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Abstract

? About 60 percent of the hydrographic stations show negative bias for collected river 12 discharge. 13 ? Nearly 80 percent

of the hydrographic stations show good skill with significant mean 14 absolute error at few stations. 15 ? The assessment

shows a good skill for Ganges-Brahmaputra and the lowest for Pennar and 16 Cauvery river basins. Abstract 18 A significant

task in river hydrology is to envisage the river’s present, past, and future 19 environments. India has some of the world’s

major river basins, including Ganges-Brahmaputra, 20 Mahanadi, Krishna, and the Godavari produce an enormous amount

of water as river discharge 21 alongside turbidity into the Bay of Bengal. The revised Kling-Gupta efficiency skill score 22

(KGESS) has been used to determine the performance of reanalysis river discharge. The skill of 23 reanalysis discharge was

found admirable for the Ganges-Brahmaputra river basin (KGESS = 0.86 24 > 0), with notable mean absolute error and high

correlation coefficient (0.94). Furthermore, 25 Subarnarekha, Brahmani-Baitarani, Mahanadi, Godavari, Krishna river basins,

and the rivers 26 flowing between Mahanadi and Pennar Rivers exhibit moderate to good skill. However, Pennar, 27 Cauvery,

and the rivers flowing between Pennar and Kanyakumari show the lowest skill. 28 Approximately 60% hydrographic stations of

river catchments demonstrate that reanalysis 29 discharge is negatively biased (i.e., bias < 1). Nearly 58% hydrographic stations

show lower 30 variability (i.e., variability ratio < 1) with the median value of 0.91 and the interquartile range 31 (0.82, 1.13).

Moreover, the overall median of the Pearson correlation coefficient was 0.73 with 32 interquartile ranges between 0.51-0.83. The

reanalysis and observed datasets show a significant 33 change in river discharge throughout the southwest monsoon and less in

the post-monsoon period. 34 Concurrently, some hydrographic stations show a significant increase in river discharge during 35

post-monsoon in Pennar and Cauvery River basins. 36 37
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Key Points: 11 

 About 60 percent of the hydrographic stations show negative bias for collected river 12 
discharge. 13 

 Nearly 80 percent of the hydrographic stations show good skill with significant mean 14 

absolute error at few stations.   15 

 The assessment shows a good skill for Ganges-Brahmaputra and the lowest for Pennar and 16 
Cauvery river basins. 17 

Abstract 18 

A significant task in river hydrology is to envisage the river's present, past, and future 19 

environments. India has some of the world's major river basins, including Ganges-Brahmaputra, 20 
Mahanadi, Krishna, and the Godavari produce an enormous amount of water as river discharge 21 
alongside turbidity into the Bay of Bengal. The revised Kling-Gupta efficiency skill score 22 

(KGESS) has been used to determine the performance of reanalysis river discharge. The skill of 23 
reanalysis discharge was found admirable for the Ganges-Brahmaputra river basin (KGESS = 0.86 24 

> 0), with notable mean absolute error and high correlation coefficient (0.94). Furthermore, 25 

Subarnarekha, Brahmani-Baitarani, Mahanadi, Godavari, Krishna river basins, and the rivers 26 
flowing between Mahanadi and Pennar Rivers exhibit moderate to good skill. However, Pennar, 27 

Cauvery, and the rivers flowing between Pennar and Kanyakumari show the lowest skill. 28 
Approximately 60% hydrographic stations of river catchments demonstrate that reanalysis 29 
discharge is negatively biased (i.e., bias < 1). Nearly 58% hydrographic stations show lower 30 

variability (i.e., variability ratio < 1) with the median value of 0.91 and the interquartile range 31 
(0.82, 1.13). Moreover, the overall median of the Pearson correlation coefficient was 0.73 with 32 

interquartile ranges between 0.51- 0.83. The reanalysis and observed datasets show a significant 33 
change in river discharge throughout the southwest monsoon and less in the post-monsoon period. 34 
Concurrently, some hydrographic stations show a significant increase in river discharge during 35 
post-monsoon in Pennar and Cauvery River basins.  36 

 37 
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1 Introduction 40 

A significant task in river hydrology is to assess the river's historical, present, and forthcoming 41 
hydrological environments. It is usually because of sequential and spatial gaps in the overall river 42 

flow spotting network (Harrigan et al., 2020). Assessment of river discharge is significant to 43 
understand the hydrological cycle globally, which is relevant to accessing water resources. 44 
Nonetheless, skill is challenging in a zone where ground interpretations are inadequate (Seo and 45 
Lee, 2017). India is the second populous country globally, with massive freshwater supplies in 46 
cultivation and domiciliary segments (Jain et al., 2004). Quick discharge of water from artificial 47 

dams has been answerable for some major tragedies in hilly areas of the world. In the present 48 
scenario, regulatory events and failures of artificial dams have shown the need to examine the 49 
flood's anatomy and the behavior of debris dams (Stephen G. Evans., 1986). In modern times, the 50 
air temperature has unfavorably amplified across the Indian provinces (Krishna Kumar et al., 51 

2011), which is prominent to further synchronized dry and hot extremes (Mishra et al., 2020). The 52 
fluctuations in the air temperature over the surface and escalation in precipitation inconsistency 53 

led to the weakening of dry and hot cyclical rainy season immoderations over India (Mishra et al., 54 
2020). Change in climate consequences due to uneven rainfall patterns and runoff affect water 55 
obtainability and quality (Das et al., 2018). Most parts of the world are mainly inadequate in long-56 

term river discharge observations. Besides, a large portion of the country's hydrometric 57 
information is not accessible continuously (Lewis et al., 2019). 58 

Consequently, lack of interpretations is a fundamental problem in our skill to timely observe the 59 

caution of extreme events in hydrology such as droughts and floods, subsequently having 60 
implications for the systematic decline of global disaster risk (UNDRR, 2015). Concern about 61 
water accessibility in India's present and future climate scenario is dynamic for nutrition and water 62 

availability (Bharat & Mishra, 2020). In the past few decades, climate change was a reflective 63 
challenge for water accessibility and extensively affected the global community (Bharat & Mishra, 64 

2020). A substantial increase in the mean temperature globally alongside the fluctuations in rainfall 65 
and atmospheric water stresses rigorously disturb the hydrological system altogether, ecology, 66 

changes in sea level, and yield (Arnell, 1999). Numerous hydrological products worldwide deliver 67 
the assessment of streamflow with an extensive series of compelling and operational strategies 68 
(Beck et al., 2017). The world's largest river catchments, i.e., the pooled Ganges-Brahmaputra-69 

Meghna (GBM) delta and the Mekong River delta system, the countries located at the downstream 70 
side of these basins are predominantly vulnerable to water associated risks in the absence of 71 

upstream hydro-meteorological conditions (Sikder et al., 2019). Shallow water from these 72 
waterways gives incredible advantages. They support primary cultivation and energy creation 73 
needs for more than 690 million people (FAO, 2016), around 10th of the world's human population. 74 

Conversely, surface water's drawbacks similarly generate problems, mostly striking at the 75 

downstream portions of these catchments, which were at risk to have the world's most 76 
extraordinary floods, yet in addition to dry spells (UNEP, 2016). For instance, Bangladesh, located 77 
at the downstream segment of the GBM catchment, suffers from floods and seriously hampering 78 
its financial development. The country consists of about 80%  of floodplains in the ordinary year, 79 
nearly 33% land area of Bangladesh experienced flood during the rainstorm (Brouwer et al., 2007). 80 

The significance of knowing the water cycle and evaluating its different motions by utilizing the 81 
Land Surface Model (LSM) is more intense in an ungauged and trans-border area. This information 82 
can anticipate enormous ranged catastrophes (Siddique-E-Akbor et al., 2014). The LSM outputs 83 

are useful in hydrological studies; several research studies have used these easily accessible LSMs 84 



 

 

outputs to evaluate various water cycle components. Model simulations of the Global Land Data 85 
Assimilation System (GLDAS) distinguished various water resources in the world's main river 86 
catchments (Lakshmi et al., 2018; Rodell et al., 2004). Possibly the furthermost extensive usage 87 
of GLDAS or additional worldwide available products along with Gravity, LSMs in the Southern 88 

and Southeast Asia are from the Gravity Recovery and Climate Experiment (GRACE) to classify 89 
the fluctuations in groundwater and deviations in the storage of water. Rodell et al. (2009) and 90 
Chinnasamy et al. (2015) applied soil moisture derived from GLDAS alongside GRACE to 91 
measure depletion in groundwater level over the Northern part of India. Although natural and 92 
anthropogenic activities can trigger water, the sensitivity of runoff in the sub-basin and basin scales 93 

is essential for preparing, planning, worsening the environment, and sustainable Groundwater 94 
regulation. Three methods are commonly operational, i.e., hydrological modeling, statistical 95 
methods, and climate flexibility, to predict the runoff or discharge sensitivity. Wang and Tang 96 

(2014) analyzed a physical model to evaluate hydrological understandings at the basin scale. Based 97 
on a hydrological model (Mishra and Lilhare, 2016; Vano et al., 2012), the water balance replicated 98 
by the model is applied to evaluate the identifications of runoff for diverse climatic projections.  99 

2 Data 100 

It is remained possible to attain useful streamflow forecasts by assembling a river directing scheme 101 

and the terrestrial surface model European Centre for Medium-Range Weather Forecasts 102 
(ECMWF) the global weather forecast system (McMillan et al., 2010). The terrestrial surface 103 

model of the ECMWF-ERA5 (Hersbach et al., 2020) coupled with the Distributed Water Balance 104 
and Flood Simulation model (LISFLOOD) (van der Knijff et al., 2010) to obtain the Global Flood 105 
Awareness System (GloFAS-ERA5) derived reanalysis of river discharge. Actual runoff (m d-1) 106 

from a single cell is not associated with adjacent cells in ERA5; therefore, it is impossible to 107 

evaluate river flow (m3 s-1) at the basin scale. Joining ERA5 runoff and LISFLOOD permits the 108 
connection of grid cells horizontally with runoff channels over the river network to provide river 109 
discharge.  110 

2.1 ERA5 runoff 111 

The scheme used in the Integrated Forecasting System (IFS) of ECMWF; Likewise, ERA5 river 112 
runoff developed using Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land 113 
(HTESSEL) terrestrial superficial model (Balsamo et al., 2009). HTESSEL records the energy and 114 

surface water fluctuations and the global advancement of soil moisture, snowpack, and soil 115 
temperature. An abundance of snowmelt and rainfall are apportioned as runoff from the surface or 116 

penetrated a four-layered soil segment (7 cm profundity for upper layer and afterward 21, 72, and 117 
189 cm) at individually ERA5 lattice cell before depleting from the lower portion of the soil 118 

segment as subsurface flow (Balsamo et al., 2009). A revolutionary land data assimilation 119 
framework used in ERA5 to absorb expected in-situ and the satellite interpretations for land 120 
surface elements, i.e., Soil temperature, moisture of soil, the temperature of snow, snow water, and 121 
snow thickness, as delineated in (Al-Yaari et al., 2014; de Rosnay et al., 2014). By decades ERA5 122 
proceeded with numerical weather forecast advancements in numeric, model physics, and 123 

information integrated by employing ECMWF, ERA-Interim (Dee et al., 2011). With a horizontal 124 
tenacity at the equator, i.e., 31 km, since January 2019, ERA5 runoff data accessible from 1979 to 125 
the present. ERA5 has a strong peculiarity, i.e., it's working environment, making it accessible to 126 
generate timely products. ERA5T, authorizing the development of GloFAS-ERA5 derived river 127 
discharge reanalysis regularly with the inactivity of 2 and 5 days behind close real-time. 128 



 

 

2.2 LISFLOOD derived river discharge 129 

Presently river discharge is not intended in HTESSEL. Instead, the surface and sub-surface runoff 130 

acquired from HTESSEL terrestrial surface model joined with an essential worldwide variety of 131 
LISFLOOD, an aerially dispersed based on a grid, the hydrological and river model. 132 
Standardization of the Global Flood Awareness System GloFAS v2.1 utilizing everyday river flow 133 
records (Hirpa et al., 2018) is available but concisely reduced here for the condition. HTESSEL 134 
derived runoff from the sub-surface applied as input into the groundwater module LISFLOOD, 135 

which comprises two analogous undeviating reservoirs that hold and successively carry water 136 
towards the river network with delay in time. Speedy groundwater and subsurface flow designated 137 
for the higher zone. However, the lesser zone signifies sluggish groundwater flow, which produces 138 
base flow. The time for the higher zone assigned a value of 10 days by default with a lower and 139 
upper bound of 3 days and 40 days respectively in the course of standardization, and the time for 140 

the lesser zone was assigned a value of 200 days as the default value with a lower and upper bound 141 
of 40 days and 500 days correspondingly. The LISFLOOD river channel routing module uses 142 

surface runoff as input from HTESSEL. During this two-stage procedure, runoff from the surface 143 

for an individual cell is initially directed to the adjoining downstream river passage cell. 144 
Subsequently, the water through the channel is guided over the river system following the 145 
kinematic wave process. River routing and groundwater factors in GloFAS have been standardized 146 
despite daily river flow interpretations for 1287 basins altogether (Hirpa et al., 2018). LISFLOOD 147 
can characterize structures that can strictly modify the scheduling and river discharge volume, i.e., 148 
Lagoons, reservoirs, and uses of water by a human being (Burek et al., 2013). The major lakes 149 

having a sum of 463 ( area of the surface > 100 km2), and also 667 of the giant reservoirs have 150 
been integrated into the GloFAS (Zajac et al., 2017). River discharge reanalysis data have been 151 

created since 1st January 1979 to immediate real-time by GloFAS-ERA5 when the LISFLOOD 152 

model integrated alongside the daily HTESSEL surface and subsurface runoff. The runoff fields 153 

obtained from ERA5 rationalized utilizing the modest nearest neighbor technique from the 154 
inherent ERA5 to the GloFAS lattice. Escaping the necessity for a lengthy spin-up time, 155 

LISFLOOD computes a stable state storing volume aimed at the lesser groundwater region 156 
throughout an extensive period called "pre-run" and hence decreases the spin-up time of the lower 157 
zone (Burek et al., 2013). For this reason, a one-year spin-up time has been given to LISFLOOD 158 

by utilizing the initial output obtained from ERA5 for the year 1978.  159 

2.3 Observed data 160 

Daily river discharge data acquired for 86 hydrographic stations at which CWC (Central Water 161 

Commission, India; http://cwc.gov.in/hydro-meteorological-observation) continuously gauging 162 
the streamflow in major river basins of Indian-subcontinent, India-WRIS portal 163 

(https://indiawris.gov.in/wris/#/RiverMonitoring), and also from Global Runoff Data Centre 164 

(GRDC) (https://grdc.bafg.de).  165 

2.4 Study area 166 

This study focuses on the major river basins of India comprising of the Ganges, Brahmaputra, 167 

Mahanadi, Subarnarekha, Brahmani-Baitarani, Krishna, Godavari, Pennar, and Cauvery Rivers 168 
flowing in the east direction. The river basins in India have enormous variations in geographical 169 
extent. For example, Ganges, Indus, and Brahmaputra river basins have a span larger than 1 million 170 
km2, while river catchments are of nominal size along the coastline. We have chosen the sub-171 
catchments and the main subcontinental river catchments to recognize the spatial inconsistency for 172 

http://cwc.gov.in/hydro-meteorological-observation
https://indiawris.gov.in/wris/#/RiverMonitoring
https://grdc.bafg.de/


 

 

runoff from 1979-Present in India. Various conditions applied to elect locations for the evaluation 173 
are as follows:   174 

a) A minimum of 4 - 5 years of daily discharge data availability during 1979 – 2018. 175 
b) We selected the hydrographic station in the observed dataset, which matches the Glofas 176 

grid cell with the longest historical records. 177 
c) Stations close to the river mouth are also retained based on the availability of data to 178 

observe severe fluctuations. 179 

d) In addition, the location of hydrographic stations overlaps on the digital elevation map with 180 
major and minor basins of India are presented in Figure 1. 181 

3 Methods 182 

This study attempts to understand the seasonal, annual variations and the performance of the 183 

reanalysis river discharge. Especially for the major river basins of the eastern region of India, by 184 

equating modeled reanalysis with those in situ river discharge. Performance metrics in 185 

hydrological modeling are essential. The performance metrics are estimated based on the 186 

dissimilarities between the simulated and observed river discharge at the basin outlet. Analysis of 187 

large samples exhibits significant sampling ambiguity in the estimators of  NSE and KGEʹ (Clark 188 

et al., 2021). The methodology used in this study is the advanced Kling-Gupta efficiency (KGEʹ; 189 

Gupta et al., 2009; Kling et al., 2012) for evaluation of the hydrological metrics.  For the skill 190 

assessment of the hydrological datasets, statistical analysis is practical, such as the correlation 191 

coefficient, bias, and variability between the observed and simulated datasets. KGEʹ is advanced 192 

in usage because of the standard expression of metrics in hydrology (Beck et al., 2017; Harrigan 193 

et al., 2018; Lin et al., 2019). Correspondingly, its ability to simply disintegrate into its three 194 

components which are significant to examine hydrological dynamics: chronological errors in bias, 195 

Pearson correlation, and variability ratio:  196 

KGEʹ = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2                                                                          (1)                                                                           197 

β =  
𝜇𝑠

𝜇𝑜
                                                                                                                                           (2) 198 

γ = 
𝜎𝑠

𝜇𝑠
⁄

𝜎𝑜
𝜇𝑜

⁄
                                                                                                                                         (3) 199 

where Pearson correlation coefficient indicated by r among reanalysis and observed river discharge 200 

data, bias ratio by β, variability ratio by γ, the mean by µ, and the standard deviation of river 201 
discharge by σ. The KGEʹ and the disintegrated components (i.e., bias ratio, correlation, and the 202 
variability ratio) are unitless with an ideal value of 1. The performance of the dataset equated 203 

against a simple benchmark (observed data) to examine the skill of GloFAS-ERA5 reanalysis 204 
derived river discharge (Knoben et al., 2019). The benchmark is required as a minimum reference 205 
to evaluate the simulated hydrological data. This study used KGEʹ as a skill score, KGESS to 206 
estimate the skill of GloFAS-ERA5 derived reanalysis river discharge data against the benchmark, 207 
specified such as: 208 

KGESS = 
𝐾𝐺𝐸′𝑟𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠−𝐾𝐺𝐸′𝑏𝑒𝑛𝑐ℎ

𝐾𝐺𝐸′𝑝𝑒𝑟𝑓−𝐾𝐺𝐸′𝑏𝑒𝑛𝑐ℎ
                                                                                                  (4) 209 



 

 

The value of KGEʹ is calculated for the GloFAS-ERA5 derived reanalysis against observed 210 
discharge and presented by KGEʹreanalysis, KGEʹbench is the KGEʹ value for the perceived mean, 211 

standard flow against observed, i.e., KGEʹ (Q̅obs) = 1 −  √2  ≈ −0.41 given by Knoben et al., 212 
(2019), and the value of KGEʹ for the perfect simulation, i.e., 1, is presented by KGEʹperf. If KGESS 213 
= 0, the reanalysis river discharge is poor than the mean flow benchmark and has no skill. KGESS 214 
> 0 shows that the reanalysis is skillful, while KGESS < 0 shows that the reanalysis is inferior to 215 
the benchmark and has unfavorable skill. 216 

4 Results 217 

The reanalysis product of river discharge has been taken from GloFAS-ERA5 v2.1 218 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-glofas-historical?tab=overview). We 219 
have assessed the reanalysis product against the in situ river discharge to examine the hydrologic 220 

metrics of the selected station utilizing the hydrostats function. 221 

4.1 Overall performance and Disintegration of KGEʹ into Bias, Variability, and Correlation  222 

A unique advantage of KGEʹ is that it can disintegrate into its three important factors, i.e., bias, 223 

variability, and correlation, so the performance of GloFAS-ERA5 reanalysis can assess against the 224 
observed data as good or poor skill. The KGESS was used to achieve a skill score for monthly 225 
reanalysis and observed river discharge at each selected hydrographic station. The hydrographic 226 

stations show a positive Pearson correlation coefficient with a median value of 0.73 and 227 
interquartile ranges between 0.51-0.83. The bias ratio was calculated; and observed that with a 228 

median value of 1.01 and interquartile range (0.05, 1.39), the high bias restrict to a few locations 229 
in Krishna and Godavari River basins (Figure 4). The rest of the hydrographic stations show low 230 
bias. Almost 60% of hydrographic stations show the reanalysis discharge is negatively biased (i.e., 231 

bias < 1). Nearly 58% of hydrograph stations show lower variability (i.e., variability ratio < 1), the 232 

median value of 0.91, and the interquartile range (0.82, 1.13), as shown in Figure 3 (iii). The results 233 
show that about 80% of the total hydrographic stations are skillful with a median KGESS (KGEʹ) 234 
0.26 (0.797) and an interquartile range of 0.18, 0.73 (-0.147, 0.63), respectively. The poorest 235 

performing location (KGESS value presented by a dark red dot in Figure 5e) is predominantly due 236 
to a considerable bias in dryer tributaries of Krishna and Godavari Rivers. Furthermore, the 237 

significance of the average magnitude of errors is also important for over or underestimation in 238 

dry rivers. A significant error can yield a high proportion of bias (i.e., bias ratio) as we found very 239 
high mean absolute error at Hardinge Bridge and Bahadurabad hydrographic stations for Ganges 240 

and Brahmaputra River basins, respectively in Figure 3 (iv).  241 

From a probability density point of view, the disintegrated component of KGEʹ, i.e., correlation, 242 

shows an almost normal distribution with a mean value of µ1 = 0.67. The bias ratio shows a right-243 

skewed distribution with a mean value µ2 = 0.86, suggesting that the reanalysis discharge has low 244 

bias. The variability ratio also exposes right-skewed distribution with mean value µ3 = 1.12, 245 
suggesting the presence of low variability in the GloFAS-ERA5 reanalysis river discharge. The 246 
Kling-Gupta efficiency shows an almost normal distribution with a mean value µ1 = 0.15. The 247 
Kling-Gupta efficiency skill score shows a left-skewed distribution with a mean value µ2 = 0.4 as 248 
shown in Figure 6 (a-d), respectively. 249 

4.2 Performance by Basin area 250 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-glofas-historical?tab=overview


 

 

The skillfulness of GloFAS-ERA5 derived reanalysis river discharge grouped into eight major and 251 
two minor river basins among east flowing rivers of the Indian subcontinent. The median of the 252 
correlation coefficient was found to be 0.94, 0.68 with an interquartile range (0.94-0.95, 0.64-0.75) 253 
for Ganges-Brahmaputra and Subarnarekha basins, respectively. The median bias ratio was found 254 

to be 1.11, 0.06 with an interquartile range (1.07-1.14, 0.009-0.91) for Ganges-Brahmaputra, 255 
Subarnarekha basins, respectively. The variability ratio has the median value of 0.93, 1.13 with an 256 
interquartile range (0.81-1.01, 0.97-1.29) for Ganges-Brahmaputra and Subarnarekha basins, 257 
respectively. Median value of KGESS = 0.86, 0.26 (KGEʹ = 0.81, -0.03) was found for the Ganges-258 
Brahmaputra, Subarnarekha River basins with an interquartile range 0.82-0.90, 0.24-0.76 (0.75-259 

0.86, -0.06-0.67), respectively, for rest of the basins the hydrologic metrics have been given in 260 
Table 1. Moreover, skill is lowest for Cauvery, Pennar River basin, and the rivers flowing between 261 
Pennar and Kanyakumari while good for Ganges-Brahmaputra River basins. Also, moderate to 262 

good skill observed for Subarnarekha, Brahmani-Baitarani, Mahanadi, Godavari, Krishna, and the 263 
rivers flowing between Mahanadi and Pennar River basins. Usually, skill varies according to the 264 
size or area of the basin, and the results are also analogous, as suggested by Harrigan et al. (2020). 265 

The disintegrated component of KGEʹ in Figure 7 (a-d) and the performance of major and minor 266 
River basins in India by KGESS have shown in Figure 7 (e). 267 

4.3 Statistical distribution by Quantile-Quantile (Q-Q) plot  268 

The significance of statistical distribution is essential in hydrological and hydro-meteorological 269 

studies of river discharge. For instance, in intensity–duration–frequency (IDF) networks, storm 270 
designation, and precise assessment of rainfall are the primary input to numerous hydro-271 
meteorological usage (Maghsood et al., 2020). The quantile-quantile (Q-Q) plot helps to determine 272 

whether the two datasets, i.e., observed and GloFAS-ERA5 reanalysis, have similar distribution 273 

patterns. The strategy is led by plotting quantiles of the two datasets versus each other and 274 
contrasting the plot with a 45˚ reference line (1:1). Likewise, the Q-Q plot is a dispersed plot, with 275 
the data quantiles falling roughly along the reference line (Figure 3), representing a typical 276 

distribution for the two datasets. In reality, the more significant evidence for rejecting the 277 
presumption of common distribution is moving away from the reference line. The quantiles of a 278 

dataset must be the points underneath which a specific extent of the information lies. For instance, 279 
in an exemplary standard typical likelihood assumption with a mean of 0, the 0.5 quantile (or 50th 280 
percentile), 0 implies that a large portion of the data does not surpass 0. There are additionally 281 

aware techniques, such as the chi-square and Kolmogorov–Smirnov 2-example tests, which 282 
evaluate if two arrangements of quantiles follow a similar distribution. Nonetheless, the Q-Q plot 283 
is good as it better understands the distinction between two datasets than systematic schemes. The 284 

Q-Q plot is simply a visual check instead of confirmation, and it supports noting if the hypothesis 285 
is feasible or not. It marks the data points of those quantiles that cause the violation of the 286 

uncertainty. The Q-Q plot shows the under or overestimation of a dataset without any stretch. The 287 
GloFAS-ERA5 reanalysis contrasted with the observed river discharge between percentiles of the 288 
datasets. Also, numerous distributional perspectives, remembering shifts for the area, changes in 289 
scale, change in consistency, tail conduct, and the presence of exceptions, can be observed. The 290 
deportment of the tail of the Q - Q plot can be significant for extreme events (e.g., floods and 291 

droughts) studies in hydrology. 292 

4.4 Seasonal variations in river discharge  293 



 

 

Monsoon in India, particularly the southwest monsoon, has a massive impact on river discharge. 294 
The monsoon is a consequence of a complex interaction among the ocean, atmosphere, and land. 295 
Although the consistency of monsoons is closely certain, its interannual variability is of critical 296 
worry regarding drought, normal, and flood years. The entire country receives almost 75% of the 297 

rainfall during this period. The intense precipitation during summer leads to high magnitude 298 
floods, although the rivers deliver only a low base stream during the dry winters. For numerous 299 
rivers in the sub-humid to subtropics, adjoining the rainy season realm, precipitation throughout 300 
the rainy spell is also the key source of surface water rejuvenation (Plink-Björklund, 2015). The 301 
hydrographic stations, which have prolonged historical river discharge and proximity to the Bay 302 

of Bengal analyzed to understand the large-scale variations in river discharge for the major river 303 
basins of India. The observed and reanalysis of daily river discharge have been reformed into 304 
monthly records to perceive the monthly or seasonal variations in the major river basins of India. 305 

The river discharge was found low at the selected hydrographic stations during the winter season 306 
(December-January-February). Throughout the pre-monsoon (March-April-May) period, changes 307 
in river discharge were insignificant at the selected hydrographic stations. Both reanalysis and in 308 

situ discharge show a severe change in river discharge during the southwest monsoon at each 309 
hydrographic station. Furthermore, very high fluctuations in river discharge through the southwest 310 

monsoon period have been reported at Hardinge Bridge and Bahadurabad hydrographic station in 311 
Ganga and Brahmaputra river basins, respectively. In contrast, Krishna, Godavari, and Pennar 312 
rivers show a moderate to lower variability in rivers discharge. The post-monsoon or northeast 313 

monsoon (October-November) period shows less river discharge or base streamflow than the 314 
southwest. Furthermore, the Ganga, Brahmaputra River shows less variability. In contrast, 315 

Krishna, Pennar, and Cauvery rivers show a significant change in river discharge due to the 316 
receding of the southwest monsoon into the northeast monsoon. Intra-annual or seasonal variations 317 
in river discharges have been displayed in Figure 8 for various river basins at the selected 318 

hydrographic stations. 319 

5 Discussion 320 

As per the region, the KGESS value shifts in light of the tendency in gauge river discharge. On the 321 

one hand, river basins and hydrological stations with positive bias in the gauge simulation 322 
significantly improved the skill score. Then again, those with negative bias showed the least skill 323 
score (Hirpa et al., 2018). This study focused on the regional scale to know the skill assessment of 324 

reanalysis against in situ river discharge for India's major and minor river catchments.  325 

5.1 Importance of bias term 326 

As deliberated by Santos et al. (2018), the importance of the bias term in KGEʹ, 𝛽 = 𝜇𝑠 𝜇𝑜⁄  can 327 

prompt extremely large values of 𝛽 (and thus low KGEʹ scores) when 𝜇𝑜 is small. Such issues with 328 

intensified 𝛽 values are conceivably more expressed for factors where 𝜇𝑜 crosses zero (e.g., log-329 

changed streams, temperature) on the grounds that 𝜇𝑜 could be small. Negative bias has also been 330 
observed at several hydrographic stations. At the same time, only a few show high bias value 331 
because a small number of errors are too associated with the KGEʹ metrics. Referring to 332 
shortcomings of the NSE as support, a piece of the local community has changed to using KGEʹ 333 

over NSE (Clark et al., 2021) and opposed that this did not take care of; however, it just changed 334 
the issues identified with framework scale measurements. Moreover, the results are analogous with 335 
long-term river discharge reanalysis globally (Harrigan et al., 2020). 336 



 

 

5.2 Significance of Mean Absolute Error (MAE) 337 

The importance of the large mean absolute error is also noticeable at few hydrographic stations 338 

located in the Ganges-Brahmaputra River catchments. Our results are also similar to those by 339 
Harrigan et al. (2020) for the major river catchments of the world. The significance of magnitude 340 
of mean absolute error is essential for over or underestimation in dry rivers. Large values of MAE 341 
can yield a high proportion of bias (i.e., bias ratio) as we found very high mean absolute error at 342 
Hardinge Bridge and Bahadurabad hydrographic stations for Ganges and Brahmaputra River 343 

basins, respectively in Figure 3 (ii).   344 

5.3 Importance of benchmark 345 

The dataset's advancement would look at the output score against a specific benchmark that can 346 
guide which type of model performance could be normal (Seibert et al., 2019) and choose whether 347 

the model is skillful. The valuable strength of the model must be clear from the consideration of 348 
benchmark and skill approval of the model with the end goal such that the modeler can settle on 349 
an advanced result (Bettina Schaefli, 2010). Characterizing such benchmarks is unclear since it 350 
depends on the interchange between our current hydrologic understanding, the accessibility and 351 

the nature of observations, the decision of model construction, and boundary conditions. In any 352 
case, describing the advanced benchmarks will permit more strong assessments of model 353 

implementation (Abramowitz, 2012). The most effective method to define a relative structure 354 
inside hydrology is an open query into the local hydrological study. 355 

5.4 Implementation of hydrologically significant features into a single group 356 

According to the hydrological point of view, the performance metrics with a realistic nature like 357 
KGEʹ did not provide the information about the model's lack (Gupta et al., 2008). However, KGEʹ 358 

improves the NSE metric positively; Gupta et al. (2009) precisely conveyed that their purpose with 359 

KGEʹ was not to plan an advanced part to implement in the model. Furthermore, they also 360 
highlighted a noticeable shortcoming of the KGEʹ metric where important hydrological features 361 
are combined into a single component in the model. They used the measurements to outline that 362 

there are inherent issues with mean squared error-based methods. Also, there is no motivation to 363 
use collected measurements and study the model behavior on the individual time-step (Keith 364 

Beven and Philip Younger, 2014).  365 

6 Conclusions 366 

Hydrostats package has been used in this study to determine the performance of hydrological 367 
metrics. The skill evaluation of GloFAS reanalysis river discharge was analyzed by employing the 368 

revised KGESS method for the major Indian sub-continental basins, principally Ganges-369 

Brahmaputra, Subarnarekha, Mahanadi, Brahmani and Baitarani, Mahanadi, Krishna, Godavari, 370 

Pennar, Cauvery, the rivers flowing in between Pennar and Mahanadi, and the rivers flowing in 371 
between Kanyakumari and Pennar. The GloFAS reanalysis discharge is vital in dual steps; one is 372 
scheming the flood arrivals against which real-time predictions equated to control the possibility 373 
of a flood indication. Second is the supplementary reliable hydro-meteorological settings for real-374 
time flood and sporadic forecasts. The correlation coefficient was very high for the Ganges-375 

Brahmaputra River basins, with a significant mean absolute error at few stations. The assessment 376 
shows that the GloFAS derived river discharge is skillful in all the river basins except some 377 
hydrographic stations. The seasonal variations have been observed in river discharge at various 378 



 

 

hydrological stations located inside several river basins of India. Both in situ and reanalysis 379 
datasets captured significant seasonal variability in river discharge during the southwest and less 380 
variations during the northeast monsoon. Moreover, the datasets which emanate from a common 381 
distribution have been marked by a 45˚ reference line. In contrast, a departure from the reference 382 

line shows that the datasets following different distribution as demonstrated by the Quantile-383 
Quantile (Q-Q) plot at the selected hydrographic stations of various river catchments.  384 

Data Availability Statement 385 

Daily observed river discharge data is available at CWC (Central Water Commission, India; 386 
http://cwc.gov.in/hydro-meteorological-observation) through the India-WRIS portal 387 

(https://indiawris.gov.in/wris/#/RiverMonitoring), and Global Runoff Data Centre (GRDC) 388 

(https://grdc.bafg.de). Daily reanalysis of river discharge available at Climate Data Services-389 

European Center for Medium-Range Weather Forecasts (CDS-ECMWF 390 
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-glofas-historical?tab=overview). 391 
Hydrostats function is available at (https://hydrostats.readthedocs.io/en/latest/) built under python 392 

scripts. 393 
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 527 

Figure 1. The study area includes the river network of major and minor river basins of India with 528 

the extent in adjacent countries and the Hydrographic stations' location and the elevation (m). 529 

 530 



 

 

 531 

Figure 2. Linear regression between GloFAS reanalysis and observed river discharge at the 532 

respective hydrographic stations of major river basins of India alongside for the period 1979 - 533 
2018. 534 

 535 

Figure 3. Quantile - Quantile (Q - Q) plots at the selected hydrographic stations with their 536 
respective river basins in between GloFAS and observed river discharge (m3/s). 537 

   538 



 

 

 539 



 

 

Figure 4. Monthly time series (Hydrograph) plot at the respective hydrographic stations of major 540 
river basins of India together with the hydrological metrics for the time period 1979 - 2018. 541 

 542 

 543 

Figure 5. Spatial distribution of hydrologic metrics (a) correlation, (b) bias, (c) variability, (d) 544 

mean absolute error (MAE) (cumecs), and (e) Kling-Gupta efficiency skill score (KGESS) 545 
displayed by scatter plots for all the hydrographic stations for which the datasets collected. 546 



 

 

 547 

 548 

Figure 6. The Probability density of the decomposed component of KGEʹ (a) Pearson correlation, 549 

(b) bias, (c) variability, and (d) Kling-Gupta efficiency (KGEʹ) along with Kling-Gupta efficiency 550 
skill score (KGESS). 551 



 

 

 552 

Figure 7. Basin wise performance of hydrologic metrics (a) correlation, (b) bias, (c) variability, 553 
(d) mean absolute error (MAE) (cumecs), and (e) Kling-Gupta efficiency skill score (KGESS) 554 
displayed by box plots. Where G-B (Ganges-Brahmaputra), BB (Brahmani and Baitarani), M and 555 
P (rivers flowing in between Mahanadi and Pennar), P and K (rivers flowing in between Pennar 556 

and Kanyakumari). 557 
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 561 

Figure 8. Seasonal changes in both datasets the GloFAS and observed river discharge at the 562 

hydrographic stations of its respective River basin are presented by Box plots. 563 

 564 
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Table 1. Hydrometrics for the major and minor river basins of India. 570 

Sl. 

No. 

Basin Area 

(km2) 

KGEʹ 

Median 

(IQR) 

KGESS 

Median 

(IQR) 

Pearson 

correlatio

n 

Median 

(IQR) 

Bias 

Median 

(IQR) 

Variability 

Median 

(IQR) 

1.  Ganges-

Brahmaputra 
1.7 million 0.81  

(0.75-0.86) 

0.86  

(0.82-0.90) 

0.94  

(0.94-0.95) 

1.11  

(1.07-1.14) 

0.93 

(0.81-1.01) 

2.  Subarnarekha 29,196 -0.03 

(-0.06-0.67) 

0.26 

(0.24-0.76) 

0.68 

(0.64-0.75) 

0.06 

(0.009-

1.29) 

1.13 

(0.97-1.29) 

3.  Brahmani-

Baitarani 
51,822 0.69 

(0.21-0.74) 

0.78 

(0.44-0.81) 

0.8 

(0.78-0.84) 

1.13 

(0.51-1.17) 

0.9 

(0.86-0.95) 

4.  Mahanadi 74,970 0.42 

(0.02-0.65) 

0.59 

(0.30-0.75) 

0.78 

(0.72-0.85) 

1.37 

(1.05-1.56) 

0.87 

(0.8-0.88) 

5.  Godavari 3,12,812 0.46 

(0.09-0.63) 

0.62 

(0.35-0.74) 

0.81 

(0.72-0.88) 

1.28 

(1.04-1.45) 

0.88 

(0.77-0.93) 

6.  Krishna 2,58,948 0.33 

(0.16-0.55) 

0.52 

(0.41-0.68) 

0.74 

(0.53-0.82) 

0.78 

(0.52-1.29) 

0.82 

(0.71-1.15) 

7.  Pennar 50,493 -0.35 

(-0.96-0.22) 

0.03 

(-0.39-

0.13) 

0.35 

(0.32-0.38) 

0.03 

(0.01-0.04) 

2.15 

(1.55-2.72) 

8.  Cauvery 81,155 -0.35 

(-0.39-0.22) 

0.04 

(0.008-

0.14) 

0.29 

(0.24-0.61) 

0.10 

(0.03-0.13) 

1.79 

(1.12-1.95) 

9.  River flowing 

in between 

Mahanadi and 

Pennar 

86,643 0.02 

(-0.11-0.20) 

0.28 

(0.2-0.43) 

0.66 

(0.59-0.74) 

1.44 

(0.66-1.91) 

1.02 

(0.95-1.12) 

10.  River flowing 

in between 

Pennar and 

Kanyakumari 

1,00,139 -0.13 

(-0.41-0.08) 

0.19 

(-0.003-

0.23) 

0.43 

(0.39-0.44) 

0.07 

(0.04-0.95) 

0.91 

(0.86-1.6) 
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