub-basins in the CRB. This change obviously alters the effectiveness of the HZ in regulating 540 

water quality in rivers. Based on our modeling results, denitrification increased with the 541 

hyporheic exchange, which was a function of grain sizes of streambed, annual 542 

precipitation/evapotranspiration, and stream slope, while lower stream DOC availability may 543 

limit denitrification. Compared with other river basins in the United States, the streams of the 544 

CRB had lower DOC concentrations (Yang et al., 2017), and watershed DOC processes were 545 

characterized as transport-limited rather than source-limited (Zarnetske et al., 2018). Therefore, 546 

we expect that increasing runoff can generate higher DOC flux (or concentration) in streams, 547 

which may promote denitrification in the HZ. 548 

More frequent and intense fires are expected due to future climate conditions (Abatzoglou & 549 

Williams, 2016), which can alter the conditions of terrestrial and aquatic systems. For example, 550 

fire removes vegetation and delivers more nitrogen/sediments via higher peak flow. On the other 551 

hand, fire reduces DOC transport in streams due to biomass and soil carbon burning (Wei et al., 552 

2021). Therefore, higher exchange/more nitrogen availability in the HZ may increase 553 

denitrification, while lower sediment hydraulic conductivity values due to finer particle sediment 554 

transport by fire and reduced DOC concentrations can reduce denitrification. The impact of fire 555 

on HZ denitrification requires extensive future works. Also, the climate and land use changes or 556 

their combination may alter the future stream water qualities in different ways (El-Khoury et al., 557 



2015). Therefore, future study should consider both projected changes in determining the role of 558 

the HZ. 559 

4.4 Implications for stream/watershed management 560 

Excesses in agriculture activity and urbanization continue to degrade water quality in streams 561 

and rivers through increases in atmospheric pollutant depositions and excess in nutrient exports 562 

(Frei et al., 2020; Le Moal et al., 2019). To improve water quality in rivers, reducing nutrient 563 

loading and increasing nutrient removal should be considered. Our modeling study suggests that 564 

increasing denitrification occurs by enhancing the exchange flux between stream and HZ. This 565 

result is aligned with previous works (Liu & May Chui, 2020; Ward et al., 2011). For example, 566 

Liu & May Chui, (2020) demonstrated that through surface and hyporheic flow simulations, 567 

increasing hyporheic flux by elevating the height of weirs led to maximizing the nitrogen 568 

removal amounts and nitrogen removal ratios. Our modeling also shows that denitrification 569 

through vertical exchange is larger than that through lateral exchange and its difference is larger 570 

for the large river. This result suggests that enhancing the vertical exchange with higher grain-571 

sized (permeable) streambed materials is more effective in reducing excess nitrogen than lateral 572 

exchange through induced channel meandering or others. In addition to enhancing exchange 573 

flux, modifying substrate concentration may alter the efficiency of denitrification processes in 574 

the HZ. For example, our modeling shows that when exchange flux is high, stream DOC 575 

concentration is a limitation factor in the HZ denitrification (Jan et al., 2021). Therefore, to 576 

maximize the nitrogen removal process in the HZ, a combination of high exchange flux and 577 

stream DOC availability may be required. 578 

4.5 Current research limitations and future study 579 

This study demonstrated that combination of the reaction network model and empirical 580 

methods can quantify the spatial variation of HZ denitrification at the basin scale. However, due 581 

to the simplified model structure and assumptions used, this model had several limitations. The 582 

first limitation of this study was that hydrological/substrate variables were assumed to be 583 

constant over time, and the variables were empirically estimated or dependent on the other model 584 

outputs (e.g., SPARROW flow and total nitrogen fluxes). This assumption may create a bias in a 585 

different way depending on hydrologic and substrate conditions. For example, in the streams 586 



where hydrologic conditions are unsynchronized or synchronized with substrate variables, 587 

modeled denitrification may be overestimated or underestimated with the current model 588 

assumptions. Future studies should implement the dynamic hydrologic/substrate concentration 589 

in-stream and in the HZ; for example, the SWAT-MRMT-R model (Fang et al., 2020) can be 590 

used, and to account for the dynamic hydrologic exchange flux/residence time in the HZ, the 591 

SWAT-MODFLOW (Bailey et al., 2016) or other integrated hydrologic–biogeochemistry 592 

models (Chen et al., 2020) may be considered. 593 

The current model was heavily dependent on the NEXSS-based hyporheic exchange flux and 594 

residence time. Even though NEXSS used the physical hydraulic/groundwater models, the 595 

exchange flux and residence time were highly correlated with the estimated hydraulic 596 

conductivity of the streambed. The NEXSS model used an empirical relationship between D50 597 

and sediment hydraulic conductivity to derive the hydraulic conductivity of the streambed at the 598 

NHDPLUS stream reach (Gomez-Velez et al., 2015). High spatial heterogeneity of grain size 599 

distribution within reach-scale stream sediment (Ren et al., 2020) and its change due to 600 

disturbance make it challenging to estimate the representative hydraulic conductivity at the 601 

reach-scale (Stewardson et al., 2016). The hydrologic condition also alters vertical distribution of 602 

hydraulic conductivity in streambeds; for example, gaining streams have higher conductivity 603 

with depth, but losing streams have lower conductivity (X. Chen et al., 2013). Therefore, a future 604 

study should focus on introducing advanced methods (i.e., machine learning approaches) and 605 

find better predictor variables for streambed hydraulic conductivity (Abimbola et al., 2020) to 606 

reduce the uncertainty in the RCM. 607 

The second limitation is that this model does not explicitly simulate nitrification processes in 608 

the HZ. The current model only implements aerobic respiration and denitrification. When 609 

oxygen is abundant and residence time is short, nitrification can be dominant (Zarnetske et al., 610 

2012). This model assumes that nitrification is not dominant. Based on the Dakomber number, 611 

lower order streams tend to have lower residence time, so nitrification may be an important 612 

process. Interestingly, most streams in the CRB with low residence times tend to have a drainage 613 

area with forest lands. Our modeling study suggests that denitrification in the forest streams was 614 

mainly limited by the available DOC, but not stream nitrate concentration. Even if nitrate can be 615 

more abundant via nitrification because of shorter residence time in the HZ, denitrification of 616 

forest streams may not increase because nitrate is not a major limiting factor. 617 



The last limitation is that the current model estimates of HZ denitrification are not validated 618 

with field measurements, even though the RCM computed the HZ denitrification using the 619 

reaction network model with reasonable estimates of hydrologic and substrate variables. This 620 

deficiency may reflect the limitation of currently available denitrification measurements for the 621 

HZ, especially for large river basins. Many experimental studies focus on total in-stream 622 

processes of nutrient uptake rather than exclusively denitrification measurements (Tank et al., 623 

2008; Findlay et al., 2011). Since our model estimates represent spatially varied denitrification 624 

and temporally averaged conditions, the comparison with short-term snap measurements that are 625 

usually available in the experimental studies is a big challenge. A recent study in the HJ Andrew 626 

watershed in Oregon has done the detailed mapping of stream geomorphology, hydrology, 627 

biology, and chemistry along the 5th order streams of the forested watershed (Ward et al., 2019). 628 

This may be a good starting dataset to validate the model inputs (e.g., concentrations of 629 

DOC, DO, and nitrate in the HZ and streambed hydraulic conductivity) and the modeled 630 

denitrification along with the stream orders in the future study. 631 

 632 

5. Summary and Conclusions 633 

The important role of HZ denitrification is well recognized in hydrologic and 634 

biogeochemistry communities (Groffman et al., 2009; Harvey & Gooseff, 2015); however, 635 

modeling studies quantifying basin-scale HZ denitrification are still limited in current literature. 636 

To fill the knowledge gaps, this study used a simplified, spatially fine resolution, basin-scale, 637 

coupled-carbon and nitrogen HZ model and random forest models to identify key controls on the 638 

spatial variation of HZ denitrification in the CRB. The variable importance analysis 639 

demonstrated that hydrologic variables (hyporheic exchange flux and residence time) were more 640 

important in explaining the spatial variation of HZ denitrification than substrate variables (stream 641 

DOC, nitrate, and DO) across reaches with different sizes and land uses. Among the hydrologic 642 

variables, hyporheic exchange flux can explain most spatial variation of the modeled 643 

denitrification amounts. Within the substrate variables, the denitrification amount was limited 644 

most by the available DOC. Among the different sized reaches, medium rivers (4th–6th orders) 645 

with the highest exchange fluxes had the largest denitrification amounts. Among the reaches 646 

affected by different land use, forest reaches exhibited the most denitrification due to the highest 647 

exchange flux, and urban reaches had the second largest denitrification due to relative high 648 



exchange flux and stream DOC. However, ranks in difference between forest and urban reaches 649 

in denitrification amounts can change depending on seasonal substrate concentrations. For 650 

example, urban reaches with fall substrate concentration showed higher denitrification than 651 

forest reaches. These results suggest the combination of hydrologic variability and stream DOC 652 

control the spatial difference of HZ denitrification among the reaches with different land uses. 653 

Also, while reaches in the agriculture lands had the highest DOC concentrations, the HZ 654 

denitrification amounts were second lowest due to lower exchange flux. Reaches in the shrub 655 

land had the lowest denitrification due to both the lowest exchange flux and DOC availability. 656 

We expanded our efforts to develop a general random forest model to identify key factors 657 

associating with the spatial variation of HZ denitrification in the CRB with publicly available 658 

watershed and stream properties data. Our random forest model showed a high performance 659 

(R2>0.96 and MSE<0.06), with stream morphology parameters (D50), climate (annual 660 

precipitation and annual evapotranspiration), and land use (percent of shrub) the most important 661 

variables for explaining spatial variation of the modeled HZ denitrification. These results support 662 

the relative importance analysis with the model’s input variables; hyporheic exchange flux and 663 

available DOC concentration were key limiting factors in HZ denitrification variation in the 664 

CRB based on our findings. In this study, hyporheic exchange flux was estimated based on the 665 

NEXSS simulation (Gomez-Velez et al., 2015), and its flux was highly dependent on streambed 666 

sediment grain size/hydraulic conductivity estimates. To reduce the uncertainty of our RCM, 667 

future studies should focus on collecting detailed measurements of hydraulic conductivities (Ren 668 

et al., 2020; Stewardson et al., 2016) and developing advanced methods characterizing the spatial 669 

variation of hydraulic conductivities (Abimbola et al., 2020). In addition, the current model only 670 

represented the spatial averaged conditions of HZ denitrification in the CRB, and key model 671 

input variables were temporally constant. Therefore, temporal components should be 672 

incorporated using integrated hydrologic–biogeochemistry models to accurately represent basin-673 

scale denitrification in the CRB. 674 

Overall, this study indicates that the combination of reaction network modeling and empirical 675 

substrate concentration models can quantify the spatial variation of HZ denitrification at the 676 

basin scale. This modeling framework can be easily applied to the regional and continental scales 677 

and can help to understand the role of the HZ across stream networks in large river basins with 678 

different hydrologic/geochemical conditions. 679 



 680 

Appendix – Descriptions of the basin-scale river corridor model 681 

The RCM computes aerobic respiration and two-step denitrification in the HZ at the scale of 682 

NHDPLUS stream reaches within the CRB. Figure A1 shows the conceptual diagram of the 683 

RCM. Tables A1 and A2 include the three reactions and their associated model parameter values. 684 

The model computes at hourly timesteps, but the model key input data—including exchange 685 

flux, residence time, and stream solute (DOC, DO, and NO3
−) concentrations—are constant over 686 

time; thus, we should consider that modeled denitrification is a long-term averaged estimate. In 687 

addition, each reaction in the HZ and exchange between HZ and stream are vertically and 688 

laterally determined independently. This model computes the solute exchange between stream 689 

and HZ as expressed in equations A1 and A2. In equation A2, the exchange volume (V) is 690 

computed by multiplying exchange flux (q) by the residence time (𝜏𝜏) and stream surface area 691 

(width (w)×length (l)). The three reactions are computed by solving the R1, R2, and R3 with the 692 

approach proposed by Song et al. (2017), and the associated parameters are obtained from Table 693 

2 in Song et al. (2018). 694 

The following equation is used to calculate the concentration change in the HZ due to the 695 

mass exchange between the stream and HZ, as well as microbial reactions in the HZ: 696 

 697 
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 699 

Where 𝜏𝜏 is the HZ residence time, Cs,i is the stream ‘i’ solute concentration (DOC, 𝑁𝑁𝑁𝑁3−, and 700 

DO), Ci,t is the hyporheic ‘i’ solute concentration at the ‘t’ time step. 𝜇𝜇𝑖𝑖 is the stoichiometric 701 

coefficient of solute i in reaction j. Rj is the reaction rate the j-th reaction. 702 

 703 
𝑑𝑑�𝐶𝐶𝑖𝑖,𝑡𝑡�
𝑑𝑑𝑑𝑑

𝑉𝑉 = 𝑉𝑉 × 1
𝜏𝜏
�[𝐶𝐶𝑠𝑠,𝑖𝑖 − [𝐶𝐶𝑖𝑖,𝑡𝑡]� + 𝑉𝑉 × ∑ 𝜇𝜇𝑗𝑗𝑅𝑅𝑗𝑗3

𝑖𝑖   (A2) 704 

 705 

Where V is the hyporheic exchange volume (𝑞𝑞 × 𝑤𝑤 × 𝑙𝑙 × 𝜏𝜏). Using equation A2 can compute 706 

the mass exchange between stream and HZ. 707 

𝑅𝑅𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑟𝑟𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘, i=1,2,3. (A3) 708 



𝑟𝑟𝑖𝑖𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑘𝑘𝑖𝑖
𝑎𝑎𝑖𝑖

𝐾𝐾𝑎𝑎𝑖𝑖+𝑎𝑎𝑖𝑖
× 𝑑𝑑𝑖𝑖

𝐾𝐾𝑑𝑑𝑖𝑖+𝑑𝑑𝑖𝑖
(𝐵𝐵𝐵𝐵) (A4) 709 

𝑒𝑒𝑖𝑖 = 𝑟𝑟𝑖𝑖
𝑘𝑘𝑘𝑘𝑘𝑘

∑ 𝑟𝑟𝑖𝑖
𝑘𝑘𝑘𝑘𝑘𝑘3

𝑖𝑖
 (A5) 710 

Where 𝑘𝑘𝑖𝑖, 𝐾𝐾𝑎𝑎𝑖𝑖 , and 𝐾𝐾𝑑𝑑 denote the maximum specific uptake rate of organic carbon, half-711 

saturation constants of the electron acceptors, and half-saturation constants for the electron 712 

donors. 𝑎𝑎𝑖𝑖is the concentration of electron acceptor (mol/L), 𝑑𝑑𝑖𝑖is the concentration of electron 713 

donor (mol/L), and biomass (BM) is the concentration of biomass (mol/L). Reaction rate Ri is 714 

computed using unregulated effect (a Monod-type kinetics coefficient (𝑟𝑟𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖) in equation A4, and 715 

regulated effects (𝑒𝑒𝑖𝑖) in equation A5. 716 
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  943 



Table 1. Lists of key watershed/stream characteristics and properties 944 

Properties  Variables 

Climate Precipitation and air temperature 

Topography Elevation, slope, wetness index, and drainage area 

Hydrology Annual flow, baseflow index, potential evapotranspiration, and 

actual evapotranspiration  

Land Percent of land use/cover types (forest, wetland, agriculture, urban 

and shrubland), vegetation index 

Soil Hydraulic conductivity of soil and permeability of surface geology, 

percent of soil texture and organic matter 

Stream D50, sinuosity, contact time and stream slope, bankfull width, and 

channel depth 

 945 

Table 2. Summary of model performance in the developed random forest model 946 

Model Train Test 

R2 MSE R2 MSE 

Lateral denitrification  0.96 0.06 0.96 0.05 

Vertical denitrification 0.97 0.04 0.97 0.04 

Total denitrification 0.97 0.03 0.97 0.03 

 947 

948 



Table A1. Aerobic respiration and two steps of denitrification reactions 949 

Reaction 

process 

Reaction equations 

Aerobic 

respiration  

R1 𝐶𝐶𝐶𝐶2𝑂𝑂 + 𝑓𝑓1𝑂𝑂2 + 1
5

(1 − 𝑓𝑓1)𝑁𝑁𝑁𝑁4+ → 𝑓𝑓1𝐶𝐶𝐶𝐶2 + 1
5

(1 − 𝑓𝑓1)𝐶𝐶5𝐻𝐻7𝑂𝑂2𝑁𝑁 + 1
5

(3 +

2𝑓𝑓1)𝐻𝐻2𝑂𝑂 + 1
5

(1 − 𝑓𝑓1)𝐻𝐻+  

Denitrification R2 𝐶𝐶𝐶𝐶2𝑂𝑂 + 2𝑓𝑓2𝑁𝑁𝑁𝑁3− +
1
5

(1 − 𝑓𝑓2)𝑁𝑁𝑁𝑁4+

→ 𝑓𝑓2𝑁𝑁𝑁𝑁2− + 𝑓𝑓2𝐶𝐶𝐶𝐶2 +
1
5

(1 − 𝑓𝑓2)𝐶𝐶5𝐻𝐻7𝑂𝑂2𝑁𝑁 +
1
5

(3 + 2𝑓𝑓2)𝐻𝐻2𝑂𝑂

+
1
5

(1 − 𝑓𝑓2)𝐻𝐻+ 

R3 𝐶𝐶𝐶𝐶2𝑂𝑂 +
4
3
𝑓𝑓3𝑁𝑁𝑁𝑁2− +

1
5

(1 − 𝑓𝑓3)𝑁𝑁𝑁𝑁4+

→
2
3
𝑓𝑓3𝑁𝑁2 + 𝑓𝑓3𝐶𝐶𝐶𝐶2 +

1
5

(1 − 𝑓𝑓3)𝐶𝐶5𝐻𝐻7𝑂𝑂2𝑁𝑁 +
1

15
(9 + 16𝑓𝑓3)𝐻𝐻2𝑂𝑂

+
1

15
(3 + 17𝐻𝐻+) 

 950 

Table A2. Reaction parameter values and initial substrate concentrations 951 

Reaction rates Parameter  R1 R2 R3 

𝑓𝑓𝑖𝑖 1/3×0.65 0.65 0.99 

𝑘𝑘𝑖𝑖  �
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑙𝑙,ℎ

� 
3×1.17 1.17 0.97 

𝐾𝐾𝑑𝑑,𝑖𝑖 (mmole/l) 0.25 0.25  0.25 

𝐾𝐾𝑎𝑎,𝑖𝑖(mmole/l) 0.001 0.001 0.004 

Hyporheic zone DOC NO3
− DO 

Initial concentrations (mole/l) 6.37e-5 7.92e-5 2.87e-4 

R1 is aerobic respiration reaction (O2→CO2), R2 (NO3
−→ CO2) and R3 (NO2

− → CO2) are two 952 

steps of denitrification reaction 953 



Figures 954 

 955 

Figure 1. The framework for studying key factors controlling spatial variation of HZ 956 

denitrification in streams across different sizes and land uses in the CRB. 957 

 958 



 959 
Figure 2. CRB maps: (a) Mean annual precipitation (mm); (b) Elevation and nine major 960 

sub-river basins (1) Lower Columbia (LC), (2) Middle Columbia (MC), (3) Upper 961 

Columbia (UC), (4) Lower Snake (LS), (5) Middle Snake (MS), (6) Upper Snake (US), 962 

(7) Kootenai-Pend Oreille-Spokane (KO), (8) Willamette(WM), and (9) Yakima (YK); 963 

and (c) Land use and cover map (National Land Cover Database 2016 data). 964 

 965 



 966 

Figure 3. Key input data for the RCM: (a) stream mean annual DOC concentrations (mg/l); (b) 967 

stream mean annual NO3
− concentrations (mg/l); (c) stream mean annual DO concentrations 968 

(mg/l); (d) total (lateral and vertical) residence time (log10, second); and (e) total (lateral and 969 

vertical) hyporheic exchange flux (log10, m/s). 970 



 971 

Figure 4. Distribution of key hydrologic and substrate variables in streams with stream orders. In 972 

the violine plot, the white point represents median value, the thick black line represents 973 

interquartile range (Q1 and Q3), and the thin black lines represent the 1.5×interquantile range. 974 

 975 



 976 
Figure 5. Distribution of key hydrologic and substrate variables in streams with different land 977 

uses. In the violine plot, the white point represents median value, the thick black line represents 978 

interquartile range (Q1 and Q3), and the thin black lines represent the 1.5×interquantile range. 979 

 980 



 981 
Figure 6. Spatial variation of modeled mean annual HZ NO3

− removal amount (log10, 982 

kgN/m2/day): (a) NO3
− removal amount via lateral hyporheic exchange; (b) NO3

− removal amount 983 

via vertical hyporheic exchange; (c) NO3
− removal amount via total hyporheic exchange; (d) ratio 984 

of the vertical NO3
− removal amount to the total (vertical and lateral) NO3

− removal amount with 985 

the stream orders. 986 

 987 



 988 

Figure 7. Variation of modeled HZ mean daily NO3
− removal amount in the reaches with 989 

different orders and land uses: (a) effects of sizes and (b) effects of land use. 990 

 991 



 992 

Figure 8. Relative importance of hydrologic variability and substrate availability in controlling 993 

spatial variation of the HZ NO3
− removal amount in reaches along different sizes and dominant 994 

land uses. The variable importance (measured by Ginni value) is normalized to calculate the 995 

relative importance value (percent contribution) that ranges from 0 to 100. 996 

 997 



 998 

Figure 9. Sensitivity of modeled NO3
− removal amount (log10(kgN/m2/day)) to the available 999 

substrate concentrations across reaches with different sizes and land uses: (a) all reaches; (b) 1000 

small streams; (c) medium rivers; (d) large rivers; (e) forest; (f) shrub; (g) agriculture; and (h) 1001 

urban. The base scenarios used the modeled substrate concentration data (Figure 3a, b, c). The 1002 

maxDOC scenarios applied a maximum concentration of modeled DOC (Figure 3a) to all 1003 

reaches, and the maxN scenario applied a maximum concentration of modeled NO3
− (Figure 3b) 1004 

to all reaches, and the minO scenarios applied a minimum concentration of modeled DO (Figure 1005 

3c) to all reaches. 1006 

 1007 



 1008 

Figure 10. Predictions of the random forest model in the testing period and variable importance 1009 

analysis results: (a) test results for the total HZ NO3
− removal amount; (b) top 10 importance 1010 

variables for lateral NO3
− removal amount (kgN/m2/day); (c) top 10 important variables for 1011 

modeled vertical NO3
− removal amount (kgN/m2/day); and (d) top 10 important variables for 1012 

modeled total NO3
− removal amount (kgN/m2/day). The top 10 variables are D50_m (median 1013 

grain size), TOT_PPT7100_ANN (30-year mean annual precipitation at the NHD cumulated 1014 

drainage), CAT_PPT7100_ANN (30-year mean annual precipitation at the NHD catchment), 1015 

TOT_AET (mean annual evapotranspiration at the NHD cumulated drainage), CAT_AET (mean 1016 

annual evapotranspiration at the NHD catchment), tshrub (percent of shrub land at the NHD 1017 

cumulated drainage area), TOT_EVI_JAS_2012 (vegetation index at the NHD cumulated 1018 

drainage area), CAT_STREAM_SLOPE (stream slope at the NHD catchment), tforest (percent 1019 

of forest land at the NHD cumulated drainage ), forest (percent of forest land at the NHD 1020 



catchment), tagrc (percent of agricultural land at the NHD cumulated drainage), logd_m 1021 

(log10(stream depth.,m)), and sinuosity (stream sinuosity). 1022 

 1023 

 1024 
Figure A1. Simplified conceptual diagram of the RCM. The RCM computes the aerobic 1025 

respiration and two-step denitrification in the HZ at the reach scale. The model requires five key 1026 

inputs; stream DOC and DO were estimated by the two regression models, and stream 𝑁𝑁𝑁𝑁3− 1027 

concentrations were estimated from the SPARROW 2012 model (Wise et al., 2019), and the 1028 

vertical and lateral exchange fluxes (𝑞𝑞𝑣𝑣, 𝑞𝑞𝑙𝑙) and their median residence times (𝜏𝜏𝑣𝑣, 𝜏𝜏𝑙𝑙) between 1029 

the streams and HZ were estimated from NEXSS (Gomez-Velez et al., 2015). 1030 

 1031 
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 16 

Figure S1. The impact of simulation length on modeled NOଷି  removal amounts (mole N) via 17 

vertical and lateral hyporheic exchange: (a) comparison of the 1st year and 2nd year simulation for 18 

the vertical modeled NOଷି  removal amounts (mole N); (b) comparison of the 2nd year and 3rd year 19 

simulation for the vertical modeled NOଷି  removal amounts; (c) comparison of the 1st year and 2nd 20 

year simulation for the lateral modeled NOଷି  removal amounts (mole N); (d) comparison of the 21 

2nd year and 3rd year simulation for the lateral modeled NOଷି  removal amounts. 22 



 23 

Figure S2. The seasonal stream DOC and DO variations with the stream/river orders. 24 

 25 

 26 
Figure S3. The seasonal stream DOC and DO variations with different land uses. 27 



 28 

 29 

Figure S4. The spatial variation of the modeled HZ NOଷି  removal amounts (kgN/m2/day) in the 30 

reaches with different orders and seasonal substrate concentration inputs. 31 

 32 

 33 



 34 

Figure S5. The spatial variation of the modeled HZ NOଷି  removal amounts (kgN/m2/day) in the 35 

reaches with different land uses and seasonal substrate concentration inputs. 36 

 37 

 38 

 39 



 40 

Figure S6. Partial correlation between key model inputs and modeled HZ NOଷି  removal amounts 41 

(kgN/m2/day) in reaches across different sizes and land uses. 42 

 43 



 44 

 45 

Figure S7. Partial correlation between important variables and modeled NOଷି  removal amounts 46 

(kgN/m2/day): (a, d, g) D50 (median grain size); (b,e,h) TOT_PPT7100_ANN (mean annual 47 

precipitation at the NHD cumulative drainage area); (c,f) TOT_AET (mean annual actual 48 

evapotranspiration at the NHD cumulative drainage area); and (i) CAT_PPT7100_ANN (mean 49 

annual precipitation at the NHD catchment drainage area). 50 

 51 

 52 



 53 

Figure S8. The top five importance variables for total modeled NOଷି  removal amounts (log10, 54 

kgN/m2/day) for the nine sub-basins in the Columbia River Basin: (a) Lower Columbia (LC); (b) 55 

Middle Columbia (MC); (c) Upper Columbia (UC); (d) Lower Snake (LS); (e) Middle Snake 56 

(MS); (f) Upper Snake (US); (g) Kootenai-Pend Oreille-Spokane (KO); (h) Williamette (WM); 57 

and (i) Yakima (YK). D50 is median grain size; TOT_BASIN_AREA is watershed drainage area 58 

at the NHD cumulative drainage area; TOT_ELEV_MAX/MEAN is maximum/mean elevation 59 

at the NHD cumulative drainage area; logwbkf_m is bankfull width (log10 scale) and logd_m is 60 

water depth (log 10 scale); TOT_PET/AET is mean annual potential /actual evapotranspiration at 61 

the NHD cumulative drainage area; TOT_PPT7100_ANN is mean annual precipitation at the 62 

NHD cumulative drainage area; CAT_PPT7100_ANN is mean annual precipitation at the NHD 63 

catchment drainage area; TOT_EVI_JAS_2012 is summer EVI index in year 2012 at the NHD 64 



cumulative drainage area; and targrc/tforest/tshrub is the percentage of agricultural/forest/shrub 65 

lands at the NHD cumulative drainage area. 66 

  67 



Estimating the stream substrate concentrations  68 

Our river corridor model requires stream water DOC, NOଷି , and DO concentrations at the 69 

NHDPLUS reach scale as key substrate concentration inputs. To estimate the stream DOC and 70 

DO concentrations, we developed multilinear regression models with the measured stream 71 

concentration data, NHDPLUS-based watershed/stream properties (Table S1), and the 72 

SPARROW model outputs. For developing the regression model for the stream DOC 73 

concentration, we refer to the work of (Yang et al. 2017). The stream DOC concentration data 74 

are downloaded from the USGS NWIS (http://waterdata.usgs.gov/nwis) using the “dataretrieve” 75 

R package. The lists of gauge stations for the CRB were obtained from the work of (Zarnetske et 76 

al., 2018). The period of the samples is from 1/1/1980 to 12/31/2021. The selected stations have 77 

both flow and DOC data, their records are longer than 3 years, and least number of samples are 78 

20. The sampled data spanned more than 50% of the observed flow ranges. These conditions 79 

help to accurately compute the mean DOC concentration over the various hydrologic conditions. 80 

We can find the 65 USGS gauge stations within the CRB, but to use the NHDPLUS 81 

watershed/stream reaches database, we only used 55 stations that match with NHDPLUS reach 82 

identification number (comid) shown in Figure S9. To predict the annual mean DOC 83 

concentration at the NHDPLUS stream reaches of the CRB, we used various watershed 84 

properties and variables that may be relevant to the stream DOC concentrations (Table S1). To 85 

remove the outlier of the sampled data, we computed the standard deviation (sd) of all sampled 86 

data per site, and if the sampled concentration was larger than 3*sd plus mean, the sample was 87 

considered an outlier (Yang et al., 2017). Some variables were log-transformed before building 88 

the regression model to remove the impact of non-normal variables. For example, soil organic 89 

matter (TOT_OM), % wetland (twetland) and dam storage (TOT_NID_STORAGE2010), total 90 

nitrogen concentration (tn), annual mean temperature (TOT_TAV7100_ANN), and % clay 91 

(TOT_CLAYAVE) were log-transformed. To remove the highly correlated variables, we used a 92 

variance inflation factor (VIF) index. If the variable’s VIF was larger than 10, we excluded the 93 

variable in developing the regression model. Also, when the paired correlation between variables 94 

and measured DOC was statistically significant, the variable was included in developing the 95 

regression model. The included variables were TOT_SILTAVE, TOT_SANDAVE, 96 

CAT_SILTAVE, tshurb, CAT_BFI, logturban, logtargc,logCAT_TAV, and logshurb (Figure 97 

S12). We explored the possible combination of multiregression models with the selected 98 



variables using the “olsrr” r package (https://cran.r-project.org/web/packages/olsrr/index.html) 99 

and found that the regression model using the three variables, tshrub, logtargc, and logshurb, had 100 

relatively a high R2 value (0.469) and a low AIC value (136) compared with other regression 101 

models (Figure S11).  102 

Similar to building the annual mean DOC model, we also developed seasonal mean DOC models 103 

(Table S2 and Figure S12). The model performance varied with season. The summer DOC 104 

model had the lowest model accuracy (R2=0.359), and the winter DOC model had the highest 105 

model accuracy (R2=0.54). Each model had different variables. The detailed equations of each 106 

model are included in Table S2.  107 



 108 

Figure S9. The locations of the used gauge stations and the annual mean stream DOC 109 

concentration (mg/l).  110 

  111 



 112 

Figure S10. Correlation between selected variables and annual mean DOC concentrations: only 113 

variables with the significant (95%) relationship with the annual mean DOC concentration are 114 

displayed.  115 



 116 

Figure S11. The developed stream annual mean DOC model and its prediction: (a) developed 117 

regression model and (b) predicted stream annual mean DOC concentration at the NHDPLUS 118 

stream reaches.  119 

 120 

 121 



 122 

Figure S12. Predicted stream seasonal DOC concentrations at the NHDPLUS stream reaches: (a) 123 

spring mean DOC (mg/l); (b) summer mean DOC (mg/l); (c) fall mean DOC (mg/l); and (d) 124 

winter mean DOC (mg/l). 125 

  126 



To predict stream mean annual DO concentrations at the NHDPLUS stream reaches of the CRB, 127 

we used a similar approach to developing the stream DOC regression model. For sampled DO 128 

concentration data, the samples collected from 1/1/2007 to 12/31/2021 were downloaded using 129 

the “dataretrieve” R package since the DO sensor had some accuracy issues prior to 2007. 130 

Another criterion was that the stations should have at least 20 samples to get a reasonable mean 131 

concentration over periods. We found 42 gauge stations within the CRB, but only 38 stations 132 

matched with the NHDPLUS reach comid.  Figure S13 shows the annual mean concentrations of 133 

stream DO at the 38 stations in the CRB. A multilinear regression model was developed for 134 

predicting stream annual mean DO concentrations at the NHDPLUS stream reaches using 135 

various watershed and stream properties and the measured annual mean DO concentration data 136 

(Table S1). Figure S14 showed high spatial correlation values between the annual mean DO 137 

concentrations and the selected variables. Among the selected variables, tforest, 138 

TOT_PPT7100_ANN, logTOT_BASIN_AREA, logTOT_STREAM_SLOPE, and logCAT_NID 139 

showed positive correlations with the stream DO concentrations, while TOT_BDAVE, 140 

TOT_TWI, logtargc, and logurban showed negative correlations. Also, the selected variables all 141 

had low VIF values (<10). We explored the possible combination of multiregression models with 142 

the selected variables using the “olsrr” r package. We chose four variables (TOT_BDAVE, 143 

TOT_TWI, logTOT_BASIN_AREA, and logCAT_NID) as the final predictors in the stream DO 144 

model since it showed a relatively high prediction accuracy of R2(0.59) and the lowest AIC value 145 

(77.35), compared with more complex models (Figure S15). 146 

We also developed seasonal mean DO models (Table S2 and Figure S16). Each model had 147 

different variables in predicting the stream seasonal mean DO concentration and showed 148 

different model performance. Among the four seasonal models, winter DO had the highest 149 

accuracy (R2=0.794) and summer DO had the lowest accuracy (R2=0.395). The detailed 150 

equations of each model are included in the Table S2.  151 

 152 



 153 

Figure S13. Temporal mean concentrations of stream DO in the CRB.  154 

 155 



 156 

 157 

Figure S14. Spatial correlation values between mean DO concentrations and selected watershed 158 

properties.  159 

 160 



 161 

Figure S15. Developed stream DO model and its prediction: (a) developed regression model and 162 

(b) predicted stream DO concentration at the NHDPLUS stream reaches.  163 



 164 

Figure S16. Seasonal stream DO models: (a) spring DO; (b) summer DO; (c) fall DO; and (d) 165 

winter DO. 166 

  167 



For estimating the stream annual mean nitrate concentration, we used the developed 2012 168 

SPARROW model results for the Pacific Northwest and California (Wise et al., 2019). The 169 

SPARROW model estimated the NHDPLUS-based stream flow and nutrient loading (including 170 

the stream total nitrogen, stream total phosphorus, and suspended sediment). Since our model 171 

requires a stream NOଷି  concentration, we calculated the total nitrogen concentration by dividing 172 

the total nitrogen loading with the annual streamflow estimate. Since some reaches had 173 

unrealistically high values of total nitrogen concentration due to the uncertainty of estimated 174 

flow and total nitrogen loading, we applied maximum cap values (10mg/l) to the calculated total 175 

nitrogen concentration. To test whether nitrate is a major component of total nitrogen in the 176 

stream waters, the ratio of stream nitrate concentration to the total stream nitrogen concentration 177 

was calculated for the stream gauge stations within the CRB. Figure S17 showed that the stream 178 

total nitrogen concentrations had a strong (R2=0.99) and a linear relationship with the stream 179 

nitrate concentrations, and the median ratio of the nitrate to the total nitrogen was about 0.83. We 180 

multiplied the median ratio (0.83) to the SPARROW-based stream total nitrogen concentration to 181 

compute stream annual mean NOଷି  concentration (Figure S17c).   182 

 183 

Figure S17. Prediction of stream annual mean NOଷି  concentration at the NHDPLUS stream reach 184 

scale for the CRB: (a) relationship between stream NOଷି  and stream total nitrogen concentrations 185 

at the gauge stations within the CRB; (b) ratio of the stream NOଷି  concentration to the stream 186 



total nitrogen concentration at the gauge stations within the CRB; and (c) the predicted stream 187 NOଷି  concentration (mg/l) at the NHDPLUS stream reach scale.  188 

 189 



Table S1. Used watershed/stream variables to build the temporal averaged stream DOC/DO model 190 

Used variables Variable name Sources 
Annual mean temperature (℃) TOT_TAV7100_ANN ,CAT_TAV7100_ANN 

(logCAT_TAV) 
PRISM,2008 

Annual mean precipitation (mm) TOT_PPT2100_ANN, CAT_PPT2100_ANN 
(logCAT_PPT) 

PRISM,2008 

Annual mean Runoff TOT_RUN7100, CAT_RUN7100 (logCAT_RUN) Schwarz et al., 2018 
 
Basin drainage area (km2) 

TOT_BASIN_AREA (logTOT_BASIN_AREA) 
CAT_BASIN_AREA  

Schwarz et al., 2018 

Basin elevation (m) TOT_ELEV_MEAN (logTOT_ELEV_MEAN), 
CAT_ELEV_MEAN 

Schwarz et al., 2018 

Basin Slope TOT_BASIN_SLOPE 
CAT_BASIN_SLOPE 

Schwarz et al., 2018 

Stream Slope TOT_STREAM_SLOPE 
(logTOT_STREAM_SLOPE), 
CAT_STREAM_SLOPE 

Schwarz et al., 2018 

Soil permeability (inch/hr) TOT_PERMAVE (logTOT_PERMAVE), 
CAT_PERMAVE (logCAT_PERMAVE)

STATSGO2 soil databases 

Soil organic matter (%) TOT_OM (logTOT_OM), CAT_OM STATSGO2 soil databases 
Soil bulk density(g/cm3) TOT_BDAVE, CAT_BDAVE STATSGO2 soil databases 
% Sand TOT_SANDAVE, CAT_SANDAVE STATSGO2 soil databases 
% Clay TOT_CLAYAVE, CAT_CLAYAVE 

(logCAT_CLAYAVE) 
STATSGO2 soil databases 

% Silt TOT_SILTAVE, CAT_SILTAVE STATSGO2 soil databases 
% wetland area (%) twetland (logtwetland), wetland (logwetland) National Land Cover Database 2001 

(NLCD 2001) 

% Forest area (%) tforest, forest (logforest) 
 

National Land Cover Database 2001 
(NLCD 2001) 

% Urban area (%) turban (logturban), urban (logurban) 
 

National Land Cover Database 2001 
(NLCD 2001) 

% Shrub area (%) tshrub (logtshrub), shrub (logshrub) 
 

National Land Cover Database 2001 
(NLCD 2001) 

% Agriculture area (%) targc (logtargc) 
agrc (logargc) 

National Land Cover Database 2001 
(NLCD 2001) 

Summer vegetation index TOT_EVI_JAS_2012 (logTOT_EVI), MODIS imagery 



Used variables Variable name Sources 
(enhanced vegetation index, EVI) CAT_EVI_JAS_2012 
Topographic wetness index (TWI, 
m) 

TOT_TWI, CAT_TWI Schwarz et al., 2018 

Baseflow index (BFI) TOT_BFI, CAT_BFI Schwarz et al., 2018 
Dam storage 
(NID_STORAGE2010) 

TOT_ NID_STORAGE2010 (logTOT_NID), 
CAT_NID_STORAGE2010 (logCAT_NID) 

Schwarz et al., 2018 

TN concentration (mg/l) tn (logtn) SPARROW 2012  
TP concentration (mg/l) tp (logtp) SPARROW 2012  
Parenthesis value is the variable name after log transformed. ‘CAT’ represents flowline catchment value. ‘TOT’ represents total upstream 
routed accumulated value. ‘tforest’ and ‘forest’ represent the percentage of combined forest lands (mixed forest, deciduous and evergreen 
forests) from the total upstream drainage area, and catchment drainage area, respectively. Other land classes follow the similar naming.  

 191 

Table S2. The developed seasonal stream DOC/DO models 192 

Model  Equations  Accuracy 
Spring DOC DOC=4.56-0.03TOT_CLAYAVE-0.03tshrub-3.02CAT_EVI_JAS_2012+0.38logtargc R2=0.505 
Summer DOC DOC=3.11-0.02tshrub+0.44logtargc-0.16logshrub R2=0.359 
Fall DOC DOC=3.22-0.03tshrub+0.63logturban-0.13logshrub R2=0.473 
Winter DOC DOC=5.27-0.05CAT_BFI+0.47logtargc R2=0.54 
Spring DO DO=10.17+0.07TOT_BASIN_SLOPE+0.26logCAT_NID R2=0.514 
Summer DO DO=17-5.2TOT_BDAVE-0.38TOT_TWI+1.18logTOT_ELEV_MEAN R2=0.395 
Fall DO DO=12.4-0.05TOT_SILTAVE-0.56logtargc R2=0.502 
Winter DO DO=12.65+0.07TOT_BASIN_SLOPE-

0.04CAT_BFI+0.08logTOT_NID+0.19logCAT_NID 
R2=0.794 

‘CAT’ represents NHD flowline catchment value. ‘TOT’ represents NHD total upstream routed accumulated value. ‘tforest’ and ‘forest’ represent the 
percentage of combined forest lands (mixed forest, deciduous and evergreen forests) from the total upstream drainage area, and catchment drainage area, 
respectively. Other land classes (shrub, argc and urban) follow the similar naming. CLAYAVE: % of clay content in the soil, SILTAVE: % of silt content in 
the soil, BDAVE: soil bulk density, ELEV_MEAN: mean watershed’ elevation, EVI_JAS_2012: Mean enhanced vegetation Index (EVI) in summer of 2012, 
BASIN_SLOPE: watershed slope, TWI: topographic wetness index, BFI: Ratio of base flow to total flow and NID: Maximum dam storage between 1950 and 
2010. 
 193 



Random forest model 194 

To run the random forest model, we used the NHDPLUS version 2.1 attributes for reach catchments and modified network routed 195 

upstream watersheds for the Conterminous United States (Schwarz et al., 2018) 196 

Table S3. Used variables in the random forest modeling for predicting hyporheic denitrification amounts in the CRB. 197 

Variable group Variable  Variable name Description Source 
Climate Annual mean 

temperature 
CAT_TAV7100_ANN 
TOT_TAV7100_ANN 

30-year (1971–2000) mean annual 
temperature (Celsius)  

(McCabe & 
Wolock, 2016) 

Annual mean 
precipitation 

CAT_PPT7100_ANN 
TOT_PPT7100_ANN 

30-year (1971–2000) mean annual 
precipitation (mm) 

(McCabe & 
Wolock, 2016) 

Topography Basin/catchment 
topography variables 

TOT_BASIN_AREA 
TOT_BASIN_SLOPE 
TOT_ELEV_MEAN 
TOT_ELEV_MIN 
TOT_ELEV_MAX 
TOT_TWI 
CAT_BASIN_AREA 
CAT_BASIN_SLOPE 
CAT_ELEV_MEAN 
CAT_ELEV_MIN 
CAT_ELEV_MAX 
CAT_TWI 

Slope, elevation maximum, and 
minimum and mean value, and 
topographic wetness 
index(ln(a/slope) 

(Schwarz et al., 
2018)) 

Hydrology Annual potential 
evapotranspiration 
(PET) 

TOT_PET 
CAT_PET  

Annual averaged potential 
evapotranspiration(mm) from 
2014–2015 

(McCabe & 
Wolock, 2016) 

Annual actual 
evapotranspiration 
(AET) 

TOT_AET 
CAT_AET 

Annual averaged actual 
evapotranspiration(mm) from 
2014–2015 

(McCabe & 
Wolock, 2016) 

Annual Runoff CAT_RUN7100 
TOT_RUN7100 

Estimated 30-year (1971–2000) 
average annual runoff  

(McCabe & 
Wolock, 2016) 

BFI CAT_BFI  
TOT_BFI 

Ratio of base flow to total flow (Schwarz et al., 
2018) 

Dam storage CAT_NID_STORAGE2010 
TOT_NID_STORAGE2010 

Maximum dam storage between 
1950 and 2010 

United States 
Army Corps of 
Engineers 



Variable group Variable  Variable name Description Source 
Land use % Forest area CAT_forest 

TOT_forest 
Deciduous/mixed and evergreen 
forest area 

National Land 
Cover Database 
2001 (NLCD 2001) 

% Urban area CAT_urban 
TOT_urban 

Developed, open Space 
developed, low/medium/high 
density area 

National Land 
Cover Database 
2001 (NLCD 2001) 

% Shrub area CAT_shrub 
TOT_shrub 

Dwarf scrub 
and Shrub/scrub  

National Land 
Cover Database 
2001 (NLCD 2001) 

% Wetland area CAT_wetland 
TOT_wetland 

Woody Wetlands 
and Emergent Herbaceous 
Wetlands 

National Land 
Cover Database 
2001 (NLCD 2001) 

% Agriculture  CAT_agr 
TOT_agr 

Pasture/Hay and cultivated crops National Land 
Cover Database 
2001 (NLCD 2001) 

Summer vegetation 
index 

CAT_EVI_JAS_2012 
TOT_EVI_JAS_2012 

Mean enhanced vegetation Index 
(EVI) in summer of 2012 

MODIS imagery 

Soil Soil layer properties  CAT_OM  
TOT_OM  
CAT_PERMAVE 
TOT_PERMAVE 

Soil organic matter, permeability STATSGO2 soil 
databases 

Soil texture CAT_SILTAVE 
CAT_CLAYAVE 
CAT_SANDAVE 
TOT_SILTAVE 
TOT_CLAYAVE 
TOT_SANDAVE 

(% Silty, % CLAY and % Sand) STATSGO2 soil 
databases 

Stream Contact time CAT_CONTACT 
TOT_CONTACT 

The length of time it takes for 
water to drain along subsurface 
flow paths to the stream 

(Schwarz et al., 
2018) 

Stream bankfull depth logwbkf_m Bankfull stream water depth (Gomez-Velez et 
al., 2015) 

Stream water depth logd_m Stream water depth (Gomez-Velez et 
al., 2015) 

Stream 
sinuosity 

sinuosity Flowline reach sinuosity. (Schwarz et al., 
2018) 

D50(median grain size) D50_m 50% grain size of stream sediment 
materials 

(Gomez-Velez et 
al., 2015) 

Stream slope TOT_STREAM_SLOPE Stream slope  



Variable group Variable  Variable name Description Source 
CAT_STREAM_SLOPE

‘CAT’ is NHD flowline catchment value, and ‘TOT’ is NHD total upstream routed accumulated value. 



References 198 

Gomez-Velez, J. D., Harvey, J. W., Cardenas, M. B., & Kiel, B. (2015). Denitrification in the 199 

Mississippi River network controlled by flow through river bedforms. Nature Geoscience, 200 

8(12), 941–945. https://doi.org/10.1038/ngeo2567 201 

McCabe, G. J., & Wolock, D. M. (2016). Variability and Trends in Runoff Efficiency in the 202 

Conterminous United States. Journal of the American Water Resources Association, 52(5), 203 

1046–1055. https://doi.org/10.1111/1752-1688.12431 204 

Schwarz, G. E., Jackson, S. E., & Wieczorek, M. E. (2018). Select Attributes for NHDPlus 205 

Version 2.1 Reach Catchments and Modified Network Routed Upstream Watersheds for the 206 

Conterminous United States. United States Geological Survey. 207 

https://doi.org/http://dx.doi.org/10.5066/F7765D7V 208 

Yang, Q., Zhang, X., Xu, X., & Asrar, G. R. (2017). An analysis of terrestrial and aquatic 209 

environmental controls of riverine dissolved organic carbon in the conterminous United 210 

States. Water (Switzerland), 9(6). https://doi.org/10.3390/w9060383 211 

Zarnetske, J. P., Bouda, M., Abbott, B. W., Saiers, J., & Raymond, P. A. (2018). Generality of 212 

Hydrologic Transport Limitation of Watershed Organic Carbon Flux Across Ecoregions of 213 

the United States. Geophysical Research Letters, 45(21), 11,702-11,711. 214 

https://doi.org/10.1029/2018GL080005 215 

 216 

 217 


