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Abstract

Mechanical discontinuity embedded in a material plays an essential role in determining the bulk mechanical, physical, and

chemical properties. The ability to control mechanical discontinuity is relevant for industries dependent on natural, synthetic

and composite materials, e.g. construction, aerospace, oil and gas, ceramics, metal, and geothermal industries, to name a few.

The paper is a proof-of-concept development and deployment of a reinforcement learning framework to control the propagation

of mechanical discontinuity. The reinforcement learning framework is coupled with an OpenAI-Gym-based environment that

uses the mechanistic equation governing the propagation of mechanical discontinuity. Learning agent does not explicitly know

about the underlying physics of propagation of discontinuity; nonetheless, the learning agent can infer the control strategy by

continuously interacting the simulation environment. The Markov decision process, which includes state, action and reward,

had to be carefully designed to obtain a good control policy. The deep deterministic policy gradient (DDPG) algorithm

is implemented for learning continuous actions for the desired reinforcement learning. It is also observed that the training

efficiency is strongly determined by the formulation of reward function. An adaptive reward function involving reward shaping

improves the training. The reward function that forces the learning agent to stay on the shortest linear path between crack tip

and goal point performs much better than the reward function that aims to reach closest to the goal point in minimum number

of steps. After close to 500 training episodes, the reinforcement learning framework successfully controlled the propagation of

discontinuity in a material despite the complexity of the propagation pathway determined by multiple goal points.
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Abstract 

Mechanical discontinuity embedded in a material plays an essential role in determining the 

bulk mechanical, physical, and chemical properties. The ability to control mechanical 

discontinuity is relevant for industries dependent on natural, synthetic and composite materials, 

e.g. construction, aerospace, oil and gas, ceramics, metal, and geothermal industries, to name a 

few. The paper is a proof-of-concept development and deployment of a reinforcement learning 

framework to control the propagation of mechanical discontinuity. The reinforcement learning 

framework is coupled with an OpenAI-Gym-based environment that uses the mechanistic equation 

governing the propagation of mechanical discontinuity. Learning agent does not explicitly know 

about the underlying physics of propagation of discontinuity; nonetheless, the learning agent can 

infer the control strategy by continuously interacting the simulation environment. The Markov 

decision process, which includes state, action and reward, had to be carefully designed to obtain a 

good control policy. The deep deterministic policy gradient (DDPG) algorithm is implemented for 

learning continuous actions for the desired reinforcement learning. It is also observed that the 

training efficiency is strongly determined by the formulation of reward function. An adaptive 

reward function involving reward shaping improves the training. The reward function that forces 

the learning agent to stay on the shortest linear path between crack tip and goal point performs 

much better than the reward function that aims to reach closest to the goal point in minimum 

number of steps. After close to 500 training episodes, the reinforcement learning framework 

successfully controlled the propagation of discontinuity in a material despite the complexity of the 

propagation pathway determined by multiple goal points.  

Keywords: Reinforcement learning; policy gradient; discontinuity; propagation; control 

Introduction 

Controlling Mechanical Discontinuity in Materials 

Consider a homogeneous and linear-elastic solid material containing a mechanical 

discontinuity (also referred as crack) of a specific size and geometry. When such a solid material 

is subject to an increasing external force, the mechanical discontinuity will propagate inside the 

solid material. The mechanical behavior of the discontinuity embedded in solid material is 

characterized by the stress intensity factors 𝐾𝐼 , 𝐾𝐼𝐼  and 𝐾𝐼𝐼𝐼 . The three stress intensity factors 
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correspond to three crack opening modes. Mode I describes an opening mode due to the tensile 

stress which is normal to the crack plane. Mode II describes a sliding mode due to the shear stress, 

which is parallel to the crack plane and perpendicular to the crack front. Mode III describes a 

tearing mode due to the shear stress, which is parallel to the crack plane and parallel to the crack 

front (Perez, 2017). According to the principle of maximum circumferential stress proposed by 

Erdogan and Sih (1963), the crack growth will occur at the crack tip once 𝐾𝐼 reaches the mode I 

critical stress intensity factor/fracture toughness 𝐾𝐼𝐶, and the crack propagates toward a direction 

which is perpendicular to the direction of greatest tension. 

The ability to control mechanical discontinuity enhances the human understanding and 

manipulation of the bulk mechanical, chemical and physical properties. For example, a control of 

the subsurface fractures improve the production of natural gas and petroleum, the development of 

engineered geothermal systems, and the long-term storage of CO2 (Pyrak-Nolte et al., 2015). The 

control of propagation of mechanical discontinuity is an active research topic in various disciplines 

dependent on natural, synthetic and composite materials, e.g. construction, aerospace, oil and gas, 

ceramics, metal, and geothermal industries, to name a few.  

Chen et al. (2019) found the fusion-bonded dots of the veil can be used to control the crack 

propagation of veil interleaved composite. Haverkamp et al. (2021) controlled the adhesion crack 

movement in a jamming-based switchable adhesive by dynamically controlling the rigidity 

through an integrated jamming layer. Sugita et al. (2009) designed a cutting method for bone to 

control the crack propagation and improve the surface roughness. Namazu et al. (2011) proposed 

multiple ignition method to control the crack location and propagation direction in the Al/Ni 

exothermic reaction during solder-bonding.  

Several attempts have been made to control the propagation of mechanical discontinuity 

within a solid body. Xu et al. (2009) made cracks propagate along the desired trajectories by 

controlling the direction of an applied external point force. The crack propagation path was verified 

using extended finite element method (XFEM). Cheng and Wang (2018) proposed a controllable 

crack propagation strategy using back propagation neural network assisted particle swarm 

optimization method with an efficient re-analysis based XFEM solver. The crack propagation was 

controlled by arranging holes in the design domain. Cheng et al. (2018) performed experimental 

and numerical analysis on the crack propagation control in directional hydraulic fracturing 
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technique. The influence of horizontal stress difference coefficient and hydraulic slotting deviation 

angle on the crack propagation was investigated. Their result showed that the direction of crack 

propagation can be redirected to the directional hydraulic fracturing zone formed by creating 

internal slotting in the samples. 

Reinforcement learning and its application 

Reinforcement learning (RL) is a machine learning technique suited for sequential decision 

making and control problems. In reinforcement learning, the learning agents continuously interact 

with an external environment by taking actions, observing the state of the environment, and 

receiving rewards based on the action and state, such that the agents learn from experience through 

trial and error, i.e. exploration and exploitation. The goal of reinforcement learning is to enable an 

agent to learn a control policy wherein optimal sequence of actions is carried out under uncertainty, 

aiming to maximize the expected cumulative reward. 

Unlike the supervised and unsupervised learning, reinforcement learning learns from 

dynamic interaction (i.e. experience) with an environment without assuming independent and 

identically distributed samples rather than processing a static training dataset. While the supervised 

and unsupervised learning learn through a cost function, reinforcement learning take use of the 

feedback from the environment (Li and Misra, 2021). Reinforcement learning can solve complex 

problems, which is hard to be solved by traditional supervised learning methods. During the 

training stage, the RL agents learn to correct errors in the control strategy and improve the learning 

through the feedback obtained from the environment. Once the error is corrected, it is unlikely for 

the RL agents to make the same error, so the RL agents can progressively learn to better control 

the system. While continuously interacting with the environment, the RL agents aim to learn the 

optimal/ideal control policy for a particular problem by focusing on the long-term reward and 

balancing exploration and exploitation, whereas the supervised and unsupervised learning aim to 

learn certain representations by exploiting the existing dataset (Li and Misra, 2021). In this regard, 

the reinforcement learning process is closer to the learning behavior of animals. In many tasks like 

the Atari games and the game of Go, reinforcement learning has outperformed human experts. 

Computationally tractable training of the reinforcement learning is not easy. Several training 

episodes are required for the RL agent to find the optimal policy, and the training parameters need 

to be carefully tuned to promote a fast and precise training process. Like other machine learning 
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methods, poorly designed reinforcement learning suffers from overfitting (Zhang et al., 2018). 

The reinforcement learning models the continuous interaction with environment as a Markov 

decision process (MDP), where the next state of the environment depends only on the current state 

of the environment and the action taken by the agent. The MDP assumption is useful for modeling 

many real-world sequential decision-making problems because it eliminates the need for storing 

the entire history of states and actions, which tremendously reduce the memory and computation 

requirement. However, the MDP assumption is not necessarily true for all systems and processes. 

Moreover, according to Kober et al. (2013), reinforcement learning suffers from the following 

disadvantages: (1) Curse of dimensionality, wherein the number of interactions with the 

environment required for training grows exponentially as the dimension of state space increases; 

(2) Curse of real-world samples, wherein the physical environment presents several challenges, 

such as time discretization, delays in sensing and actuation, uncertainty in measurement, 

disturbance in the environment, inability to observe all states, time, labor and maintenance cost, 

safety concerns, and external factors, that limit the behavior of reinforcement learning; (3) Curse 

of under-modeling and model uncertainty when using a digital simulator as the environment is 

challenging in light of the difficulty in building a sufficiently accurate model when there exist 

complex mechanical interactions. The control policy learned from a simulated environment often 

performs poorly in real world, especially when the system is unstable where small variations can 

cause drastic divergences; (4) Curse of goal specification occurs when it is difficult to define a 

proper reward function and there exists trade-offs between the complexity of the reward function 

and the complexity of the learning problem. 

There are several model-free reinforcement learning (RL) based on the approach of learning 

the optimal control policy. On-policy learning algorithms enable the RL agents to learn the value 

of a policy based on the policy itself. Every visit Monte Carlo algorithm and state–action–reward–

state–action (SARSA) algorithm are examples of on-policy learning algorithms suitable for 

discrete state and action space. Trust region policy optimization (TRPO) algorithm (Schulman et 

al., 2015), asynchronous advantage actor-critic (A3C) algorithm (Mnih et al., 2016), and proximal 

policy optimization (PPO) algorithm (Schulman et al., 2017) are on-policy learning algorithms 

suitable for continuous state and action space. As for off-policy learning algorithms, where the RL 

agents evaluate a policy using the experience gathered by following different policies, Q-learning 

algorithm was developed for discrete state and action space. By replacing the Q table in Q-learning 
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with deep neural network as function approximator, the deep Q network (DQN) algorithm can deal 

with continuous state space but the action space remains discrete (Mnih et al., 2015). By 

combining the deterministic policy gradient method and actor-critic approach, deep deterministic 

policy gradient (DDPG) algorithm is suitable for problems with continuous state and action space 

(Lillicrap et al., 2015). 

Reinforcement learning is widely applied in the control problems like self-driving (Kendall 

et al., 2019), trajectory tracking (Choi et al., 2017), robot controlling (Kumar and Sharma, 2018), 

object detection (Thornton et al., 2020), active flow controlling (Rabault et al., 2018; Ren et al., 

2020), and aerospace engineering (Peng and Ma, 2021). Some of the applications are in the oil & 

gas industry. A predictive control model with reinforcement learning was developed by Talavera 

et al. (2010) to control the oil production from a petroleum reservoir. Their model was capable of 

controlling oil production even with disturbances in the producing well. Wu et al. (2018) 

developed a comprehensive control system where they used a DQN-based reinforcement learning 

algorithm to jointly control the valve opening, furnace temperature, and pump pressure to avoid 

wax formation in the crude oil gathering pipe. Recently, reinforcement learning is being applied 

in the petroleum engineering domain, especially on reservoir optimization and production 

forecasting problems. Hourfar et al. (2019) introduced an approach based on reinforcement 

learning for managing and optimizing the waterflooding process in the oil reservoirs. Ma et al. 

(2019) applied several reinforcement learning algorithms on the waterflooding optimization 

problem to find the optimal water injection rate under geological uncertainties. Their work was 

extended by Miftakhov et al. (2020), who trained a reinforcement learning agent that is capable 

of controlling the injection rate to maximize the net present value of waterflooding by using only 

pixel data. Meanwhile, Guevara et al. (2018) implemented the SARSA reinforcement learning 

algorithm to optimize steam injection in heavy oil reservoirs. Li and Misra (2021) developed a 

reinforcement-learning-based automated history matching technique based on the DDPG 

algorithm to improve the forecast of hydrocarbon production. 

Novelty and significance of the work 

The paper is a proof-of-concept development and deployment of a reinforcement learning 

framework capable of controlling the propagation of mechanical discontinuity. There does not 

exist any prior work on using reinforcement learning or other alternatives for robust control of 
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mechanical discontinuity. To ensure computational tractability of this proof-of-concept 

development, we assumed a 2D material containing one slow-propagating piecewise linear 

mechanical discontinuity. In addition, the learning agent trains by interacting with a simulation 

environment, which implements one mechanistic equation that models the propagation of the 

discontinuity in a 2D material under biaxial stress. Learning agent does not explicitly know about 

the underlying physics of propagation of discontinuity; nonetheless, the learning agent can infer 

the control strategy by continuously interacting the numerical simulation within a training 

environment, based on the OpenAI Gym environment. 

The following fundamental questions are investigated and answered in this paper: 

 Can reinforcement learning be used to control the propagation of mechanical discontinuity?    

 Does the deep deterministic policy gradient (DDPG) algorithm ensure a robust 

reinforcement-learning-based control of discontinuity? 

 What should be the parameters (state, action, reward) of the Markov decision process 

(MDP) for the reinforcement-learning-based control of discontinuity? How can the MDP 

be properly defined using a numerical simulator? 

 How does the design of reward function affect the training outcome and efficiency of the 

reinforcement-learning-based control of discontinuity? 
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Figure 1. Illustration of the DDPG algorithm developed by Lillicrap et al. (2015) that is adapted and 

modified for the proposed reinforcement-learning-based control of mechanical discontinuity. (a) The 

interaction between the RL agent and environment and the use of replay buffer. (b) The procedure for 

updating the critic network. (c) The procedure for updating the actor network. In the subplots (b) and (c), 

the parameter in the bracket indicates that it is sampled from the replay buffer. 

Methodology 

Reinforcement learning algorithm 

In this paper, we use the DDPG algorithm, which was developed by Lillicrap et al. (2015). 

DDPG algorithm uses deep neural network as function approximator to estimate action-value (Q-

value) function. Q-value evaluates the goodness of the control policy. Q-value is the expected 

reward after taking a specific action for a specific state and thereafter following that policy. DDPG 

is a model-free, off-policy actor-critic algorithm based on the deterministic policy gradient (DPG) 

method. It can learn policies in high-dimensional, continuous action spaces and can solve problems 

with high-dimensional, continuous observation spaces. This makes it an ideal reinforcement 
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learning algorithm for the crack-propagation control problem investigated in this paper. The 

DDPG algorithm is illustrated in Figure 1 and explained in the following paragraphs. Expected 

return is also known as expected cumulative discounted future rewards. 

As shown in Figure 1(a), within the same episode, for each time step 𝑡, the actor network 

𝜇(𝑠|𝜃𝜇) predicts an action 𝑎𝑡 that should be taken given the current state 𝑠𝑡, where the parameter 

𝜃  represents the weights in the deep neural network and the superscript 𝜇  denotes the actor 

network. The systematic learning of the optimal control policy includes an update in the weigths 

of the connections in the actor network 𝜃𝜇 . The action is selected by adding an Ornstein-

Uhlenbeck noise 𝒩𝑡 (Uhlenbeck and Ornstein, 1930) to the prediction. The random noise 𝒩 is 

reinitialized at the beginning of each episode to control the balance between exploration and 

exploitation. After the RL agent is trained, the noise will be removed during the deployment stage. 

Given 𝑠𝑡  and 𝑎𝑡 , the RL environment returns the reward value 𝑟𝑡  and the next state 𝑠𝑡+1. The 

transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) is then stored in a replay buffer 𝑅. For each time step, a minibatch of 

𝑁=20 transitions (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) are sampled from 𝑅 to update the weights of connections in the 

critic and actor network, where the subscript 𝑖 denotes each transition in the minibatch selected 

from the replay buffer. The assumption of independently and identically distributed samples in 

reinforcement learning no longer holds if the samples are generated from exploring sequentially 

in the environment. The use of replay buffer breaks the temporal correlations between the samples 

and make sure that rare experiences are used more than once, which significantly enhances the 

performance of reinforcement learning.  

Figure 1(b) shows the procedure for updating the weights of connections in the critic 

network 𝑄(𝑠, 𝑎|𝜃𝑄), where the superscript 𝑄 denotes the critic network. The critic network aims 

to predict the action-value (Q-value) 𝑄𝑖, which represents the expected value of an action 𝑎𝑖 taken 

at state 𝑠𝑖 . The critic network is updated by minimizing the mean squared loss 𝐿, so that its 

prediction 𝑄𝑖 is close to the moving target 𝑦𝑖. The difference between the prediction 𝑄𝑖 and the 

moving target 𝑦𝑖 is also called temporal difference (TD) error and the moving target 𝑦𝑖 is also 

known as TD target. The loss 𝐿 is defined as 

𝐿 =
1

𝑁
∑(𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))
2

𝑁

𝑖

(1) 
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The moving target 𝑦𝑖 is the expected cumulative reward as indicated by the target critic network 

𝑄′(𝑠, 𝑎|𝜃𝑄′
) calculated as 

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇′
)|𝜃𝑄′

) (2) 

where 𝑄′ denotes the target critic network and 𝜇′ denotes the target actor network. The target critic 

network predicts the Q-value 𝑄𝑖+1
′  with respect to the next state 𝑠𝑖+1 and the action 𝑎𝑖+1

′ , which is 

predicted by the target actor network 𝜇′(𝑠|𝜃𝜇′
) given the next state 𝑠𝑖+1. 𝛾 is a discount factor for 

future rewards. The use of target networks enhances the learning stability in the cost of learning 

speed. 

Figure 1(c) shows the procedure for updating the actor network. The actor network 

represents the current deterministic policy by mapping the state to the specific action 

deterministically. The actor network is updated using the policy gradient theorem, so that the 

action it predicts given the current state 𝑠𝑖 leads to a high Q-value 𝑄𝑖 as predicted by the critic 

network. The following equation describes the sampled policy gradient (implies that the gradient 

is calculated based on the samples drawn from the replay buffer) to update the actor network: 

∇𝜃𝜇𝐽 ≈
1

𝑁
∑ ((∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖|𝜃𝜇))(∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠=𝑠𝑖

))

𝑁

𝑖

(3) 

where 𝐽 denotes the expected return from the start distribution/state. In this paper, the weight 

updates for critic and actor networks are accomplished in the Tensorflow with Adam optimizer. 

The initial weights for the target critic/actor networks are the same as the critic/actor networks. 

For each time step, both the target networks are updated slowly (also referred to as “soft” update) 

according to rate 𝜏, where 𝜏 ≪ 1: 

𝜃𝑄′
= 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

(4) 

𝜃𝜇′
= 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

(5) 

It is observed that Q learning with neural networks tends to be unstable. The use of soft update 

ensures stability in learning by making the moving target 𝑦𝑖 change slowly. Q-learning finds an 

optimal policy in the sense of maximizing the expected value of the total reward over any and all 

successive steps, starting from the current state. 



11 

 

Architectures of the actor and critic networks  

Figure 2. Architecture of the actor network that predicts an action 𝑎𝑡 that should be taken given the 

current state 𝑠𝑡. Bias units are not shown in this architecture. The inputs to the network are the x and y 

coordinates of the goal point and the x and y coordinates of the current tip of the propagating 

discontinuity. The network generates the action that includes the stress ratio 𝛼 and the stress angle 𝛽. 

Figure 3. Architecture of the critic network that predicts to predict the action-value (Q-value) 𝑄𝑖, which 

represents the expected return after taking action 𝑎𝑖 at state 𝑠𝑖, where i represents a transition from the 

minibatch of 𝑁 transitions selected from the replay buffer. Bias units are not shown in this architecture. 

Four of the six inputs of the critic network are similar to the actor network, the remaining two of the six 

inputs are the stress ratio 𝛼 and the stress angle 𝛽. 
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Four deep neural networks are used as the learning agents in the reinforcement learning 

framework: actor network 𝜇 , target actor network 𝜇′ , function approximator for the Q-value 

function, referred as the critic network 𝑄, and target critic network 𝑄′. In this paper, the neural 

networks were built in the Keras platform. Figure 2 and Figure 3 depicts the architectures of the 

actor and critic networks, respectively. The target critic/actor networks have the same architecture 

as the critic/actor networks with the same initial weights. The weights of target networks are 

updated as shown in equations 4 and 5. The actor network takes state (xtip, ytip, xgoal, ygoal) as input 

and then deterministically computes the specific action (𝛼, 𝛽), while the critic network takes both 

the state and action (𝛼, 𝛽) as inputs and then computes a scalar Q-value. The “tanh” activation is 

used in the output layer in the actor network to bound the action to ensure the action is within a 

proper range, no activation is used in the output layer in the critic network, whereas all the other 

layers in both networks use the “ReLU” activation. 

 

Figure 4. Three distinct and independent propagation paths in a 2D infinite material for the 3 different 

training episodes. The reinforcement learning scheme will train the learning agents to control the 

propagation of mechanical discontinuity to track each of the 3 paths during each training episode. The 

propagation of discontinuity is under the influence of step-wise varying biaxial stress field in the 2D 

infinite material. The propagation of discontinuity starts from the center. The reinforcement learning 

agent needs to learn to control the stress ratio 𝛼 and the stress angle 𝛽, so that the discontinuity can track 

the 10 discrete goal points, which a symmetrical across the center of the initial location of discontinuity. 
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Simulation environment used by the learning agents 

The training environment was specifically developed for the propagation of discontinuity in 

an infinite 2D material under biaxial stress field based on the OpenAI Gym environment. In these 

trainings, the crack propagation starts from the middle of an infinite plate containing a small 

slanted initial crack in a biaxial stress field, as shown in Figure 4. The initial crack half-length is 

𝑙. The two perpendicular stresses are denoted as 𝜎 and 𝛼𝜎, respectively. The angle between initial 

crack and the direction of stress 𝛼𝜎 is 𝛽. The crack environment is centrosymmetric at (0, 0). The 

stress 𝜎  is kept constant as 100MPa throughout the simulation, while the stress 𝛼𝜎  varies by 

controlling the ratio 𝛼. We assume the crack will propagate under this stress magnitude. The initial 

locations of the crack tips are (0.1, 0.1) and (−0.1, −0.1). Reinforcement learning agent will need 

to learn to control the stress ratio 𝛼 and the stress angle 𝛽, so that the propagating crack can track 

any 10 pre-defined discrete goal points. For each episode of training the RL agent, first a random 

desired crack-propagation path comprising 10 goal points is predefined prior to learning. The 

crack-propagation path comprises 10 randomly selected goal points. The RL agent needs to learn 

to track the 10 goal points within one episode containing at most 25 training steps. 

As shown in the propagation paths for the 3 random training episodes in Figure 4, the desired 

crack path are symmetric with respect to the location of the initial crack center (i.e. the origin). 

Initially, as the RL agent performs an action by selecting optimal values of stress ratio 𝛼 and stress 

angle 𝛽 based on current state, the crack propagates toward the first goal point. Once the first goal 

point is reached within a certain error margin, the crack will propagate toward the second goal 

point. The learning episode ends when all the goal points are reached with a certain error margin 

or when a total of 25 training steps are complete (for reward function 1) or when the crack 

propagates in the opposite direction of the current goal point (for reward function 2). The current 

state of the environment that is accessible to the RL agent is the location of propagating crack tip 

and the location of the current goal point along the desired path. Each episode of learning focuses 

on controlling crack propagation along a randomly chosen crack path, as predefined by the 10 

discrete points shown in Figure 4. Each episode poses a different crack path to the learning agent. 

We observe that the RL agent learns to perfectly control the crack propagation in less than 500 

learning episodes. This will be shown in subsequent figures.  
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The state space 𝒮 = ℝ4  because the plate is assumed to be infinite. The reinforcement 

learning agent will learn to control the crack to propagate along the desired path by manipulating 

the stress ratio 𝛼 and the stress angle 𝛽. The action space 𝒜 of 𝛼 is [−2, 2] and that of 𝛽 is [−90°, 

90°]. The mechanistic equation governing the crack propagation is coupled within the environment. 

RL agent interacts with the environment by checking the current state, taking an action, and 

receiving a reward. All this is designed to mimic a real-world scenario where the learning agent 

learns by interacting with a solid material containing a single embedded crack. 

Assuming a quasi-static crack growth where the dynamic effects like wave propagation does 

not affect the crack propagation, the crack propagation angle 𝜃𝑝 is calculated as (Patricio and 

Mattheij, 2007) 

𝜃𝑝 = 2 tan−1 (
𝐾𝐼 − √𝐾𝐼

2 + 8𝐾𝐼𝐼
2

4𝐾𝐼𝐼
) (6) 

where the mode I and II stress intensity factors are expressed as (Sih et al., 1962) 

𝐾𝐼 = 𝜎√𝜋𝑎(cos2 𝛽 + 𝛼 sin2 𝛽) (7) 

𝐾𝐼𝐼 = 𝜎√𝜋𝑎(1 − 𝛼) sin 𝛽 cos 𝛽 (8) 

For each time step, the crack propagates by a fixed length Δ𝑙 = 0.0667. This is a big assumption 

that needs to be addressed in the future work. We consider the goal point is reached when the 

distance between crack tip and the goal point is less than Δ𝑙. The RL scheme needs to control the 

𝛼 and 𝛽 at each time step such that the discontinuity propagates at various propagation angle 𝜃𝑝 

slowly moving closer to the desired goal point.  

Tuning parameters to optimize the reinforcement-learning based control 

Table 1 summarizes the tuning parameters used during the training stage. The exploration 

noise is not a tuning parameter. The RL agent can learn to successfully accomplish the task without 

the help of exploration noise, as shown in the results section. The use of exploration noise will 

take extra time and computational resource; therefore, it is not used in this paper. The actor/critic 

network learning rate and target networks update rate are chosen to achieve a stable training. The 

discount factor represents the importance of future rewards. A higher discount factor indicates the 

future reward is more important. The capacity of replay buffer defines the maximum number of 
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transitions stored. A larger capacity will typically result in a wider range of experience which 

benefits the stability of training, but it takes longer time to be refreshed with good/new control 

policy. The minibatch size define the number of transitions used to update the networks at each 

step taken by the RL agent. 

Table 1. Tuning parameters of the deep neural networks during the training stage. 

Parameter Value 

Actor network learning rate 0.00005 

Critic network learning rate 0.001 

Target networks update rate 𝜏 0.005 

Discount factor 𝛾 0.5 

Capacity of replay buffer 𝑅 10000 

Minibatch size 𝑁 64 

Total training episodes 2000 

 

Reward Functions 

The design of the reward function determines the effectiveness of training. A reward that 

adapts during the learning steps through reward shaping helps the agent to quickly and correctly 

converge to the desired policy. Such adaptive rewards are better as compared to binary reward that 

only marks success or failure (Ng et al., 1999). The process of reward shaping is equivalent to 

learning in a more informative environment (Laud, 2004). In this paper, we demonstrate two ways 

of constructing the reward function that are provided to the learning agents based on the new state 

and the current action and state. We will also discuss the impact of the reward function on the 

training results. Both reward functions are designed such that the RL agent needs to learn the 

optimal policy that maximizes the total reward (as less negative as possible). In our formulation, 

small negative reward indicates robust control, whereas large negative reward represents poor 

control. 

Reward function 1 is formulated as follows: For each step, the RL agent receives a reward 

of −10. The more steps the agent takes to reach a goal point, the more negative reward the agent 

earns, which is not optimal for the desired control. When the current goal point is reached within 

a certain error margin, the RL agent will receive an additional reward of 30−200𝑑1, where 𝑑1 is 

the distance between crack tip and the current goal point. This ensures a larger reward when the 

goal point is reached as close as possible in limited number of steps. Compared to the reward 
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function 2, reward function 1 tries to minimize the number of steps to reach a goal point as close 

as possible. Reward function provides only the information of the location of the current goal point 

with respect to crack tip at the end of the training episode. 

Reward function 2 is formulated as follows:  For each step taken, the reward is −1000𝑑2, 

where 𝑑2 is the distance between crack tip and the current-optimal path, which is the straight line 

connecting the crack tip before taking the step and the current goal point. Reward function 2 

penalizes the crack for deviating from the desired path by forcing the agent to stay on the shortest 

linear path at each step in the training episode. Compared to the reward function 1, the reward 

function 2 provides the information of the current-optimal path and the location of the goal point 

at each step of training. 

Results and Discussions 

Reinforcement-learning based control of discontinuity using reward function 1 

 This section shows the RL control of discontinuity using reward function 1. Each learning 

episode ends after 25 steps, or when all the 10 goal points are reached in less than 25 steps. During 

each episode, the learning agent can take at the most 25 sequential actions that lead to the tracking 

of the predefined crack path. Figure 5 shows the early-stage training results. As a reminder, each 

episode poses a different crack path to the learning agent. At episode 50, the crack simply 

propagated without honoring the desired path. The learning agent did not know how to adjust the 

actions, accordingly, as demonstrated by the lack of variance in the action sequence. At episode 

150, it learnt to follow the goal points but still missed the extreme goals point. At episode 220, it 

reached all the goal points but the propagation path is tortuous. Figure 6 shows the late-stage 

training results. It can be seen that the agent successfully learnt to control the propagation of crack 

to reach all the 10 goal points sequentially. Notably, the number of training steps in each learning 

episode is much smaller than 25 during the late learning episodes. The reward received for each 

episode during training is shown in Figure 7. It shows that the RL agent was able to accomplish 

the controlled crack propagation task after about 200 episodes of training. However, no more 

obvious improvements can be observed from episode 200 to 2000. 
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Figure 5. The crack propagation paths (left) and corresponding actions (right) taken by the RL agent at 

randomly selected early stages of training (episodes 50, 150 and 220). RL agent uses reward function 1 

for the desired control. The discrete dotted points on left show predefined discrete goal points that the 

crack propagation need to track. The crack propagation initiates at the center. A successful control 

requires the propagating crack to touch each of the 10 discrete goal points per crack path. RL agent’s 

action includes an optimal selection of stress ratio 𝛼 [−2, 2] and stress angle 𝛽 [−90°, 90°]. RL agent 

during early learning episodes is not able to take actions to perfectly track the predefined crack path. 

 

Figure 6. The crack propagation paths (left) and corresponding actions (right) taken by the RL agent at 

randomly selected early stages of training (episodes 730, 840 and 950). RL agent uses reward function 1 

for the desired control. The discrete dotted points on left show predefined discrete goal points that the 

crack propagation need to track. The crack propagation initiates at the center. A successful control 

requires the propagating crack to touch each of the 10 discrete goal points per crack path. RL agent during 

late learning episodes is able to take actions that result in perfect tracking of the predefined crack path. 
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Figure 7. Reward history received by the RL agent when using reward function 1. The reinforcement-

learning-based control is achieved in less than 300 learning episodes. The entire training process of 2000 

episodes takes 145 seconds on an Intel® Xeon® E5-1650 v3 CPU. The reward does not improve with the 

increase in learning episodes. The rewards are small negative values during the early training episodes. 

Reinforcement-learning based control of discontinuity using reward function 2 

This section shows the RL control of discontinuity using reward function 2. The episode 

ends when the crack reaches all the 10 goal points with a certain error margin or when the crack 

propagates in the opposite direction of the current goal point. The early-stage and late-stage 

training results are shown in Figure 8 and Figure 9, respectively. We used the same seed for 

random number generator to ensure that for each episode, the locations of the goal points are the 

same as that in the previous case when testing the reward function 1. This helps us compare the 

training efficiency between using the two different reward functions in a more convenient way. At 

the early stage of training, the episode quickly ended because the crack propagated to the 

unfavorable direction. The RL agent was able to control the propagation of crack along the desired 

path at the late stage of training. Figure 10 shows the reward received for each episode during 

training. As we can see, the RL agent is able to control the crack propagation in less than 500 

learning episodes. Notably, the reward improves gradually with the learning episodes, because the 

information of the current-optimal path is provided to the learning agent. By using reward function 

2, the agent receives a more accurate reward signal for each step taken, in such a way that it no 

longer need to find but instead follow the path. Such an improvement was not seen for reward 

function 1. 



19 

 

 

Figure 8. The crack propagation paths (left) and corresponding actions (right) taken by the RL agent at 

randomly selected early stages of training (episodes 50, 150 and 220). RL agent uses reward function 2 

for the desired control. RL agent during early learning episodes is not able to take actions to perfectly 

track the predefined crack path. The early performance using reward function 2 is worse than the reward 

function 1. 

 

Figure 9. The crack propagation paths (left) and corresponding actions (right) taken by the RL agent at 

randomly selected early stages of training (episodes 730, 840 and 950). RL agent uses reward function 2 

for the desired control. RL agent during late learning episodes is able to take actions that result in perfect 

tracking of the predefined crack path.  
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Figure 10. Reward history received by the RL agent when using reward function 2. The reinforcement-

learning-based control is achieved in less than 500 learning episodes. The entire training process of 2000 

episodes takes 122 seconds on an Intel® Xeon® E5-1650 v3 CPU. Notably, the reward improves with the 

increase in learning episodes. 

Limitations 

The training is performed in a self-created environment by coupling a simple 2D governing 

equation, which may not be accurate for modelling the complex propagation of discontinuity in 

complex heterogeneous materials. The development of reinforcement learning environment and 

framework, including the design of reward function and the selection of training parameters, are 

highly specialized for this particular task of controlling the mechanical discontinuity. A more 

generalized environment/framework will be hard to design. The proposed propagation is under 

biaxial stress field in an infinite material. 

Future Works 

The DDPG reinforcement learning algorithm is proved to be robust for controlling the 

propagation of mechanical discontinuity. For the next step, we are planning to couple the DDPG 

algorithm with commercial software (e.g. Abaqus) that is capable of modeling crack propagation 

in realistic materials under external stresses. By the combination of reinforcement learning 

technique and industry-acknowledged software, it would provide more guidance and insights into 

the application of reinforcement learning in various engineering disciplines. 
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Conclusions 

The paper is a proof-of-concept development and deployment of a reinforcement learning 

framework to control the propagation of mechanical discontinuity embedded in a homogeneous, 

planar material in a biaxial stress field. To that end, we adapt the deep deterministic policy gradient 

(DDPG) algorithm and develop robust reward functions. The reinforcement learning scheme 

learns to control the propagation of mechanical discontinuity by interacting with a simulated 

environment based on the OpenAI Gym environment and adaptively changing two engineering 

parameters, namely, stress ratio and stress angle. The Markov decision process, which includes 

state, action and reward, must be carefully designed so that the reinforcement learning framework 

can learn an optimal, computational tractable, control policy. The state is defined the location of 

propagating crack tip and the location of the current goal point along the desired path. 

The key for robust and accurate control is the design of a good reward function. Reward 

function 1 encourages the crack to reach the goal points as close as possible in limited number of 

steps. Reward function 2 penalizes the crack for deviating from the desired path by forcing the 

agent to stay on the shortest linear path. Compared with reward function 1, the reward function 2 

provides the information of the shortest linear path, which is the straight line connecting the crack 

tip before taking the step and the current goal point. The RL agent was successfully trained to 

accomplish the controlled crack propagation task using both designs of reward function. The 

training using reward function 1 required less episodes, but the improvements saturated after 

certain number of training episodes. On the other hand, the use of reward function 2 required more 

training episodes, but the training behavior gradually improved with the training episode because 

a more accurate reward signal is provided to the learning agent for each step taken. The reward 

function that forces the learning agent to stay on the shortest linear path between crack tip and goal 

point performs much better than the reward function that aims to reach closest to the goal point in 

minimum number of steps 
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Nomenclature 

Acronyms 

A3C = asynchronous advantage actor-critic 

DDPG = deep deterministic policy gradient 

DPG = deterministic policy gradient 

DQN = deep Q network 

MDP = Markov decision process 

PPO = proximal policy optimization 

RL = reinforcement learning 

SARSA = state–action–reward–state–action 

TD = temporal difference 

TRPO = trust region policy optimization 

XFEM = extended finite element method 

Symbols 

𝑎 = action 

𝒜 = action space 

𝛼 = stress ratio 

𝛽 = stress angle 

𝑑1 = distance between crack tip and the current goal point 

𝑑2 = distance between crack tip and the current optimal path 

Δ𝑙 = crack propagation length at each time step 

𝛾 = discount factor 

𝐽 = expected return from the start distribution 

𝐾𝐼, 𝐾𝐼𝐼, 𝐾𝐼𝐼𝐼 = mode I, II, III stress intensity factors 

𝐾𝐼𝐶 = mode I critical stress intensity factor/fracture toughness 

𝑙 = crack half-length 

𝐿 = mean squared loss 

𝜇(𝑠|𝜃𝜇) = actor network 

𝜇′(𝑠|𝜃𝜇′
) = target actor network 

𝑁 = minibatch size 

𝒩 = Ornstein-Uhlenbeck noise 

𝑄 = action-value (Q-value) 

𝑄(𝑠, 𝑎|𝜃𝑄) = critic network 

𝑄′(𝑠, 𝑎|𝜃𝑄′
) = target critic network 

𝑟 = reward 

𝑅 = replay buffer 

𝑠 = state 

𝒮 = state space 

𝜎 = stress 

𝜏 = target networks update rate 

𝜃 = weights in the deep neural network 

𝜃𝑝 = crack propagation angle 

𝑦 = moving target (TD target) 
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Subscripts 

𝑖 = denotes each transition selected from the replay buffer 

𝑡 = denotes time step 

Superscripts 

′ = denotes target networks 

𝜇 = denotes actor network 

𝜇′ = denotes target actor network 

𝑄 = denotes critic network 

𝑄′ = denotes target critic network 
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Appendix 

1. Difference between reward function 1 and 2: 

 Reward function 1 provides only the information of the location of the current goal 

point. The agent trained using this reward function is expected to explore and find the 

optimal path. 

 Reward function 2 provides the information of the current-optimal path, which is the 

straight line connecting the crack tip before taking the step and the current goal point. 

The agent trained using this reward function is expected to follow the current-optimal 

path. 

2. For episodes 730, 840 and 950, a comparison of crack path and sequence of stress ratio 𝛼 

using reward function 1 and 2 is shown in Figure A1, a comparison of crack path and 

sequence of stress angle 𝛽 using reward function 1 and 2 is shown in Figure A2. 

 

 

Figure A1. Comparison of crack path and sequence of stress ratio 𝛼 using reward function 1 and 2. 
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Figure A2. Comparison of crack path and sequence of stress angle 𝛽 using reward function 1 and 2. 

3. The main challenges encountered during developing this paper are as follows: 

 What should be the state seen by the RL agent? Should we use location, distance, or 

azimuth angle? Should we include any directional information? Should we provide the 

RL agent the locations of all the 10 goal points at the very beginning, or provide them 

one-by-one as crack propagates? 

 What should be a proper design of the reward function? Should we use a binary reward 

or a reward that that adapts during the learning steps? 

 How to properly tune the parameters? 
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