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Abstract

Most marine plastic pollution originates on land. However, once plastic is at sea, it is difficult to determine its origin. Here we

present a Bayesian inference framework to compute the probability that a piece of plastic found at sea came from a particular

source. This framework combines information about plastic emitted by rivers with a Lagrangian simulation, and yields maps

indicating the probability that a particle sampled somewhere in the ocean originates from a particular source. We applied the

framework to the South Atlantic Ocean, focusing on floating river-sourced plastic. We computed the probability as a function

of the particle age, at three locations, showing how probabilities vary according to the location and age. We computed the

source probability of beached particles, showing that plastic found at a given latitude is most likely to come from the closest

source. This framework lays the basis for source attribution of marine plastic.
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Abstract15

Most marine plastic pollution originates on land. However, once plastic is at sea, it is16

difficult to determine its origin. Here we present a Bayesian inference framework to com-17

pute the probability that a piece of plastic found at sea came from a particular source.18

This framework combines information about plastic emitted by rivers with a Lagrangian19

simulation, and yields maps indicating the probability that a particle sampled somewhere20

in the ocean originates from a particular source. We applied the framework to the South21

Atlantic Ocean, focusing on floating river-sourced plastic. We computed the probabil-22

ity as a function of the particle age, at three locations, showing how probabilities vary23

according to the location and age. We computed the source probability of beached par-24

ticles, showing that plastic found at a given latitude is most likely to come from the clos-25

est source. This framework lays the basis for source attribution of marine plastic.26

Plain Language Summary27

Plastic is commonly found floating near the surface of the ocean but it is difficult28

to know where it was introduced into the environment. For some large plastic items, the29

origin can be estimated by analysing the information printed on them, but for small par-30

ticles, this information is typically missing. To estimate the origin of particles at sea, we31

built a framework that assigns a probability indicating the chance of finding a particle32

that came from a particular source, found at a specific location of the ocean. The frame-33

work uses estimates of plastic emitted by rivers, in combination with a simulation of the34

transport of particles at the ocean surface, to compute the probability that a particle,35

found at a particular location in the South Atlantic, comes from a certain river. Sim-36

ilarly, we computed the probability that a particle of a certain age (defined as the time37

it has been drifting in the ocean) comes from a particular river, showing that the prob-38

ability changes according to the particle age. Finally, we computed the probability for39

particles stranded at the coasts of South America and Africa, showing that plastic found40

on beaches is most likely to come from the closest river.41

1 Introduction42

Floating plastic items have been found in all of the world’s oceans (Eriksen et al.,43

2014; Van Sebille et al., 2015), but the origins (i.e. where and when the plastic entered44

the ocean) of these plastic items are often not obvious. For some of the larger macroplas-45
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tics, the origin can be attributed by careful analysis of labels (e.g. Lebreton et al. (2018);46

Schofield et al. (2020); Turner et al. (2021)), but most (micro)plastic particles are too47

small and nondescript for their origin to be identified this way. Nevertheless, it is im-48

portant to assess and possibly attribute the likely source for these smaller particles too,49

as they are among the most harmful to marine ecosystems (Koelmans et al., 2019).50

Here, we use numerical simulations to compute the pathways of virtual plastic par-51

ticles that float on the surface of the ocean (Hardesty et al., 2017; Van Sebille et al., 2018).52

By tracking particles, it is in principle possible to connect any source with any location.53

However, the multitude of possible sources very quickly makes this a computationally54

unwieldy approach. To overcome this computational challenge, we here propose using55

a Bayesian inference approach to attribute sources in a probabilistic sense.56

Such a probabilistic approach has been used before to locate objects lost at sea,57

like the submarine Scorpio (Richardson et al., 1971) and the (yet to be found) Malaysian58

Airlines flight MH370 (Davey et al., 2016). The main difference between these search &59

rescue applications of Bayesian inference and our application in the source attribution60

of floating plastic is that the sources of plastic are spatially very heterogeneous, and so61

is its distribution at sea.62

To develop this probabilistic framework for attribution of likely plastic sources, we63

here focus on plastic emitted by rivers, as rivers are considered the principal pathway64

for mismanaged plastic waste (MPW) into the ocean (Lebreton & Andrady, 2019). We65

selected the South Atlantic Ocean as the study location because the South Atlantic Sub-66

tropical Gyre is an accumulation zone for plastic (Cózar et al., 2014; Ryan, 2014; Mor-67

ris, 1980), but also because of the presence of large urban centers along the American68

and African coast that contribute to the plastic found at sea (Jambeck et al., 2018; do69

Sul & Costa, 2007), and because we plan to compare our results with samples collected70

during a 2019 expedition to the region.71

2 Theory72

Bayesian inference uses Bayes’ Theorem to estimate the conditional probability of73

an event happening under certain conditions by combining prior knowledge about the74

problem with data obtained through an experiment. In particular, our objective is to75

estimate the probability that a particle sampled at sea would come from a certain source.76
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This can be written as the conditional probability p(Ri|Sloc): the probability of sampling77

a particle at a location Sloc from a specific source Ri.78

Bayes’ theorem offers a way of estimating p(Ri|Sloc), by combining prior knowl-79

edge with new observations. In our case, Bayes’ theorem is80

p(Ri|Sloc) =
p(Sloc|Ri)p(Ri)

p(Sloc)
, (1)

where p(Ri|Sloc) is the conditional probability that we aim to estimate, p(Sloc|Ri) is the81

opposite conditional probability that can be estimated by performing a numerical sim-82

ulation (see below), p(Ri) is the probability of a particle being released at a particular83

source and p(Sloc) is the probability of sampling a plastic particle in a specific location,84

regardless of the source. It is important to note that p(Ri|Sloc) 6= p(Sloc|Ri). The lat-85

ter term namely indicates the probability of a plastic particle found at a location to come86

from a specific source, and the former indicates the probability of a particle coming from87

a specific source being at a location. Each term is commonly referred to by it’s inter-88

pretation. For instance, p(Ri) is denoted as ‘the prior’ because it represents the prior89

knowledge of the problem, p(Sloc|Ri) is ‘the likelihood’, which updates our prior knowl-90

edge from the problem, p(Sloc) is the ‘normalizing constant’, and p(Ri|Sloc) is ‘the pos-91

terior’.92

In eq. (1), computing the normalizing constant p(Sloc) requires observations for all93

plastics in the ocean regardless of their source, which means that p(Sloc) also considers94

plastic that comes from sources that are not taken into account in the numerator of eq. (1).95

Therefore, the posterior probabilities at each Sloc would not add to one in each location96

but instead will add to a fraction that corresponds only to the sources of plastic consid-97

ered in the study. This is inconvenient when the focus is only on plastic coming from spe-98

cific sources such as riverine plastic. To overcome this inconvenience, we can constrain99

the sum of all posterior probabilities to be equal to one100

N∑
i=1

p(Ri|Sloc) = 1, (2)

where the sum is defined for the N number of sources. Then, substituting p(Ri|Sloc) for101

eq. (1)102

N∑
i=1

p(Sloc|Ri)p(Ri)

p(Sloc)
= 1, (3)

and by factorizing and solving for p(Sloc)103

p(Sloc) =

N∑
i=1

p(Sloc|Ri)p(Ri), (4)
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we obtain a normalizing constant that only considers the sum of all our hypotheses (i.e.104

products of prior and likelihoods). Finally, by substituting p(Sloc) in eq. (1) we get105

p(Ri|Sloc) =
p(Sloc|Ri)p(Ri)∑N
i=1 p(Sloc|Ri)p(Ri)

, (5)

which is an alternative form of Bayes’ theorem (Carlin & Louis, 2008) that ensures that106

the sum of all posterior probabilities is one in each location. This last equation is used107

in this study.108

3 Methodology109

3.1 Selecting the Sources and Computing the Prior110

Our prior is based on the annual amount of riverine plastic estimated by Meijer111

et al. (2021), who used a probability framework combined with geographical data of MPW112

to estimate the plastic mass emissions of the world rivers into the ocean, at the location113

of the river mouths. From their global data set, we selected the locations and annual emis-114

sions for all 1,010 rivers that emit plastic into the South Atlantic. To avoid immediate115

beaching, we moved the river mouth locations to the center of the closest ocean grid-cell116

of the model’s flow field. When various rivers shared the same closest grid-cell, we summed117

their emissions. This condensed the number of release locations to 535 (without affect-118

ing the total amount of plastic released by the rivers in the South Atlantic).119

We then clustered the rivers in 10 groups that contained the top polluting rivers120

and their neighboring rivers. These clusters are 2° by 2° square regions centered around121

ten locations that coincide with important cities or river estuaries. We used the result-122

ing 283 river mouth locations in these 10 clusters as the release positions for the parti-123

cles in the simulation. The 10 clusters (Figure 1) account for 87.9% of the riverine plas-124

tic emissions in the South Atlantic. There are two clusters on the African coast: around125

the city of Cape Town and on the Congo River estuary. The other eight clusters are on126

the South American coast: five near the cities of Rio de Janeiro, Porto Alegre, Santos,127

Salvador, and Recife; and three on the river estuaries of Rio de la Plata, Itajáı and Paraibá.128

We defined the prior distribution p(Ri) to be the fraction of plastic emitted at each129

cluster, normalised by the total amount of plastic emitted at the 10 clusters. Our prior130

thus is a 10-dimensional categorical or discrete distribution, in which each source has an131
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Figure 1. Map of the top 50 rivers (red dots) in the South Atlantic from Meijer et al. (2021)

and the clusters (black squares) used as sources in this study. The size of the red circles is pro-

portional to the rivers’ plastic emission. The size of the black squares exaggerates the true size of

the clusters, which is 2° by 2°.

associated probability defined between 0 to 1, and the sum of the 10 probabilities is 1.132

The probability associated with each source is shown in Table 1.133

3.2 Simulation Setup and Computing the Likelihood134

To compute the likelihood p(Sloc|Ri), we released virtual particles from each of the135

sources Ri and tracked them through the South Atlantic surface flow. We performed the136

simulation using the Parcels framework (Delandmeter & Sebille, 2019) on the Surface137

and Merged Ocean Currents (SMOC) data set from the Copernicus Marine Environmen-138

tal Service (CMEMS) (Drillet et al., 2019). The SMOC data set is a 2D surface flow field,139

with a 1/12° resolution, of the sum of the velocity contributions from the Eulerian com-140

ponent associated with currents, the tidal component, and the Stokes Drift component141

associated with waves (Drillet et al., 2019). In this study we assumed that the particles142

were at the surface at all times.143

The domain of the simulation was the South Atlantic Ocean, from 70°W to 25°E144

and between 50°S to the Equator. We used hydrodynamic data from 1 April 2016 to 31145

August 2020, releasing particles in the first year only and then tracking them for another146

3.4 years. During the simulation, if a particle left the domain, we stopped tracking that147
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Sources (Ri) Proportion (%) p(Ri)

Congo 1.6 0.019

Cape Town 4.2 0.051

Rio de la Plata 9.8 0.121

Porto Alegre 8.3 0.099

Santos 4.6 0.048

Paraibá 3.8 0.031

Itajáı 7.5 0.086

Rio de Janeiro 28.5 0.334

Salvador 6.8 0.078

Recife 12.7 0.133

Other rivers 12.1 -

Table 1. The proportion of the total annual plastic released to the South Atlantic and the

prior probability p(Ri) of a particle being released at a specific source Ri. The ”Other rivers”

row indicates the proportion of plastic from rivers outside the clusters and is therefore not con-

sidered in p(Ri).
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specific particle. We implemented a stochastic parametrization for beaching of buoyant148

particles as described in Onink et al. (2021), using a beaching timescale of λb = 10 days149

and a re-suspension timescale of λr = 69 days. To parametrise unresolved turbulence150

that acts on the floating plastic (Van Sebille et al., 2020), we implemented uniform dif-151

fusion defined in the whole domain with a value of 10 m2 s−1, similar to Onink et al. (2021)152

and Lacerda et al. (2019).153

We performed one simulation with 100,000 particles per source, with a fourth-order154

Runge-Kutta integration time step of 1 h. We released the particles from the 283 river155

mouth locations inside the 10 clusters. On average, the particles were released 10 km from156

the coast. The number of particles released at each location was proportional to the emis-157

sion of each of the rivers within the cluster, and equally distributed over one year. We158

stored the particles’ positions every 24 h, for a total of 1,234 points per trajectory.159

We computed the likelihood p(Sloc|Ri) by binning the particle positions in 1°×1°160

bins. For this, we counted the particles inside each bin at every time step, and then we161

averaged the number of particles during a time period. Then, we divided the average num-162

ber of particles at each bin by the sum of all the averaged counts in all bins. The p(Sloc|Ri)163

in each bin has a value between 0 and 1 and the sum of the probabilities of all bins is164

1. This yielded 10 p(Sloc|Ri) maps, one per source Ri.165

The likelihood was computed based on the positions of the particles according to166

their age. The particle age represents the transit time of particles between the source167

Ri and a sampling location Sloc (i.e., their drifting time), with each particle following168

a different pathway until reaching Sloc (Van Sebille et al., 2018).169

3.3 Oceanic Particles Posterior Probability170

We computed the posterior probability p(Ri|Sloc) using eq. (5) independently for171

each 1° by 1° bin, using the corresponding likelihood and the normalizing constant in each172

particular bin. Doing this for all the sources, we get the local posterior distribution in173

each bin, as a probability between 0 and 1 for each source. This results in 10 posterior174

probability maps (one per source) which add up to 1 for each bin.175
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3.4 Beached Particles Posterior Probability176

Since we use a stochastic parametrization for simulating the beaching of particles177

near the coast, we can also map the probability of a beached particle coming from a spe-178

cific source. To compute this, we built two cumulative latitudinal histograms of the par-179

ticles that were beached at a specific time step: one for the American coast and the other180

for the African coast. The cumulative latitudinal histogram is formed by counting the181

particles that are beached in latitudinal bins of 1°, disregarding the longitude of those182

particles, and by classifying them into particles that beached either at the American or183

the African coast. With the counts per latitude, we computed the average at each bin184

for the duration of the whole simulation and normalized by the sum of all average counts185

per bin. As for the posterior probability maps, we computed the beached posterior prob-186

ability p(Ri|Slat) using eq. (5), where Slat is the latitudinal bin.187

4 Results188

4.1 Likelihood Maps189

Figure 2 shows the likelihood maps for particles released at each source Ri, aver-190

aged over a period of 3.4 years. The values for the likelihood in the bins are between 0191

to 10−4, as they represent the proportion of particles (in relation to the total number192

of particles from a source in the domain) that cross a grid cell. Each source has 100,000193

particles, minus the particles that exited the domain at a certain time step, so if in one194

bin there are 100 particles, the likelihood would be in the order of 10−4.195

In general, the dark blue areas represent regions where almost no particles were found196

from a specific source, while the yellow regions represent locations where it was more likely197

to find particles from that source. Specifically, for the South American sources, the like-198

lihood of finding particles from Recife, Santos, and Salvador is almost zero in the open199

ocean between 20 °S to 40 °S, that is, where the subtropical gyre is located. The parti-200

cles released from those sources tend to stay close to shore and beach because of the ef-201

fect of Stokes drift that pushes them towards the coast.202

For the sources Itajáı, Paráıba, Porto Alegre, Rio de Janeiro, and Rio de la Plata,203

the likelihood to find particles released by any of those sources is the highest in the sub-204

tropical gyre (between 20 °S to 40 °S), with values ranging from 1× 10−4 to 3× 10−4,205

suggesting a high chance of finding particles from those sources, with Porto Alegre be-206
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Figure 2. Likelihood maps of the spatially binned p(Sloc|Ri) for each source. The color scale

indicates the probability of finding a plastic particle coming from the source (indicated as a red

point).

ing the largest contributor. Closer to the South American coast, the likelihood is above207

3× 10−4 for all these sources. North of the gyre, from 20°S and further north, the like-208

lihood of finding particles from the American coast is near-zero.209

For the African sources, shown on the right of Figure 2, we see that the likelihood210

of finding particles released in Cape Town is the highest in the Benguela Current. These211

particles are likely to reach the South American coast near the Cape of Saõ Roque, and212

will less likely get carried by the Brazil Current towards the coast of Argentina. The par-213

ticles released at the Congo get carried away northward to the Equator, outside of the214

domain of our simulation, and are unlikely to find these particles in other parts of the215

studied domain.216

4.2 Oceanic Particles Posterior Probability217

Figure 3 shows the posterior probability p(Ri|Sloc) maps for each source, averaged218

over 3.4 years. In particular, the particles in our simulation did not reach latitudes south219

of 50°S, leading to no defined posterior probability in the Antarctic Circumpolar Cur-220

rent (ACC). This is due to the generally northward Ekman drift in the ACC (Onink et221

al., 2019), and because we assumed that the particles only originate from ten sources placed222

north of 50°S. In total, 130,585 particles exited the domain: 97,926 across the Equator223

and 32,659 into the Indian Ocean.224

–10–



manuscript submitted to JGR: Oceans

Regarding the individual panels in Figure 3, the posterior probabilities for Recife225

and Santos were near-zero because only very few particles were transported into the open226

ocean. The probability that particles that end up between 50°W to 40°W and close to227

Brazil originated from Salvador was up to 30%. The posterior probabilities of Itajáı and228

Paráıba were below 20% everywhere, with the highest values located in the subtropical229

gyre, while probabilities were close to zero in the rest of the domain. For Rio de la Plata,230

the highest probabilities were found at the boundary with the ACC, approaching 40%231

in probability, with decreasing values when going from there towards the equator. The232

two sources that dominated in the region of the subtropical gyre, between 20°S to 50°S,233

were Porto Alegre and Rio de Janeiro, with probabilities around 40%. South of South234

Africa, particles released from Rio de Janeiro are dominant, contributing 60% to the prob-235

ability. The remaining 40% are mainly contributed by Porto Alegre and Rio de la Plata.236

In the Benguela Current region and extending northwest to the northern coast of Brazil,237

the probability is close to 100% that particles originate from Cape Town. Finally, the238

posterior probability of Congo is almost only located near the source and farther north.239

50°S
40°S
30°S
20°S
10°S

Recife Salvador Paraiba Rio-de-Janeiro Congo

60°W 40°W
20°W

0° 20°E

50°S
40°S
30°S
20°S
10°S

Santos

60°W 40°W
20°W

0° 20°E

Itajai

60°W 40°W
20°W

0° 20°E

Porto-Alegre

60°W 40°W
20°W

0° 20°E

Rio-de-la-Plata

60°W 40°W
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0° 20°E

Cape-Town

Release locations
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3. Posterior probability maps, averaged over 3.4 years, showing p(Ri|Sloc), the prob-

ability of finding a particle from a specific source at any point in the South Atlantic. Each map

displays the probability for a specific source in all the bins of the domain. The red dots indicate

the locations of the sources from which the particles entered the ocean.

4.3 Local Posterior Age Distributions240

The posterior age distributions yield the probable sources of a particle of a certain241

age, sampled at a certain location. Figure 4 shows the posterior age distributions for three242

sampling locations, averaged over a time window of 30 days. The dashed line represents243
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the number (N) of particles that reach the location as a function of age. The posterior244

probability distributions were only computed when N > 10.245

The panel for sampling location A in Figure 4, located in the western part of the246

subtropical gyre (32.37°S, 37.64°W), shows for example that a particle sampled at that247

location with age younger than 0.4 years is very unlikely to come from any of the con-248

sidered river sources. For particles between 0.4 years to 1.0 years, the most probable sources249

are Salvador and Porto Alegre. For ages older than 1.0 years, the probability from Sal-250

vador drops below 20% while Rio de Janeiro grows. For particles older than 1.5 years,251

Porto Alegre and Rio de Janeiro have the largest probabilities, with values fluctuating252

between 20% and 40%. The rest of the sources have values below 20%.253

The posterior age distributions for location B (32.37°S, 5.80°E) in Figure 4, show254

that it is unlikely to find particles younger than 1.2 years coming from any of the con-255

sidered sources: only particles older than 1.4 years can reach this point. Similar to point256

A, the sources with the largest probability, throughout all ages, are Rio de Janeiro and257

Porto Alegre. For the younger particles, these probabilities oscillate around 50%, while258

for older particles, the two sources decrease down to 30% for 3.4-year-old particles. The259

remaining sources stay below 20% for all ages. The plot corresponding to point C located260

north of the gyre (19.19°S, 13.39°W), shows that particles reach this location two years261

after release. Fewer particles were present on average compared to A and B, reaching262

a peak N at 2.7 years. The largest probability corresponds to Rio de Janeiro and Porto263

Alegre. Rio de Janeiro is the predominant source of particles of all ages, although, Porto264

Alegre becomes significant when particles are 2.5 years old or older. The other sources265

remain below 10% for all ages recorded.266

4.4 Beached Particles Posterior Probability267

Figure 5 shows the posterior probabilities for a particle to beach at certain latitude,268

p(Ri|Slat), based on its origin. The p(Ri|Slat) for the American coast are displayed in269

the right panel and the ones for the African coast are shown in the left panel. On the270

American coast, the nearest source to the bin Slat has the highest probability, which peaks271

at the same latitude as the source or in its vicinity. This suggests that the plastic found272

on beaches close to a source is most likely to come from that source. Santos is the only273

–12–
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exception to this trend because its probability is overshadowed by its proximity to Rio274

de Janeiro which emissions are six times larger.275

In the right panel of Figure 5, the beached probabilities for latitudes between 25°S276

to 35°S on the African coastline show a dominance of particles coming from the Amer-277

ican coast, accounting for 90% of the beached particles. The probability of the beached278

particles coming from Cape Town was found to be less than 10% in this region. Between279

18°S to 25°S, Cape town was the only source for beached particles. There were also re-280

gions, namely between 12°S to 14°S and 16°S to 18°S, where no particles of any of the281

considered sources beached. Finally, at latitudes between 5°S to 12°S, the only proba-282

ble source was Congo, no particles from other sources beached that far north. The rea-283

son that we found 100% probability for one single source or no beached particles at all,284

is that we only considered two sources in Africa, which were at the borders of the stud-285

ied domain. In the future, more sources need to be considered, both in this region and286

outside, to improve these estimates.287

5 Conclusions and Discussion288

We introduced a Bayesian probabilistic framework that allowed us to estimate p(Ri|Sloc),289

the probability that a plastic particle, sampled at the surface of the South Atlantic Ocean,290

came from a particular source. The framework supports different types of analyses and291

can be used, for example, to compute spatial probabilities, compute local probability as292

a function of particle age, or analyse the probabilities once a physical process (such as293

beaching) alters the particles’ state.294

The time average window used for computing the likelihood p(Sloc|Ri) can be ad-295

justed according to the aim of the study. Usually, computing the likelihood for small time296

windows leads to greater variability in the likelihood and for instance in the posterior297

probability. For these reasons, we computed the average likelihood on the whole simu-298

lation and from there we computed the posterior probability.299

As we showed in Figure 3, visualizing the posterior p(Ri|Sloc) in maps allows us300

to identify the most important sources that pollute ocean regions that provide high ecosys-301

tem services and that are vulnerable to plastic, such as subtropical gyres (Helm, 2021)302

and marine protected areas (Krüger et al., 2017). This can be used to prioritize the re-303

duction of MPW in the principal sources to mitigate the problem. In particular, Porto304
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Alegre and Rio de Janeiro are the most probable sources of riverine plastic in the South305

Atlantic Subtropical Gyre.306

The local posterior age distributions, shown in Figure 4 further illustrate the anal-307

ysis that can be done by selecting a location and by computing the probability distri-308

butions as a function of the particle’s age. This can point us to the most likely source309

if we estimate the time the plastic has been drifting in the ocean, by assessing its degra-310

dation (Chamas et al., 2020; Gewert et al., 2015).311

The latitudinal beached posterior probabilities, shown in Figure 5, demonstrate how312

this framework can be used to analyse the contribution of different sources to particle313

sinks (such as beaches) when considering certain physical processes that alter particle314

pathways (such as the process of beaching). This can be expanded to including other ad-315

ditional physical processes that can alter the dynamical state of the virtual particles, such316

as sinking (Lobelle et al., 2021).317

This study focuses on floating plastic coming from rivers that discharge plastic into318

the South Atlantic. In our analysis, we ignore plastic entering the domain from the In-319

dian Ocean leakage (Van der Mheen et al., 2019) and from the North Atlantic (Speich320

et al., 2007). To consider it, we need to assume these leakages as sources, by knowing321

how much plastic enters the domain through the boundaries, or expand the domain to322

consider other basins.323

One major advantage of the Bayesian nature of our framework is that it allows up-324

dating the results when better estimates of plastic emissions are available without hav-325

ing to redo the (computationally expensive) Lagrangian simulations. For instance, it can326

be expanded by including a prior that accounts for seasonal variations in river-borne plas-327

tic inputs, or by taking into account different types of land-based or sea-based sources.328

Acknowledgments329

This project was supported by NWO through grant OCENW.GROOT.2019.043. EvS330

was partly supported through funding from the European Research Council (ERC) un-331

der the European Union’s Horizon 2020 research and innovation programme (grant agree-332

ment No 715386).333

–14–



manuscript submitted to JGR: Oceans

The output data from the simulations is available through https://doi.org/10334

.24416/UU01-90FO27. The supporting figures, tables, and text can be found in the sup-335

porting information file associated with this article.336

References337

Carlin, B. P., & Louis, T. A. (2008). Bayesian methods for data analysis. CRC338

Press.339

Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., . . . Suh, S.340

(2020). Degradation rates of plastics in the environment. ACS Sustainable341

Chemistry & Engineering , 8 (9), 3494–3511.342
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Figure 4. Local posterior age distributions at three different locations for the posterior prob-

ability. The map on the top right marks the locations A, B, and C, that correspond to the time

series shown in the plots A, B, and C. Each color in A, B and C, represents the probability

p(Ri|Sloc) for a particular source. The black dashed line represents the number of particles (N)

at the respective location.
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Figure 5. Horizontal bar plot for the posterior probabilities of beached particles (x-axis) at

a specific latitude (y-axis). The panel on the left shows the probabilities at the American Coast

and the panel on the right the probabilities at the African coasts. Each color is associated with

a source, shown in the legend at the bottom. Each latitude has a corresponding horizontal bar

summing the probabilities from the sources at that latitude to 1. The round markers on the left

of each plot represent the latitudes of the sources. If the marker is on the left panel, the source

is at the American coast, and if the marker is in the right panel, the source is located at the

African coast.

–19–


