
P
os
te
d
on

30
N
ov

20
22

—
C
C
-B

Y
-N

C
-N

D
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
8
03
1/
v
3
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Controlling the Propagation of Mechanical Discontinuity using

Reinforcement Learning

Yuteng Jin1,1,1 and Siddharth Misra1,1,1

1Texas A&M University

November 30, 2022

Abstract

Mechanical discontinuity embedded in a material plays an essential role in determining the bulk mechanical, physical, and

chemical properties. The ability to control mechanical discontinuity is relevant for industries dependent on natural, synthetic

and composite materials, e.g. construction, aerospace, oil and gas, ceramics, metal, and geothermal industries, to name a few.

The paper is a proof-of-concept development and deployment of a reinforcement learning framework to control the propagation

of mechanical discontinuity. The reinforcement learning framework is coupled with an OpenAI-Gym-based environment that

uses the mechanistic equation governing the propagation of mechanical discontinuity. Learning agent does not explicitly know

about the underlying physics of propagation of discontinuity; nonetheless, the learning agent can infer the control strategy by

continuously interacting the simulation environment. The Markov decision process, which includes state, action and reward,

had to be carefully designed to obtain a good control policy. The deep deterministic policy gradient (DDPG) algorithm

is implemented for learning continuous actions for the desired reinforcement learning. It is also observed that the training

efficiency is strongly determined by the formulation of reward function. An adaptive reward function involving reward shaping

improves the training. The reward function that forces the learning agent to stay on the shortest linear path between crack tip

and goal point performs much better than the reward function that aims to reach closest to the goal point in minimum number

of steps. After close to 500 training episodes, the reinforcement learning framework successfully controlled the propagation of

discontinuity in a material despite the complexity of the propagation pathway determined by multiple goal points.

1

1

Controlling the Propagation of Mechanical Discontinuity

using Reinforcement Learning

Yuteng Jin

Harold Vance Department of Petroleum Engineering, College of Engineering,

Texas A&M University, College Station, Texas, USA

Prof. Siddharth Misra, Ph.D.

Harold Vance Department of Petroleum Engineering, College of Engineering,

Texas A&M University, College Station, Texas, USA

Department of Geology and Geophysics, College of Geosciences, Texas A&M

University, College Station, Texas, USA

2

Abstract

Mechanical discontinuity embedded in a material plays an essential role in determining the

bulk mechanical, physical, and chemical properties. The ability to control mechanical

discontinuity is relevant for industries dependent on natural, synthetic and composite materials,

e.g. construction, aerospace, oil and gas, ceramics, metal, and geothermal industries, to name a

few. The paper is a proof-of-concept development and deployment of a reinforcement learning

framework to control the propagation of mechanical discontinuity. The reinforcement learning

framework is coupled with an OpenAI-Gym-based environment that uses the mechanistic equation

governing the propagation of mechanical discontinuity. Learning agent does not explicitly know

about the underlying physics of propagation of discontinuity; nonetheless, the learning agent can

infer the control strategy by continuously interacting the simulation environment. The Markov

decision process, which includes state, action and reward, had to be carefully designed to obtain a

good control policy. The deep deterministic policy gradient (DDPG) algorithm is implemented for

learning continuous actions for the desired reinforcement learning. It is also observed that the

training efficiency is strongly determined by the formulation of reward function. An adaptive

reward function involving reward shaping improves the training. The reward function that forces

the learning agent to stay on the shortest linear path between crack tip and goal point performs

much better than the reward function that aims to reach closest to the goal point in minimum

number of steps. After close to 500 training episodes, the reinforcement learning framework

successfully controlled the propagation of discontinuity in a material despite the complexity of the

propagation pathway determined by multiple goal points.

Keywords: Reinforcement learning; policy gradient; discontinuity; propagation; control

Introduction

Controlling Mechanical Discontinuity in Materials

Consider a homogeneous and linear-elastic solid material containing a mechanical

discontinuity (also referred as crack) of a specific size and geometry. When such a solid material

is subject to an increasing external force, the mechanical discontinuity will propagate inside the

solid material. The mechanical behavior of the discontinuity embedded in solid material is

characterized by the stress intensity factors 𝐾𝐼 , 𝐾𝐼𝐼 and 𝐾𝐼𝐼𝐼 . The three stress intensity factors

3

correspond to three crack opening modes. Mode I describes an opening mode due to the tensile

stress which is normal to the crack plane. Mode II describes a sliding mode due to the shear stress,

which is parallel to the crack plane and perpendicular to the crack front. Mode III describes a

tearing mode due to the shear stress, which is parallel to the crack plane and parallel to the crack

front (Perez, 2017). According to the principle of maximum circumferential stress proposed by

Erdogan and Sih (1963), the crack growth will occur at the crack tip once 𝐾𝐼 reaches the mode I

critical stress intensity factor/fracture toughness 𝐾𝐼𝐶, and the crack propagates toward a direction

which is perpendicular to the direction of greatest tension.

The ability to control mechanical discontinuity enhances the human understanding and

manipulation of the bulk mechanical, chemical and physical properties. For example, a control of

the subsurface fractures improve the production of natural gas and petroleum, the development of

engineered geothermal systems, and the long-term storage of CO2 (Pyrak-Nolte et al., 2015). The

control of propagation of mechanical discontinuity is an active research topic in various disciplines

dependent on natural, synthetic and composite materials, e.g. construction, aerospace, oil and gas,

ceramics, metal, and geothermal industries, to name a few.

Chen et al. (2019) found the fusion-bonded dots of the veil can be used to control the crack

propagation of veil interleaved composite. Haverkamp et al. (2021) controlled the adhesion crack

movement in a jamming-based switchable adhesive by dynamically controlling the rigidity

through an integrated jamming layer. Sugita et al. (2009) designed a cutting method for bone to

control the crack propagation and improve the surface roughness. Namazu et al. (2011) proposed

multiple ignition method to control the crack location and propagation direction in the Al/Ni

exothermic reaction during solder-bonding.

Several attempts have been made to control the propagation of mechanical discontinuity

within a solid body. Xu et al. (2009) made cracks propagate along the desired trajectories by

controlling the direction of an applied external point force. The crack propagation path was verified

using extended finite element method (XFEM). Cheng and Wang (2018) proposed a controllable

crack propagation strategy using back propagation neural network assisted particle swarm

optimization method with an efficient re-analysis based XFEM solver. The crack propagation was

controlled by arranging holes in the design domain. Cheng et al. (2018) performed experimental

and numerical analysis on the crack propagation control in directional hydraulic fracturing

4

technique. The influence of horizontal stress difference coefficient and hydraulic slotting deviation

angle on the crack propagation was investigated. Their result showed that the direction of crack

propagation can be redirected to the directional hydraulic fracturing zone formed by creating

internal slotting in the samples.

Reinforcement learning and its application

Reinforcement learning (RL) is a machine learning technique suited for sequential decision

making and control problems. In reinforcement learning, the learning agents continuously interact

with an external environment by taking actions, observing the state of the environment, and

receiving rewards based on the action and state, such that the agents learn from experience through

trial and error, i.e. exploration and exploitation. The goal of reinforcement learning is to enable an

agent to learn a control policy wherein optimal sequence of actions is carried out under uncertainty,

aiming to maximize the expected cumulative reward.

Unlike the supervised and unsupervised learning, reinforcement learning learns from

dynamic interaction (i.e. experience) with an environment without assuming independent and

identically distributed samples rather than processing a static training dataset. While the supervised

and unsupervised learning learn through a cost function, reinforcement learning take use of the

feedback from the environment (Li and Misra, 2021). Reinforcement learning can solve complex

problems, which is hard to be solved by traditional supervised learning methods. During the

training stage, the RL agents learn to correct errors in the control strategy and improve the learning

through the feedback obtained from the environment. Once the error is corrected, it is unlikely for

the RL agents to make the same error, so the RL agents can progressively learn to better control

the system. While continuously interacting with the environment, the RL agents aim to learn the

optimal/ideal control policy for a particular problem by focusing on the long-term reward and

balancing exploration and exploitation, whereas the supervised and unsupervised learning aim to

learn certain representations by exploiting the existing dataset (Li and Misra, 2021). In this regard,

the reinforcement learning process is closer to the learning behavior of animals. In many tasks like

the Atari games and the game of Go, reinforcement learning has outperformed human experts.

Computationally tractable training of the reinforcement learning is not easy. Several training

episodes are required for the RL agent to find the optimal policy, and the training parameters need

to be carefully tuned to promote a fast and precise training process. Like other machine learning

5

methods, poorly designed reinforcement learning suffers from overfitting (Zhang et al., 2018).

The reinforcement learning models the continuous interaction with environment as a Markov

decision process (MDP), where the next state of the environment depends only on the current state

of the environment and the action taken by the agent. The MDP assumption is useful for modeling

many real-world sequential decision-making problems because it eliminates the need for storing

the entire history of states and actions, which tremendously reduce the memory and computation

requirement. However, the MDP assumption is not necessarily true for all systems and processes.

Moreover, according to Kober et al. (2013), reinforcement learning suffers from the following

disadvantages: (1) Curse of dimensionality, wherein the number of interactions with the

environment required for training grows exponentially as the dimension of state space increases;

(2) Curse of real-world samples, wherein the physical environment presents several challenges,

such as time discretization, delays in sensing and actuation, uncertainty in measurement,

disturbance in the environment, inability to observe all states, time, labor and maintenance cost,

safety concerns, and external factors, that limit the behavior of reinforcement learning; (3) Curse

of under-modeling and model uncertainty when using a digital simulator as the environment is

challenging in light of the difficulty in building a sufficiently accurate model when there exist

complex mechanical interactions. The control policy learned from a simulated environment often

performs poorly in real world, especially when the system is unstable where small variations can

cause drastic divergences; (4) Curse of goal specification occurs when it is difficult to define a

proper reward function and there exists trade-offs between the complexity of the reward function

and the complexity of the learning problem.

There are several model-free reinforcement learning (RL) based on the approach of learning

the optimal control policy. On-policy learning algorithms enable the RL agents to learn the value

of a policy based on the policy itself. Every visit Monte Carlo algorithm and state–action–reward–

state–action (SARSA) algorithm are examples of on-policy learning algorithms suitable for

discrete state and action space. Trust region policy optimization (TRPO) algorithm (Schulman et

al., 2015), asynchronous advantage actor-critic (A3C) algorithm (Mnih et al., 2016), and proximal

policy optimization (PPO) algorithm (Schulman et al., 2017) are on-policy learning algorithms

suitable for continuous state and action space. As for off-policy learning algorithms, where the RL

agents evaluate a policy using the experience gathered by following different policies, Q-learning

algorithm was developed for discrete state and action space. By replacing the Q table in Q-learning

6

with deep neural network as function approximator, the deep Q network (DQN) algorithm can deal

with continuous state space but the action space remains discrete (Mnih et al., 2015). By

combining the deterministic policy gradient method and actor-critic approach, deep deterministic

policy gradient (DDPG) algorithm is suitable for problems with continuous state and action space

(Lillicrap et al., 2015).

Reinforcement learning is widely applied in the control problems like self-driving (Kendall

et al., 2019), trajectory tracking (Choi et al., 2017), robot controlling (Kumar and Sharma, 2018),

object detection (Thornton et al., 2020), active flow controlling (Rabault et al., 2018; Ren et al.,

2020), and aerospace engineering (Peng and Ma, 2021). Some of the applications are in the oil &

gas industry. A predictive control model with reinforcement learning was developed by Talavera

et al. (2010) to control the oil production from a petroleum reservoir. Their model was capable of

controlling oil production even with disturbances in the producing well. Wu et al. (2018)

developed a comprehensive control system where they used a DQN-based reinforcement learning

algorithm to jointly control the valve opening, furnace temperature, and pump pressure to avoid

wax formation in the crude oil gathering pipe. Recently, reinforcement learning is being applied

in the petroleum engineering domain, especially on reservoir optimization and production

forecasting problems. Hourfar et al. (2019) introduced an approach based on reinforcement

learning for managing and optimizing the waterflooding process in the oil reservoirs. Ma et al.

(2019) applied several reinforcement learning algorithms on the waterflooding optimization

problem to find the optimal water injection rate under geological uncertainties. Their work was

extended by Miftakhov et al. (2020), who trained a reinforcement learning agent that is capable

of controlling the injection rate to maximize the net present value of waterflooding by using only

pixel data. Meanwhile, Guevara et al. (2018) implemented the SARSA reinforcement learning

algorithm to optimize steam injection in heavy oil reservoirs. Li and Misra (2021) developed a

reinforcement-learning-based automated history matching technique based on the DDPG

algorithm to improve the forecast of hydrocarbon production.

Novelty and significance of the work

The paper is a proof-of-concept development and deployment of a reinforcement learning

framework capable of controlling the propagation of mechanical discontinuity. There does not

exist any prior work on using reinforcement learning or other alternatives for robust control of

7

mechanical discontinuity. To ensure computational tractability of this proof-of-concept

development, we assumed a 2D material containing one slow-propagating piecewise linear

mechanical discontinuity. In addition, the learning agent trains by interacting with a simulation

environment, which implements one mechanistic equation that models the propagation of the

discontinuity in a 2D material under biaxial stress. Learning agent does not explicitly know about

the underlying physics of propagation of discontinuity; nonetheless, the learning agent can infer

the control strategy by continuously interacting the numerical simulation within a training

environment, based on the OpenAI Gym environment.

The following fundamental questions are investigated and answered in this paper:

 Can reinforcement learning be used to control the propagation of mechanical discontinuity?

 Does the deep deterministic policy gradient (DDPG) algorithm ensure a robust

reinforcement-learning-based control of discontinuity?

 What should be the parameters (state, action, reward) of the Markov decision process

(MDP) for the reinforcement-learning-based control of discontinuity? How can the MDP

be properly defined using a numerical simulator?

 How does the design of reward function affect the training outcome and efficiency of the

reinforcement-learning-based control of discontinuity?

8

Figure 1. Illustration of the DDPG algorithm developed by Lillicrap et al. (2015) that is adapted and

modified for the proposed reinforcement-learning-based control of mechanical discontinuity. (a) The

interaction between the RL agent and environment and the use of replay buffer. (b) The procedure for

updating the critic network. (c) The procedure for updating the actor network. In the subplots (b) and (c),

the parameter in the bracket indicates that it is sampled from the replay buffer.

Methodology

Reinforcement learning algorithm

In this paper, we use the DDPG algorithm, which was developed by Lillicrap et al. (2015).

DDPG algorithm uses deep neural network as function approximator to estimate action-value (Q-

value) function. Q-value evaluates the goodness of the control policy. Q-value is the expected

reward after taking a specific action for a specific state and thereafter following that policy. DDPG

is a model-free, off-policy actor-critic algorithm based on the deterministic policy gradient (DPG)

method. It can learn policies in high-dimensional, continuous action spaces and can solve problems

with high-dimensional, continuous observation spaces. This makes it an ideal reinforcement

9

learning algorithm for the crack-propagation control problem investigated in this paper. The

DDPG algorithm is illustrated in Figure 1 and explained in the following paragraphs. Expected

return is also known as expected cumulative discounted future rewards.

As shown in Figure 1(a), within the same episode, for each time step 𝑡, the actor network

𝜇(𝑠|𝜃𝜇) predicts an action 𝑎𝑡 that should be taken given the current state 𝑠𝑡, where the parameter

𝜃 represents the weights in the deep neural network and the superscript 𝜇 denotes the actor

network. The systematic learning of the optimal control policy includes an update in the weigths

of the connections in the actor network 𝜃𝜇 . The action is selected by adding an Ornstein-

Uhlenbeck noise 𝒩𝑡 (Uhlenbeck and Ornstein, 1930) to the prediction. The random noise 𝒩 is

reinitialized at the beginning of each episode to control the balance between exploration and

exploitation. After the RL agent is trained, the noise will be removed during the deployment stage.

Given 𝑠𝑡 and 𝑎𝑡 , the RL environment returns the reward value 𝑟𝑡 and the next state 𝑠𝑡+1. The

transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) is then stored in a replay buffer 𝑅. For each time step, a minibatch of

𝑁=20 transitions (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) are sampled from 𝑅 to update the weights of connections in the

critic and actor network, where the subscript 𝑖 denotes each transition in the minibatch selected

from the replay buffer. The assumption of independently and identically distributed samples in

reinforcement learning no longer holds if the samples are generated from exploring sequentially

in the environment. The use of replay buffer breaks the temporal correlations between the samples

and make sure that rare experiences are used more than once, which significantly enhances the

performance of reinforcement learning.

Figure 1(b) shows the procedure for updating the weights of connections in the critic

network 𝑄(𝑠, 𝑎|𝜃𝑄), where the superscript 𝑄 denotes the critic network. The critic network aims

to predict the action-value (Q-value) 𝑄𝑖, which represents the expected value of an action 𝑎𝑖 taken

at state 𝑠𝑖 . The critic network is updated by minimizing the mean squared loss 𝐿, so that its

prediction 𝑄𝑖 is close to the moving target 𝑦𝑖. The difference between the prediction 𝑄𝑖 and the

moving target 𝑦𝑖 is also called temporal difference (TD) error and the moving target 𝑦𝑖 is also

known as TD target. The loss 𝐿 is defined as

𝐿 =
1

𝑁
∑(𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))
2

𝑁

𝑖

(1)

10

The moving target 𝑦𝑖 is the expected cumulative reward as indicated by the target critic network

𝑄′(𝑠, 𝑎|𝜃𝑄′
) calculated as

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇′
)|𝜃𝑄′

) (2)

where 𝑄′ denotes the target critic network and 𝜇′ denotes the target actor network. The target critic

network predicts the Q-value 𝑄𝑖+1
′ with respect to the next state 𝑠𝑖+1 and the action 𝑎𝑖+1

′ , which is

predicted by the target actor network 𝜇′(𝑠|𝜃𝜇′
) given the next state 𝑠𝑖+1. 𝛾 is a discount factor for

future rewards. The use of target networks enhances the learning stability in the cost of learning

speed.

Figure 1(c) shows the procedure for updating the actor network. The actor network

represents the current deterministic policy by mapping the state to the specific action

deterministically. The actor network is updated using the policy gradient theorem, so that the

action it predicts given the current state 𝑠𝑖 leads to a high Q-value 𝑄𝑖 as predicted by the critic

network. The following equation describes the sampled policy gradient (implies that the gradient

is calculated based on the samples drawn from the replay buffer) to update the actor network:

∇𝜃𝜇𝐽 ≈
1

𝑁
∑ ((∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖|𝜃𝜇))(∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠=𝑠𝑖

))

𝑁

𝑖

(3)

where 𝐽 denotes the expected return from the start distribution/state. In this paper, the weight

updates for critic and actor networks are accomplished in the Tensorflow with Adam optimizer.

The initial weights for the target critic/actor networks are the same as the critic/actor networks.

For each time step, both the target networks are updated slowly (also referred to as “soft” update)

according to rate 𝜏, where 𝜏 ≪ 1:

𝜃𝑄′
= 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

(4)

𝜃𝜇′
= 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

(5)

It is observed that Q learning with neural networks tends to be unstable. The use of soft update

ensures stability in learning by making the moving target 𝑦𝑖 change slowly. Q-learning finds an

optimal policy in the sense of maximizing the expected value of the total reward over any and all

successive steps, starting from the current state.

11

Architectures of the actor and critic networks

Figure 2. Architecture of the actor network that predicts an action 𝑎𝑡 that should be taken given the

current state 𝑠𝑡. Bias units are not shown in this architecture. The inputs to the network are the x and y

coordinates of the goal point and the x and y coordinates of the current tip of the propagating

discontinuity. The network generates the action that includes the stress ratio 𝛼 and the stress angle 𝛽.

Figure 3. Architecture of the critic network that predicts to predict the action-value (Q-value) 𝑄𝑖, which

represents the expected return after taking action 𝑎𝑖 at state 𝑠𝑖, where i represents a transition from the

minibatch of 𝑁 transitions selected from the replay buffer. Bias units are not shown in this architecture.

Four of the six inputs of the critic network are similar to the actor network, the remaining two of the six

inputs are the stress ratio 𝛼 and the stress angle 𝛽.

12

Four deep neural networks are used as the learning agents in the reinforcement learning

framework: actor network 𝜇 , target actor network 𝜇′ , function approximator for the Q-value

function, referred as the critic network 𝑄, and target critic network 𝑄′. In this paper, the neural

networks were built in the Keras platform. Figure 2 and Figure 3 depicts the architectures of the

actor and critic networks, respectively. The target critic/actor networks have the same architecture

as the critic/actor networks with the same initial weights. The weights of target networks are

updated as shown in equations 4 and 5. The actor network takes state (xtip, ytip, xgoal, ygoal) as input

and then deterministically computes the specific action (𝛼, 𝛽), while the critic network takes both

the state and action (𝛼, 𝛽) as inputs and then computes a scalar Q-value. The “tanh” activation is

used in the output layer in the actor network to bound the action to ensure the action is within a

proper range, no activation is used in the output layer in the critic network, whereas all the other

layers in both networks use the “ReLU” activation.

Figure 4. Three distinct and independent propagation paths in a 2D infinite material for the 3 different

training episodes. The reinforcement learning scheme will train the learning agents to control the

propagation of mechanical discontinuity to track each of the 3 paths during each training episode. The

propagation of discontinuity is under the influence of step-wise varying biaxial stress field in the 2D

infinite material. The propagation of discontinuity starts from the center. The reinforcement learning

agent needs to learn to control the stress ratio 𝛼 and the stress angle 𝛽, so that the discontinuity can track

the 10 discrete goal points, which a symmetrical across the center of the initial location of discontinuity.

13

Simulation environment used by the learning agents

The training environment was specifically developed for the propagation of discontinuity in

an infinite 2D material under biaxial stress field based on the OpenAI Gym environment. In these

trainings, the crack propagation starts from the middle of an infinite plate containing a small

slanted initial crack in a biaxial stress field, as shown in Figure 4. The initial crack half-length is

𝑙. The two perpendicular stresses are denoted as 𝜎 and 𝛼𝜎, respectively. The angle between initial

crack and the direction of stress 𝛼𝜎 is 𝛽. The crack environment is centrosymmetric at (0, 0). The

stress 𝜎 is kept constant as 100MPa throughout the simulation, while the stress 𝛼𝜎 varies by

controlling the ratio 𝛼. We assume the crack will propagate under this stress magnitude. The initial

locations of the crack tips are (0.1, 0.1) and (−0.1, −0.1). Reinforcement learning agent will need

to learn to control the stress ratio 𝛼 and the stress angle 𝛽, so that the propagating crack can track

any 10 pre-defined discrete goal points. For each episode of training the RL agent, first a random

desired crack-propagation path comprising 10 goal points is predefined prior to learning. The

crack-propagation path comprises 10 randomly selected goal points. The RL agent needs to learn

to track the 10 goal points within one episode containing at most 25 training steps.

As shown in the propagation paths for the 3 random training episodes in Figure 4, the desired

crack path are symmetric with respect to the location of the initial crack center (i.e. the origin).

Initially, as the RL agent performs an action by selecting optimal values of stress ratio 𝛼 and stress

angle 𝛽 based on current state, the crack propagates toward the first goal point. Once the first goal

point is reached within a certain error margin, the crack will propagate toward the second goal

point. The learning episode ends when all the goal points are reached with a certain error margin

or when a total of 25 training steps are complete (for reward function 1) or when the crack

propagates in the opposite direction of the current goal point (for reward function 2). The current

state of the environment that is accessible to the RL agent is the location of propagating crack tip

and the location of the current goal point along the desired path. Each episode of learning focuses

on controlling crack propagation along a randomly chosen crack path, as predefined by the 10

discrete points shown in Figure 4. Each episode poses a different crack path to the learning agent.

We observe that the RL agent learns to perfectly control the crack propagation in less than 500

learning episodes. This will be shown in subsequent figures.

14

The state space 𝒮 = ℝ4 because the plate is assumed to be infinite. The reinforcement

learning agent will learn to control the crack to propagate along the desired path by manipulating

the stress ratio 𝛼 and the stress angle 𝛽. The action space 𝒜 of 𝛼 is [−2, 2] and that of 𝛽 is [−90°,

90°]. The mechanistic equation governing the crack propagation is coupled within the environment.

RL agent interacts with the environment by checking the current state, taking an action, and

receiving a reward. All this is designed to mimic a real-world scenario where the learning agent

learns by interacting with a solid material containing a single embedded crack.

Assuming a quasi-static crack growth where the dynamic effects like wave propagation does

not affect the crack propagation, the crack propagation angle 𝜃𝑝 is calculated as (Patricio and

Mattheij, 2007)

𝜃𝑝 = 2 tan−1 (
𝐾𝐼 − √𝐾𝐼

2 + 8𝐾𝐼𝐼
2

4𝐾𝐼𝐼
) (6)

where the mode I and II stress intensity factors are expressed as (Sih et al., 1962)

𝐾𝐼 = 𝜎√𝜋𝑎(cos2 𝛽 + 𝛼 sin2 𝛽) (7)

𝐾𝐼𝐼 = 𝜎√𝜋𝑎(1 − 𝛼) sin 𝛽 cos 𝛽 (8)

For each time step, the crack propagates by a fixed length Δ𝑙 = 0.0667. This is a big assumption

that needs to be addressed in the future work. We consider the goal point is reached when the

distance between crack tip and the goal point is less than Δ𝑙. The RL scheme needs to control the

𝛼 and 𝛽 at each time step such that the discontinuity propagates at various propagation angle 𝜃𝑝

slowly moving closer to the desired goal point.

Tuning parameters to optimize the reinforcement-learning based control

Table 1 summarizes the tuning parameters used during the training stage. The exploration

noise is not a tuning parameter. The RL agent can learn to successfully accomplish the task without

the help of exploration noise, as shown in the results section. The use of exploration noise will

take extra time and computational resource; therefore, it is not used in this paper. The actor/critic

network learning rate and target networks update rate are chosen to achieve a stable training. The

discount factor represents the importance of future rewards. A higher discount factor indicates the

future reward is more important. The capacity of replay buffer defines the maximum number of

15

transitions stored. A larger capacity will typically result in a wider range of experience which

benefits the stability of training, but it takes longer time to be refreshed with good/new control

policy. The minibatch size define the number of transitions used to update the networks at each

step taken by the RL agent.

Table 1. Tuning parameters of the deep neural networks during the training stage.

Parameter Value

Actor network learning rate 0.00005

Critic network learning rate 0.001

Target networks update rate 𝜏 0.005

Discount factor 𝛾 0.5

Capacity of replay buffer 𝑅 10000

Minibatch size 𝑁 64

Total training episodes 2000

Reward Functions

The design of the reward function determines the effectiveness of training. A reward that

adapts during the learning steps through reward shaping helps the agent to quickly and correctly

converge to the desired policy. Such adaptive rewards are better as compared to binary reward that

only marks success or failure (Ng et al., 1999). The process of reward shaping is equivalent to

learning in a more informative environment (Laud, 2004). In this paper, we demonstrate two ways

of constructing the reward function that are provided to the learning agents based on the new state

and the current action and state. We will also discuss the impact of the reward function on the

training results. Both reward functions are designed such that the RL agent needs to learn the

optimal policy that maximizes the total reward (as less negative as possible). In our formulation,

small negative reward indicates robust control, whereas large negative reward represents poor

control.

Reward function 1 is formulated as follows: For each step, the RL agent receives a reward

of −10. The more steps the agent takes to reach a goal point, the more negative reward the agent

earns, which is not optimal for the desired control. When the current goal point is reached within

a certain error margin, the RL agent will receive an additional reward of 30−200𝑑1, where 𝑑1 is

the distance between crack tip and the current goal point. This ensures a larger reward when the

goal point is reached as close as possible in limited number of steps. Compared to the reward

16

function 2, reward function 1 tries to minimize the number of steps to reach a goal point as close

as possible. Reward function provides only the information of the location of the current goal point

with respect to crack tip at the end of the training episode.

Reward function 2 is formulated as follows: For each step taken, the reward is −1000𝑑2,

where 𝑑2 is the distance between crack tip and the current-optimal path, which is the straight line

connecting the crack tip before taking the step and the current goal point. Reward function 2

penalizes the crack for deviating from the desired path by forcing the agent to stay on the shortest

linear path at each step in the training episode. Compared to the reward function 1, the reward

function 2 provides the information of the current-optimal path and the location of the goal point

at each step of training.

Results and Discussions

Reinforcement-learning based control of discontinuity using reward function 1

 This section shows the RL control of discontinuity using reward function 1. Each learning

episode ends after 25 steps, or when all the 10 goal points are reached in less than 25 steps. During

each episode, the learning agent can take at the most 25 sequential actions that lead to the tracking

of the predefined crack path. Figure 5 shows the early-stage training results. As a reminder, each

episode poses a different crack path to the learning agent. At episode 50, the crack simply

propagated without honoring the desired path. The learning agent did not know how to adjust the

actions, accordingly, as demonstrated by the lack of variance in the action sequence. At episode

150, it learnt to follow the goal points but still missed the extreme goals point. At episode 220, it

reached all the goal points but the propagation path is tortuous. Figure 6 shows the late-stage

training results. It can be seen that the agent successfully learnt to control the propagation of crack

to reach all the 10 goal points sequentially. Notably, the number of training steps in each learning

episode is much smaller than 25 during the late learning episodes. The reward received for each

episode during training is shown in Figure 7. It shows that the RL agent was able to accomplish

the controlled crack propagation task after about 200 episodes of training. However, no more

obvious improvements can be observed from episode 200 to 2000.

17

Figure 5. The crack propagation paths (left) and corresponding actions (right) taken by the RL agent at

randomly selected early stages of training (episodes 50, 150 and 220). RL agent uses reward function 1

for the desired control. The discrete dotted points on left show predefined discrete goal points that the

crack propagation need to track. The crack propagation initiates at the center. A successful control

requires the propagating crack to touch each of the 10 discrete goal points per crack path. RL agent’s

action includes an optimal selection of stress ratio 𝛼 [−2, 2] and stress angle 𝛽 [−90°, 90°]. RL agent

during early learning episodes is not able to take actions to perfectly track the predefined crack path.

Figure 6. The crack propagation paths (left) and corresponding actions (right) taken by the RL agent at

randomly selected early stages of training (episodes 730, 840 and 950). RL agent uses reward function 1

for the desired control. The discrete dotted points on left show predefined discrete goal points that the

crack propagation need to track. The crack propagation initiates at the center. A successful control

requires the propagating crack to touch each of the 10 discrete goal points per crack path. RL agent during

late learning episodes is able to take actions that result in perfect tracking of the predefined crack path.

18

Figure 7. Reward history received by the RL agent when using reward function 1. The reinforcement-

learning-based control is achieved in less than 300 learning episodes. The entire training process of 2000

episodes takes 145 seconds on an Intel® Xeon® E5-1650 v3 CPU. The reward does not improve with the

increase in learning episodes. The rewards are small negative values during the early training episodes.

Reinforcement-learning based control of discontinuity using reward function 2

This section shows the RL control of discontinuity using reward function 2. The episode

ends when the crack reaches all the 10 goal points with a certain error margin or when the crack

propagates in the opposite direction of the current goal point. The early-stage and late-stage

training results are shown in Figure 8 and Figure 9, respectively. We used the same seed for

random number generator to ensure that for each episode, the locations of the goal points are the

same as that in the previous case when testing the reward function 1. This helps us compare the

training efficiency between using the two different reward functions in a more convenient way. At

the early stage of training, the episode quickly ended because the crack propagated to the

unfavorable direction. The RL agent was able to control the propagation of crack along the desired

path at the late stage of training. Figure 10 shows the reward received for each episode during

training. As we can see, the RL agent is able to control the crack propagation in less than 500

learning episodes. Notably, the reward improves gradually with the learning episodes, because the

information of the current-optimal path is provided to the learning agent. By using reward function

2, the agent receives a more accurate reward signal for each step taken, in such a way that it no

longer need to find but instead follow the path. Such an improvement was not seen for reward

function 1.

19

Figure 8. The crack propagation paths (left) and corresponding actions (right) taken by the RL agent at

randomly selected early stages of training (episodes 50, 150 and 220). RL agent uses reward function 2

for the desired control. RL agent during early learning episodes is not able to take actions to perfectly

track the predefined crack path. The early performance using reward function 2 is worse than the reward

function 1.

Figure 9. The crack propagation paths (left) and corresponding actions (right) taken by the RL agent at

randomly selected early stages of training (episodes 730, 840 and 950). RL agent uses reward function 2

for the desired control. RL agent during late learning episodes is able to take actions that result in perfect

tracking of the predefined crack path.

20

Figure 10. Reward history received by the RL agent when using reward function 2. The reinforcement-

learning-based control is achieved in less than 500 learning episodes. The entire training process of 2000

episodes takes 122 seconds on an Intel® Xeon® E5-1650 v3 CPU. Notably, the reward improves with the

increase in learning episodes.

Limitations

The training is performed in a self-created environment by coupling a simple 2D governing

equation, which may not be accurate for modelling the complex propagation of discontinuity in

complex heterogeneous materials. The development of reinforcement learning environment and

framework, including the design of reward function and the selection of training parameters, are

highly specialized for this particular task of controlling the mechanical discontinuity. A more

generalized environment/framework will be hard to design. The proposed propagation is under

biaxial stress field in an infinite material.

Future Works

The DDPG reinforcement learning algorithm is proved to be robust for controlling the

propagation of mechanical discontinuity. For the next step, we are planning to couple the DDPG

algorithm with commercial software (e.g. Abaqus) that is capable of modeling crack propagation

in realistic materials under external stresses. By the combination of reinforcement learning

technique and industry-acknowledged software, it would provide more guidance and insights into

the application of reinforcement learning in various engineering disciplines.

21

Conclusions

The paper is a proof-of-concept development and deployment of a reinforcement learning

framework to control the propagation of mechanical discontinuity embedded in a homogeneous,

planar material in a biaxial stress field. To that end, we adapt the deep deterministic policy gradient

(DDPG) algorithm and develop robust reward functions. The reinforcement learning scheme

learns to control the propagation of mechanical discontinuity by interacting with a simulated

environment based on the OpenAI Gym environment and adaptively changing two engineering

parameters, namely, stress ratio and stress angle. The Markov decision process, which includes

state, action and reward, must be carefully designed so that the reinforcement learning framework

can learn an optimal, computational tractable, control policy. The state is defined the location of

propagating crack tip and the location of the current goal point along the desired path.

The key for robust and accurate control is the design of a good reward function. Reward

function 1 encourages the crack to reach the goal points as close as possible in limited number of

steps. Reward function 2 penalizes the crack for deviating from the desired path by forcing the

agent to stay on the shortest linear path. Compared with reward function 1, the reward function 2

provides the information of the shortest linear path, which is the straight line connecting the crack

tip before taking the step and the current goal point. The RL agent was successfully trained to

accomplish the controlled crack propagation task using both designs of reward function. The

training using reward function 1 required less episodes, but the improvements saturated after

certain number of training episodes. On the other hand, the use of reward function 2 required more

training episodes, but the training behavior gradually improved with the training episode because

a more accurate reward signal is provided to the learning agent for each step taken. The reward

function that forces the learning agent to stay on the shortest linear path between crack tip and goal

point performs much better than the reward function that aims to reach closest to the goal point in

minimum number of steps

22

Acknowledgment

This material is based upon work supported by the U.S. Department of Energy, Office of

Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences

Division under the Award Number DE-SC0020675.

23

Nomenclature

Acronyms

A3C = asynchronous advantage actor-critic

DDPG = deep deterministic policy gradient

DPG = deterministic policy gradient

DQN = deep Q network

MDP = Markov decision process

PPO = proximal policy optimization

RL = reinforcement learning

SARSA = state–action–reward–state–action

TD = temporal difference

TRPO = trust region policy optimization

XFEM = extended finite element method

Symbols

𝑎 = action

𝒜 = action space

𝛼 = stress ratio

𝛽 = stress angle

𝑑1 = distance between crack tip and the current goal point

𝑑2 = distance between crack tip and the current optimal path

Δ𝑙 = crack propagation length at each time step

𝛾 = discount factor

𝐽 = expected return from the start distribution

𝐾𝐼, 𝐾𝐼𝐼, 𝐾𝐼𝐼𝐼 = mode I, II, III stress intensity factors

𝐾𝐼𝐶 = mode I critical stress intensity factor/fracture toughness

𝑙 = crack half-length

𝐿 = mean squared loss

𝜇(𝑠|𝜃𝜇) = actor network

𝜇′(𝑠|𝜃𝜇′
) = target actor network

𝑁 = minibatch size

𝒩 = Ornstein-Uhlenbeck noise

𝑄 = action-value (Q-value)

𝑄(𝑠, 𝑎|𝜃𝑄) = critic network

𝑄′(𝑠, 𝑎|𝜃𝑄′
) = target critic network

𝑟 = reward

𝑅 = replay buffer

𝑠 = state

𝒮 = state space

𝜎 = stress

𝜏 = target networks update rate

𝜃 = weights in the deep neural network

𝜃𝑝 = crack propagation angle

𝑦 = moving target (TD target)

24

Subscripts

𝑖 = denotes each transition selected from the replay buffer

𝑡 = denotes time step

Superscripts

′ = denotes target networks

𝜇 = denotes actor network

𝜇′ = denotes target actor network

𝑄 = denotes critic network

𝑄′ = denotes target critic network

25

Appendix

1. Difference between reward function 1 and 2:

 Reward function 1 provides only the information of the location of the current goal

point. The agent trained using this reward function is expected to explore and find the

optimal path.

 Reward function 2 provides the information of the current-optimal path, which is the

straight line connecting the crack tip before taking the step and the current goal point.

The agent trained using this reward function is expected to follow the current-optimal

path.

2. For episodes 730, 840 and 950, a comparison of crack path and sequence of stress ratio 𝛼

using reward function 1 and 2 is shown in Figure A1, a comparison of crack path and

sequence of stress angle 𝛽 using reward function 1 and 2 is shown in Figure A2.

Figure A1. Comparison of crack path and sequence of stress ratio 𝛼 using reward function 1 and 2.

26

Figure A2. Comparison of crack path and sequence of stress angle 𝛽 using reward function 1 and 2.

3. The main challenges encountered during developing this paper are as follows:

 What should be the state seen by the RL agent? Should we use location, distance, or

azimuth angle? Should we include any directional information? Should we provide the

RL agent the locations of all the 10 goal points at the very beginning, or provide them

one-by-one as crack propagates?

 What should be a proper design of the reward function? Should we use a binary reward

or a reward that that adapts during the learning steps?

 How to properly tune the parameters?

27

References

Chen, Guangchang, Zhang, Jindong, Liu, Gang, Chen, Puhui & Guo, Miaocai 2019. Controlling

the crack propagation path of the veil interleaved composite by fusion-bonded dots.

Polymers, 11, 1260.

Cheng, Yugang, Lu, Yiyu, Ge, Zhaolong, Cheng, Liang, Zheng, Jingwei & Zhang, Wenfeng 2018.

Experimental study on crack propagation control and mechanism analysis of directional

hydraulic fracturing. Fuel, 218, 316-324.

Cheng, Zhenxing & Wang, Hu 2018. How to control the crack to propagate along the specified

path feasibly? Computer Methods in Applied Mechanics Engineering, 336, 554-577.

Choi, Seungwon, Kim, Suseong & Kim, H Jin 2017. Inverse reinforcement learning control for

trajectory tracking of a multirotor UAV. International Journal of Control, Automation

Systems, 15, 1826-1834.

Erdogan, Fazil & Sih, Gc 1963. On the crack extension in plates under plane loading and transverse

shear. Journal of Fluids Engineering.

Guevara, Jl, Patel, Rajan G & Trivedi, Japan J. Optimization of Steam Injection for Heavy Oil

Reservoirs Using Reinforcement Learning. SPE International Heavy Oil Conference and

Exhibition, 2018. Society of Petroleum Engineers.

Haverkamp, Cole B, Hwang, Dohgyu, Lee, Chanhong & Bartlett, Michael D 2021. Deterministic

control of adhesive crack propagation through jamming based switchable adhesives. Soft

Matter, 17, 1731-1737.

Hourfar, Farzad, Bidgoly, Hamed Jalaly, Moshiri, Behzad, Salahshoor, Karim & Elkamel, Ali

2019. A reinforcement learning approach for waterflooding optimization in petroleum

reservoirs. Engineering Applications of Artificial Intelligence, 77, 98-116.

Kendall, Alex, Hawke, Jeffrey, Janz, David, Mazur, Przemyslaw, Reda, Daniele, Allen, John-

Mark, Lam, Vinh-Dieu, Bewley, Alex & Shah, Amar. Learning to drive in a day. 2019

International Conference on Robotics and Automation (ICRA), 2019. IEEE, 8248-8254.

Kober, Jens, Bagnell, J Andrew & Peters, Jan 2013. Reinforcement learning in robotics: A survey.

The International Journal of Robotics Research, 32, 1238-1274.

Kumar, Abhishek & Sharma, Rajneesh 2018. Linguistic Lyapunov reinforcement learning control

for robotic manipulators. Neurocomputing, 272, 84-95.

Laud, Adam Daniel 2004. Theory and application of reward shaping in reinforcement learning.

Li, Hao & Misra, Siddharth 2021. Reinforcement learning based automated history matching for

improved hydrocarbon production forecast. Applied Energy, 284, 116311.

Lillicrap, Timothy P, Hunt, Jonathan J, Pritzel, Alexander, Heess, Nicolas, Erez, Tom, Tassa,

Yuval, Silver, David & Wierstra, Daan 2015. Continuous control with deep reinforcement

learning. arXiv preprint arXiv:.02971.

Ma, Hongze, Yu, Gaoming, She, Yuehui & Gu, Yongan. Waterflooding Optimization under

Geological Uncertainties by Using Deep Reinforcement Learning Algorithms. SPE

Annual Technical Conference and Exhibition, 2019. Society of Petroleum Engineers.

28

Miftakhov, Ruslan, Al-Qasim, Abdulaziz & Efremov, Igor. Deep reinforcement learning:

Reservoir optimization from pixels. International Petroleum Technology Conference,

2020. OnePetro.

Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza, Mehdi, Graves, Alex, Lillicrap, Timothy,

Harley, Tim, Silver, David & Kavukcuoglu, Koray. Asynchronous methods for deep

reinforcement learning. International conference on machine learning, 2016. PMLR, 1928-

1937.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A, Veness, Joel, Bellemare,

Marc G, Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K & Ostrovski, Georg 2015.

Human-level control through deep reinforcement learning. Nature, 518, 529-533.

Namazu, T, Ohtani, K, Yoshiki, K & Inoue, S. Crack propagation direction control for crack-less

solder bonding using Al/Ni flash heating technique. 2011 16th International Solid-State

Sensors, Actuators and Microsystems Conference, 2011. IEEE, 1368-1371.

Ng, Andrew Y, Harada, Daishi & Russell, Stuart. Policy invariance under reward transformations:

Theory and application to reward shaping. Icml, 1999. 278-287.

Patricio, Miguel & Mattheij, R 2007. Crack propagation analysis. CASA report, 07-03.

Peng, Chi & Ma, Jianjun 2021. Online integral reinforcement learning control for an uncertain

highly flexible aircraft using state and output feedback. Aerospace Science and Technology,

109, 106442.

Perez, Nestor 2017. Linear-elastic fracture mechanics. Fracture Mechanics. Springer.

Pyrak-Nolte, Laura J, Depaolo, Donald J & Pietraß, Tanja 2015. Controlling subsurface fractures

and fluid flow: a basic research agenda. USDOE Office of Science (SC)(United States).

Rabault, Jean, Kuchta, Miroslav, Jensen, Atle, Réglade, Ulysse & Cerardi, Nicolas 2018. Artificial

neural networks trained through deep reinforcement learning discover control strategies for

active flow control. arXiv preprint arXiv:.07664.

Ren, Feng, Rabault, Jean & Tang, Hui 2020. Applying deep reinforcement learning to active flow

control in turbulent conditions. arXiv preprint arXiv:.10683.

Schulman, John, Levine, Sergey, Abbeel, Pieter, Jordan, Michael & Moritz, Philipp. Trust region

policy optimization. International conference on machine learning, 2015. PMLR, 1889-

1897.

Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec & Klimov, Oleg 2017. Proximal

policy optimization algorithms. arXiv preprint arXiv:.06347.

Sih, G. C., Paris, P. C. & Erdogan, F. 1962. Crack-Tip, Stress-Intensity Factors for Plane Extension

and Plate Bending Problems. Journal of Applied Mechanics, 29, 306-312.

Sugita, Naohiko, Osa, Takayuki, Aoki, Ryoma & Mitsuishi, Mamoru 2009. A new cutting method

for bone based on its crack propagation characteristics. CIRP annals - Manufacturing

Technology, 58, 113-118.

Talavera, Alvaro Gustavo, Tupac, Yvan Jesus & Vellasco, Marley Maria Bernardes Rebuzzi.

Controlling oil production in smart wells by MPC strategy with reinforcement learning.

29

SPE Latin American and Caribbean Petroleum Engineering Conference, 2010. Society of

Petroleum Engineers.

Thornton, Charles E, Kozy, Mark A, Buehrer, R Michael, Martone, Anthony F & Sherbondy,

Kelly D 2020. Deep Reinforcement Learning Control for Radar Detection and Tracking in

Congested Spectral Environments. IEEE Transactions on Cognitive Communications

Networking, 6, 1335-1349.

Uhlenbeck, George E & Ornstein, Leonard S 1930. On the theory of the Brownian motion.

Physical review, 36, 823.

Wu, Qianlin, Zhu, Dandan, Liu, Yi, Du, Aimin, Chen, Dong & Ye, Zhihui. Comprehensive Control

System for Gathering Pipe Network Operation Based on Reinforcement Learning.

Proceedings of the 2018 VII International Conference on Network, Communication and

Computing, 2018. 34-39.

Xu, Baoxing, Chen, Xi & Waisman, Haim 2009. Crack propagation toward a desired path by

controlling the force direction. Engineering fracture mechanics, 76, 2554-2559.

Zhang, Chiyuan, Vinyals, Oriol, Munos, Remi & Bengio, Samy 2018. A study on overfitting in

deep reinforcement learning. arXiv preprint arXiv:.06893.

