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Abstract

The prediction of the weather at subseasonal-to-seasonal (S2S) timescales is dependent on both initial and boundary conditions.

An open question is how to best initialize a relatively small-sized ensemble of numerical model integrations to produce reliable

forecasts at these timescales. Reliability in this case means that the statistical properties of the ensemble forecast are consistent

with the actual uncertainties about the future state of the geophysical system under investigation. In the present work, a method

is introduced to construct initial conditions that produce reliable ensemble forecasts by projecting onto the eigenfunctions of

the Koopman or the Perron-Frobenius operators, which describe the time-evolution of observables and probability distributions

of the system dynamics, respectively. These eigenfunctions can be approximated from data by using the Dynamic Mode

Decomposition (DMD) algorithm. The effectiveness of this approach is illustrated in the framework of a low-order ocean-

atmosphere model exhibiting multiple characteristic timescales, and is compared to other ensemble initialization methods based

on the Empirical Orthogonal Functions (EOFs) of the model trajectory and on the backward and covariant Lyapunov vectors

of the model dynamics. Projecting initial conditions onto a subset of the Koopman or Perron-Frobenius eigenfunctions that

are characterized by time scales with fast-decaying oscillations is found to produce highly reliable forecasts at all lead times

investigated, ranging from one week to two months. Reliable forecasts are also obtained with the adjoint covariant Lyapunov

vectors, which are the eigenfunctions of the Koopman operator in the tangent space. The advantages of these different methods

are discussed.
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• Several methods for initializing ensemble forecasts with long lead times are tested8
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Abstract14

The prediction of the weather at subseasonal-to-seasonal (S2S) timescales is dependent15

on both initial and boundary conditions. An open question is how to best initialize a rel-16

atively small-sized ensemble of numerical model integrations to produce reliable forecasts17

at these timescales. Reliability in this case means that the statistical properties of the18

ensemble forecast are consistent with the actual uncertainties about the future state of19

the geophysical system under investigation. In the present work, a method is introduced20

to construct initial conditions that produce reliable ensemble forecasts by projecting onto21

the eigenfunctions of the Koopman or the Perron-Frobenius operators, which describe22

the time-evolution of observables and probability distributions of the system dynamics,23

respectively. These eigenfunctions can be approximated from data by using the Dynamic24

Mode Decomposition (DMD) algorithm. The effectiveness of this approach is illustrated25

in the framework of a low-order ocean-atmosphere model exhibiting multiple character-26

istic timescales, and is compared to other ensemble initialization methods based on the27

Empirical Orthogonal Functions (EOFs) of the model trajectory and on the backward28

and covariant Lyapunov vectors of the model dynamics. Projecting initial conditions onto29

a subset of the Koopman or Perron-Frobenius eigenfunctions that are characterized by30

time scales with fast-decaying oscillations is found to produce highly reliable forecasts31

at all lead times investigated, ranging from one week to two months. Reliable forecasts32

are also obtained with the adjoint covariant Lyapunov vectors, which are the eigenfunc-33

tions of the Koopman operator in the tangent space. The advantages of these different34

methods are discussed.35

Plain Language Summary36

Weather forecasts often reach their limit of predictability at one to two weeks. In37

order to extend forecast skill beyond this two week limit, the weather prediction com-38

munity has begun transitioning to the use of coupled models that include both atmo-39

sphere and ocean dynamics, with the slower ocean dynamics enabling an extended fore-40

cast horizon. Due to uncertainties in the accuracy of the initial conditions and the model41

itself, such forecasts must be probabilistic. The primary approach for probabilistic weather42

prediction is to generate ensemble forecasts that integrate multiple copies of the model43

started from slightly different initial conditions. Here we show that the method used to44

determine the ensemble of initial conditions has a significant impact on the probabilis-45

tic forecast skill at horizons ranging from a few weeks to a few months. We show that46

many of the existing techniques used for short forecasts are suboptimal for longer fore-47

cast horizons. We introduce a new perspective and corresponding techniques that per-48

mit the initialization of these ensemble forecasts using information that is intrinsic to49

the nature of the evolution of the coupled system dynamics, and present data-driven meth-50

ods that allow this information to be estimated directly from historical data.51

1 Introduction52

Long-term forecasts of the atmosphere at sub-seasonal, seasonal, and decadal time53

scales are affected by both the choice of the initial condition and the slow evolution of54

surface boundary conditions. This multi-timescale forecasting is a key target of the at-55

mospheric and climate communities (Vitart et al., 2017; Cassou et al., 2018). Forecast56

error grows quickly at increasing lead times due to the instability properties of weather57

dynamics. For this reason, a probabilistic approach is necessary in order to isolate the58

multiple possible outcomes of a set of forecasts. Since the 1990’s, such an approach has59

been developed in many operational weather prediction centers based on using multi-60

ple numerical integrations of the models starting from slightly different initial conditions.61

This approach is known as ensemble forecasting (Buizza, 2019; Kalnay, 2019). Differ-62

ent perturbation techniques have been designed for initializing ensemble weather fore-63
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casts, of which the most popular are the singular vectors (Molteni et al., 1996), the bred64

modes (Toth & Kalnay, 1997), and perturbed observations applied within data assim-65

ilation systems (Buizza et al., 2005; Kleist & Ide, 2015). Buizza et al. (2005) noted that66

the accuracy of initial conditions is just as important as the accuracy of the forecast mod-67

els for generating reliable ensemble forecasts.68

As operational centers expanded their focus to include longer forecast horizons, the69

same perturbation approaches were also used for sub-seasonal to decadal predictions. How-70

ever, at timescales beyond the limits of predictability for the atmosphere, coupled Earth71

system models must be used. This introduces the additional difficulty of building appro-72

priate perturbations for the different components of such multi-scale systems (O’Kane73

et al., 2019). Several approaches consisting of appropriately tuning the bred modes to74

capture the long time scales of the dynamics have for instance been proposed (Peña &75

Kalnay, 2004; S.-C. Yang et al., 2008; O’Kane et al., 2019), and the use of backward Lya-76

punov vectors (BLV), closely related to the bred modes, have been used to build reliable77

ensemble forecasts in idealized scenarios (Vannitsem & Duan, 2020).78

In the present work, we address this ensemble initialization problem by consider-79

ing tools coming from the probabilistic description of dynamical systems and finding their80

roots in the conservation of the number of trajectories in phase space described by the81

Liouville equation (Gaspard, 2005; Nicolis & Nicolis, 2012). The evolution operator as-82

sociated with this equation is known as the Perron-Frobenius operator (Lasota & Mackey,83

2008), sometimes also called the transfer operator. It has been used as a theoretical frame-84

work to describe probabilistic forecasting (Ehrendorfer, 2006; Giannakis, 2019), i.e. fore-85

casting based on the time evolution of a probability distribution, and for which the en-86

semble forecasting methods provide approximations. The adjoint of the Perron-Frobenius87

operator, known as the Koopman operator, has become popular to describe the dynam-88

ics of observables on attractors (Mezić, 2013; Susuki et al., 2016; Arbabi & Mezić, 2017;89

Santos Gutiérrez et al., 2021), due to the fact that when operating on functional spaces90

it is a linear operator, an observable being defined as any function mapping the system91

state to some real or complex value. A trade-off, however, in converting the nonlinear92

dynamics to a linear representation is that the Koopman operator generally acts on an93

infinite dimensional space, but as we will see, methods exist to obtain finite-dimensional94

approximate representations of these operators. The computation of the spectrum of these95

operators has also been considered in order to study bifurcations in low- and high-dimensional96

systems (Tantet, Lucarini, & Dijkstra, 2018; Tantet, Lucarini, Lunkeit, & Dijkstra, 2018).97

The eigenvalues and eigenfunctions of these operators can then be obtained in the func-98

tional spaces, and provide the key building blocks of the dynamics of the probability den-99

sity and observables. These are precisely the quantities that are used in the present work100

to generate the ensemble forecasts initialization, as they constitute generic features of101

the dynamics of the probability density.102

The eigenfunctions of the Koopman operator can be approximated using Dynamic103

Mode Decomposition (DMD) (Rowley et al., 2009; Tu et al., 2014). The DMD approach104

is a rediscovery of the Linear Inverse Model (LIM), which was developed first within the105

seasonal prediction community (Penland, 1989; Penland & Magorian, 1993; Penland &106

Sardeshmukh, 1995). For computational efficiency, and due to the large volume of data107

involved, LIMs are typically formed using data projected to the space of Empirical Or-108

thogonal Functions (EOFs) and then truncated. As such, a mathematical equivalence109

between this form of the LIM and the projected DMD was noted by Tu et al. (2014).110

The LIM approach is now being used experimentally for seasonal forecasts by the US111

National Oceanographic and Atmospheric Administration (NOAA) Climate Prediction112

Center (CPC) (Wang et al., 2021). Since its rediscovery by the fluid mechanics commu-113

nity under the name of DMD (Schmid, 2010), many new algorithms, theoretical results,114

and variants have been developed that have advanced understanding of this approach.115
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Most notably, perhaps, is the connection between DMD and the Koopman operator (Rowley116

et al., 2009).117

The usefulness of the Perron-Frobenius and Koopman operators for producing en-118

semble forecasts will be analyzed in a reduced order coupled ocean-atmosphere model,119

previously demonstrated for a similar purpose by Vannitsem and Duan (2020). The model120

will be briefly described in Section 2. The experimental setup will be then presented in121

Section 3. In Section 4, the different bases onto which the perturbed initial conditions122

are projected will be presented: first, the EOFs that are often used in initializing climate123

models and their ensemble integrations, e.g. Polkova et al. (2019); second, the Lyapunov124

vector approach used by Vannitsem and Duan (2020), which is closely related to the bred125

modes and ensemble Kalman filters; and third, the eigenfunctions of the Koopman and126

Perron-Frobenius operators. The Koopman and Perron-Frobenius operators are exten-127

sively discussed, as important clarifications on their link with DMD is needed. Section128

5 describes the specific choices of bases used for the experiments. Section 6 presents the129

results of experiments using the aforementioned bases to initialize ensemble forecasts.130

It will be shown that the eigenfunctions of the Koopman and Perron-Frobenius opera-131

tors are indeed the most efficient tools for producing reliable ensemble forecasts in such132

multiscale systems. Finally, conclusions are drawn in Section 7.133

2 The coupled ocean-atmosphere model134

Experiments are conducted with a coupled ocean–atmosphere model that was first135

introduced by Vannitsem et al. (2015), and was further generalized by De Cruz et al. (2016)136

and Demaeyer et al. (2020). It consists of a two-layer quasi-geostrophic atmospheric model137

coupled both thermally and mechanically to a shallow-water oceanic component on a beta138

plane. The coupling between the ocean and the atmosphere includes the wind stress and139

heat exchanges. The fields of the model are defined on a rectangular domain with the140

zonal and meridional coordinates x and y being restricted to 0 ≤ x ≤ 2πL/n and 0 ≤141

y ≤ πL, where n is the aspect ratio of the domain and L is the characteristic spatial142

scale. The atmospheric fields are defined in a zonally periodic channel with no-flux bound-143

ary conditions in the meridional direction, i.e. if ψ is such an atmospheric field then ∂ψ/∂x ≡144

0 at y = 0, πL. The oceanic fields are defined on a closed basin, with no flux through145

the boundaries.146

The model fields include the atmospheric barotropic ψa and baroclinic streamfunc-
tions θa, and the ocean streamfunction ψo and the temperature field θo. These fields are
expanded in series of Fourier modes Fi(x, y) for the atmosphere and φi(x, y) for the ocean,
both respecting the prescribed boundary conditions:

ψa(x, y) =

na∑
i=1

ψa,i Fi(x, y)

θa(x, y) =

na∑
i=1

θa,i Fi(x, y)

ψo(x, y) =

no∑
i=1

ψo,i φi(x, y)

θo(x, y) =

no∑
i=1

θo,i φi(x, y)

After projecting the partial differential equations (PDEs) of the model on the Fourier
modes, one obtains a set of ordinary differential equations (ODEs) governing the time
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evolution of the coefficients ψa,i, θa,i, ψo,i and θo,i:

ẋ = f(x) (1)

x = [ψa,1, . . . , ψa,na , θa,1, . . . , θa,na ,

ψo,1, . . . , ψo,no
, θo,1, . . . , θo,no

]T

where T denotes the matrix transposition operation. These coefficients thus form the set147

of the model state variables and the equation above allows one to simulate the physi-148

cal system using numerical integration. In the present study, we consider the so-called149

VDDG model configuration first defined by Vannitsem et al. (2015), with the atmospheric150

and the oceanic fields each being expanded into a series of na = 10 and no = 8 selected151

modes, respectively, leading to a system with d = 36 dimensions1.152

A critical parameter of the model is the friction coefficient C between the ocean153

and the atmosphere. Indeed, it was shown by Vannitsem et al. (2015) that the strength154

of the wind stress controls the presence and the amplitude of a low-frequency variabil-155

ity (LFV) typically found in the real atmosphere at midlatitude. Following Vannitsem156

(2017) and Vannitsem and Duan (2020), we shall consider two cases: one with weak LFV157

(C = 0.01 kg m−2 s−1) and another with much more pronounced LFV (C = 0.016158

kg m−2 s−1). Solutions of the models for both cases are depicted in Figure 1, where the159

difference in the amplitude of LFV between the left and right panels is clear. The vari-160

ables shown in this figure are the coefficients corresponding to the first mode of the baro-161

clinic streamfunction and the second mode of the ocean temperature field, each sampled162

every ∆t = 10 nondimensional model timeunits (MTU), corresponding to 1.1215 days.163

The former mode is related to the meridional temperature gradient in the system, while164

the second corresponds to a dominant double-gyre signal in the ocean.165

These two cases will allow us to highlight how the different methods of initializa-166

tion that we consider perform in different settings, with different timescales and differ-167

ent correlation structures between the components being involved.168

3 Experiment design169

The focus of this study is initialization methods for ensemble forecasts. To this end,
the long reference runs depicted in Figure 1 were computed to serve as the ‘truth’ in our
experiments. We select N points of the reference runs, denoted xn(0), as initial condi-
tions to produce N ensemble forecasts with the VDDG model, using the same param-
eters as the reference runs. To ensure that the experiments are initialized from a state
close to the true trajectory, but with an ensemble mean state that is not precisely equal
to the truth, we first obtain the initial conditions xctrl

n of a deterministic control fore-
cast by perturbing the N points of the reference ‘truth’ by a random perturbation δxctrl

0

sampled from a uniform distribution ρpert
0 :

xctrl
n (0) = xn(0) + δxctrl

0 . (2)

An ensemble is then generated by perturbing the control run initial conditions with a
set of M−1 perturbations δxm0 drawn from a distribution ρ̃pert

0 , which is taken to be
the same distribution as that used to obtain the control: ρ̃pert

0 ≡ ρpert
0 . The initial con-

ditions of the ensemble are thus:

ym,n(0) = xctrl
n (0) + δxm0 , m = 1, . . . ,M − 1. (3)

Including the control run, i.e. δxM0 = 0, this provides a reference perfect ensemble of170

M members. In the present study, as in Vannitsem and Duan (2020), a uniform distri-171

1 In the following, the letter d will always refer to the dimension of the dynamical system.
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Figure 1. Time evolution of a trajectory on the attractor for: (a),(b) the case without low-

frequency variability and (c),(d) the case with low-frequency variability. For this latter case, it

shows that the presence or absence of atmospheric instability and fast variability is linked to the

low-frequency variation of the meridional temperature gradient in the ocean.

bution defined on the interval [−ε/2, ε/2] with ε = 10−6 was used to perturb each com-172

ponent of the system’s state vector. Additional computations done with Gaussian dis-173

tributions with the same standard deviation did not show any differences in the results174

of the study.175

Due to the high dimensionality of more realistic applications, and the cost involved176

in integrating long model forecasts of this size, ensemble perturbations must be built from177

a relatively small subspace of the original system. While this distribution could be sam-178

pled randomly, we seek a set of initial conditions that can efficiently reproduce the true179

error growth characteristics of the coupled system dynamics. The question remains as180

to what bases are most efficient for initializing a reliable ensemble forecast, and how can181

those bases be practically constructed in a realistic setting.182

We examine reduced-size ensembles constructed using linear projections of the ‘per-183

fect’ ensemble initial conditions onto various bases forming subspaces with rank less than184

M , and compare these to the perfect ensemble as a benchmark. The specific bases that185

we use will be detailed in the next section. By design, the ensemble perturbations ob-186

tained by projection cannot be more reliable than the original reference ensemble. How-187

ever, we will show that depending on the modes and subspaces selected as a basis, these188

reduced-size ensembles can achieve similar performance to the full-rank ‘perfect’ ensem-189

ble.190

To determine whether the ensemble forecasts generated from the projected initial
conditions are reliable, the mean square error (MSE) of the ensemble mean and the vari-
ance of the ensemble (the square of the ensemble spread) are computed at each lead time
τ of the ensemble forecasts as:

MSE(τ) =
1

N

N∑
n=1

‖xn(τ)− ȳn(τ)‖2 (4)

Spread2(τ) =
1

N

N∑
n=1

1

M − 1

M∑
m=1

∥∥ym,n(τ)− ȳn(τ)
∥∥2

(5)
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where

ȳn(τ) =
1

M

M∑
m=1

ym,n(τ) (6)

is the ensemble mean over the members ym,n(τ) of the nth ensemble forecast and xn(τ)191

is the corresponding reference solution. Finally, ‖·‖2 is the L2-norm. If the Spread2 and192

the MSE are close to one another, indicating that the estimated error is close to the true193

error, then the ensemble forecast is considered reliable (Leutbecher & Palmer, 2008). The194

results based on these measures are presented in the supplementary material.195

An alternative measure of reliability of the ensemble forecasts can also be assessed
by considering the proper ignorance (or logarithmic) score (Roulston & Smith, 2002):

I[ρens
τ ] = − ln ρens

τ (xn(τ)|xctrl
n (0)). (7)

Applying the ignorance score to a Gaussian, one obtains the related proper two-moment
skill score derived by Dawid and Sebastiani (1999). As such, and regardless of whether
the distributions being considered is Gaussian or not (Leutbecher, 2019), the Dawid-Sebastiani
Score (DSS) provides an evaluation of the quality of the first and second moments of the
forecast distribution estimated by the ensemble, with respect to the true moments. The
bias-free univariate DSS for the nth ensemble forecast and the ith variable of the system
can be written as (Siegert et al., 2019):

DSSn,i(τ) =
1

2
log(2π) +

1

2
log σ2

n,i(τ)

+
1

2

M − 3

M − 1
(ȳn,i(τ)− xn,i(τ))

2

/
σ2
n,i(τ), (8)

where σ2
n,i is an estimator of the ith variable ensemble variance:

σ2
n,i(τ) =

1

M − 1

M∑
m=1

|ym,n,i(τ)− ȳn,i(τ)|2. (9)

This score can then be averaged over the N realizations:

DSSi(τ) =
1

N

N∑
n=1

DSSn,i(τ). (10)

The lower the DSS score, the more reliable the ensemble forecasts are for this particu-196

lar variable. In particular, the DSS score has been used to characterize the ensembles197

reliability in the study done by Vannitsem and Duan (2020).198

4 Initialization methods for ensemble forecasts199

We now discuss the different bases onto which the set of ensemble perturbations
will be projected. Assume that a basis comprises k vectors of dimension d arranged as
columns of the matrix B ∈ Cd×k. We can construct the projection operator onto this
basis as,

Π = B(B∗ B)−1 B∗. (11)

If B is unitary, this reduces to Π = BB∗ (Meyer, 2000). Assuming that Π ∈ Rd×d, if
one considers the ensemble of M−1 perturbations δxm0 of the control initial conditions,
then the projection of the perturbations onto the subspace spanned by B is given by:

δx′m0 = Π δxm0 . (12)

The resulting perturbations are used to initialize ensemble forecasts with the initial con-
ditions:

y′m,n(0) = xctrl
n (0) + δx′m0 , m = 1, . . . ,M (13)

–7–
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in the experiments discussed in Section 6.200

Let us now detail the various basis vectors considered and the subspaces that they201

span, namely the EOFs, the backward (BLVs) and covariant (CLVs) Lyapunov vectors,202

and the Koopman and Perron-Frobenius eigenfunctions determined using DMD. Unlike203

the other basis vectors used, the Lyapunov vectors are time-dependent, defined locally204

at each point of the reference trajectory, and are related to the stability of the local lin-205

earized dynamics.206

4.1 Empirical Orthogonal Functions207

The EOFs of the dataset are obtained using a Principal Component Analysis (PCA),208

which decomposes the data into a set of orthogonal basis functions and time-dependent209

coefficients. These orthogonal patterns can be obtained directly by singular value decom-210

position (SVD) of the data matrix, or by computing the eigenvectors of the data covari-211

ance matrix (Wilks, 2011).212

Assuming that the dataset is represented by the matrix X = [x0 . . .xK−1], with
X ∈ Rd×K . The columns of X are the system states xk = Φtk(x0) at times tk = k∆t
where Φt is the flow of the system (1): x(t) = Φt(x(0)), The EOFs are the column vec-
tors of U as determined by the PCA:

T = U∗X̄ (14)

where X̄ = X−〈X〉k is the matrix of system states with zero empirical time mean, and213

U is a matrix whose columns are the orthogonal eigenvectors of the matrix X̄X̄∗ which214

is proportional to the covariance matrix of the system, and T is the time-series of the215

coefficients of the decomposition. The eigenvalues of the matrix X̄X̄∗ are related to the216

variance of the data projected onto the corresponding mode. The amplitude of the eigen-217

values comparatively to the others then provide the ‘fraction of explained variance’ by218

a given EOF.219

The EOFs can alternatively be obtained by SVD of X̄:

X̄ = UΣV∗ (15)

where U and V are two unitary square matrices and Σ is diagonal, containing the sin-220

gular values of X̄. The matrix U contains the EOFs of X̄ since X̄X̄∗ = UΣΣ∗U∗, and the221

PCA time-series of coefficients can be represented as T = U∗X̄ = ΣV∗.222

4.2 The Lyapunov Vectors223

We next consider the backward Lyapunov vectors (BLVs), the covariant Lyapunov224

vectors (CLVs), and the adjoint CLVs as basis vectors B in Eq. (11). The Lyapunov vec-225

tors are locally defined in the tangent space of the trajectory of the model, and give in-226

formation about the stability therein. For instance, Osedelets has shown that the tan-227

gent space can be decomposed into a set of nested subspaces S−k that are invariant un-228

der the tangent linear model dynamics (V. I. Oseledets, 1968; V. Oseledets, 2008). Ar-229

bitrary k-volumes defined in the tangent space converge to the subspace S−k under the230

action of the tangent flow. These subspaces are spanned by the BLVs ϕ−i : S−k = Span{ϕ−i |i =231

1, . . . , k}. The BLVs are thus related to the asymptotic properties of volumes in the tan-232

gent space, i.e. to how volumes contract or expand in the tangent space. The Lyapunov233

exponents characterize the time-average expansion and contraction rates of these vol-234

umes over the entire attractor.235

The CLVs ϕi are defined as stability directions in the tangent space that are co-236

variant under the application of the tangent linear model dynamics. The tangent linear237

flow maps a CLV at one time to the same CLV at a later time, but multiplied by a stretch-238
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Figure 2. Absolute value of the Lyapunov exponents (the LEs are expressed in day−1), along

with the one standard-deviation uncertainty, for: (a) the case with weak low-frequency variability

and (b) the case with strong low-frequency variability. The approximate

separation between the positive (unstable) and negative (stable) exponents is depicted by
a vertical dashed red line.

ing factor defined over the same timescale as the tangent linear mapping, which indi-239

cates the local stability of this CLV (Kuptsov & Parlitz, 2012). Finally, the adjoint CLVs240

ϕ̃i are vectors that are covariant as well, but with respect to the flow of the adjoint model.241

See Appendix A for more details.242

To determine the sets B of basis vectors that we will consider in the experiments,243

it is useful to consider the Lyapunov spectra σi (depicted in Figure 2). These exponents244

have been estimated by averaging the local stretching rate 2 χi along the trajectories de-245

picted in Figure 1 with a bootstrap algorithm (Efron & Tibshirani, 1993) to increase its246

statistical significance. The standard deviation of the time series used to compute the247

averaged Lyapunov exponent is also shown.248

A chaotic dynamical system generally has positive (unstable) and negative (sta-249

ble) exponents, along with a single zero-valued exponent that corresponds to the direc-250

tion of flow of the system trajectory. For the coupled atmosphere-ocean system, how-251

ever, because the magnitude of many of the near-zero exponents is smaller than the stan-252

dard deviation of the time series itself, it is difficult to precisely identify the zero-valued253

Lyapunov exponent that separates the stable and unstable directions in the spectra (Vannitsem254

& Lucarini, 2016; S. Penny et al., 2019). This is true for both model configurations (weak255

and strong LFV).256

The BLVs have been computed with the Benettin algorithm (Benettin et al., 1980),257

while the CLVs and their adjoint have been computed by the method seeking to find the258

intersection of the subspaces spanned by the BLVs and the Forward Lyapunov Vectors259

(FLVs) (Legras & Vautard, 1996), see Appendix A. To this end, the FLVs have also been260

computed using the Benettin algorithm.261

4.3 The Koopman (KM) and Perron-Frobenius (PF) eigenfunctions262

4.3.1 Koopman and the Perron-Frobenius operators263

The Koopman operator provides a means of representing a finite-dimensional non-
linear system as an infinite-dimensional linear system by ‘lifting’ the underlying state
space to a set of observables. The Koopman operator Kτ acts upon an observable g(x)
of the system state x as,

Kτ g(x) = g (Φτ (x)) (16)

2 See Eq. (A12) in Appendix A.
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where the mapping Φτ describes the flow of the system (1) such that x(t+τ) = Φτ (x(t)).264

While the Koopman operator governs the time evolution of observables of the sys-
tem, its adjoint, the Perron-Frobenius (or transfer) operator Pτ , governs the time evo-
lution of the probability density ρt. The probability density given at any lead time τ is
thus,

ρt+τ = Pτ ρt. (17)

The Koopman and Perron-Frobenius operators can both be used to determine the evo-
lution of the expected value of an observable. Indeed, if we consider the expected value
of an observable g, for a given distribution ρt at time t, to be defined as,

〈g〉t =

∫
g(x) ρt(x) dx (18)

and the inner product is defined as,

〈a, b〉 =

∫
a∗(x) b(x) dx, (19)

then for a real-valued scalar observable g, we have 〈g〉t = 〈g, ρt〉 = 〈g,Ptρ0〉 = 〈Ktg, ρ0〉.265

Note that we have used the fact that the observable is real, i.e. g(x)∗ = g(x), and that266

Kt is the adjoint of Pt.267

For the remainder, for the sake of simplicity, we shall assume that the spectra of
the Koopman and Perron-Frobenius operators are discrete.3 Importantly, a vector-valued
observable g can then be decomposed using the eigenfunctions φi of the Koopman op-
erator

g(x) =

∞∑
i=1

cKM
i φi(x) (20)

and the application of the Koopman operator can thus be decomposed into a set
of eigenvalues λi, eigenfunctions φi, and modes (coefficients) cKM

i as,

Kτg(x) =

∞∑
i=1

cKM
i λi(τ)φi(x). (21)

This indicates that the propagation of an observable due to the Koopman operator can268

be represented as a superposition of oscillating stretching/contracting factors applied to269

the Koopman eigenfunctions. A challenge in translating the use of this Koopman op-270

erator to practical applications is the determination of an appropriate truncation of this271

infinite series.272

Similarly for the Perron-Frobenius operator, a probability density ρ defined over
the phase space can be expanded in terms of its eigenfunctions ψi:

ρ(x) =

∞∑
i=1

cPF
i ψi(x) (22)

and its time evolution is then also decomposable in term of a set of eigenvalues λi, eigen-
functions ψi, and coefficients cPF

i :

Pτρ(x) =

∞∑
i=1

cPF
i λ∗i (τ)ψi(x). (23)

3 However, special care must be taken when the system is chaotic, as it may include degenerate eigen-

values (Jordan blocks) and continuous parts (Gaspard et al., 1995; Arbabi & Mezić, 2017; Mezić, 2020).

See also the conclusion (Section 7).
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The eigenfunctions of the Koopman and Perron-Frobenius operators are biorthonor-273

mal to one another 〈φi, ψj〉 = δi,j , and therefore, the Koopman modes of a given ob-274

servable g can be determined using the Perron-Frobenius eigenfunctions: cKM
i = 〈ψi, g〉,275

where the inner product is applied component-wise.276

The time evolution of the expected value of the observable can then be given more
simply as

〈g〉t = 〈g,Ptρ0〉

=

∞∑
i=1

〈g, λ∗i (t)ψi cPF
i 〉

=

∞∑
i=1

λ∗i (t) c
PF
i

(
cKM
i

)∗
(24)

From now on, to present numerical methods to approximate the Koopman and Perron-
Frobenius eigenfunctions decompositions, we will consider a set of realizations gt = g(xt)
of a vector-valued observable g of dimension P evaluated over the system states xt that
are assumed to satisfy,

gt+τ = Kτgt. (25)

If this time evolution is repeated sequentially with a fixed lead time τ = ∆t, then it
constitutes thus a dataset of K + 1 input-output pairs (gk, gk+1), k = 0, 1, . . . ,K of
the operator:

gk+1 = Kgk , K ≡ K∆t. (26)

For example, if the observables gk are the states of the system (1) depicted on Figure 1,277

then ∆t = 10 MTU, corresponding roughly to one day.278

4.3.2 The Dynamic Mode Decomposition (DMD) algorithm279

The DMD algorithm is a data-driven approach that provides a linear decomposi-280

tion of a given signal of input-output pairs into a set of spatial patterns called dynamic281

modes that are modulated by a damping or growing oscillating factor. The approach was282

first developed in the climate community under the name LIM (Penland, 1989; Penland283

& Sardeshmukh, 1995), with its corresponding linear normal modes, as an extension of284

the Principle Oscillation Patterns (POP) technique of Hasselmann (1988) and Von Storch285

et al. (1988). It was later rediscovered in the fluid mechanics community by Schmid (2010)286

as an extension of the proper orthogonal decomposition (POD) (Berkooz et al., 1993).287

In the framework of dynamical systems like (1), DMD has been identified as an algorithm288

to approximate the Koopman operator Kτ (Rowley et al., 2009; Williams et al., 2015)289

and the Perron-Frobenius operator P τ (Klus et al., 2016).290

The DMD algorithm identifies two sets of vectors, the adjoint DMD modes and the291

exact DMD modes (Tu et al., 2014). The former are approximately related to the eigen-292

functions of the Koopman operator, while the latter are related to the Koopman modes.293

For this purpose, the input-output pairs (gk, gk+1) are stacked as the columns of
two matrices X = [g0 . . . gK−1] and Y = [g1 . . . gK ]. When the time steps are evenly
partitioned, this is simply a repeated representation of the dataset, offset by one timestep.
It is assumed that a matrix MDMD exists that approximates the operator Kτ so that,

Y = MDMDX, (27)

and thus,
MDMD = Y X+, (28)

where X+ is the pseudoinverse of X. Alternatively, the matrix MDMD is sometimes writ-
ten

MDMD = A G+, (29)
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where A = Y X∗ and G = X X∗ (Klus et al., 2018). The matrix MDMD approximates294

the operator K in the least-squares sense. The eigenvalues and the right eigenvectors of295

MDMD are called the DMD eigenvalues and DMD modes of the data. In practice, the296

eigendecomposition of MDMD can be performed with the SVD (Tu et al., 2014), or us-297

ing the Arnoldi algorithm (Rowley et al., 2009). The SVD is computed as X = UΣV∗.298

A truncated form can be defined to permit a reduced dimension form of MDMD. In that299

case, the equation (28) can be transformed as,300

M̃DMD = U∗MDMDU = U∗YVΣ−1. (30)

The nonzero eigenvalues λDMD
i of MDMD are the same as those of M̃DMD. The right

eigenvectors ṽi of M̃DMD can be used to recover the corresponding right eigenvectors vi =
1

λDMD
i

YVΣ−1 ṽi of MDMD. The left eigenvectors w̃i of M̃DMD can be used to recover the

left eigenvectors wi = U w̃i of MDMD, satisfying the biorthonormality condition,

w∗i vj = w̃∗iU∗
1

λDMD
j

YVΣ−1 ṽj = w̃∗i
1

λDMD
j

M̃DMD ṽj = w̃∗i ṽj = δi,j (31)

where we have assumed that the left and right eigenvectors of MDMD are scaled in or-301

der to form biorthonormal bases. The left eigenvectors wi are called the adjoint DMD302

modes, while the right eigenvectors vi are called the exact DMD modes (Tu et al., 2014).303

The left eigenvectors wi of MDMD can be used to produce approximations of the
Koopman (KM) eigenfunctions. As shown by (Williams et al., 2015), if the eigenfunc-
tions of the Koopman operator are approximated as

φi(x) ≈ w∗i g(x). (32)

then any observable h can be decomposed according to

h(x) =

P∑
i=1

cDMD
i w∗i g(x) (33)

and applying the operator K, we recover a time-discretized vector-valued approximation
of Eq. (21):

Kh(x) =

P∑
i=1

cDMD
i w∗i Kg(x)

≈
P∑
i=1

cDMD
i w∗i MDMD g(x)

=

P∑
i=1

cDMD
i λDMD

i w∗i g(x) (34)

In particular, if the observable g is the identity (g(x) = x), then the decomposition (33)304

is analogous to a one-term Taylor expansion of h (Williams et al., 2015). In the remain-305

der, references to the KM eigenfunctions are made under the assumption that they are306

approximated using this procedure, and due to Eq. (32), it may refer equivalently to the307

eigenfunctions φi or the left eigenvectors wi.308

Finally, the coefficients cDMD
i are provided by the right eigenvectors vi, i.e. the DMD309

modes approximating the Koopman modes cKM
i (see for instance a trivial example in310

the Section 4.3.4 below where cDMD
i = vi).311
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4.3.3 The Perron-Frobenius mode decomposition312

Since the Perron-Frobenius operator is the adjoint of the Koopman operator, it is
also possible to obtain a finite dimensional representation of the former with this rela-
tion, as shown by Klus et al. (2016). Because we are working in the space of observables,
we can access the eigenfunctions of the Perron-Frobenius operator using the adjoint prop-
erty with the Koopman operator (e.g. using the inner product (19)). The finite dimen-
sional representation of the Perron-Frobenius operator is given by,

MPFMD = AT(G+)T. (35)

where again A = Y X∗ and G = X X∗.313

Similarly as for the DMD decomposition and the Koopman operator, a distribu-
tion ρ(x) can be decomposed on the left eigenvectors ωi of MPFMD as

ρ(x) =

P∑
i=1

cPFMD
i ω∗i g(x) (36)

where the eigenfunctions ψi of the Perron-Frobenius operator are thus approximated as,

ψi(x) ≈ ω∗i g(x). (37)

The decomposition (36) of the densities is thus a time-discretized approximation of Eq. (22),314

and we call it a Perron-Frobenius mode decomposition (PFMD). In the following, ref-315

erences to the PF eigenfunctions are made under the assumption that they are approx-316

imated using this procedure, and may refer equivalently to the eigenfunctions ψi or the317

left eigenvectors ωi.318

Finally, we note that the Perron-Frobenius operator being considered here is de-319

fined with respect to the invariant distribution of the system (Klus et al., 2018), since320

the matrix MPFMD is constructed from a long trajectory of the system dynamics.321

4.3.4 Projections of ensemble distributions322

From now on, we assume that the observable g used to obtain the representations323

MDMD and MPFMD is the identity: g(x) = x. For instance, for a dynamical system,324

the datasets X and Y considered thus consists of observed states of the system. For a given325

ensemble of initial condition perturbations δxm0 of the state of the system (1), these can326

be projected onto a subset of the KM left eigenvectors wi or onto a subset of the PF left327

eigenvectors ωi. In the first case, it decomposes the perturbations - viewed as local ob-328

servables - onto selected (approximate) eigenfunctions of the Koopman operator of the329

system. This subset of eigenfunctions allows one to (approximately) reduce the action330

of the Koopman operator on a given invariant subspace of this operator, which is char-331

acterized by the left eigenvectors wi and the ‘timescales’ λDMD
i . The propagation of the332

projected ensemble of initial conditions by system (1) is then assumed to be equivalent333

to the action of the Koopman operator Ktδxm0 restricted on this invariant subspace.334

Let’s be more precise about these projections: For a given observable h evaluated
on a perturbed state x+ δx, we have:

h(x+ δx) ≈ h(x) + ∇xhδx (38)

The second term is a local approximation of the observable h around the unperturbed
state x, and whose time evolution is well represented by the DMD decomposition. If the
observable h is the identity (h(x) = x), we have naturally ∇xh = I where I is the iden-
tity matrix, and h(x + δx) = h(x) + h(δx). Therefore, one can decompose the per-
turbation according to Eq. (33) to get:

h(δx) = CDMD W∗ g(δx) = CDMD W∗ δx (39)
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where W is the column matrix of left eigenvectors wi of MDMD. Since the observable h
is now the identity we have - due to the biorthonormality relationship (31) - that the ma-
trix CDMD is given by CDMD = V where V is the column matrix of right eigenvectors
vi of MDMD. According to Eq. (32), the decomposition above is a decomposition in terms
of the (approximated) eigenfunctions φi(δx) ≈ (W∗ δx)i. Projecting the perturbation
δx onto a subset of KM eigenfunctions is thus equivalent to making the expansion above
according to a partial choice W′∗ δx of eigenfunctions, where W′ is a column matrix com-
posed of a choice of columns from the matrix W, i.e. a choice amongst the left eigenvec-
tors of MDMD. The projected perturbation is thus developed as:

δx′ = V′W′∗ δx (40)

where V′ are the right eigenvectors biorthonormal to the left eigenvectors W′. Identify-
ing B = W′ in Eq. (11) for the projector Π, we get

Π = W′ (W′∗W′)−1 W′∗ (41)

and using the fact that W′∗ V′ = I, where I is the identity matrix, we have V′ = W′ (W′∗W′)−1.335

Therefore, Eq. (40) is exactly the projected perturbation δx′ = Π δx obtained with the336

projector (11).337

Similarly, in the case where the perturbations are projected onto a selected sub-338

set of the (approximated) eigenfunctions ψi(δx) ≈ ω∗i g(δx) of the Perron-Frobenius339

operator of the system, because this subset forms an invariant subspace of the Perron-340

Frobenius operator, one can assume that the propagation of the projected ensemble of341

initial conditions with system (1) is equivalent to the action of the Perron-Frobenius op-342

erator on the projection of the distribution ρens of the ensemble.343

4.3.5 The Koopman and Perron-Frobenius eigenfunctions of the cou-344

pled ocean-atmosphere model345

To study the dynamic modes in the coupled ocean-atmosphere system, the KM eigen-346

functions have been estimated using the data of the reference trajectories depicted in Fig-347

ure 1 sampled every ∆t = 10 MTU (roughly every day), using the SVD method described348

in Section 4.3.2. The results are shown in Figure 3 for the weak LFV case, and in Fig-349

ure 4 for the strong LFV case. In both cases, we note that there are 16 eigenvalues in350

the vicinity of the point 1 + 0 i in the complex plane. These eigenvalues correspond to351

very slow decaying and oscillating KM eigenfunctions, describing the LFV signal in the352

system. The remaining eigenvalues are related to faster decaying oscillations. The am-353

plitude of each component of the KM eigenfunctions is shown in Figure 5. Each KM eigen-354

function is a complex-valued vector, and is paired with another KM eigenfunction that355

is its complex conjugate (except for the presence of real eigenvalues), each correspond-356

ing to complex conjugate eigenvalues. For this reason, Figure 5 shows both the real and357

imaginary parts of the KM eigenfunctions every two columns. A clear distinction can358

be made between the slow decaying KM eigenfunctions and the others. Indeed, the slow-359

decaying KM eigenfunctions (1 to 16) involve both the ocean streamfunction variables360

(variables 21 to 28) and temperature variables (variables 29 to 36), with a predominance361

of the streamfunction variables. The fast-decaying KM eigenfunctions (17 to 36) involve362

the ocean streamfunction variables with a coupling to the atmospheric variables (vari-363

ables 1 to 20), and a far weaker coupling to the ocean temperature variables.364

The PF eigenfunctions have been obtained by directly computing the eigenvectors365

of the finite dimensional representation of the Perron-Frobenius operator. They possess366

the same spectrum of eigenvalues as the KM eigenfunctions (see the Supplementary Ma-367

terials), and while being different, they share the same global slow-fast organization as368

the KM eigenfunctions (see Figure 5).369
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Figure 3. Koopman eigenvalues estimated using DMD for the case without low-frequency

variability.
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Figure 4. Koopman eigenvalues estimated using DMD for the case with low-frequency vari-

ability.
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Figure 5. Comparison of the averaged energy of the Lyapunov vectors components with the

EOF, KM, and PF eigenfunctions patterns for: (a) the case with a weak low-frequency variabil-

ity, (b) the case with a strong low-frequency variability.

5 Selected bases for experiments370

Finally, we choose a speci�c set of bases using the methods described above. Each371

of the methods determine a set of basis vectors that de�ne the entire state space. We372

will split each of these into subspaces onto which to project theM `perfect' ensemble373

perturbations. The projected perturbations hence obtained will be used to obtain the374

ensemble initial conditions of each experiment in the next section, according to the for-375

mula (13).376

In Figure 6, we show the estimated percent explained variance for the EOFs of the377

ocean-atmosphere coupled quasi-geostrophic system. The EOF modes are shown in Fig-378

ure 5, with each mode independently normalized to unit magnitude. The leading EOFs379

explaining most of the variance are related to the ocean temperature and the atmospheric380

streamfunction variables. We note that the last 8 EOFs, while explaining very little of381

the total variance, have a qualitatively di�erent pattern than the other modes, with a382

dominant component along the ocean streamfunction. Therefore, the di�erent basesB383

of EOFs that we have selected for the experiments are the following:384

� The �rst 12 EOFs, U1:12 , which account for the most signi�cant part of the vari-385

ability386

� The last 8 EOFs, U29:36 , which have a qualitatively di�erent pattern from the oth-387

ers388

� The remaining 16 EOFs,U13:28 , which display a more uniform distribution across389

the di�erent model �elds390

We shall somewhat arbitrarily divide the CLVs, adjoint CLVs, BLVs into 2 parts:391
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Figure 7. DSSS skill score summed over components at di�erent lead times for the case with-

out low-frequency variability. The lower the DSSS score, the better. The methods are sorted by

increasing total score value over all four components.

ensemble forecasts. Moreover, a decomposition of the observables in terms of the CLVs544

and the adjoint CLVs on the tangent linear space yields a similar structure as the one545

of the DMD decomposition, as shown in Appendix A, Section A3.546

Finally, we note that while the UNN adjoint CLVs yield reliable forecasts, the KM547

and PF eigenfunctions are similar in terms of performance but are much simpler and more548

straightforward to compute using the DMD algorithm. While the computation of the549

CLVs typically requires the integration of the tangent linear model over long time pe-550

riods, both forward and reverse in time, the KM and PF eigenfunctions can be computed551

from data produced either by numerical simulations, observational analysis products, or552

reanalysis products, requiring only an e�cient algorithm to perform the SVD decom-553

position.554
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Figure 11. Averaged angle in degrees between the Covariant Lyapunov Vectors (CLVs) and

the Dynamic Modes (DMDs), for: (a) the case without low-frequency variability and (b) the

case with low-frequency variability. The one standard deviation intervals are depicted by the

shaded area. The slow and fast exact DMD subspaces are spanned by the right eigenvectors vi

(the DMD modes), for respectively i ∈ {1, . . . , 16} and i ∈ {17, . . . , 36}, while the slow and fast

adjoint DMD subspaces are spanned by the left eigenvectors wi (the KM eigenfunctions), again

for respectively i ∈ {1, . . . , 16} and i ∈ {17, . . . , 36}. See Section 5 for an explanation of the

slow-fast separation on the modes and eigenfunctions. Note that due to the biorthormality rela-

tionship (31) between the vectors vi and wi, the slow exact DMD subspace is orthogonal to the

fast adjoint DMD subspace, while the fast exact DMD subspace is orthogonal to the slow adjoint

DMD subspace. The separation between the CLVs belonging to the UNN and stable subspace is

depicted by a vertical dashed line.
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Figure 12. Averaged angle in degrees between the adjoint Covariant Lyapunov Vectors (ad-

joint CLVs) and the Dynamic Modes (DMDs), for: (a) the case without low-frequency variability

and (b) the case with low-frequency variability. The one standard deviation intervals are depicted

by the shaded area. The slow and fast exact DMD subspaces are spanned by the right eigenvec-

tors vi (the DMD modes), for respectively i ∈ {1, . . . , 16} and i ∈ {17, . . . , 36}, while the slow

and fast adjoint DMD subspaces are spanned by the left eigenvectors wi (the KM eigenfunc-

tions), again for respectively i ∈ {1, . . . , 16} and i ∈ {17, . . . , 36}. See Section 5 for an explanation

of the slow-fast separation on the modes and eigenfunctions. Note that due to the biorthormality

relationship (31) between the vectors vi and wi, the slow exact DMD subspace is orthogonal to

the fast adjoint DMD subspace, while the fast exact DMD subspace is orthogonal to the slow

adjoint DMD subspace. The separation between the adjoint CLVs belonging to the UNN and

stable subspace is depicted by a vertical dashed line.
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7 Conclusions555

In this work, the impact of the choice of the initial perturbations on ensemble fore-556

casts of coupled ocean-atmosphere systems has been addressed by investigating a reduced-557

order coupled model. Different types of perturbations have been selected, including tra-558

ditional approaches like the Empirical Orthogonal Functions and the Lyapunov vectors,559

but also novel approaches based on the Dynamic Mode Decomposition which has been560

noted in recent years as a reasonable computational approximation of the modes and eigen-561

functions of the Koopman and Perron-Frobenius operators (Rowley et al., 2009; Tu et562

al., 2014). After a detailed analysis of the different definitions of the DMD modes that563

are found in the literature, their use as a basis for initializing ensemble forecasts was ex-564

plored.565

A key result is that projecting initial perturbations onto the fast-decaying KM eigen-566

functions and PF eigenfunctions – which refer here to linear approximations of the eigen-567

functions of the Koopman and Perron-Frobenius operators – provides reliable ensemble568

forecasts in the system at hand and at the considered lead times. This further suggests569

that these eigenfunctions are essential for providing reliable ensemble forecasts. More-570

over, they seems to be less sensitive to the model’s regime and local predictability than571

other methods. Another important result is the usefulness of the adjoint CLVs, which572

can be seen as eigenfunctions of the Koopman operator in the tangent space of the sys-573

tem trajectory. The adjoint CLVs also provide reliable ensemble forecasts. A key differ-574

ence between the KM and PK eigenfunctions and the adjoint CLVs lies in the fact that575

the former are defined globally over the attractor of the system, while the latter are lo-576

cal properties of the flow. In an operational setting, the adjoint CLVs would therefore577

be quite difficult to compute. On the other hand, it is straightforward to compute an578

estimate of the KM and PF eigenfunctions directly from data with the DMD method,579

which provides significant flexibility in their computation and use.580

This thought experiment should now be expanded in a more realistic setting by in-581

vestigating the use of these tools in intermediate order climate models. In this frame-582

work, a first research question is related to the validity of the DMD-estimated KM spec-583

trum of the systems being considered: In the present considered system, spectra that are584

clearly identifiable and separable were found. However, it is known that chaotic systems585

possess complicated spectra (Arbabi & Mezić, 2017; Mezić, 2020) which contains con-586

tinuous components. These complicated spectra might hamper the application of the present587

method to real datasets or to high-resolution models, the DMD analysis providing too588

few relevant patterns to work with. This will have to be investigated, notably in systems589

where the dimension is too high to apply the DMD method directly, and have thus to590

be reduced first.591

Another research question concerns the other sources of uncertainty affecting the592

ensemble forecasts. As previously noted, systematic errors in the forecast model share593

roughly equal importance with the specification of initial conditions in producing accu-594

rate and reliable forecasts. In an operational setting, it is important to take these sys-595

tematic model errors into account. A possible path forward is to evaluate the projection596

of assumed model errors onto the KM or PF eigenfunctions, and randomly perturbing597

the model in that direction. This question will be explored in the future in the context598

of the current model.599

Finally, a few important steps toward an operational implementation of the DMD600

approach are still needed: First to investigate the impact of data assimilation on the statis-601

tics of the initial error and their projections on the KM and PF eigenfunctions, and sec-602

ond to compare the DMD approach to the singular vector techniques that are often used603

for ensemble initialization and for the propagation of the error covariances, e.g. (Ehrendorfer604

& Tribbia, 1997). These steps are planned in a future investigation.605
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Appendix A Lyapunovs vectors (BLVs, CLVs, and their adjoints)620

In dynamical systems described by a set of ODEs like (1), vectors can be defined
to describe the local linear stability around its solutions. These vectors can be obtained
by considering the linearization of Eq. (1) around such a solution x(τ):

˙δx(τ) =
∂f

∂x

∣∣∣∣
x(τ)

δx(τ) (A1)

where ∂f/∂x is the Jacobian matrix of f . The solution of the linearized equation can
be formally written as

δx(t) = M(t, t0) δx0 , δx0 = δx(t0) (A2)

where M(t, t0) = ∇x(t0)φ
t−t0 is the fundamental matrix of solutions of the system (A1),621

i.e. the Jacobian matrix of the flow φt−t0 of (1), and is thus identified with the linear622

propagator that propagates the perturbations in the tangent space of x(τ) between the623

times t0 and t.624

A1 Osedelets splitting of the tangent space625

The Osedelets theorem (V. I. Oseledets, 1968; V. Oseledets, 2008) states that the

term
(
M(t, t0)M(t, t0)T

)1/(2(t−t0))
is well defined in the limit t0 →∞. Its eigenvectors

and the logarithm of its eigenvalues are respectively the Backward Lyapunov Vectors (BLVs)
ϕ−i (t) at the time t and the Lyapunov exponents σi of the system. The set of the Lya-
punov exponents is sometimes called the Lyapunov spectrum and is assumed here to be
sorted in decreasing order. The vectors ϕ−i (t) are orthogonal and span a set of subspaces

S−j (t) = span{ϕ−i (t)|i = 1, 2, . . . , j} (A3)

, j = 1, . . . , d

toward which any j-arbitrary volume Vj(t0) (dimVj(t0) = j) defined at a time t0 in the
far past converges under the action of the propagator6:

lim
t0→−∞

M(t, t0)Vj(t0) ⊂ S−j (t). (A4)

By construction, we have S−1 ⊂ S−2 ⊂ . . . ⊂ S−d−1 ⊂ S−d which is called a Osedelets
splitting of the tangent space at the time t (Kuptsov & Parlitz, 2012). The BLVs thus

6 For the sake of simplicity, we present here the case where there are no degenerate Lyapunov exponents

in the spectrum. The general case is presented in Kuptsov and Parlitz (2012).
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span and describe volumes of the tangent space that are reached asymptotically at a given
time by arbitrary volumes defined in the far past, and are thus preserved under the tan-
gent flow

M(t, t0)S−j (t0) = S−j (t). (A5)

Similarly, one can take the limit of the matrix
(
M(t, t0)TM(t, t0)

)1/(2(t−t0))
for t→

∞ and its eigenvectors are the Forward Lyapunov Vectors (FLVs) ϕ+
i (t). Its eigenval-

ues are also the Lyapunov exponents σi. The vectors ϕ+
i (t) are orthogonal as well and

span a set of subspaces

S+
j (t) = span{ϕ+

i (t)|i = j, j + 1, . . . , d} (A6)

, j = 1, . . . , d

toward which any arbitrary j-volume Vj(t) (dimVj(t) = j) defined at a time t in the
far future converges under the action of the time-reversed propagator:

lim
t→∞

M(t0, t)Vj(t) ⊂ S+
j (t0). (A7)

By construction, we have the sequence S+
d ⊂ S+

d−1 ⊂ . . . ⊂ S+
2 ⊂ S+

1 which forms an-
other Osedelets splitting of the tangent space at the time t0. The FLVs thus span and
describe volumes of the tangent space that are reached asymptotically7 at a given time
by arbitrary volumes defined in the far future. These volumes are thus preserved under
the time-reversed tangent flow

M(t0, t)S
+
j (t) = S+

j (t0). (A8)

A2 Covariant Lyapunov Vectors and their adjoint626

The Covariant Lyapunov Vectors (CLVs) are vectors ϕi such that when the lin-
ear propagator M is applied to them, one obtains

M(t, t0)ϕi(t0) = Λi(t, t0)ϕi(t). (A9)

and the linearized dynamics (A2) transports the CLVs from a time t0 onto the CLVs at
time t further downstream the trajectory x(τ) by multiplying by a stretching factor Λi (Gaspard,
2005; Kuptsov & Parlitz, 2012). The CLVs can thus be shown to be the solutions of the
equation

ϕ̇i(τ) =
∂f

∂x

∣∣∣∣
x(τ)

ϕi(τ)− χi(τ)ϕi(τ) (A10)

with

Λi(t, t0) = exp

{∫ t

t0

χi(τ) dτ

}
(A11)

where χi(τ) is the local stretching rate at time τ . The global Lyapunov exponents of the
system are recovered in the limit as t→∞,

σi = lim
t→∞

1

t
ln |Λi(t, t0)| = lim

t→∞

1

t

∫ t

t0

χi(τ) dτ. (A12)

By definition, each CLV lies at the intersection between the Osedelets subspaces S−j and

S+
j (Eckmann & Ruelle, 1985),

ϕj(t) ∈ S+
j (t) ∩ S−j (t). (A13)

7 Under the evolution of the time-reversed tangent flow.
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The linear propagator M can be decomposed in terms of the CLVs ϕi and their cor-
responding stretching factors Λi as

M(t, t0) =

d∑
i=1

ϕi(t)Λi(t, t0)ϕ̃T
i (t0) (A14)

where the vectors ϕ̃i are the adjoint Covariant Lyapunov Vectors satisfying the biorthonor-
mality relation with the CLVs:

ϕ̃T
i ϕj = δi,j (A15)

at any point of the phase space of the system (Gaspard, 2005). The adjoint CLVs are
solutions of the adjoint of Eq. (A10),

˙̃ϕi(τ) =
∂f

∂x

T
∣∣∣∣∣
x(τ)

ϕ̃i(τ)− χi(τ) ϕ̃i(τ) (A16)

and are covariant with respect to the adjoint dynamics,

G(t, t0) ϕ̃i(t0) = Λ−1
i (t, t0) ϕ̃i(t) (A17)

with G(t, t0) =
(
M(t, t0)−1

)T
, but they are multiplied by the inverse of the stretching

factor (Kuptsov & Parlitz, 2012). Note that both Eqs. (A9) and (A17) are time-reversible,
with the property imposed by Eq. (A11) that the stretching factors are inverted upon
time-reversal, Λi(t, t0) = Λ−1

i (t0, t). By definition, each adjoint CLV lies at the inter-
section between the adjoint Osedelets subspaces H+

j and H−j (Eckmann & Ruelle, 1985),

ϕ̃j(t) ∈ H+
j (t) ∩H−j (t). (A18)

which are preserved under the adjoint tangent flow.

G(t, t0)H+
j (t0) = H+

j (t), (A19)

G(t, t0)H−j (t0) = H−j (t). (A20)

These subspaces form Osedelets splittings of the tangent space as well,

H+
j (t) = span{ϕ+

i (t)|i = 1, 2, . . . , j} (A21)

H−j (t) = span{ϕ−i (t)|i = j, j + 1, . . . , d} (A22)

∀j = 1, . . . , d.

To summarize, the BLVs and FLVs can be interpreted as orthonormal basis of vec-627

tors defining volumes covariant with the dynamics, while the CLVs and adjoint CLVs628

define directions in the tangent space that are covariant with the dynamics.629

A3 Koopman operator of the tangent flow630

For a given observable g of a system like (1), the time-evolution starting at time
t0 = 0 of the observables in the neighborhood of a given state x0 can be approximated
by

Ktg(x0 + δx0) = g
(
φt(x0 + δx0)

)
≈ g

(
φt(x0) +

(
∇x0φ

t
)
δx0

)
≈ g

(
φt(x0)

)
+
(
∇φt(x0)g

)T (∇x0
φt
)
δx0

= g
(
φt(x0)

)
+
(
∇φt(x0)g

)T
M(t, 0) δx0 (A23)

On the other hand, one can naturally define a Koopman operator T tx0
on the tangent lin-

ear space of a given trajectory φt(x0), its expression being

T tx0
ḡ(δx) = ḡ(φ̄

t
x0

(δx)) = ḡ(M(t, 0) δx) (A24)
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where φ̄
t
x0

and ḡ are respectively the flow and an observable defined on the tangent lin-
ear space. The action of the Koopman operator Kt of the system (1) approximated by
Eq. (A23) in a neighborhood of x0 can thus be rewritten

Ktg(x0 + δx0) ≈ Ktg(x0) + T tx0
ḡ(δx0) (A25)

with ḡ(δx) =
(
∇φt(x0)g

)T
δx. Using the decomposition (A14), we get then:

T tx0
ḡ(δx0) =

d∑
i=1

(
∇φt(x0)g

)T
ϕi(t)Λi(t, 0)ϕ̃T

i (0) δx0 (A26)

and from this equation, one can see that similarly to the DMD left eigenvectors for the
Koopman operator Kt presented in section 4.3.2, the adjoint CLVs provide an analogy8

for the “eigenfunctions” of the first-order Koopman operator δKt, whose representation
is provided by the linear propagator M. Indeed, if one considers the functions

φTL
i (δx, t) = ϕ̃T

i (t) δx, (A27)

it is straightforward, using Eq. (A14), that

T sx0
φTL
i (δx, t) = ϕ̃T

i (t) M(t, s) δx

= Λi(t, s) ϕ̃
T
i (s) δx

= Λi(t, s)φ
TL
i (δx, s) (A28)

On the other hand, the CLVs span the space of the Koopman modes of the operator δKt,
and one can rewrite Eq. (A26) as

T tx0
ḡ(δx0) =

d∑
i=1

cTL
i (t) Λi(t, 0)φTL

i (δx0, 0) (A29)

which is analogous to Eqs. (21) and (34). However, note that since the time-evolution631

in the tangent space is given by a non-autonomous system (A1), both the functions (A27)632

and modes cTL
i (t) =

(
∇x(t)g

)T
ϕi(t) of this decomposition are time-dependent.633

Finally, due to the similarity between Eq. (A29) and Eq. (34), the discussion in Sec-634

tion 4.3.4 about ensemble projections remains appropriate here. Projecting an ensem-635

ble of initial conditions δxm0 on subspaces spanned by the adjoint CLVs and propagat-636

ing them is tantamount to projecting on invariant subspaces of the Koopman operator637

T tx0
.638
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Introduction

MSE, Spread and DSSS as a function of the forecast lead time: In this supplementary note, we show
some �gures depicting the time-evolution of the scores as a function of the forecast lead time. To recall �rst the
de�nition of these scores, let's consider a dynamical system

ẋ = f(x) (1)

and a set of n ensemble forecasts ym,n(t), m = 1, . . . ,M performed with it, M being the size of the ensembles. If

xn(t) is the �truth� corresponding to the nth forecast, then the MSE and the Spread of the forecasts are de�ned as

MSE(τ) =
1

N

N∑
n=1

‖xn(τ)− ȳn(τ)‖2

Spread2(τ) =
1

N

N∑
n=1

1

M − 1

M∑
m=1

∥∥ym,n(τ)− ȳn(τ)
∥∥2

where

ȳn(τ) =
1

M

M∑
m=1

ym,n(τ)

is the ensemble mean over the members ym,n(τ) of the nth ensemble forecast. f the Spread2 and the MSE are
close to one another, indicating that the estimated error is close to the true error, then the ensemble forecast is
considered reliable [Leutbecher and Palmer, 2008].
The bias-free univariate DSS for the nth ensemble forecast and the ith variable of the system can be written
as [Siegert et al., 2019]:

DSSn,i(τ) =
1

2
log(2π) +

1

2
log σ2n,i(τ)

+
1

2

M − 3

M − 1
(ȳn,i(τ)− xn,i(τ))2

/
σ2n,i(τ),

where σ2n,i is an estimator of the ith variable ensemble variance:

σ2n,i(τ) =
1

M − 1

M∑
m=1

|ym,n,i(τ)− ȳn,i(τ)|2.

This score can then be averaged over the N realizations:

DSSi(τ) =
1

N

N∑
n=1

DSSn,i(τ).
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The lower the DSS score, the more reliable the ensemble forecasts are for this particular variable.
In the context of the MAOOAM-VDDG ocean-atmosphere model considered in the paper, the Dawid-Sebastiani
Score (DSS) can be aggregated per component of the system:

DSSψa(τ) =

na∑
i=1

DSSψa,i
(τ)

DSSθa(τ) =

na∑
i=1

DSSθa,i(τ)

DSSψo(τ) =

no∑
i=1

DSSψo,i
(τ)

DSSθo(τ) =

no∑
i=1

DSSθo,i(τ).

where ψa and θa are respectively the streamfunction and temperature of the atmosphere, while ψo and θo are
respectively the streamfunction and temperature of the ocean.
Finally, considering several methods to obtain the ensemble forecasts, these aggregated score can be compared to
perfect ensemble forecasts with the Dawid-Sebastiani Skill Score (DSSS) that we de�ned as:

DSSSmethod
ψa

(τ) = 1−
DSSmethod

ψa
(τ)

DSSperfect
ψa

(τ)

DSSSmethod
θa (τ) = 1−

DSSmethod
θa (τ)

DSSperfect
θa

(τ)

DSSSmethod
ψo

(τ) = 1−
DSSmethod

ψo
(τ)

DSSperfect
ψo

(τ)

DSSSmethod
θo (τ) = 1−

DSSmethod
θo (τ)

DSSperfect
θo

(τ)

The smaller the DSSS, the better. A value of zero indicates that the considered method matches the perfect
ensemble reliability. On the other, a negative value of the DSSS would indicate that the method outperforms the
perfect one.
We consider in this supplementary the two di�erent model con�gurations mentioned in the paper, i.e. one with a
weak low-frequency variability (LFV), and one with a strong LFV. In the latter case, we distinguish between two
di�erent regions of the attractor: a chaotic region for θo,2 > 0.12 and a more "quiet" region for θo,2 < 0.08.

PFMD spectra: We also plot the PFMD1 spectra, to show that they are the same as the one obtained with
DMD and depicted in the paper.
More precisely, considering two collections of states of the dynamical system (1) X = [x0 . . .xK−1] and Y =
[x1 . . .xK ], the PFMD representation of the Perron-Frobenius operator is given by

MPFMD = AT(G+)T. (2)

where A = YX∗ and G = XX∗. The eigenvalues of the matrix MPFMD form then the above-mentioned spectrum.

1PFMD for Perron-Frobenius Modes Decomposition.
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1 Experiment the weak LFV

1.1 MSE and Spread as a function of the forecast lead time
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1.2 DSSS as a function of the forecast lead time
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2 Experiment the strong LFV

2.1 Case where θo,2 > 0.12

2.1.1 MSE and Spread as a function of the forecast lead time
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2.1.2 DSSS as a function of the forecast lead time
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2.2 Case where θo,2 < 0.08

2.2.1 MSE and Spread as a function of the forecast lead time
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2.2.2 DSSS as a function of the forecast lead time
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3 PFMD spectra

3.1 Experiment without LFV
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3.2 Experiment with LFV
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