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Abstract

Projections of future climate change to support decision-making require Earth system models (ESMs) running at high spatial

resolution, but this is computationally prohibitive. A major challenge is the calibration (parameter tuning) during the devel-

opment of ESMs, which requires running large numbers of simulations to identify the optimal values for parameters that are

poorly constrained by observations. Here we train a convolutional neural network (CNN) on perturbed parameter ensembles

from two lower-resolution (and thus much less expensive) versions of the same ESM, and a smaller number of higher-resolution

simulations. Cross-validated results show that the CNN’s skill exceeds that of a climatological baseline for most variables with

as few as 5-10 examples of the higher-resolution ESM, and for all variables (including precipitation) with at least 20 examples.

This proof-of-concept study offers the prospect of significantly more efficient calibration of ESMs, by reducing the required CPU

time for calibration by 20-40 \%
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Abstract13

Projections of future climate change to support decision-making require Earth sys-14

tem models (ESMs) running at high spatial resolution, but this is computationally15

prohibitive. A major challenge is the calibration (parameter tuning) during the de-16

velopment of ESMs, which requires running large numbers of simulations to identify17

the optimal values for parameters that are poorly constrained by observations. Here18

we train a convolutional neural network (CNN) on perturbed parameter ensembles19

from two lower-resolution (and thus much less expensive) versions of the same ESM,20

and a smaller number of higher-resolution simulations. Cross-validated results show21

that the CNN’s skill exceeds that of a climatological baseline for most variables with22

as few as 5-10 examples of the higher-resolution ESM, and for all variables (includ-23

ing precipitation) with at least 20 examples. This proof-of-concept study offers the24

prospect of significantly more efficient calibration of ESMs, by reducing the required25

CPU time for calibration by 20-40 %26

Plain Language Summary27

To determine how Earth’s future climate will respond to greenhouse gas emis-28

sions requires building accurate computer models. Building these models requires29

a time-consuming calibration process to find optimal values for uncertain constants30

(parameters) in the model equations that represent small-scale processes. We took31

a method (called CNN) that is commonly used in image recognition applications32

and inverted it to replicate the calibration process of the climate model. The CNN33

reproduces all of the main features of the global simulation of the climate model,34

including for precipitation which varies a lot from place-to-place, in a fraction of35

the computational time. The CNN also makes use of information contained in out-36

puts from simpler versions of the climate model, which are available at lower cost.37

Our results suggest that inserting an artificial intelligence method, like CNN, in the38

calibration process for a climate model can reduce the time required by 20-40%.39

1 Introduction40

Quantitative projections of future climate change, with a robust estimate of41

their uncertainty, are critical to inform policy and decision-making. Earth System42

Models (ESMs) forced by emissions scenarios are the primary tool used to provide43

these projections, and modern ESMs incorporate sophisticated representations of44

Earth system processes, are physically self-consistent, show high fidelity with ob-45

servations, and are computationally efficient enough to run large ensembles (Kay et46

al., 2014; Danabasoglu et al., 2020; Gent et al., 2011). However, most ESMs partic-47

ipating in the sixth phase of the Couple Model Intercomparison Project (CMIP6)48

have spatial grid resolutions of O(100 km) on a side, which is often much too coarse49

to provide useful information to stakeholders; for example, spatial resolution finer50

than 10 km is required to study hydrologic change at the scale of small watersheds51

(Erler et al., 2019). Limited-area versions of ESMs called Regional Climate Mod-52

els (RCMs) are used to downscale ESM simulations to resolutions as fine as 1 km,53

but this approach creates other problems such as physical inconsistencies between54

the driving model and RCM, scale mismatches at the lateral boundaries, and com-55

putational inefficiencies limiting ensemble size (Racherla et al., 2012; Luca et al.,56

2016). Statistical downscaling can be effective, but omits small-scale feedbacks and57

implicitly assumes stationarity in the downscaling model (Lanzante et al., 2018).58

Machine-learning based downscaling methods may overcome some of these limita-59

tions (Beusch et al., 2020; Heinze-Deml et al., 2020).60

It is clear that the optimal solution is to build global ESMs at resolutions of61

O(10 km), but these models are computationally prohibitive to develop and cal-62
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ibrate (Schär et al., 2020). Emulation offers an efficient alternative, by using a63

simpler empirical model to learn the behaviours of a more complex dynamical model64

(Kennedy & O’Hagan, 2001). Modern statistical learning methods have enabled65

more sophisticated emulation of ESMs, however, most previous studies have focused66

on simplified outputs, either through spatial averaging (Fletcher et al., 2018; Lee67

et al., 2011), or by first applying dimension-reduction methods like PCA (Salter &68

Williamson, 2019). Several studies have built emulators that represent the spatial69

structure of the ESM response; however, these tend to emulate one output variable70

at a time (Salter et al., 2018; Regayre et al., 2018).71

Here we present a novel application of a statistical learning technique popu-72

lar in computer vision to emulate global output from a higher-resolution ESM as a73

function of a number of uncertain input parameters. We demonstrate that the em-74

ulator can be trained effectively using a combination of inexpensive lower-resolution75

examples from the same ESM, and a relatively small number of high-resolution ex-76

amples. The fully-trained emulator is able to accurately predict the impact of the77

input parameters on full global maps of a suite of seven output variables from the78

ESM, including precipitation. This represents a potentially significant pathway to79

expediting the calibration process for future generations of higher-resolution ESMs.80

2 Models and Methods81

2.1 Earth System Model82

The climate model used in this study is the National Center for Atmospheric83

Research (NCAR) Community Earth System Model (CESM) Version 1.0.4 (Gent84

et al., 2011). For computational efficiency, and to support our focus on the influ-85

ence of atmospheric parameterization on model uncertainty, we conduct all sim-86

ulations using the F-compset configuration of CESM, which includes interactive87

atmosphere and land surface models, and prescribed climatological ocean surface88

temperatures and sea ice representative of the pre-industrial period (1850). The at-89

mospheric model component used here is the Community Atmosphere Model Version90

4 (CAM4) fully documented in Collins et al. (2006). The details of CAM4 pertinent91

to this study include its representation of aerosol-radiation interactions, but not92

aerosol-cloud interactions, and its finite-volume dynamical core, which is run here at93

three horizontal resolutions (referred to as higher, medium and lower). The higher-94

resolution configuration is a 0.9◦ x 1.25◦ latitude-longtiude grid (henceforth f09),95

which was the same resolution used in the CESM simulations that were contributed96

to the CMIP5 project (Taylor et al., 2011). Two lower-resolution configurations97

of the same version of CESM are also employed here, a medium one at 1.9◦ x 2.5◦98

(f19), and a lower-resolution one at 4◦ x 5◦ (f45). The physics time-step (1,800 s)99

and vertical resolution are identical in all three configurations.100

We conduct three perturbed parameter ensembles (PPEs) in total, one at101

each of the three spatial resolutions. In each PPE, 100 realizations are performed102

by perturbing nine atmospheric and aerosol parameters in CAM4 using values se-103

lected by Latin Hypercube Sampling (McKay et al., 1979). We emphasize that for104

the ith realization in each PPE the same set of parameter values are provided to105

CAM4. The nine parameters are the same ones that were perturbed in Fletcher et106

al. (2018), and they are listed in Table 1 but are not discussed here in detail because107

this study focuses on the application of a novel machine learning technique to a108

multi-resolution ensemble of PPEs. Several atmospheric parameters have different109

values in the default configuration for each resolution of CAM4 (these are the result110

of manual calibration by the model developers at NCAR), and we elect here to use111

each resolution’s default values, rather than using identical parameter values across112

all simulations. Each realization is integrated for three years, and the outputs are113

–3–
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Table 1: List of parameters that are perturbed in this study, including for each parameter a

description, the range of perturbed values, and the default value in CAM4 (where applicable).

parameter description (CAM4
parameter name)

min default max notes

x1 Fraction of hygro-
scopic SO4

0.0 0.0 1.0 Proxy for sulfate indi-
rect effect (no units).

x2 Spatial uniformity
of BC (1 = globally
uniform)

0.0 0.0 1.0 Proxy for BC aging
and scavenging (no
units).

x3 Scaling factor for
global BC mass

0.0 1.0 40.0 Proxy for uncertainty
in BC emissions (no
units)

x4 Altitude for insertion
of uniform BC layer

0.0 – 39.0 Proxy for vertical
transport of BC (units
km). Note: new pa-
rameter, no default.

x5 RH threshold for
low cloud formation
(cldfrc rhminl)

0.80 0.88 0.99 Value grid box RH
must exceed before
low cloud forms (no
units)

x6 Effective radius
of liquid cloud
droplets over ocean
(cldopt rliqocean)

8.4 14.0 19.6 (units microns)

x7 Timescale for con-
sumption rate of
shallow CAPE (hk-
conv cmftau)

900 1800 14440 (units seconds)

x8 RH threshold for
high cloud formation
(cldfrc rhminh)

0.50 0.50 0.85 Value grid box RH
must exceed before
high cloud forms (no
units)

x9 Timescale for con-
sumption rate of deep
CAPE (zmconv tau)

1800 3600 28800 (units seconds)

time-averaged over all 36 months to reduce the influence of atmospheric internal114

variability.115

The lower-resolution configurations of CESM use spatial grids of sizes 46×72116

and 96×144, respectively. To ensure that the output from all three resolutions can117

be processed using the same machine learning architecture, the output data from the118

lower resolution ensembles are first upscaled using bilinear interpolation to match119

the largest (f09) grid size of 192×288. Nearest-neighbour and bi-cubic interpolation120

were also tested, to assess the sensitivity of our results to the method of regridding.121

Our findings (not shown) indicate that regardless of the method used, even for vari-122

ables such as precipitation with large spatial variability, the conclusions of this work123

are unchanged.124
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 1: Coefficient of variation (calculated by dividing the ensemble mean by the ensemble

standard deviation for each PPE) for the difference maps of annual mean (left) total precipitation

(mm day−1) and (right) net top-of-atmosphere radiative flux (W m−2) over the 100 realizations

of the perturbed parameter ensembles of CESM-CAM4 run at three horizontal resolutions: (a,d)

f09, (b,e) f19 and (c,f) f45.

To quantify the impact on the atmospheric simulation from perturbations to125

the nine input parameters, Fig. 1 shows the coefficient of variation (i.e., ensemble126

spread) in total precipitation (PRECT) and net top-of-atmosphere radiative flux127

(FNET) at the three resolutions, where heavier shading represents greater variability128

within the ensemble. Total precipitation represents one of the most scientifically129

important, and most spatially variable, physical outputs, and therefore it neatly il-130

lustrates the relationship between the simulations at multiple resolutions (Fig. 1a-c).131

The regions of greatest variation are found in the (sub)tropical Pacific and Atlantic,132

where the parameter perturbations affect equatorial deep convection, and cloud133

formation in the subtropical dry zones off the western boundaries of Africa, North134

and South America. An important finding is that the magnitude of this variation135

increases at finer resolutions, suggesting that not all of the information about the136

influence of the parameters on precipitation is available at lower resolutions. In con-137

trast, the impact of parameter perturbations on FNET is less sensitive to resolution138

because of the much lower spatial variability in that field (Fig. 1d-f). Even in the139

regions of greatest spread, roughly coinciding with western boundary currents and140

the edge of the global tropical belt, there is no evidence that variability changes as a141

function of resolution.142
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input
parameters

9d
13,824d

fc reshape

(6, 9, 256) (6, 9, 128)

conv

(12, 18, 64)

conv

(24, 36, 64)

conv conv

output
(192, 288, 7)

(48, 72, 32)

(96, 144, 32)

conv conv

Figure 2: The architecture of the generative convolutional neural network used to predict

seven spatially-resolved outputs of an ESM parameterized by nine aerosol forcing / atmospheric

parameters. fc: fully-connected (dense) layer. conv: transpose convolution with a kernel size of

5x5.

2.2 Convolutional Neural Network143

We emulate spatially-resolved outputs from CESM as a function of the nine144

uncertain atmospheric parameters using a generative convolutional neural network145

(CNN), as depicted in Fig. 2. CNN models are very common in computer vision146

applications and are ideally-suited to spatially-resolved targets (I. J. Goodfellow et147

al., 2014). Given sufficient training examples, the CNN learns a statistical repre-148

sentation of the underlying physical equations that relate changes in the parameter149

values to the spatially-resolved outputs. The CNN architecture includes seven layers150

to map the 9d input parameter vector to global maps of seven output variables (192151

× 288 × 7). With the exception of the final convolution (conv) layer, all depicted152

layers are followed by batch normalization (Ioffe & Szegedy, 2015) and a leaky rec-153

tified linear unit (Maas et al., 2013). The 9d input is first projected to a 13,824d154

feature space using a fully-connected (fc) layer. The size of the 13,824d feature space155

is selected to allow a simple reshaping to a volume 6×9×256, which facilitates a156

series of transpose convolutions—sometimes referred to as deconvolutions—using a157

kernel size of 5×5. The first transpose convolution uses a stride of 1, and all follow-158

ing transpose convolutions use a stride of 2, which doubles the spatial dimensions159

of the feature space so that after five convolutions the spatial resolution of the fea-160

ture space matches the higher-resolution CESM grid (192×288). The final transpose161

convolution uses 7 output channels to match the desired number of output variables162

being predicted, which includes low cloud fraction (CLDL), shortwave cloud forcing163

(SWCF), net top-of-the-atmosphere radiative flux (FNET) and total precipitation164

(PRECT).165

The CNN was implemented in TensorFlow 2.2 using the Keras API. The neu-166

ral network contains a total of 1.36M trainable parameters and 288M multiply-167

accumulate operations (MACs). On a desktop computer housing an NVIDIA TI-168

TAN Xp graphical processing unit (GPU) and a 12-core Intel i7-8700K processor169

(3.70 GHz), the CNN can process approximately 165 samples per second using a170

batch size of 1, and approximately 3400 samples per second using a batch size of171

2561.172

1 Speed averaged over 1000 forward passes of the network.

–6–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

2.3 Training and Validation173

To evaluate the CNN’s ability to emulate the ESM, the CNN was trained in174

cross-validation mode using 80 randomly selected high-resolution (f09) samples,175

and tested on the remaining 20 samples. This entire training-testing process was176

repeated 40 times to estimate the uncertainty in the model fit that arises due to177

sampling variability. In practice, we train the CNN to predict the difference between178

the temporally averaged outputs of the default version of ESM and a perturbed179

ESM with a non-default parameterization, which we refer to as a set of difference180

maps. This method of learning the residual can potentially lead to improved training181

performance (He et al., 2016), where the intuition is that, in the extreme case when182

the perturbed CESM equals the default CESM, it is easier for the network to learn183

a zero mapping than an identity mapping. A single training example comprises an184

input vector x representing the nine parameter values, and a target set of difference185

maps Y. We denote the predicted set of difference maps as Ŷ. Prior to training the186

CNN, the input and output data were normalized to a range of [0, 1] by subtracting187

the minimum value and dividing by the maximum value. This was performed on a188

per-channel basis (i.e., per parameter for the input vector, and per output variable189

in the set of difference maps) using all 100 samples.190

Training a neural network involves minimizing a loss function representing
the error between the predicted and target outputs by iteratively updating the net-
work parameters using gradient descent and backpropagation (I. Goodfellow et al.,
2016). Since the selection of an appropriate loss function is a subjective element of
the CNN architecture for each application, two different loss functions are compared
here. The first is the mean squared error (MSE), which is commonly used in com-
puter vision applications (Ledig et al., 2017; McNally et al., 2020). For convenience,
we define the per-channel mean squared error (MSEk) as

MSEk(Yk, Ŷk) =
1

MN

M∑
i=1

N∑
j=1

(Yk
i,j − Ŷk

i,j)
2, (1)

where M and N represent the number of latitudinal and longitudinal grid points,
respectively, and k represents the channel index (i.e., Yk is a slice of Y representing
a single difference map for the kth output variable). The mean squared error loss
(LMSE) for a single training example can then be defined as

LMSE =
1

K

K∑
k=1

MSEk(Yk, Ŷk), (2)

where K is the number of channels, or output variables, in the set of difference191

maps.192

Additionally, we propose a new loss function inspired by the spatial skill score193

metric that is often used to quantify the accuracy of climate models (Pierce et al.,194

2009) and has been used in our previous work to quantify the fidelity of a perturbed195

model version to a reference case (Fletcher et al., 2018). The skill metric (henceforth196

SS) is numerically similar to other model validation metrics such as Kling-Gupta197

Efficiency (Gupta et al., 2009):198

SSX = r2p,d − [rp,d − (σp/σd)]
2 −

[
(p̄− d̄)/σd

]2
(3)

where for a global grid of particular output variable X (e.g., precipitation, low cloud
amount, etc.), p denotes the test case, and d denotes the ground truth, rp,d is the
anomaly (pattern) correlation between X in p and d, σ is the spatial standard de-
viation of X, and overbars denote the global mean of X. Six output variables are
included in the calculation of SS: low cloud fraction (CLDL), total precipitation
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(PRECT), net radiative flux at the top-of-atmosphere (FNET), shortwave cloud
forcing (SWCF), longwave cloud forcing (LWCF), and vertically-integrated longwave
heating rate (QRL). We calculate SS for each variable separately, and then average
the SS values to obtain the final SS for each test case. The per-channel (i.e., per
output variable) skill score (SSk) and skill score loss (LSS) are defined as

SSk =
MSEk(Yk, Ŷk)

MSEk(Yk, Ŷk)
LSS =

1

K

K∑
k=1

SSk (4)

where

Yk =
1

MN

M∑
i=1

N∑
j=1

Yk
i,j . (5)

A perfectly predicted difference map will have SSk=0, whereas the maximum pos-199

sible value of SSk is 1. While we use this convention out of convenience for the200

minimization problem, in our results we report 1–SSk to be consistent with the skill201

score metric used in the climate modeling literature (Pierce et al., 2009). The CNN202

was trained for 500 epochs using each loss function. The Adam optimizer (Kingma203

& Ba, 2014) was used with a batch size of 8 and a cosine decay learning rate sched-204

ule (Loshchilov & Hutter, 2016) with initial learning rate of 0.01. Training took205

approximately 150 seconds on the TITAN Xp GPU.206

3 Results207

3.1 Overall performance of the CNN208

We begin by showing how well the CNN is able to predict the 20% of unseen209

high-resolution (f09) outputs of CESM when trained on the remaining 80% of f09210

cases. To illustrate how the CNN-predicted outputs compare to the original simu-211

lation from CESM, Fig. 3 shows the actual CESM output and the CNN predictions212

for CLDL, FNET, PRECT and SWCF in a randomly selected test case2. Qualita-213

tively, the CNN achieves a high degree of learning about the relationship between214

the input parameters and changes to the spatial outputs in CESM. This includes215

relatively complex features of the precipitation response to parameter changes; for216

example, enhanced monsoon circulations over east Asia, reduced precipitation in217

tropical South America, and the latitudinal separation within the ITCZ in the trop-218

ical eastern Pacific and Atlantic basins. We emphasize that the CNN is provided219

with only the nine parameter values as an input, and predicts all seven output fields220

in a single calculation (Fig. 2).221

Quantitative metrics averaged over all test cases and all seven output vari-222

ables confirm the high fidelity of the CNN predictions, with very low average mean-223

squared error (MSE=4.07e−4), and a high average skill score (SS=0.817). The224

likeness of the CNN predictions to the CESM output is very high for CLDL, FNET225

and SWCF, as measured by the skill score metric (SS>0.9). Precipitation represents226

the most challenging target for the CNN because of its very high spatial variability,227

and its mean skill score over all cases is somewhat lower than the multi-variable228

mean (SS=0.727). However, as shown by the single case in Fig. 3i, the CNN still229

represents the spatial variations in precipitation from the original CESM simulation230

with high fidelity. The finer-scale details that are not predicted by the CNN must,231

by definition, be explained by processes other than the parameters, for example at-232

mospheric internal variability. That the CNN does not capture these details would233

2 Very similar features are found in all cases, and we avoid showing the mean here because we wanted

to illustrate the CNN’s ability to predict the finer-scale details of the response.
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likely not be of critical importance to most model developers, since calibration is234

most often concerned with the representation of larger-scale features.235

Comparing the middle and righthand columns of Fig. 3, the choice of the loss236

function used to train the CNN has an impact on prediction skill. For the single237

case shown, predictions trained on LSS capture more sharply the features in the238

original simulation (left column), and this results in a higher skill score (1–SSk) and239

lower MSE for most variables compared to predictions trained on LMSE . Evaluat-240

ing the effect of loss function across all cases, training on LSS increases the average241

skill across all seven output variables by 15%, and for precipitation the skill is in-242

creased by 25% (not shown). The strong suggestion is that LSS enables the CNN to243

better learn the spatial details of the output fields because it incorporates informa-244

tion about the spatial correlation and variability of these physical quantities in the245

training process.246

3.2 Predicting high-resolution cases using low-resolution data247

Having established that the CNN is able to produce high-fidelity predictions of248

CESM outputs taking only the parameter values as input, we next describe a prac-249

tical application of the CNN-based emulator that follows the approach of Anderson250

and Lucas (2018) to extract information about a higher-resolution ESM from sim-251

ulations with less expensive lower-resolution versions of the same ESM. We use the252

same CNN architecture as above (Fig. 2), but this time the training data includes all253

200 lower resolution cases (f19 and f45), in addition to a number of high-resolution254

cases (nhr) that is sequentially increased in our experiments from zero to 80. The255

goal is to determine how many higher-resolution examples the CNN requires before256

it can adequately learn the behaviour of the higher-resolution version of CESM. At257

each value of nhr, 40 random trials are conducted and a separate CNN is trained in258

each random trial. This multi-resolution CNN is validated against predictions of the259

difference maps from 20 randomly selected f09 test samples that are excluded from260

the training data.261

The input vector to the network was modified to include a tenth parameter262

representing the spatial resolution of the ESM from which the sample originated.263

Because the spatial grid areas vary by a factor of 4 between resolutions, the resolu-264

tion values were set to 1, 1
4 , and 1

16 for the low (f45), medium (f19), and high (f09)265

resolution cases, respectively (Anderson & Lucas, 2018). The training runs were266

configured in the same way as described in Section 2.3, except that the number of267

epochs was reduced to 200, and the batch size was increased to 16. These changes268

were made to reduce the overall number of training iterations required over many269

trials, and we verified that they did not have a material effect on the accuracy of the270

trained models (not shown).271

The primary result is to illustrate how the skill metric (1–SS) varies as nhr272

is progressively increased in the training data (Fig. 4). The mean skill score of the273

CNN averaged over all seven output variables is around 0.6 when the CNN is trained274

on only the lower-resolution cases (i.e., when nhr=0; Fig. 4a). The skill increases275

approximately linearly to around 0.8 as more higher-resolution cases are included276

in the training data, but it plateaus for nhr >40. This demonstrates that, when277

averaged over all variables, the lower-resolution versions of CESM alone provide278

the CNN with around 75 % of the information required to predict higher-resolution279

outputs. Increased prediction skill is achieved by introducing the higher-resolution280

training cases, and around 40 higher-resolution examples is optimal. Above nhr=40281

the returns diminish considerably, and so the benefit of running additional costly282

higher-resolution cases appears small.283

–9–
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(a) CLDL (b) MSEk: 5.70e-4, 1–SSk: 0.890 (c) MSEk: 6.19e-4, 1–SSk: 0.905

(d) FNET (e) MSEk: 2.32e-4, 1–SSk: 0.931 (f) MSEk: 2.20e-4, 1–SSk: 0.949

(g) PRECT (h) MSEk: 2.28e-4, 1–SSk: 0.610 (i) MSEk: 1.91e-4, 1–SSk: 0.816

(j) SWCF (k) MSEk: 2.48e-4, 1–SSk: 0.889 (l) MSEk: 2.47e-4, 1–SSk: 0.915

Figure 3: Global annual mean outputs for a randomly sampled test case in four of the seven

predicted output variables: (top row) low cloud fraction, (second row) net top-of-atmosphere ra-

diative flux, (third row) total precipitation, (bottom row) shortwave cloud forcing. All quantities

have been normalized and so units are dimensionless. Left column shows the original simulations

from CESM. The middle (right) column shows the predictions from the CNN trained with the

LMSE (LSS) loss function (see Section 2.3 for details). The values below each panel in the middle

and right columns show the mean-squared error (MSEk), and the skill metric (1–SSk), compared

to the original simulation in the left column.
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Since our CNN-based emulator is relatively complex, and has not been ap-284

plied to ESMs before, it is important to benchmark the benefit of using this ap-285

proach versus a simpler one. In studies that apply machine learning methods for286

climate modelling, a commonly-used benchmark is a general linear model (GLM;287

e.g., Fletcher et al. (2018)). However, since here the CNN emulates the entire set of288

spatially-resolved output arrays as a single function of the nine input parameters, it289

was not possible to provide a simple comparison using a GLM. Instead, we compare290

the skill derived from the fully-trained CNN to a baseline skill value obtained from291

a null model that assumes the CNN simply predicts the climatological mean output292

at each grid cell for each combination of input parameters. The orange line shows293

that the baseline null model achieves a mean skill score of around 0.4 when at least294

10 higher-resolution examples are included in the calculation of the climatological295

mean. Importantly, the fully-trained CNN model outperforms the baseline skill for296

all values of nhr.297

The mean skill score peaks at 0.8 because the CNN produces different levels298

of skill for different output variables. Aerosol optical depth (AOD) shows uniformly299

high skill, even with nhr=0 (Fig. 4b), because it is highly constrained by the pre-300

scribed aerosol mass concentrations employed by CAM4, and was shown to be a301

strong linear function of a single parameter (x1) (Fletcher et al., 2018). In contrast,302

other variables like total precipitation exhibit systematically lower skill values (0.4 at303

nhr=0, peaking at 0.7 with nhr=80, Fig. 4f). This mirrors the result seen in Fig. 3304

for a single case, where lower skill is found for variables like precipitation whose305

spatial output contains finer-scale spatial variability. This is a result very familiar306

to climate modellers, who have reported for decades that the spatial distribution307

of precipitation is the most challenging target for coarse-resolution ESMs (Luca et308

al., 2016). Here, the result serves as a reminder that the CNN does not represent a309

panacea: the skill of its predictions depends on the spatial complexity of the output310

variable being emulated. It also suggests that the skill of the CNN-based emulator311

has an upper-limit that does not appear to be caused by underfitting due to too few312

training cases. For all variables, including precipitation, the skill score has effectively313

plateaued at nhr=80, suggesting that it is unlikely to improve substantially further314

even if a much larger training sample was available. Our conclusion is that fine-scale315

details of the output (e.g., Fig. 3g for precipitation) are related more to internal at-316

mospheric variability than to parameter uncertainty, and thus cannot be captured by317

the CNN, by definition.318

3.3 Sources of uncertainty in the emulator319

The width of the shaded blue envelope in Fig. 4 displays the variance in320

the CNN predictions due to sampling variability across the 40 realizations of the321

training-testing process, while the orange shading displays the variance in the cli-322

matological mean computed over nhr samples. For all values of nhr the impact of323

sampling is smaller for the trained CNN model than for the null model, showing324

that there is greater variability in skill when using the climatological mean to pre-325

dict each output variable than using the CNN. At nhr <20 the uncertainty in the326

null model is very large, which relates to the instability of the calculation of the327

climatological average from the small sample of higher-resolution cases available to328

train the CNN. At nhr >50 the uncertainty in both models has stabilized; however,329

it remains larger for the null model than the fully-trained CNN. We do not have a330

precise explanation for this behaviour, other than to say that it strongly suggests331

that the trained CNN model is able to extract a larger deterministic signature from332

the training data, which causes the performance of the CNN to be less variable from333

realization to realization. We also note that the variance in the climatological mean334

is larger for variables like FNET and SWCF, and smaller for PRECT and QRL, and335
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the climatological mean variance appears unrelated to the overall skill or uncertainty336

of the CNN model.337
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Figure 4: The blue line shows the skill of the CNN in predicting high-resolution difference

maps after being trained on the full lower- and medium-resolution ensembles, plus an increasing

number (nhr) of high-resolution samples. Panels (a-g) show the skill for the individual seven

outputs, and panel (h) shows the mean skill. The orange line shows the skill from using the cli-

matological mean of the nhr high resolution samples included in the training set. The shading

indicates the cross-validated uncertainty from 40 randomized trials.

Since the CNN is a multivariate model, it is instructive to examine which of338

the input parameters is most important for predicting the seven output variables.339

Other machine learning methods like randomForest provide feature importance by340

default (Anderson & Lucas, 2018). However, to obtain feature importance for the341

CNN we first permute the parameter values by randomly shuffling them among the342

20 held-back high-resolution cases being predicted in each of the 40 resampling it-343

erations (see Section 2.3), and then calculate the average reduction in prediction344

skill between the default and permuted realizations. The results show that param-345

eter x5—which directly controls the amount of low cloud in the model—is the most346
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Figure 5: Normalized parameter importance for all nine atmospheric input parameters (x1–x9)

and the resolution parameter (res) from the multi-resolution emulator with nhr = 40. The height

of each colored bar shows the importance of a given parameter to that output variable, relative

to the highest importance (SWCF for x5).

important for multiple outputs, notably low cloud fraction, net radiation and short-347

wave cloud forcing (Fig. 5). In agreement with Anderson and Lucas (2018), spatial348

resolution (res) is most important for precipitation and longwave cloud forcing,349

with both tending to be large in regions of tropical deep convection. Parameter x9,350

which controls the timescale for the consumption of CAPE in deep convection, is351

also moderately important for precipitation, indicating that the coupling between352

precipitation and resolution occurs primarily through the Zhang-McFarlane deep353

convection parameterization in CAM4 (Neale et al., 2013).354

Operationally, the degree to which the emulated global maps can be used to355

support calibration depends on the accuracy of the CNN predictions. Using our356

framework we can explicitly validate this accuracy through the mean prediction er-357

ror for the spatially-resolved predictions against the original CESM simulation. The358

prediction errors are generally small, but vary depending on which output variable359

is being predicted. Very small errors are found everywhere for low cloud fraction360

(CLDL, Fig. 6 top row), whereas other outputs like net radiative flux, precipitation361

and shortwave cloud forcing (SWCF) show locally larger amplitude errors (Fig. 6).362

The global mean error for all quantities except SWCF is roughly 1-2 % of the mag-363

nitude of the climatological mean, whereas for SWCF it is almost 10 % because of a364

substantial positive bias across most regions of the globe that is particularly strong365

over the west Pacific and Amazon basin. In all variables the error decreases approx-366

imately linearly with increasing nhr (left to right in Fig. 6), further demonstrating367

the value of including some high-resolution information in the training data for the368

CNN. Interestingly, the spatial pattern of the errors remains very similar for different369

nhr, indicating that the CNN predictions are systematically better/worse in some370

regions than others, for reasons that we do not yet fully understand. There is a clear371

difference in the spatial pattern of errors between CLDL and SWCF, despite SWCF372

being controlled primarily by the spatial distribution of low clouds (Zelinka et al.,373

2020). One possible explanation is that the regions of largest SWCF error in the374

Pacific tend to coincide in CESM-CAM4 with regions of vertically deep convection375

and widespread high cloud layers, which are associated with significant obscuration376

of the low cloud radiative effect (Virgin et al., 2021).377

4 Discussion and Conclusions378

The convolutional neural network (CNN) approach employed here is popular379

in the field of computer vision but has not, to our knowledge, been used previously380

to emulate an Earth system model. While computationally-efficient and ideally381
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Figure 6: Global annual mean prediction errors for the CNN in four of the seven predicted

output variables: (top row) low cloud fraction, (second row) net top-of-atmosphere radiative flux,

(third row) total precipitation, (bottom row) shortwave cloud forcing. All quantities have been

normalized and so units are dimensionless. The left column is for predictions that include zero

high-resolution examples (nhr = 0) in the training data for the CNN, the middle column is for

nhr = 20, and the right column is for nhr = 40.
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suited for predicting multivariate spatially-resolved outputs, CNN models typically382

require large (O(104)) training sets to produce accurate predictions. In this study,383

we obtained useful predictive skill with around 240 training samples of differing384

spatial resolutions, and this is likely because the training and validation data are385

both computer-generated by the same ESM, meaning they contain less noise than386

observation-based data. Alternative approaches to constructing a multi-resolution387

emulator are conceivable; for example, using an image-to-image translation, where388

the lower-resolution data are the inputs to the CNN, and the higher-resolution389

version is the target (downscaling). However, since the motivation here is the cali-390

bration of uncertain parameters, one would also have to consider how the perturbed391

parameter values that correspond to each training case would be incorporated into392

the downscaling process. For this reason we believe that the architecture shown393

in Fig. 2 represents a simple and efficient way for model developers to assess the394

impact of parameter values on an array of spatially-resolved ESM outputs.395

The deterministic nature of the CNN predictions constitutes a limitation of396

the approach, because the CNN does not include an estimate of its own uncertainty397

that would be available with probabilistic methods such as Gaussian Process re-398

gression (Lee et al., 2011). We attempt to account for prediction uncertainty by399

repeating the entire CNN training and testing procedure 40 times using random400

sampling, but this obviously is limited to sampling only the variability present401

within the ensembles of model output. An additional source of uncertainty not fully402

accounted for here is internal variability in the ESM simulation itself; the 36-month403

climatology may not be sufficient to properly characterize all timescales of atmo-404

spheric internal variability (Milinski et al., 2020). The input parameter values are405

also uncertain (Table 1), but we did not demonstrate here how they would actually406

be “calibrated”, in the sense of using the CNN to identify their optimal values. In407

practice, modeling centres could employ ‘history-matching’ using the CNN, by com-408

paring the predicted maps against a set of reference observations to identify regions409

of parameter space that produce plausible climates (McNeall et al., 2016).410

Our results show that a highly accurate emulator can be trained using rela-411

tively few iterations of the higher-resolution ESM, thus offering the potential for412

significantly improved efficiency in the calibration process. To illustrate the time and413

resource saving associated with our approach, the CPU time required to run CESM-414

CAM4 at f09 resolution is a factor of 16 higher than at f45 resolution. As a result,415

the total CPU time required to complete the two 100-member ensembles at lower416

resolution, plus nhr=20 (nhr=40) higher-resolution simulations, is reduced by 40 %417

(20 %) compared to producing only a 100-member ensemble of the higher-resolution418

model. Assuming that similar statistical relationships extend to grid resolutions419

finer than f09—which are more relevant for decision-makers—one could theoreti-420

cally expect even greater efficiency gains for an ESM with resolution O(10 km). An421

interesting follow-on question is whether the CNN in this study, trained on output422

from CESM, could be used to emulate other ESMs. In principle, useful predictive423

information on the relationship between aerosol, cloud and precipitation parameters424

in CESM could be applied to help calibrate other models, but one important limita-425

tion is that different ESMs employ different physical parameterization schemes. This426

means that some/all of the parameters being calibrated in CESM are unlikely to427

exist in other ESMs; in fact, many of the parameters being calibrated in this study,428

described in detail in Fletcher et al. (2018), have been replaced or superseded in429

more recent versions of CESM-CAM (Boyle et al., 2015; Danabasoglu et al., 2020).430

It seems likely, therefore, that a unique CNN would need to be trained for each431

ESM, unless they shared parameterization schemes.432

The choice of nhr is somewhat subjective, and depends on what constitutes433

sufficiently high skill of the emulator to enable calibration. With this CNN the skill434
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score for precipitation only reaches 0.7 at nhr=40, yet model developers may con-435

sider the predicted pattern of precipitation in Fig. 3i to be adequate. If the target436

field is more spatially homogeneous, like FNET, then only nhr=20 may be required,437

and these decisions will likely differ for individual modeling centers. The outcome438

may also be sensitive to the region, and/or season, of interest. We consider only439

parametric uncertainty here, and emulation could feasibly be used to examine struc-440

tural uncertainty in ESMs (Watson-Parris, 2020; Watson, 2019). Future work will441

also evaluate the CNN-based emulator in an operational-like setting, where the cal-442

ibration of parameters is typically performed by minimizing the difference between443

the ESM and observational data (Hourdin et al., 2016), rather than against the444

default version of the ESM as here. The computational efficiency of the emulator445

means that using it to replace the ESM in the calibration process allows for a much446

larger sample of parameter combinations to be evaluated, with the implication that447

the final calibrated model will provide a better representation of the observed cli-448

mate (Hourdin et al., 2021). Finally, even greater computational efficiency gains449

could be made by using the CNN-based emulator to calibrate higher-resolution con-450

figurations of fully-coupled ESMs with an interactive ocean model, including training451

the CNN to predict temporally-resolved outputs from transient climate simulations452

(for example, with time-evolving greenhouse gas forcing).453
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