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Abstract

The continuous rise in global energy demand requires the production of oil and gas from unconventional shale resources. One

major concern has been the large volumes of produced water associated with the production of hydrocarbon from the shale

resources. We developed a data-driven workflow for identifying potentially high water-producing wells drilled in unconventional

shale formation. To that end, we applied unsupervised learning followed by supervised learning to process five conventional well

logs, namely shallow and deep resistivity logs, density porosity logs, neutron porosity logs, and gamma ray logs, from a well

drilled in an unconventional shale formation. A novelty of our study is the use of clustering methods to generate pseudo-lithology

that is fed into a classifier for the desired identification of the excess water producing wells. The data-driven workflow was

tested on 23 wells in Gulf coast basin and 29 wells in Fort Worth basin. Fort Worth and Gulf Coast basins in the U.S. are highly

productive shale basins that produce 380 million cubic feet of gas and 1.74 million barrels of crude oil every day. Additionally,

we identified geophysical signatures that explain the excess water production from the wells drilled in unconventional shale

reservoirs. For future work, molecular simulation, core analysis, and advanced well logs studies need to be incorporated for a

better explanation of the causes of excess water production in unconventional reservoirs.
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ABSTRACT 
The continuous rise in global energy demand requires the production of oil and gas from unconventional 

shale resources. One major concern has been the large volumes of produced water associated with the 

production of hydrocarbon from the shale resources. We developed a data-driven workflow for 

identifying potentially high water-producing wells drilled in unconventional shale formation. To that end, 

we applied unsupervised learning followed by supervised learning to process five conventional well logs, 

namely shallow and deep resistivity logs, density porosity logs, neutron porosity logs, and gamma ray logs, 

from a well drilled in an unconventional shale formation. A novelty of our study is the use of clustering 

methods to generate pseudo-lithology that is fed into a classifier for the desired identification of the 

excess water producing wells. The data-driven workflow was tested on 23 wells in Gulf coast basin and 29 

wells in Fort Worth basin. Fort Worth and Gulf Coast basins in the U.S. are highly productive shale basins 

that produce 380 million cubic feet of gas and 1.74 million barrels of crude oil every day. Additionally, we 

identified geophysical signatures that explain the excess water production from the wells drilled in 

unconventional shale reservoirs. For future work, molecular simulation, core analysis, and advanced well 

logs studies need to be incorporated for a better explanation of the causes of excess water production in 

unconventional reservoirs.  

I INTRODUCTION 
Oil and gas production from unconventional reservoirs is essential for the global energy demand. 

Unconventional reservoirs comprise tight, low-permeability rocks, which restricts economical 

hydrocarbon production. The advancement in technology such as horizontal drilling and hydraulic 

fracturing have made such hydrocarbon deposits economically and operationally viable [1]. The US Energy 

Information Administration (EIA) estimates the total technically recoverable shale reserves to be around 

420 billion barrels [2]. The United States accounts for 78.2 billion barrels of these reserves [3]. Most of 

the reserves and production are present in Marcellus, Barnett, Haynesville-Bossier, Fayetteville, 

Woodford, Antrim, Eagle Ford, Gulf Coast, and New Albany Shales [4]. 
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The Fort Worth (FW) Basin in north-central Texas is a foreland basin and it extends to the southwestern 

corner of Oklahoma [5]. The Mississippian Barnett Shale which averages 4 wt.% total organic carbon (TOC) 

is the primary source rock for oil and gas in the basin [6,7]. It is one of the most productive shale plays in 

the US [8]. The United States Geologic Survey estimated that the Barnett shale contains 26.7 Tcf of gas, 

1.1 billion barrels of natural gas liquids, and 98.5 million barrels of oil [5]. The Newark East field, discovered 

in 1981,  produced virtually all the gas and condensate field from the Barnett shale, and it is considered 

the largest gas field in Texas [9]. The second most productive play in the Gulf Coast (GC) basin is the Late 

Cretaceous Eagle Ford group in the Texas portion [10]. The majority of the production comes from the 

Lower Eagle Ford Group (LEFG) [11]. Along, with the production of oil and gas, unconventional wells in 

the USA produce a lot of water. The volume of water produced from unconventional wells tends to be 

three times the volume of oil production [12]. 

Flowback (water associated with hydraulic fracturing) and produced (FP) waters are one of the main 

environmental and economic challenges faced in developing an unconventional reservoir. More than 90% 

of the FP waters are said be produced waters – naturally occurring formation brines extracted along with 

hydrocarbon [13]. These produced waters are shown to be allochthonous, they migrated into the shale 

formation before the conversion from smectite to illite [14]. Migration is possible due to presence of 

minor faulting and natural fractures beneath or above the hydrocarbon formation [15]. Disposal of the FP 

waters have been problematic, in many cases they are injected back into the subsurface which has been 

linked to increased seismic activity [16]. Additionally, FP waters contain organic compounds such as 

Benzine and BTEX which make unsafe for drinking and irrigation purposes [17]. Reuse of FP waters – for 

hydraulic fracturing for instance – has been suggested by researchers [18]; however, the logistics to 

handle the transportation of water from site to site due to uncertainty in volume of water to be produced 

remains a bottleneck [19]. The unit cost of handling the FP waters is expected to rise to over $5.00/bbl, 

which could make about 20% of unproduced barrels of oil in the Permian become uncommercial.    

Machine learning, both supervised and unsupervised techniques, has been applied in tackling subsurface 

engineering problems related to hydrocarbon exploration and production. Supervised methods such as 

convolutional neural network (CNN), Artificial Neural Network (ANN), Support Vector Machine (SVM), 

Logistic Regression, and tree based methods have been used for reservoir properties prediction, facies 

classification, and history matching [20]. In addition, unsupervised methods such as K-means clustering, 

hierarchical clustering, spectral clustering, principal component analysis, and K-nearest neighbors have 

been used for facies classification, missing log data prediction, fracture detection from log data, and 

brittleness index estimation using well logs [21].  

In this study, we leverage machine learning to process five conventional well logs – shallow and deep 

resistivity logs, density porosity logs, neutron porosity logs, and gamma ray logs – to establish a workflow 

for identifying potentially high water-producing wells in unconventional reservoirs. We improve a 

previously published work by incorporating clustering methods to generate pseudo-lithology that is fed 

into a classifier for the desired identification of the excess water producing wells [22]. The workflow uses 

unsupervised learning prior to supervised learning to accomplish the objective. Notably, in this study, we 

identified geophysical signatures responsible for the cause of excess water production from the wells 

drilled in unconventional shale reservoirs. 
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II THEORY AND METHODS 

A  DATA GATHERING AND PREPARATION 
Five conventional well logs, namely shallow and deep resistivity (ILS and ILD, respectively), density 

porosity (DPHI), neutron porosity (NPHI), and gamma ray (GR) logs, were retrieved from 23 wells in the 

Gulf Coast basin and 29 wells in the Fort Worth basin. These five logs were used to develop and validate 

the proposed data-driven workflow. A challenging task in study was to find sufficient number of wells 

where all these 5 selected logs were acquired at a high quality. Notably, the wells are primarily from the 

Texas portion of these basins. Using the Kick Off Point (KOP) as a reference, logs from 200ft above the 

KOP and 300ft below the KOP were used in the data-driven workflow (see figure A1 in the Appendix A). 

The well log readings were recorded every 0.5ft interval along the wellbore. Furthermore, the production 

data from the last 2 years of the wells were used as targets to assist in developing the supervised models 

to identify the wells as High Water Producers (HWPs) or Low Water Producers (LWPs). Water Production 

Ratio (WPR) which is the ratio of produced water to total production was used as a distinguish factor 

between the HWPs and LWPs. A well with WPR higher than 0.7 is categorized as HWP, whereas a well 

with WPR lower than 0.5 is classified as LWP. It is not uncommon for well log data to contain outliers; 

thus, an outlier detection algorithm was employed to remove abnormal data points. In addition, most 

machine learning techniques based on distance and density calculations, such as K-means and K-Nearest 

neighbors, require feature scaling. So, the well logs were standardized to have a mean of 0 and unit 

variance. Resistivity logs were logarithmically transformed prior to clustering as a part of scaling. 

B MACHINE LEARNING TECHNIQUES 
Both supervised and unsupervised learning techniques were used in this study. First pseudo-lithologies 

were identified using unsupervised learning, next HWP/LWP wells were detected using supervised 

learning. Unsupervised methods – Kmeans and Agglomerative clustering – were used to generate pseudo-

lithologies. A depth point in a well is assigned a pseudo-lithology using unsupervised learning. Next, 

supervised techniques, such as K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Logistic 

Regression, were used to simultaneously process the 5 logs and pseudo-lithologies of the depth points 

within the 500-ft depth interval around the kick-off point of a well to identify whether the well is high 

water producer (HWP) or low water producer (LWP). A well is assigned a label HWP or LWP using 

supervised learning. In summary, unsupervised followed by supervised learning is implemented in this 

study. A detailed description of the data-driven workflow employed in this study is presented in figure A2 

in the Appendix A. 

C PERFORMANCE METRICS  
A key challenge in clustering (done prior to classification) is to determine the optimal number of clusters 

that signify the robustness and reliability of the unsupervised method in generating the pseudo-

lithologies. To the end, silhouette, Calinski-Harabasz (CH), and Davies-Bouldin (DB) scores were used to 

determine the optimal number of clusters. Silhouette score ranges from -1 to 1, where 1 represents the 

best clustering performance. Calinski-Harabasz score has no range, but the higher the score, the better 

the clustering performance. In contrast, for Davies-Bouldin score, a value closer to zero represents a 

better clustering performance. In addition, the clusters generated by KMeans were compared with those 

generated using agglomerative clustering to determine the robustness of the clusters, i.e. pseudo-

lithologies. For the comparison, adjusted rand score and homogeneity score were used, where values 

close to 1 indicate that different clustering methods based on distinct mathematical/statistical principles 
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are predicting the same clusters, which confirms the robustness of the clusters. After the evaluation of 

the clustering results, Matthews correlation coefficient (MCC) and F-1 scores were employed to 

determine the accuracy of the supervised learning models on the training dataset. 

D FEATURE EXTRACTION AND REDUCTION 
Features used for generating the pseudo-lithology of each depth using unsupervised learning are different 

from the features used for assigning the label (HWP or LWP) to a well. Features for the unsupervised 

learning were extracted from the individual and arithmetic combination of raw log data from the selected 

wells in the two basins (23 wells in Gulf coast basin and 29 wells in Fort Worth basin). These features were 

used for unsupervised learning to identify the pseudo-lithologies intersected by each well. The features 

used are listed in table 1. Subsequently, for the supervised learning, features were extracted from the 

depth and well log data by estimating statistical parameters such as mean, median, variance, kurtosis, and 

so on. Additionally, the presence of a cluster/pseudo-lithology and a count of more than 30 samples per 

cluster in a particular well were used as binary categorical features. For purposes of supervised learning, 

393 features were generated for the GC basin while 337 features were generated for the FW basin. These 

features were reduced using univariate and bivariate statistical tests, such as Mutual Information classifier 

(MI) and analysis of variance (ANOVA) F-test. Such feature elimination or dimensionality reduction is 

essential to lower the variance and improve the generalization of the data-driven workflow. Figure A3 in 

the Appendix A summarizes the feature extraction and reduction for the supervised learning method.  

TABLE 1: Features used for the first level and second level clustering of the two basins. Two-level 

clustering ensures that the dominant pseudo-lithologies don’t bias the clustering results. 

Region Gulf Coast Fort Worth 

Level First Level Clustering Second Level Clustering First Level Clustering Second Level Clustering 

Clusters 
generated 

A and B A0, A1, A2, B0, and B1 A, B, C, and D A0, A1, A2, B0, B1, and B2 

Features 
used 

DPHI 
GR 
Log10(ILD) 
(NPHI+DPHI)/2 
Log10(ILS)×NPHI 
Log10(ILD)×DPHI 

Cluster A 
DPHI 
GR 
Log10(ILD)×Log10(ILS) 

GR×DPHI 
Log10(ILS)-Log10(ILD) 
NPHI-DPHI 
 
Cluster B 
(NPHI+DPHI)/2 
DPHI 
GR 
Log10(ILD) 
GR×NPHI 

GR 
Log10(ILD) 
GR/DPHI 
Log10(ILD)×Log10(ILS) 

GR×NPHI 
 

Cluster A 
Log10(ILD) ×Log10(ILS) 
DPHI 
Log10(ILS) 
Log10(ILS)-Log10(ILD) 
NPHI-DPHI 
GR×DPHI 
 
Cluster B 
DHPI 
GR 
NPHI 
GR×Log10(ILS) 
Log10(ILD) 

III Results: Data-Driven Detection of High or Low Water Producers  
For both the basins, a two-level clustering approach was adopted to ensure that the dominant pseudo-

lithologies don’t bias the clustering results. A dominant large-sized, high-density cluster adversely affects 

the quality of small-sized, low-density clusters. In other words, two-level clustering can reliably find the 

small-sized clusters without adverse effects due to the presence of large-sized, high-density clusters. In 

two-level clustering, the clusters obtained by the first application of clustering are further subdivided by 

applying the clustering method on the individual first-level clusters. The features used for the two levels 
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of clustering are listed in table 1. Best clustering performance is achieved when the features are 

customized for each cluster at each level. Table 1 lays out the various features used at various levels of 

clustering for different regions. The difference between neutron porosity and density porosity as well as 

the difference between logarithmic transformations of deep and shallow resistivity are important for sub-

dividing the cluster A. Average of neutron porosity and density porosity is an important feature for 

generating the pseudo-lithologies for the Gulf-Coast region. Variations in features used at various levels 

and clusters ensure reliable and robust clustering.  

A GENERATION OF PSEUDO-LITHOLOGIES USING UNSUPERVISED LEARNING   
The results from the unsupervised methods are summarized in tables 2 and 3. Seven pseudo-lithologies 

were identified in the Gulf Coast basin, while six pseudo-lithologies were identified in Fort Worth basin. 

The overall silhouette scores for the two-level clustering are around 0.5. Silhouette scores indicate a 

decent clustering performance. The adjusted rand and homogeneity scores, which compare the clusters 

obtained using different clustering techniques, indicate excellent agreement. Both scores are close to 1, 

which confirms that the independent clustering techniques are predicting similar clusters. In summary, 

clustering results are robust and reliable.  

TABLE 2: Reliability and robustness of the first level of clustering 

 Clusters Silhouette 
Score  

Calinski-
Harabasz Score 

Davies-
Bouldin Score 

Adjusted 
Rand Score 

Homogeneity 
Score 

Gulf Coast A, B, C, D 0.44 12281 0.90 0.99 0.98 

Fort Worth A, B 0.50 21603 0.53 0.99 0.97 

 

TABLE 3: Reliability and robustness of the second level of clustering 

 Cluster Sub-Clusters Silhouette 
Score  

Calinski-
Harabasz 
Score 

Davies-
Bouldin 
Score 

Adjusted 
Rand 
Score 

Homogeneity 
Score 

Gulf 
Coast 

A A0, A1, A2 0.57 26666 0.56 0.91 0.87 

B B0, B1 0.74 20885 0.46 1 1 

Fort 
Worth 

A A0, A1, A2 0.57 54626 0.52 0.89 0.80 

B B0, B1, B2 0.47 20395 0.75 0.90 0.85 

 

For the first-level clustering, 4 clusters were obtained for the Gulf-Coast region and 2 clusters for the Fort 

Worth region. A comparison of silhouette, CH and DB scores between the two regions indicate a better 

performance for the Fort Worth region, which is obvious because only two clusters are obtained for the 

Fort-Worth region. For the second-level clustering, silhouette scores are higher than the first-level 

clustering, which confirms the need of the second-level clustering. A significant improvement in clustering 

is achieved for both the regions when the cluster B0 is further divided using the second-level clustering. 

Notably, the sub-clusters generated using different clustering methods exhibit good agreement based on 

the adjusted rand score and homogeneity score of 0.85 and higher.  

B DETECTION OF HIGH VERSUS LOW WATER PRODUCERS USING SUPERVISED 

LEARNING 
For purposes of supervised learning that follows the unsupervised learning, new features were extracted 

for each cluster based on the frequency of occurrence and depth-based distribution of the cluster along 
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the length of a well. Feature reduction was performed based on mutual information and p-value with 

thresholds of 0.2 and 0.08, respectively, for the Fort Worth Basin data and 0.05 and 0.15, respectively, for 

the Gulf Coast region data. The derived features were used to train KNN, logistic regression, and SVM 

supervised learning techniques to distinguish between the HWPs and LWPs. Additionally, due to 

availability of only a small size of well data from the basins, 100 iterations of K-fold cross-validation were 

performed to ensure the workflow is generalizable. This ensures that the generalization score of a 

supervised method developed on a small-sized dataset is not biased by the statistical differences due to 

the splitting of data into training and validation/testing dataset. The median Matthews correlation 

coefficient (MCC) and F-1 scores were used as performance metrics for the supervised methods. The 

performances of the regression models developed using various supervised learning methods are 

summarized in table 4. Each of the results are better than those published in our previous work that 

doesn’t include the unsupervised learning step [22]. The pseudo-lithologies generated using the clustering 

enable better feature extraction that improves the identification of excess water-producing wells. Logistic 

regression performed the best for both the basins. Logistic regression performed better on the Fort Worth 

basin than the Gulf Coast basin. Performance of logistic regression is significantly better than KNN and 

support vector machine for the Gulf coast basin. The uncertainty in the performance quantified using the 

inter-quartile range (IQR) is much higher for the Gulf coast region compared to the Fort Worth region. 

Logistic regression has the overall lowest uncertainty in the performance.  

TABLE 4: Performances of the new data-driven workflow when implementing various supervised-

learning methods for the preemptive detection the high or low water producing wells. Interquartile 

range (IQR) quantifies the variation in the prediction performance.  

Method k-Nearest Neighbors Logistic Regression Support Vector Machine 

Score/ 
Metric 

Median 
MCC 

MCC 
IQR 

Median 
F-1 

F-1 
IQR 

Median 
MCC 

MCC 
IQR 

Median 
F-1 

F-1 
IQR 

Median 
MCC 

MCC 
IQR 

Median 
F-1 

F-1 
IQR 

Gulf 
Coast 

0.64 0.10 0.67 0.10 0.93 0.16 0.95 0.11 0.71 0.20 0.71 0.14 

Fort 
Worth 

0.87 0.06 0.90 0.04 0.81 0.06 0.88 0.04 0.81 0.06 0.86 0.05 

 

C DEPLOYMENT OF THE DATA-DRIVEN WORKFLOW TO PREEMPTIVELY DETECT THE 

HIGH-WATER PRODUCING WELLS   
The trained and tested supervised models that exhibited high MCC and F1 scores were implemented in 

the data-driven workflow when deploying the workflow on new wells for the preemptive detection of 

whether the new well will be a high or low water producer. Such a deployment will first process a certain 

set of features extracted from the 5 well logs using KMeans and agglomerative clustering to generate the 

pseudo-lithology labels for each depth in the well. Following that, the deployment involves the processing 

of another set of features extracted from the 5 well logs based on the pseudo-lithologies assigned to each 

depth. The most generalizable regression model trained using supervised learning will be used to process 

these features to predict whether the new well will be a high or low water producer. The data-driven 

workflow uses 200 ft of data above the kick off point and 300 ft of data below the kick off point of a well. 

In doing so, the prediction of excess water production for a well serves as a preemptive detection for 

planning the reservoir/production management strategies.  
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IV Geophysical Signatures that Explain the Excess Water Production 

from the Unconventional Shale Wells  
In this section, we discuss the newly discovered geophysical signatures that explain the excess water 

production from wells drilled in the unconventional shale reservoirs. Geophysical signatures were 

identified using Kendall Tau’s test and permutation feature importance. Kendall Tau’s test was used to 

quantify the strength of association between the continuous-valued features derived from the 5 logs 

based on the pseudo-lithology and the categorical target (HWP or LWP).  Permutation feature importance 

was used to rank the features in accordance with the loss in the performance of the supervised learning 

models in the task of differentiating the HWP (high water producer) wells from LWP (low water producer) 

wells when the information of the feature is randomized. The strength of association of a feature with the 

target and the feature ranking were combined to discover the geophysical signatures that can explain the 

excess water production from the wells drilled in shales.  

Recall that there are two major clusters, A and B, in the FW basin. Cluster A, generally, has much higher 

GR readings and is more permeable than cluster B. Notwithstanding, the LWPs are deeper, they are less 

permeable indicated by the smaller separation between the shallow and deep resistivity logs [23] and the 

NPHI and DPHI logs are generally – in all clusters – about 25 percent more separated in the LWPs than 

HWPs, signifying shalier and more clay-bearing rocks [24]; thus, low water production. Further, the 

gamma ray reading in all clusters for the LWPs are averagely 500 percent higher that for the HWPs. 

Especially, cluster B1 in LWPs have GR readings about 25 times than that in HWPs. The high GR readings 

in these organic-rich rocks indicates the presence of clays [25], which distinguish the LWPs from HWPs. 

Furthermore, statistical parameters derived from DPHI log from cluster A2 are 20% and 50% of the top 

ten feature ranking and association results, respectively. Cluster A, overall, is a porous, organic rich black 

shale common in FW basin. In the Barnett shale, DPHI log is considered a useful information to 

quantitatively assess shale gas resources [26]. More so, DPHI reading in LWPs is lower than that in HWPs. 

Furthermore, low DPHI values in shales implies low kerogen density [27,28], and low kerogen density is 

directly related to thermal maturity [29]. Jagadisan and Heidari suggested that kerogen at low thermal 

maturity could be water wet [30]. Therefore, the presence of  cluster A2 with very low DPHI values can be 

considered one of the factors responsible for low water production in LWPs, since a water wet rock will 

tend to produce less water due to its strong affinity to water.  

The presence of cluster D in a well was top ranked in both feature ranking and association for the GC 

basin. Cluster D seems to be a bituminous shale due to its average GR and high ILD readings; bituminous 

shales have excessively high TOC [31] and high resistivity in GC region suggests high TOC [32]. Further, 

cluster D occurs at a deeper depth in LWPs, thus the presence of bituminous shale in deep wells may 

signify an LWP. Additionally, the statistical parameters, mean and median, of the depth of cluster C 

occurred as top ranked and associated features. Cluster C appeared to be an averagely permeable pyrite-

bearing shale considering its very low DPHI [33] and average GR reading. Cluster C is much deeper in LWPs 

than HWPs and can be considered as a signature distinguishing both classifications. The geological 

interpretations are consistent with what has been reported about the GC basin. 
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IV  CONCLUSIONS  
Data-driven workflow comprising unsupervised learning followed by supervised learning can be used to 

pre-emptively detect high and low water producing wells drilled in unconventional shale formations. Five 

conventional well log data from 29 wells in the Fort Worth basin and 23 wells in the Gulf Coast basin were 

used to develop and evaluate the data-driven workflow. The unsupervised learning for predicting the 

pseudo-lithology prior to well classification improves the pre-emptive detection of high and low water 

producing wells. The difference between neutron porosity and density porosity as well as the difference 

between logarithmic transformations of deep and shallow resistivity are important for assigning the 

pseudo-lithology. Average of neutron porosity and density porosity is an important feature for assigning 

the pseudo-lithologies for the wells from the Gulf-Coast region. Variation in the formulations of features 

used at various levels and clusters ensure reliable and robust multi-level clustering, which has a low bias 

from predominant pseudo-lithology.  

The pseudo-lithologies generated using the clustering enable better feature extraction that improves the 

identification of excess water-producing wells. Logistic regression was the best supervised-learning 

technique for both the Gulf Coast and Fort Worth basins. For purposes of supervised learning, 393 

features were generated for the Gulf Coast basin, while 337 features were generated for the Fort Worth 

basin. These features were reduced using univariate and bivariate statistical tests, such as Mutual 

Information and analysis of variance F-test. Such feature elimination or dimensionality reduction is 

essential to lower the variance and improve the generalization of the data-driven workflow. The 

uncertainty in the performance quantified using the inter-quartile range (IQR) is much higher for the Gulf 

coast region compared to the Fort Worth region. Logistic regression has the overall lowest uncertainty in 

the performance. 

Kendall Tau’s test and permutation feature importance method were used together to determine 

geophysical signatures that can explain the excess water production from the wells drilled in 

unconventional shales. Our analysis indicates that the low water producing wells intersect formations that 

exhibit higher clay content, shaliness, and lower permeability. Statistical parameters derived from DPHI 

log from cluster A2, which represent a porous black shale, are strong geophysical signatures that 

differentiate the high water-producing wells from the low water-producing wells. Low water-producing 

wells primarily contain the cluster A2 at deeper depths. Cluster A2 seems to be a shale with higher 

maturity and higher water wettability. In Gulf Coast basin, the presence of cluster D, a bituminous shale 

with high total organic carbon, is associated with differences between the low and the high water-

producing wells. For the low water-producing wells, the cluster D occurs at deeper depths. Additionally, 

the mean and median of the depths of occurrence of cluster C, an averagely permeable pyrite-bearing 

shale, can be considered as a geophysical signature that distinguishes the high and the low water-

producing wells.  
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VI  APPENDIX A: ADDITIONAL FIGURES 
 

 

Figure A1: Five well logs from 200 feet above the kick-off point and 300 feet below the kick-off point 

were used for the desired pre-emptive detection of wells producing excess water relative to oil.  
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Figure A2: The data-driven workflow, based on unsupervised learning followed by supervised learning, 

for the pre-emptive detection of high versus low water producing wells drilled in unconventional shale 

formations.  
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Figure A3: Feature extraction followed by feature reduction required for the development of highly 

generalizable supervised learning.  


