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Abstract

Subsurface tile drainage (TD) is a dominant agriculture water management practice in the United States (US) to enhance

crop production in poorly-drained soils. Assessments of field- or watershed-level (<50 km2) hydrologic impacts of tile drainage

are becoming common; however, a major gap exists in our understanding of regional (>105 km2) impacts of tile drainage

on hydrology. The National Water Model (NWM) is a distributed 1-km resolution hydrological model designed to provide

accurate streamflow forecasts at 2.7 million reaches across the US. The current NWM lacks tile drainage representation which

adds considerable uncertainty to streamflow forecasts in tile-drained areas. In this study, we quantify the performance of the

NWM with a newly incorporated tile drainage scheme over the heavily tile-drained Midwestern US. Implementing a tile drainage

scheme enhanced the uncalibrated model performance by about 20% to 50% of the calibrated NWM (Calib). The calibrated

NWM with tile drainage (CalibTD) showed enhanced accuracy with higher event hit rates and lower false alarm rates than

Calib. CalibTD showed better performance in high-flow estimations as tile drainage increased streamflow peaks (14%), volume

(2.3%), and baseflow (11%). Regional water balance analysis indicated that tile drainage significantly reduced surface runoff

(-7% to -29%), groundwater recharge (-43% to -50%), evapotranspiration (-7% to -13%), and soil moisture content (-2% to

-3%). However, infiltration and soil water storage potential significantly increased with tile drainage. Overall, our findings

highlight the importance of incorporating the tile drainage process into the operational configuration of the NWM.

1
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Key Points: 13 

1. A new subsurface tile drainage module is incorporated into the National Water Model 14 

(NWM) to predict streamflow over the tile-drained areas  15 

 16 

2. NWM with a tile drainage module can predict high-flows and streamflow peaks better 17 

than the original NWM over heavily tile-drained areas  18 

 19 

3. Incorporating tile drainage into the NWM considerably enhanced the streamflow event 20 

hit rates and reduced false alarm rates  21 
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Abstract  22 

Subsurface tile drainage (TD) is a dominant agriculture water management practice in the United 23 

States (US) to enhance crop production in poorly-drained soils. Assessments of field- or 24 

watershed-level (<50 km2) hydrologic impacts of tile drainage are becoming common; however, 25 

a major gap exists in our understanding of regional (>105 km2) impacts of tile drainage on 26 

hydrology. The National Water Model (NWM) is a distributed 1-km resolution hydrological 27 

model designed to provide accurate streamflow forecasts at 2.7 million reaches across the US. 28 

The current NWM lacks tile drainage representation which adds considerable uncertainty to 29 

streamflow forecasts in tile-drained areas. In this study, we quantify the performance of the 30 

NWM with a newly incorporated tile drainage scheme over the heavily tile-drained Midwestern 31 

US. Implementing a tile drainage scheme enhanced the uncalibrated model performance by 32 

about 20% to 50% of the calibrated NWM (Calib). The calibrated NWM with tile drainage 33 

(CalibTD) showed enhanced accuracy with higher event hit rates and lower false alarm rates than 34 

Calib. CalibTD showed better performance in high-flow estimations as tile drainage increased 35 

streamflow peaks (14%), volume (2.3%), and baseflow (11%). Regional water balance analysis 36 

indicated that tile drainage significantly reduced surface runoff (-7% to -29%), groundwater 37 

recharge (-43% to -50%), evapotranspiration (-7% to -13%), and soil moisture content (-2% to -38 

3%). However, infiltration and soil water storage potential significantly increased with tile 39 

drainage. Overall, our findings highlight the importance of incorporating the tile drainage 40 

process into the operational configuration of the NWM.  41 
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1. Introduction 42 

Agriculture management practices such as irrigation, fertilizer and pesticide application, and 43 

tillage are generally employed to enhance crop productivity and are crucial for global food 44 

production and food security. Agriculture subsurface drainage, often known as subsurface tile 45 

drainage, is a widely-used agriculture water management practice to improve crop growth in 46 

regions with shallow water tables or poorly drained soils. According to the United States 47 

Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) Census of 48 

Agriculture 2017, about 22.48 million hectares (Mha) of croplands in the US are tile-drained, 49 

and 83.80% of the total tile-drained croplands of the US are concentrated in six Midwestern 50 

states (USDA-NASS, 2017) (Figure 1a), which is one of the world’s most productive areas in 51 

terms of food and bioenergy, and it is located in the headwater regions of the Mississippi River 52 

(Gaunter et al., 2014; Ray et al., 2013).  53 

In general, tile drains are buried under the crop root zone to extract saturation water (or free 54 

water) from the soil, improve root-zone soil aeration and soil quality, reduce crop root diseases 55 

and soil erosion, allow for earlier planting and enhance crop yield (Figure 1b) (Du et al., 2005; 56 

Fausey, 2005; Fausey et al., 1987; Kornecki and Fouss, 2001). Furthermore, tile drainage is 57 

known to have a significant impact on watershed hydrology (Blann et al., 2009; King et al., 58 

2014; Rahman et al., 2014; Thomas et al., 2016), because it depletes the free water from the root-59 

zone soil layer, resulting in enhanced infiltration and reduced surface runoff, peak flows, and 60 

flooding (Golmohammadi et al., 2017; Rahman et al., 2014; Robinson and Rycroft, 1999; Skaggs 61 

et al., 1994). Tile drainage may also increase the watershed baseflow, annual runoff volume, 62 

instream pollutant concentrations, the timing and shape of the hydrograph, and the local and 63 

regional climate by modifying energy and water flux from croplands to the atmosphere (Blann et 64 

al., 2009; Eastman et al., 2010; Guo et al., 2018; Khand et al., 2017; King et al., 2014; Magner et 65 

al., 2004; Schilling et al., 2012; Schilling and Helmers, 2008; Schilling and Libra, 2003; 66 

Schottler et al., 2014; Thomas et al., 2016; Yang et al., 2017). However, the intensity and 67 

direction of the tile-drainage impact on hydrology depend on several field-specific factors such 68 

as soil properties, antecedent soil moisture storage, climatic conditions, topography, design of the 69 

tile drainage system, and tillage practices (Blann et al., 2009; King et al., 2014; Robinson, 1990; 70 

Robinson and Rycroft, 1999; Skaggs et al.,1994; Thomas et al., 2016; Wiskow and van der 71 
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Ploeg, 2003). The above findings on the hydrologic impact of tile drainage are based on field-72 

level or small watershed-scale (<50 km2) studies. A comprehensive understanding of regional-73 

scale hydrology of tile-drainage is a major knowledge gap (Hansen et al., 2013; King et al., 74 

2014; Thomas et al., 2016). Accurate modeling of tile drainage impacts on the continental or 75 

regional water cycle is a daunting challenge due to the lack of continental-scale high-resolution 76 

tile drainage data and an efficient, fully distributed, continental-scale hydrology model with a tile 77 

drainage scheme. 78 

In the recent decade, the flood frequency and intensity have increased over the continental 79 

United States (CONUS), especially over the Central US (Mallakpour and Villarini, 2015). To 80 

provide flash flood forecasts and other hydrologic guidance with longer lead time and less 81 

uncertainties, the National Weather Service (NWS) Office of Water Prediction (OWP) of the 82 

National Oceanic and Atmospheric Administration (NOAA) developed a hydrologic modeling 83 

framework, the National Water Model (NWM), to simulate observed and forecast streamflow for 84 

about 2.7 million stream reaches of the CONUS. However, the NWM has considerable 85 

uncertainties in the streamflow prediction over the Midwestern US (Dugger et al., 2017; Karki et 86 

al., 2021). One of the reasons for the underperformance of the NWM can be the lack of 87 

representation of subsurface tile drainage hydrology in the NWM (Hansen et al., 2013). Field-88 

level studies have already highlighted the importance of defining tile drainage within the 89 

hydrologic models to achieve accuracy in simulated water budget components over heavily tile-90 

drained regions (Green et al., 2006; Hansen et al., 2013). 91 

To address these shortfalls, in this study, we investigate the regional impact of tile drainage on 92 

the NWM performance in simulating streamflow over the upper Midwestern US by developing a 93 

new tile drainage scheme and implementing it into the NWM. We evaluate the NWM model 94 

performance with tile drainage regarding the streamflow simulation with and without NWM 95 

parameter calibration, and explore the influence of tile drainage on regional water budget and 96 

regional hydrology. In these simulations, we use the recently developed 30-meter resolution 97 

Agriculture Tile drainage data for the US (AgTile-US) (Valayamkunnath et al., 2020) to 98 

explicitly define the tile-drained croplands within the NWM.  99 

In section 2, we describe the details of the study area, process descriptions of the NWM and the 100 

new tile drainage scheme, introduction to the input and evaluation data, calibration and 101 
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regionalization of model parameters, and details of model simulation experiments. Details of 102 

hydrological and statistical analysis used in this study to evaluate the model performance are 103 

presented in section 2.8. The results on the model performance evaluation, the impact of tile 104 

drainage on energy and water balance components, comparison with parallel works, 105 

perspectives, and limitations of the study are discussed in section 3.  106 

 107 

Figure 1. The Study area. (a) The spatial distribution of tile drainage over the CONUS. The 108 
color grading in (a) indicate the tile drainage area fraction on a 1-km NWM grid. (b) Schematic 109 
representation of tile drainage and parameters of Hooghoudt’s tile drainage equation, (c) NWM 110 
tile drainage calibration basins, (d) spatial distribution of regionalization HUC10s. In (d), color 111 
represent corresponding donor basin for the NWM parameters in (c). (e) Represents the two 112 
HUC2 basins identified for the regional NWM simulations. (f) The spatial distribution of soil 113 
moisture and energy flux observations in the South Fork Iowa River watershed, Iowa.  114 

 115 
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2. Study area, modeling approach, and evaluation data  116 

2.1 Study area description 117 

Our investigation on the influence of tile drainage on the NWM performance and regional 118 

hydrology is based on the extensively tile-drained croplands of the upper Midwestern US (Figure 119 

1 and S1).  Considering computational-resource constraints, we focus on two subdomains with 120 

extensive installations of tile drainage: The Upper Mississippi River Basin (UMRB) and the 121 

Ohio River Basin (ORB) (Figure 1e). According to the AgTile-US tile drainage data 122 

(Valayamkunnath et al., 2020), nearly 50% of total tile-drained croplands of the US are in the 123 

UMRB, which accounts for 24.58% of the geographical area of the UMRB and 48% of the total 124 

cropland area of the UMRB (Figure S1). Tile-drained croplands of ORB is about 17.2% of the 125 

total tile-drained area of the US. Approximately 41.27% of the ORB croplands are tile-drained, 126 

which covers 8.79% of the geographical area of the ORB. Together, UMRB and ORB account 127 

for nearly 67% of the total tile drainage area of the US. Generally, the croplands of the upper 128 

Midwestern region are characterized by moderately to very poorly drained soils and shallow 129 

water tables (Barlage et al., 2021; Valayamkunnath et al., 2020). During the 2013-2019 period, 130 

the annual average precipitation over UMRB and ORB are 1150 mm and 1370 mm, respectively. 131 

Both basins receive the majority of the annual rainfall during the summer (June-August) season.   132 

2.2 The National Water Model (NWM) 133 

The NWM is a joint development between National Center for Atmospheric Research (NCAR) 134 

and NOAA NWS to provide water prediction capabilities to advance resilience to water risks. 135 

The core of the NWM is the NCAR Weather Research and Forecasting Hydrologic (WRF-136 

Hydro) model (Gochis et al., 2018). WRF-Hydro is a parallelized distributed hydrologic model 137 

that is designed to simulate the land surface hydrology and energy states at relatively high spatial 138 

resolution (usually 1-km or less). The NWM can either be forced offline (uncoupled) using 139 

prescribed atmospheric forcing variables or coupled to the Advanced Research version of the 140 

WRF (WRF-ARW) atmospheric model (Skamarock et al., 2008). Atmospheric forcing data 141 

required for the model operation include incoming shortwave radiation (Wm-2), incoming 142 

longwave radiation (Wm-2), specific humidity (kg kg-1), air temperature (K), surface pressure 143 

(Pa), liquid water precipitation rate (mm s-1), and near-surface wind (both u and y components, m 144 

s-1).  145 
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The NWM uses the Noah-MP land surface model (Niu et al. 2011) to resolve land surface 146 

processes and vertical fluxes of energy (sensible and latent heat, net radiation) and water (canopy 147 

interception, infiltration, infiltration-excess, deep percolation) within the soil column on a 1-km 148 

grid every 60 minutes. Infiltration excess, ponded water depth, and soil moisture are 149 

subsequently disaggregated from a 1-km Noah-MP grid to a high-resolution, 250-m, NWM 150 

routing grid using a time-step weighted method, and are then used in the subsurface and overland 151 

flow terrain-routing modules (Gochis et al., 2018).  152 

Prior to the overland flow routing, the NWM subsurface flow module computes the subsurface 153 

lateral flow and resulting changes in the water table depth in the 2-m deep soil column using 154 

Dupuit–Forcheimer assumptions (Gochis et al. 2018). If subsurface lateral flow fully saturates a 155 

model grid, exfiltration is computed and added to the infiltration excess estimated by the Noah-156 

MP and routed as surface runoff. Overland flow is calculated at a 10-seconds time-step using a 157 

fully unsteady, spatially explicit, diffusive wave routing formulation based on the steepest 158 

gradient around each grid point (Julien et al. 1995). See Gochis et al. (2018) for more details of 159 

the surface and subsurface routing schemes of NWM. As the surface flow reaches the grid 160 

identified as a channel, it is mapped to the vector channel network and routed downstream using 161 

Muskingum-Cunge channel routing formulation. In the NWM, vector channel networks are 162 

defined using National Hydrography Dataset (NHD) Plus Version 2 (NHDPlusV2) channel 163 

networks. A conceptual exponential bucket model is used to account for the contribution of 164 

baseflow to total streamflow in the NWM. Aggregated drainage from the Noah-MP soil column 165 

is mapped to a groundwater catchment corresponding to the NHDPlusV2 channel reach or 166 

catchment topology. Using an exponential storage-discharge function NWM estimates 167 

groundwater discharge for each NHDPlusV2 channel reach/catchment pair at hourly time steps 168 

(Gochis et al. 2018). 169 
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Table 1. Calibrated NWM parameters in V2.0. (‘×’ in the values denote that the calibration parameter is a multiplier on the default 170 

value) 171 

Parameter name Description Unit 
Calibration value ranges 

(Minimum, Maximum) 

BEXP Pore size distribution index dimensionless (×0.40, ×1.90) 

SMCMAX Saturation soil moisture content (i.e., porosity) volumetric fraction (×0.80, ×1.20) 

DKSAT Saturated hydraulic conductivity m s-1 (×0.20, ×10.00) 

RSURFEXP Exponent in the resistance equation for soil evaporation dimensionless (1.00, 6.00) 

REFKDT Surface runoff parameter. Increasing REFKDT decreases 
surface runoff 

unitless (0.10, 4.00) 

SLOPE Linear scaling of "openness" of bottom drainage boundary 0-1 (0.00, 1.00) 

RETDEPRTFAC Multiplier on retention depth limit unitless (0.10, 20000.00) 

LKSATFAC Multiplier on lateral hydraulic conductivity (controls 
anisotropy between vertical and lateral conductivity) 

unitless (10.00, 10000.00) 

Zmax Maximum groundwater bucket depth mm (10.00, 250.00) 

Expon Exponent controlling rate of bucket drainage as a function of 
depth 

dimensionless (1.00, 8.00) 

CWPVT Canopy wind extinction parameter for canopy wind profile 
formulation 

m-1 (×0.50, ×2.00) 

VCMX25 Maximum carboxylation at 25oC umol m-2 s-1 (×0.60, ×1.40) 

MP Slope of Ball-Berry conductance-to-photosynthesis 
relationship 

unitless (×0.60, ×1.40) 

MFSNO Melt factor for snow depletion curve; larger value yields a 
smaller snow cover fraction for the same snow height 

dimensionless (×0.25, ×2.00) 

TD_SPAC Tile drain spacing m (×0.25, ×2.00) 

 172 
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In this study, we use NWM version 2.0 (V2.0). The NWM has parameters that can be input into 173 

the model as tables and grids and can be tuned or calibrated depending on the research 174 

requirements. The list of important NWM V2.0 parameters identified by the NCAR to regionally 175 

calibrate NWM (Dugger et al., 2017; Gochis et al., 2019) are listed in Table 1.  176 

2.3 Tile drainage scheme 177 

The current NWM lacks the representation of subsurface tile drainage. To compute tile drainage 178 

runoff in the NWM, we implemented a simple analytic solution for subsurface flow to drains 179 

based on Hooghoudt’s tile-drainage model (Hooghoudt 1940; Ritzema, 1994). Hooghoudt’s 180 

model computes steady-state flow into the tile by applying Dupuit-Forchheimer assumptions for 181 

horizontal flow in an unconfined aquifer and Darcy’s Equation. The Hooghoudt’s tile-drainage 182 

model is computationally simple, and therefore is commonly used to compute the tile drainage 183 

runoff in other models, especially in the DRAINMOD model (Skaggs, 1980) and Soil and Water 184 

Assessment Tool (SWAT) model (Arnold et al., 1999; Guo et al., 2018; Moriasi et al., 2012). 185 

Hooghoudt’s steady-state equation that is implemented in the NWM is represented by Equation 186 

1. 187 

𝑞𝑞 = 8𝐾𝐾𝐾𝐾ℎ + 4𝐾𝐾ℎ2

𝐿𝐿2
                                                        (1) 188 

Where, q is the drainage discharge (m d-1), K is the hydraulic conductivity of the soil (m d-1), L is 189 

the distance between tile drains, h is mid-point water table height above the tile drains (m) and D 190 

is the height of tile drain from the bottom impervious layer (m) (Figure 1b). If the tile drain is 191 

sufficient distance above the impervious layer, the streamlines will converge towards the tile 192 

drain and thus no longer be horizontal. This results in longer flowlines and extra head loss. To 193 

meet the Dupuit-Forchheimer assumptions of vertical equipotential lines and horizontal flow 194 

streamlines and to correct for convergence head loss near the tile drains, D in Equation (1) is 195 

replaced with the equivalent depth term (de) (Moody, 1967). The equivalent depth (de) represents 196 

the imaginary thinner soil layer through which the same amount of water will flow per unit time 197 

as in the actual situation (Ritzema, 1994). The value of de can be obtained using the analytical 198 

equations developed from Hooghoudt’s solutions as a function of L, D, and radius (r) of tile 199 

drain (Moody, 1967) that are provided in Ritzema (1994).  200 
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Hooghoudt’s model is a suitable option for the NWM framework because it considers most 201 

factors determining subsurface flow into tiles: K, L, D, soil profile depth, and water table 202 

elevation. Parameter K is already defined in the NWM. Default values of D, r and L are 203 

prescribed based on values reported by previous studies (Guo et al., 2018; Huffman et al., 2011; 204 

Moriasi et al., 2012; Panuska 2020; Schilling and Helmers 2008; Singh et al. 2006; 2007; Singh 205 

and Helmers 2008). The water table depth term, h is diagnosed at each model time-step using the 206 

degree of soil saturation simulated by Noah-MP. The tile drainage estimated by the Noah-MP at 207 

1-km is then disaggregated onto a 250-m routing grid. In the NWM channel routing module, the 208 

lateral tile drainage runoff is mapped to the nearest vector channel network and routed 209 

downstream using Muskingum-Cunge channel routing formulation. We used the 30-meter 210 

resolution AgTile-US (Valayamkunnath et al., 2020) tile drainage map re-gridded to a 1-km 211 

NWM grid to define the tile-drained area within the model (Figure 1a).  212 

2.4 Data  213 

2.4.1 Observations 214 

The study used hourly streamflow measurements from 188 United States Geological Survey 215 

(USGS) streamflow gages spanning across the heavily tile-drained croplands of the Upper 216 

Midwestern US (Figure 1c and 1e). These gages are selected from a list of USGS gages over the 217 

study area based on two criteria: 1) if the missing data in the streamflow time series is less than 218 

20%, and 2) tile drainage fraction within the catchment is greater than 10%. To further examine 219 

the influence of tile drainage on evapotranspiration and soil moisture, we used in-situ 220 

measurements from the South Fork Iowa River watershed collected by the Agriculture Research 221 

Service of the United States Department of Agriculture (Coopersmith et al., 2015; 2021) (Figure 222 

1f), including six sites with hourly flux measurements (latent and sensible heat fluxes) and 12 223 

sites with daily soil moisture measurements. To validate the NWM simulated energy fluxes, we 224 

used daytime (9 am - 5 pm local time) hourly flux measurements.  225 

2.4.2 Forcings for NWM 226 

To drive the NWM, we used Analysis of Record for Calibration (AORC) high-resolution (1-km), 227 

near-surface, hourly meteorological forcing data (Kitzmiller et al., 2018) is available from 1979 228 

to the present for the CONUS. The AORC delivers hourly accumulated precipitation and other 229 

meteorological surface parameters on a 0.0083° grid mesh. It provides superior temperature and 230 
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precipitation data than the widely-used National Land Data Assimilation System Version 2 231 

(NLDAS2) meteorological forcings (Feng et al., 2019; Xia et al., 2012). The AORC is being 232 

used as the primary source of forcing data for the calibration of the operational NWM by NCAR 233 

and OWP (Feng et al., 2019). To derive high-resolution hourly precipitation, the AORC used 234 

different sources of precipitation data such as Livneh (Livneh et al., 2013), NLDAS2 (Xia et al., 235 

2012), Stage IV (Lin and Mitchell, 2005), radar inputs, CMORPH (Joyce et al., 2004), and 236 

Climate Forecast System Reanalysis (CFSR) (Saha et al., 2014). For temperature, Livneh, 237 

NLDAS2, and Parameter Regression on Independent Slopes Method (PRISM) (Daly et al., 2002) 238 

data were used. See Kitzmiller et al. (2018) for more details on the AORC meteorological 239 

forcings. Other variables in AORC, including specific humidity, 10-m above ground wind 240 

components, terrain-level pressure, surface downward shortwave (solar) radiation flux, and 241 

longwave (infrared) radiation flux, were derived from NLDAS2. 242 

Additional static data used for the NWM simulations include NLCD land cover (reclassified on 243 

to USGS 27-class, 30-arc second), Hybrid STATSGO/FAO Soil Texture (19-class, 30-arc 244 

second), and AgTile-US tile drainage map (30-m). 245 

2.5 Calibration of the NWM with a tile drainage scheme 246 

The key elements of an automated calibration workflow are the calibration data, objective 247 

function, and the optimization algorithm employed to optimize the objective function in order to 248 

minimize the model error (Gupta et al., 1998; Singh and Woolhiser 2002; Tolson and Shoemaker 249 

2007). Following the actual NWM calibration procedure (Gochis et al., 2019), we calibrated 250 

NWM against the USGS hourly streamflow data. The objective function used for the calibration 251 

is provided in Equation 2. The standard Nash–Sutcliffe Efficiency (NSE) emphasizes the high 252 

flow performance of the model due to squared error terms. However, combining NSE of log-253 

transformed streamflow with standard NSE provides an additional emphasis on low flows to 254 

account for background model bias. During calibration, the objective function will be minimized. 255 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1 − (𝑁𝑁𝑁𝑁𝑁𝑁+𝑁𝑁𝑁𝑁𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿)
2

                                                    (2) 256 

Here, 𝑁𝑁𝑁𝑁𝑁𝑁 is the Nash-Sutcliffe Efficiency and 𝑁𝑁𝑁𝑁𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿 is the Log-transformed NSE (see Table 257 

2 for more details). 258 
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Table 2. Evaluation metrics used for the performance evaluation of the NWM. 259 

Metrics Equation Description 
Pearson’s Correlation 

(COR) 

 

𝑟𝑟 = ∑ (𝑚𝑚𝑖𝑖−𝑚𝑚� )(𝑜𝑜𝑖𝑖−𝑜𝑜�)𝑛𝑛
𝑖𝑖=1

∑ (𝑚𝑚𝑖𝑖−𝑚𝑚� )2(𝑜𝑜𝑖𝑖−𝑜𝑜�)2𝑛𝑛
𝑖𝑖=1

   
 
 

Here, 𝑚𝑚𝑖𝑖 and  𝑚𝑚�  are the i
th 

value and mean of NWM simulated 
streamflow, respectively. 𝑜𝑜𝑖𝑖 and 𝑜̅𝑜 are same as above but for the 
observation, and n is the length of streamflow series. Values 
greater than 0.5 are considered acceptable levels of performance. 
COR is used to capture the flow timing (Benesty et al., 2009; 
Moriasi et al., 2007). (Optimal value = 1) 

Root mean squared error  
(RMSE) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑚𝑚𝑖𝑖 − 𝑜𝑜𝑖𝑖)2𝑛𝑛

𝑖𝑖=1 𝑛𝑛�   
All terms have same meaning as above. But RMSE is used to 
capture the flow magnitude. (Optimal value = 0) 

Percent bias (Bias) 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =  ∑ (𝑚𝑚𝑖𝑖 − 𝑜𝑜𝑖𝑖) × 100𝑛𝑛
𝑖𝑖=1

∑ 𝑜𝑜𝑖𝑖𝑛𝑛
𝑖𝑖=1

�   All terms have same meaning as above. But Bias is used to 
capture the flow magnitude. (Optimal value = 0) 

Nash-Sutcliffe 
Efficiency  
(NSE) 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 − �∑ (𝑜𝑜𝑖𝑖 − 𝑚𝑚𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝑜𝑜𝑖𝑖 − 𝑜̅𝑜)2𝑛𝑛
𝑖𝑖=1

� �  

 

All terms have same meaning as above. Values between 0.0 and 
1.0 are generally viewed as acceptable levels of performance.  
NSE can capture the flow timing and magnitude errors of the 
high flows (Moriasi et al., 2007; Nash and Sutcliffe, 1970).  
(Optimal value = 1) 

Log-transformed Nash-
Sutcliffe Efficiency  
(NSELOG) 

𝑁𝑁𝑁𝑁𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿 = 1 −

�∑ (log(𝑜𝑜𝑖𝑖) − log(𝑚𝑚𝑖𝑖))2𝑛𝑛
𝑖𝑖=1

∑ �log(𝑜𝑜𝑖𝑖) − log(𝑜𝑜𝚤𝚤)����������
2𝑛𝑛

𝑖𝑖=1
� �  

All terms have same meaning as above. Values between 0.0 and 
1.0 are generally viewed as acceptable levels of performance. 
NSELOG can capture the flow timing and magnitude errors of the 
low flows (Moriasi et al., 2007).  (Optimal value = 1) 

Weighted NSE (NSEWT) 𝑁𝑁𝑆𝑆𝑆𝑆𝑊𝑊𝑊𝑊 = (𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑁𝑁𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿)
2�   All terms have same meaning as above. Values between 0.0 and 

1.0 are generally viewed as acceptable levels of performance. 
NSEWT is used to capture flow timing and magnitude errors for 
low flows and high flows. (Moriasi et al., 2007). (Optimal value 
= 1) 

Kling-Gupta Efficiency  
(KGE) 𝐾𝐾𝐾𝐾𝐾𝐾 = 1 −�(𝑟𝑟 − 1)2 + �𝜎𝜎𝑚𝑚

𝜎𝜎𝑜𝑜
− 1�

2
+ �𝑚𝑚�

𝑜𝑜�
− 1�

2
  

Here, 𝜎𝜎𝑚𝑚 and 𝜎𝜎𝑜𝑜 are standard deviations in simulated and 
observed streamflow, respectively and other terms have same 
meaning as above. The range −0.41 < KGE ≤ 1 could be 
considered as reasonable levels model performance. KGE is used 
to capture timing and magnitude errors. (Gupta et al., 2009; 
Knoben et al., 2019) 

260 
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As in the official calibration strategy of the NWM V2.0, the Dynamically Dimensioned Search 261 

(DDS) algorithm (Tolson and Shoemaker, 2007) is used in this study to optimize the objective 262 

function. The algorithm is designed to scale the search in model parameter space to the user-263 

defined maximum number of iterations. The algorithm searches globally in its initial iterations 264 

and then localizes the searches as the iterations approach the user-defined limit. The transition 265 

from global to local search is attained by dynamically and probabilistically reducing the search 266 

dimension in the neighborhood. See Tolson and Shoemaker (2007) for more details on DDS. In 267 

this study, the maximum number of iterations is set to 300 for the NWM calibration. 268 

Since the NWM simulations are data-, time-, and computationally-intensive, calibrating it for the 269 

large river basins of the US in a single experiment is a cumbersome task. According to Feng et 270 

al. (2019), about 1469 basins across the CONUS are identified from USGS GAGES II reference 271 

basins, California Department of Water Resources (CADWR) basins, and NOAA NWS River 272 

Forecast Centers (RFC) basins for the CONUS-scale calibration of the NWM V2.0. Calibration 273 

basins are selected based on basin size, completeness of the streamflow observation record, 274 

distribution within ecoregions level III (Omernik JM. 1995) and hydrograph characteristics in 275 

comparison to other basins in the region. A basin is selected if the basin area is between 10 km2 276 

and 20,000 km2, streamflow data completeness is at least 50% for the calibration period, and the 277 

basin has minimal human interventions (i.e., dams, road density, etc.) (Feng et al., 2019). To 278 

calibrate NWM for the UMRB and ORB, we used a subset of 49 basins from V2.0 calibration 279 

basins that have the tile-drainage area greater than or equal to 10% of the basin area (Figure 1c). 280 

Before performing the calibration, we spin-up NWM for the selected 49 basins, separately, from 281 

October 1, 2007, through October 1, 2019 period using the default model parameters. Using the 282 

model state of October 1, 2019, as the “warm start,” we executed the model calibration from 283 

October 1, 2007, through October 1, 2013. A separate 1-year spin-up from October 1, 2007, 284 

through September 30, 2008, is considered for each iteration to match the model state to current 285 

conditions and suppress most instabilities from parameter changes. The critical parameters of the 286 

NWM (V2.0) related to soil, vegetation, runoff, snow, and groundwater and their description are 287 

provided in Table 1 along with the most sensitive tile-drainage model parameter, the tile spacing 288 

(L) parameter (Moriasi et al., 2012; Sammons et al., 2015; Guo et al., 2018). Using the best 289 

parameters determined by the DDS algorithm, we ran the NWM from October 1, 2007, through 290 
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October 1, 2019. Model outputs for the water years 2007-2013 are discarded as spin-up and 291 

calibration periods, and then we evaluated the model for all the 49 basins over the period 292 

October 1, 2013, to October 1, 2019. 293 

2.6 Regionalization of calibrated NWM parameters 294 

The total area of the calibrated basins is less than 10% of the area of UMRB and ORB combined. 295 

To compare the NWM performance with tile drainage and to quantify impacts of tile drainage on 296 

regional hydrology, regional NWM simulation experiments are necessary. To execute the NWM 297 

for regional domains presented in Figure (1e), appropriate parameters are required to be assigned 298 

for each 1-km model grid cell in the study domain. The purpose of the parameter regionalization 299 

is to transfer parameters from the calibration basins (donors) to the uncalibrated basins or 1-km 300 

model grids (receiver) (Beck et al., 2016; He et al., 2011; Hrachowitz et al., 2013; Razavi and 301 

Coulibaly, 2013). The most critical parts of the parameter regionalization process are identifying 302 

donor basins for uncalibrated areas and choosing an optimal regionalization approach. We used 303 

the regionalization based on maximum hydrological similarity (or minimum hydrologic distance) 304 

to identify donor basins for uncalibrated areas (Beck et al., 2016; Garambois et al., 2015; Sellami 305 

et al., 2014; Singh et al., 2014; Wallner et al., 2013). It is reasonable to assume that basins with 306 

similar climate, topography, vegetation, geology and soil properties have identical NWM 307 

parameters and produce similar hydrological responses. The hydrologic similarity or hydrologic 308 

distance is measured by the Gower’s distance metric (Gower, 1971).  309 

To calculate the Gower’s distance between donor and receiver basins, we considered several 310 

attributes (see Table 3) based on the Hydrological Landscape Region (HLR) concept (Liu et al., 311 

2008; Winter, 2001; Wolock et al., 2004). Before using the Gower’s distance metric, we 312 

conducted a principal component analysis (PCA) to remove potential correlation between the 313 

basin attributes. Each basin attribute is scaled to [-1, 1] by subtracting the mean and then 314 

dividing by the standard deviation before the PCA.  We used the following equation to quantify 315 

the Gower’s distance, 316 

𝑆𝑆𝑖𝑖𝑖𝑖=
∑ 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛
𝑘𝑘=1  𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖
∑ 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛
𝑘𝑘=1

      (3) 317 
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Table 3. Basin attributes used for characterizing hydrologic similarity in NWM 2.0 with tile drainage scheme 318 

Category Attribute Notes 

 
 
 
 
 
Landform 

Percent flatland (total) 
Total percent cover of flatland in the basin; 
flatland refers to areas with a slope of less 
than 0.01 

Percent flatland (upland) Upland refers to areas above the middle 
elevation of the basin 

Percent flatland (lowland) Lowland refers to areas below the middle 
elevation of the basin 

Relief Difference between the highest and lowest 
elevations 

Circularity index 
The ratio of the basin’s area over the area of a 
circle with the same length of perimeter as the 
basin 

 
 
Soil and geology 

Percent sand Mean percentage of sand in the soil column 
(upper 2m) 

Percent clay Mean percentage of clay in the soil column 
(upper 2m) 

Depth to bedrock Average thickness of soil  

 
 
 
Land cover 
 

Percent forest Percent cover of forest (all types) in the basin 

Percent cropland Percent cover of cropland (all types) in the 
basin 

Percent urban Percent cover of urban areas in the basin 

Percent tile drainage Percent cover of tile drained cropland in the 
basin 

 
 
Climate 

Feddema moisture index (FMI) 

1-(PET/P) (if P>=PET) or (P/PET)-1 (if 
P<PET), where P & PET are annual mean 
precipitation and potential evapotranspiration, 
respectively. See Feddema (2005) and 
Leibowitz et al. (2016) for more details. 

 319 

 320 
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Where,  𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 is the distance for variable k between a donor (i) and a receiver (j) and 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 is the 321 

weight on variable k. For numerical variables, values of  𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 are estimated as the absolute 322 

difference in the values of variable k between i and j, normalized by the range of variable k over 323 

all observations. For categorical variables,  𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 is assigned to 1 if i and j are equal on variable k 324 

and 0 if they are not. The variables used in Equation (3) are the scores of the principal 325 

components and weights (𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖) are calculated based on the percentages of the total variance 326 

explained by individual principal components. The receiver basins depicted in Figure (1d) are 327 

extracted from USGS 10-digit Hydrologic Unit Code (HUC10) dataset. We selected 939 HUC10 328 

basins over the upper Midwestern US with at least 10% tile drainage (i.e., 10% tile drainage 329 

based on the total basin area) to regionalize the calibrated NWM parameters. For each HUC10 330 

basin, we calculated Gower’s distance from all the 49 calibration basins, identify a donor basin 331 

based on minimum Gower’s distance (i.e., maximum hydrologic similarity) and spatial distance 332 

from the HUC10 basin, and finally transferred all the parameters to the HUC10 basins from their 333 

respective donor basin. Using the shapefile of HUC10 basins and the NWM 1-km geogrid, we 334 

mapped the parameters to the 1-km model domain. For areas with no tile drainage, we used the 335 

parameters from the official NWM V2.0 calibration experiment by NCAR and OWP. 336 

2.7 Simulation experiments 337 

To examine the impact of tile drainage on the NWM performance and land surface hydrology, 338 

we conducted the following NWM simulations for the UMRB and ORB regional domains. 339 

a. Default: default NWM V2.0 without parameter calibration  340 

b. DefaultTD: as in Default, but including the tile-drainage model  341 

c. Calib: NWM V2.0 with calibrated parameters, mimicking the operational NWM  342 

d. CalibTD: as in Calib but using the tile-drainage model with calibrated tile-space 343 

parameter. 344 

Similar to the calibration experiment, we spin-up all the four regional NWM experiments from 345 

October 1, 2012, through October 1, 2019, before performing the analysis run. Using October 1, 346 

2019 model state as the initial condition, we re-run the model from October 1, 2012, through 347 

October 1, 2019.  The first water year (i.e., the water year 2012) model outputs are discarded 348 
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from the analysis as we use this as an additional model spin-up period. Simulated streamflow 349 

from model outputs is extracted for 139 USGS gage locations (Figure 1e). The results presented 350 

in this study for the UMRB and ORB regional domains are only for October 1, 2013, through 351 

October 1, 2019 period. 352 

2.8 Analysis 353 

The analyses conducted in this study to evaluate the model performance include hydrograph 354 

analysis and statistical analysis using various statistical performance metrics provided in Table 2. 355 

We evaluated the model simulated high flows, low flows, and streamflow events with 356 

observations using hydrograph analysis. We derived high flows and low flows based on observed 357 

streamflow quantiles. We split the observed and model estimated streamflow time series into 99 358 

segments based on streamflow quantiles ranging from 1 to 100% for every observation. Low 359 

flow is defined as streamflow below the median (50th quantile), and high flow is streamflow 360 

above the median (see Figure S2 in the supporting information for graphical explanations). For 361 

each quantile segment of the streamflow series, we estimated the model performance using 362 

metrics listed in Table 3. To identify streamflow events, we use a recently developed R package 363 

called “RNWMStat” (https://github.com/NCAR/RNWMStat) (Valayamkunnath et al., 2020). 364 

RNWMStat can detect and match streamflow events from the observed and simulated 365 

streamflow series.  366 

The event detection algorithm in the RNWMStat follows a two-step procedure: first, the 367 

algorithm smooths the streamflow time series (simulated or observed) using the local weighted 368 

regression smoothing (LOESS) technique to remove high-frequency noises in the hydrographs; 369 

second, it determines the start, peak, and endpoints of streamflow events from the first derivative 370 

(i.e., rate of change) of smoothed streamflow series and remapped on to the original streamflow 371 

series. We matched a simulated streamflow event with an observed event if the simulated peak of 372 

an event is within the observed event (i.e., between the start and endpoints of an observed event). 373 

For the matched events, we estimate peak bias (%), timing error of peak streamflow (hours), 374 

event hit rate (%), and false alarm rate (%). Hit rate indicates the percentage of observed events 375 

that the model predicts, and false alarm rate is the percentage of model events that are not 376 

observed. For the event-based analysis, we used only the events with their peak greater than or 377 

equal to the 90th percentile of streamflow. We used the Wilcoxon signed-rank test at 5% 378 
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significance level to quantify the statistical significance of the median changes in the NWM 379 

performance. The estimated p-values are provided in Table S1 to Table S3.  380 

3. Results  381 

3.1 NWM calibration and parameter estimation 382 

The distributions of 14 sensitive parameters (Dugger et al., 2017; Gochis et al., 2019) from the 383 

Default, Calib, and CalibTD are presented in Figure 2. The physical meanings of these 384 

parameters are presented in Table 1. The new tile drainage scheme substantially altered the 385 

distributions of the NWM parameters. In CalibTD, the soil column is relatively water-absorbing 386 

or wetter than Default and Calib, because of its higher median values of pore size distribution 387 

index (BEXP) and soil porosity (SMCMAX). We observed a significant reduction in direct soil 388 

evaporation (RSURFEXP) and increase in infiltration (REFKDT) and surface water retention 389 

depth (RETDEPRTFAC) in CalibTD (p < 0.05). Additionally, the degree of anisotropy in the 390 

soil saturated hydraulic conductivity (LKSATFAC) is greatly reduced (p < 0.05) in CalibTD 391 

compared to Calib. However, the estimated LKSATFAC for CalibTD is significantly higher 392 

compared to Default (p < 0.05). Furthermore, the degree of openness in the bottom drainage 393 

boundary (SLOPE) is slightly higher in CalibTD compared to Calib.  394 

Based on STATSGO2 soil data, the dominant soil types of the study region are loam, silty clay 395 

loam, and silt loam (Miller and White, 1998; USDA-NRCS, 2012). Overall, the CalibTD 396 

parameters ranges are acceptable for the study region with a managed agriculture and above-397 

listed soil types (Clapp and Hornberger 1978; Lipiec et al., 2006; Livneh et al., 2015; Ma et al., 398 

2007; Miller and White, 1998). The distributions of the NWM parameters presented in Figure 2 399 

suggest that CalibTD creates favorable conditions for low surface runoff rates, high infiltration 400 

rates, a saturated soil column, and a shallow water table compared to Calib (Kalita et al., 2007).   401 
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 402 

Figure 2. The distributions of the NWM parameters from Default, Calib and CalibTD 403 
experiments. 404 

 405 

3.2 NWM performance evaluation: calibration and validation periods 406 

Seasonal distributions of NWM performance evaluation metrics for calibration and validation 407 

periods are depicted in Figure 3. Representing the tile drainage process in the NWM improves 408 

the model performance during the calibration period (Figure 3a-f). Examining the DefaultTD 409 

model evaluation metrics indicated significant improvements in COR, NSE, NSEWT, and KGE 410 

during all seasons than Default (p<0.05). Furthermore, the median and spread of RMSE are 411 

considerably reduced in DefaultTD during all seasons than Default. There are no considerable 412 
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differences in the estimated Bias between Default and DefaultTD. Overall, DefaultTD 413 

performance is halfway between Default and Calib. That is, incorporating tile-drainage modeling 414 

into NWM using default parameters (i.e., DefaultTD) enhanced the NWM performance by 20% 415 

to 50% of the improvements attained by the fully-calibrated NWM (or Calib) from Default (e.g., 416 

for spring, the median NSE improved from 0.22 (Default) to 0.55 (Calib) in the non-tiled model, 417 

and from 0.22 to 0.33 in the Default versus DefaultTD). The improvement seen in the DefaultTD 418 

emphasizes the benefit of incorporating more physical process representation into hydrologic 419 

models, rather than relying on calibration to compensate for model deficiencies, which ultimately 420 

leads to uncertainty in model reliability across time (Andréassian, 2012; Gharari et al., 2014; 421 

Ljung, 1999). 422 

Compared to Default, the biggest improvement was brought by the Calib based on all the metrics 423 

we considered (Figure 3a-f and Table S1). However, examining NSE, NSEWT, and KGE 424 

indicated that Calib has considerable discrepancies in the simulated streamflow over many 425 

calibration basins. Based on the valid ranges of evaluation metrics presented in Table 2, the 426 

performance of Calib is unacceptable in about 18%, 6%, 20%, and 30% of the calibration basins 427 

during winter, spring, summer, and fall, respectively (Figure 3d-f). In CalibTD, these 428 

underperforming basin percentage is reduced to 4%, 2%, 0%, and 6%, respectively for winter, 429 

spring, summer, and fall. Additionally, we observed higher metrics medians with lower 430 

variabilities for the CalibTD. Seasonal analysis indicated that the NWM performance is best 431 

during summer and fall. It is due to the high amount of precipitation and streamflow during these 432 

seasons. Overall, calibration of the NWM with a tile drainage scheme (i.e., CalibTD) 433 

significantly improved the model performance than other model experiments (p<0.05) (Figure 434 

3a-f and Table S1). Despite the improvements seen in the DefaultTD, it was necessary to 435 

calibrate to attain improved model performance.  436 

Using the best parameters identified by the optimization algorithm, we executed the model for 437 

the validation period. As shown in Figure 3g-i, the DefaultTD outperformed Default.  The 438 

improvements in NSE, NSEWT, KGE, COR for the DefaultTD are significant (p<0.05) during 439 

winter and spring compared to Default. Similarly, CalibTD performed better than Calib during 440 

the validation period (Figure 3g-I and Table S2), especially during summer and fall. Examining, 441 

COR, NSE, and KGE indicated that CalibTD performed slightly worse during winter and spring 442 
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because it failed to reproduce the flow timings and peaks accurately. Biases in the timing and 443 

intensity of snowmelt can be another reason (Suzuki and Zupanski, 2018). Overall, incorporating 444 

the tile drainage process into the NWM substantially enhanced the accuracy of the NWM over 445 

heavily tile-drained basins in the upper Midwest. 446 

 447 

Figure 3. The NWM performance evaluation over 49 calibration basins for the calibration and 448 
validation periods. Comparison of the distribution of six evaluation metrics estimated based on 449 
the four NWM parameter experiments for the calibration (a-f) and validation (g-l) periods. Here, 450 
DJF=winter, MAM=spring, JJA=summer and SON=fall. Detailed descriptions of these metrics 451 
are provided in Table 2.  452 

 453 
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3.3 NWM performance evaluation: Regional Simulation experiments 454 

By employing the regionalized parameters, we conducted the same set of four NWM simulations 455 

(see section 2.7) to quantify the influence of tile drainage on the NWM performance over the 456 

heavily tile-drained UMRB and ORB. The distributions of model evaluation metrics estimated 457 

using 139 USGS streamflow observations are provided in Figure 4. As mentioned earlier, 458 

DefaultTD is able to attain more than 50% of the improvement brought by the fully calibrated 459 

NWM from Default over the regional domain. It substantially enhanced the ability of NWM to 460 

capture the timing, peaks, and quantity of observed streamflow. The estimated RMSE for the 461 

DefaultTD is 3% to 17% less than that of the Default. The improvements we observed in NSE, 462 

NSEWT, and KGE for the DefaultTD are significant (p<0.05) compared to Default in all seasons 463 

except fall (Figure 4 and Table S3). Except for RMSE in all seasons, NSEWT during summer and 464 

fall, and NSE during fall, all the model evaluation metrics for the Calib showed significant 465 

improvements from Default (p<0.05) (Figure 4 and Table S3).  466 

 467 

Figure 4. Seasonal NWM performance evaluation over the two HUC2 regional domains based 468 
on 139 USGS streamflow observations. Comparison of the distribution of six evaluation metrics 469 
estimated based on the four NWM parameter experiments for the regional simulation period (a-470 
f). In (a-f), the color shading behind the boxplot indicate the data distribution density. 471 

 472 
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One of the main focuses of this study is to quantify the impact of the tile drainage scheme on 473 

calibrated NWM performance over the regional domain, and Figure 4a-f clearly shows a better 474 

performance of the CalibTD than Calib. Seasonal distributions of the model evaluation metrics 475 

showed significant (p<0.05) improvements in the CalibTD performance in reproducing the flow 476 

time, quantity, variance, and dynamics in the observed streamflow than in other model 477 

experiments. RMSE in CalibTD is considerably reduced by 9% to 23% compared to Calib 478 

(Figure 4b). However, CalibTD slightly overestimated (underestimated) streamflow during 479 

winter (summer) compared to observation and Calib, but there are no significant differences 480 

between them for spring and fall (Figure 4c and Table S3). 481 

3.3.1 Hydrograph analysis 482 

To understand the causes of discrepancies in the NWM simulated streamflow (mainly Bias and 483 

RMSE), we conducted hydrograph analysis using the NWM simulated streamflow from four 484 

experiments and observations. Results of the high-flow and low-flow hydrograph analysis are 485 

presented in Figure 5. The median values of performance metrics estimated for the low-flows are 486 

almost the same for Default and DefaultTD (Figure 5a, c, e, g, i, and k). The median low-flow 487 

Bias estimated for Calib is twice that of Default (Figure 5e). Even though CalibTD reduced low-488 

flow biases compared to Calib, it still overestimated low-flows by 50%. Analyzing the 489 

distributions of NSE (Figure 5g), NSEWT (Figure 5i), and KGE (Figure 5k) indicated that the 490 

NWM, in general, failed to reproduce observed low-flow accurately, consistent with previous 491 

studies assessing the NWM performance in estimating low-flows have reported similar findings 492 

(Hansen et al., 2019; Jachens et al., 2021; Karki et al., 2021). One of the reasons for the 493 

overestimation of low-flows can be the high groundwater recharge (deep percolation loss) rate in 494 

the NWM (Karki et al., 2021). The existing groundwater scheme in the NWM represents surface 495 

water–groundwater connectivity using a one-way connection from the underlying aquifer to the 496 

stream channel and omitted the influences of the stream on groundwater, and ignoring the two-497 

way stream–aquifer fluxes in the NWM lead to overprediction of low flows (Jachens et al., 498 

2021). Our results indicate significant reductions in the low-flow Bias and RMSE in CalibTD 499 

compared to Calib. Because tile drainage substantially reduced the groundwater recharge and 500 

rerouted the saturated soil water into the stream directly (see section 3.4 for more detailed 501 

discussion). 502 
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 503 

Figure 5. Evaluation of the NWM simulated high-flows and low-flows based on regional 504 
simulation. The model performance metrics are calculated by comparing the NWM estimates 505 
with 139 USGS streamflow observations. In (a-l), the color shading behind the boxplot indicate 506 
the data distribution density. 507 

 508 

Results on high-flows revealed considerable improvements in the DefaultTD and CalibTD 509 

performance over the regional domain (Figure 5b, d, f, h, j, and l). As we highlighted before, 510 

DefaultTD significantly (p<0.05) improved the high-flow performance of the NWM compared to 511 

Default by increasing COR by 0.15, NSE by 0.16, and KGE by 0.22. Furthermore, DefaultTD is 512 

able to reduce RMSE by -2.84 m3s-1 and improve the Bias by 4.2%. The variability in the model 513 

performance metrics is considerably lower in DefaultTD compared to Default. Calib 514 

substantially enhanced performance in reproducing the observed high-flow characteristics than 515 

Default. Analyzing the evaluation metrics of Calib indicated a significant (p<0.05) increase in 516 

COR by 0.19, NSE by 0.27, NSEWT by 0.46, and KGE by 0.36 than in Default. Calib can better 517 

capture the timing and magnitude of observed high-flows with reduced mean error compared to 518 

Default. CalibTD further enhanced the accuracy in estimating the observed high-flow 519 

characteristics by significantly increasing COR by 0.11, NSE by 0.19, and KGE by 0.13 in 520 

CalibTD compared to Calib (Figure 5b, h, and l). Furthermore, CalibTD reduced the mean error 521 
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by 4.88 m3s-1 and Bias by 10% (Figure 5d and f). Overall, the NWM with CalibTD is able to 522 

better capture the timing, magnitude, and dynamics of observed high-flows very well compared 523 

to other experiments. 524 

3.3.2 Event-based evaluation 525 

One important goal of the NWM is to provide flash flood forecasts with longer lead times and 526 

reduced uncertainties. Thus, we analyzed the performance of NWM to capture the different 527 

characteristics of observed streamflow events using 139 USGS gage measurements. Event-based 528 

metrics estimated for different NWM experiments are presented in Figure 6. Default is able to 529 

reproduce about 44% of the observed streamflow events (Figure 6a). The DefaultTD 530 

significantly increased the event hit rate by 47% (p<0.001) than Default, and also reduced the 531 

variability in the hit rate. Calib significantly enhanced the hit rate of NWM by 67% (p<0.001) 532 

compared to Default. Among the four NWM experiments considered, CalibTD showed the 533 

highest streamflow event hit rate. The estimated hit rate in CalibTD is 78%, which is 7% higher 534 

than Calib. Moreover, the spread in the hit rate estimated for CalibTD is considerably lower than 535 

that of Calib (Figure 6a). The median false alarm rate in Calib is 22.5%. But in CalibTD, the 536 

false alarm rate is substantially reduced to 17.5% (Figure 6b). 537 

 538 

Figure 6. Event-based evaluation of the NWM based on regional simulation. The event-based 539 
statistics are calculated by comparing the NWM estimates with 139 USGS streamflow 540 
observations. In (a-d), the color shading behind the boxplot indicate the data distribution density. 541 

 542 
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Tile drainage can significantly impact the peaks and timings of streamflow events, with an 543 

earlier peak of greater magnitude (Rahman et al., 2014; Robinson et al., 1985), so we also 544 

quantified the NWM’s ability to capture the peak flows, and timing of peak flows for each 545 

streamflow event. The estimated peak flow bias (%) and peak flow timing error (h) from 546 

different NWM experiments are presented in Figures 6c and 6d, respectively. There is no 547 

considerable difference between Default and DefaultTD in the estimated peak flow bias. 548 

However, CalibTD outperformed Calib and produced a lower peak flow bias of 0.57% compared 549 

to 5% in Calib. The median values of the estimated peak flow timing error are -3h, 0h, 4h, and 550 

2h for Default, DefaultTD, Calib, and CalibTD, respectively. Overall, the event-based 551 

streamflow analysis indicated that NWM with CalibTD outperformed other NWM experiments 552 

over the heavily tile-drained UMRB and ORB. Our findings are consistent with previous studies 553 

in that the model performance to simulate streamflow over a heavily tile-drained watershed was 554 

considerably improved when they incorporated tile drainage into the model (Green et al., 2006; 555 

Hansen et al., 2013; Robinson et al., 1985; Wiskow and van der Ploeg, 2003).  556 

3.3.3 Soil moisture evaluation 557 

In addition to streamflow, tile drainage modifies the soil water storage. We evaluated the NWM 558 

performance using soil moisture measurements (volumetric) from 12 sites in the South Fork 559 

Iowa River watershed (Figure 1f). Using the soil moisture measurements from three different 560 

depths and NWM estimates at three model levels, we estimated COR, RMSE, and Bias in the 561 

model estimated soil moisture (Figure 7).  The NWM performance in estimating the soil 562 

moisture using Default and DefaultTD is nearly identical regarding the medians of COR, RMSE. 563 

Both Default and DefaultTD showed higher median COR (0.68) and zero median Bias for the 564 

first soil layer (0-10 cm) of the NWM. A lower COR (0.60) and Bias (8%) and higher RMSE 565 

(0.062%) are estimated for the third soil layer of the NWM. Calibration substantially impacted 566 

the performance of the NMW to estimate soil moisture. For instance, Calib significantly reduced 567 

the NWM performance compared to Default by degrading COR, increasing RMSE, Bias, and 568 

their variance. This is not surprising, because the model was calibrated to optimize streamflow 569 

prediction. Although CalibTD underperformed compared to Default and DefaultTD, it produced 570 

better estimates of soil moisture compared to Calib. Also, the medians of COR, RMSE, and Bias 571 
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are significantly improved, and their variances are reduced when NWM employed CalibTD 572 

instead of Calib.  573 

 574 

Figure 7. Evaluation of the NWM simulated soil moisture with field measurements. In (a-i), the  575 
color shading behind the boxplot indicate the data distribution density. 576 
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 577 

Figure 8. Accuracy assessment of NWM simulated energy balance components. (a-c) Represent 578 
the evaluation of NWM simulated latent heat fluxes (evapotranspiration), (d-f) same as (a-c), but 579 
for sensible heat fluxes. 580 

 581 

3.3.4 Energy flux evaluation 582 

Using the eddy covariance flux measurements from seven sites in the South Fork Iowa River 583 

watershed (Figure 1f), we evaluated the NWM simulated hourly sensible heat (SH) fluxes and 584 

latent heat (LH) fluxes (equivalent to evapotranspiration). Results of the energy flux analysis are 585 

presented in Figure 8. The results shown in Figure 8 are the averaged values of evaluation 586 
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metrics estimated for the observation sites. The estimated COR and RMSE of LH for all the four 587 

NWM experiments are almost identical. Despite high correlation, the NWM estimated LH 588 

incurred a high mean error (~ 40 Wm-2) (Figure 8b). NWM with Default and DefaultTD 589 

produced better estimates of LH with Bias equal to ± 1%. However, Calib and CalibTD 590 

noticeably underestimated LH by -15% and -14%, respectively.  In the case of SH, CalibTD 591 

outperforms other NWM experiments with higher COR (0.83) and lower RMSE (32 W m-2) and 592 

Bias (1%). Calib considerably enhanced the NWM performance in SH estimation compared to 593 

Default and DefaultTD. However, Calib slightly underperformed compared to CalibTD. Even 594 

though there are discrepancies in the NWM estimated SH and LH, our results of LH and SH 595 

indicate that the performance of the NWM is acceptable (see Table 2 for metrics ranges).  596 

3.4. Effect of tile drainage on regional hydrology 597 

To quantify the effects of tile drainage on regional hydrology, we analyzed land surface water 598 

balance. For this purpose, we conducted one additional NWM simulation with CalibTD 599 

parameters and deactivated the tile drainage scheme. This simulation with a deactivated tile 600 

drainage scheme is designated as “No tile drainage,” (which is not equal to Calib as it uses 601 

CalibTD parameter set) and the NWM with CalibTD is defined as “With tile drainage” in this 602 

section. The results of the seasonal water balance analysis are presented in Figure 9. The results 603 

shown in Figure 9a-d are the averaged values of water balance components estimated for the tile-604 

drained grids of the NWM within UMRB and ORB. The maximum amount of tile drainage over 605 

UMRB and ORB occurred during spring (117 ± 50 mm) followed by summer (85 ± 32 mm), 606 

winter (71 ± 40 mm), and fall (40 ± 20 mm) (Figure 9a-d). Values in the parenthesis indicate 607 

mean and one spatial standard deviation. The ratio of tile-drained water (TD) to precipitation (P) 608 

is highest during spring (0.46), followed by winter (0.41), summer (0.20), and fall (0.12).  609 

The results shown in Figure 9e-j are the distributions of percentage changes in the average values 610 

of water balance components that are calculated for each tile-drained grid of the NWM within 611 

UMRB and ORB. Analyzing seasonal distributions of surface runoff (SR) changes indicated a 612 

significant decrease in SR due to tile drainage (Figure 9e), which is consistent with previous 613 

studies (Natho-Jina et al., 1987; Robinson et al., 1985; Robinson and Rycroft, 1999; Skaggs et 614 

al., 1994). Following the seasonal tile drainage pattern, the highest decline in SR is estimated for 615 

spring (-29%), followed by winter (-24%), summer (-14%), and fall (-7%). Tile drainage 616 
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significantly decreased subsurface runoff or groundwater recharge (UR) for all the seasons we 617 

considered (Figure 9f). This is similar to the findings of Golmohammadi et al. (2017). However, 618 

a maximum decrease is identified during spring (-50%) and summer (-50%). During winter and 619 

fall, UR decreased by -43% and -39%, respectively. The impact of tile drainage on SR is higher 620 

than UR because tile drainage increases infiltration. However, all the saturation water from the 621 

infiltration are not removed by the tile drainage and a considerable amount of saturation water 622 

(5% to 10%) is still available to UR. 623 

 624 

Figure 9. Impact of tile drainage on the NWM water balance components. (a-d) The seasonal 625 
totals of precipitation (P), tile drainage (TD), surface runoff (SR), underground runoff or 626 
groundwater recharge (UR), and evapotranspiration (ET). The values represented in (a-d) are the 627 
averages of all the NWM tile-drained grids in the UMRB and ORB. (e-j) The changes in water 628 
balance components due to tile drainage. The results presented in (e-j), are estimated as “with tile 629 
drainage” minus “no tile drainage”.  In (e-j), the color shading behind the boxplot indicate the 630 
distribution density. 631 
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The main components of evapotranspiration (ET) are direct soil evaporation, transpiration, and 632 

canopy evaporation. Our analysis indicated that tile drainage significantly impacted soil 633 

evaporation (Figure 9g). The seasonal distributions of soil evaporation changes showed a more 634 

significant decrease in spring (-13%) and summer (-11%) (p<0.05). The reduction in soil 635 

evaporation estimated for winter and fall are -7% and -8%, respectively. Since the results on 636 

transpiration indicated minimal changes (<1%) due to tile drainage, the estimated seasonal 637 

changes in ET are almost equal to soil evaporation (Figure 9i). Studies of Khand et al. (2017), 638 

Kjaersgaard et al. (2014), and Yang et al. (2017) based on remote sensing and eddy covariance 639 

ET measurements from tile-drained croplands of the US reported similar findings on ET 640 

changes. Furthermore, we also evaluated the impact of tile drainage on root-zone soil moisture. 641 

Our results indicate that the soil moisture considerably decreased by 2% to 3% due to tile 642 

drainage. Similar findings were previously reported by many studies (Fausey 2005; Fraser and 643 

Flemming, 2001; King et al., 2014).  644 

Additionally, we quantified the impact of tile drainage on streamflow by comparing “No tile 645 

drainage” with “With tile drainage”. Tile drainage substantially altered the streamflow events by 646 

increasing peaks by 14%, increasing volume by 2.3%, delaying event start time by 2 hours, and 647 

reducing the end time by 7 hours. As indicated by previous studies, tile drainage is responsible 648 

for more short-term flashy streamflow events (De Schepper, 2017; Miller and Lyon, 2021; 649 

Rahman et al., 2014; Robinson et al., 1985). Our results indicated a considerable increase in 650 

seasonal streamflow volume due to tile drainage. The highest increase is estimated for winter 651 

(17%), followed by spring (13%), fall (13%), and summer (2.8%). Moreover, our analysis found 652 

that tile drainage enhanced the baseflow volume by 11.52%, which consistent with findings from 653 

previous studies (King et al., 2014; Moore and Larson, 1980; Schilling and Libra, 2003). 654 

However, the baseflow index is estimated as the ratio of total baseflow to the total streamflow is 655 

decreased by -9.10%. In other words, the impact of tile drainage on direct runoff (or quick flow) 656 

is more substantial compared to baseflow (Miller and Lyon, 2021). Overall, tile drainage has 657 

significant effects on most of the water balance components in the study domain. 658 

4. Conclusion 659 

The purpose of the study is to quantify the impacts of representing subsurface tile drainage on 660 

the National Water Model’s simulated regional hydrology. We implemented Hooghoudt’s tile 661 
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drainage scheme into the NWM V2.0 and used 30-m resolution AgTile-US to identify tile-662 

drained grids within the model domain. We followed the operational NWM calibration approach 663 

and calibrated 14 sensitive NWM parameters (Dugger et al., 2017; Gochis et al., 2019) along 664 

with tile spacing. Overall, the changes in these parameters suggested a water-absorbing soil 665 

column with higher infiltration rates and moisture storage potential. The calibration results also 666 

indicated reduced surface runoff and evapotranspiration over the tile-drained croplands. 667 

Representing the tile drainage process in the NWM significantly improved its performance in 668 

estimating streamflow over the UMRB and ORB. More interestingly, the NWM with 669 

uncalibrated parameters but including a tile drainage scheme (i.e., DefaultTD) attained 20% to 670 

50% of the improvements brought by the calibrated NWM (Calib) from Default. The CalibTD 671 

outperformed other experiments with reduced RMSE, Bias, and increased NSE, COR, and KGE. 672 

Furthermore, CalibTD accurately captured the dynamics in magnitude, timing, and variability of 673 

observed streamflow, especially the high-flows and low-flows. Tile drainage substantially 674 

increased peak flows, baseflow, and event volume. This significantly enhanced accuracy of the 675 

NWM to simulate high-flows in CalibTD. Even though CalibTD produced better estimates of 676 

low-flows than Calib, there is considerable uncertainty in the estimated low-flow timings and 677 

magnitudes. The overestimation of low-flows by the NWM can be caused by high groundwater 678 

recharge rates or lack of realism in the groundwater scheme in the NWM. Despite these 679 

discrepancies, NWM with a tile drainage scheme better estimates soil moisture, latent heat fluxes 680 

(or evapotranspiration), and sensible heat fluxes for the tile-drained croplands. 681 

We quantified the impact of tile drainage on different water balance components, and our results 682 

indicated a significant decrease in the surface runoff, underground runoff or groundwater 683 

recharge, and evapotranspiration over UMRB and ORB. The impact of tile drainage on direct 684 

runoff (or quick flow) is more profound than on baseflow. The drainage of saturated water from 685 

the soil column by the subsurface tiles reduced the deep percolation of free water into the 686 

groundwater reservoir (Golmohammadi et al., 2017). Tile drainage removed saturated water 687 

from the soil column above the tiles and increased soil storage potential (Rahman et al., 2014). 688 

The decrease in ET over the tile drained croplands is mainly due to reduced direct soil 689 

evaporation resulting from low soil water content (Moriasi et al., 2012; Rahman et al., 2014). 690 
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Overall, tile drainage has a significant impact on regional hydrology. The representation of tile 691 

drainage process in the NWM can enhance the model’s accuracy to estimate the dynamics of 692 

streamflow mainly, the timing, peaks, and volume of streamflow over a heavily tile-drained 693 

basin. Thus, our findings demonstrate the importance of incorporating tile drainage into the 694 

operational NWM for accurate flood forecasts. 695 

Data and Code Availability Statement 696 

All data used to generate the major figures are publicly available. The AORC data are accessed 697 
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Introduction  

In this supporting information, we provide two figures and three tables to support the 
manuscript. The spatial distributions of land use (i.e., croplands and tile drainage) in the 
Upper Mississippi River Basin and Ohio River Basin are presented in Figure S1. A 
graphical explanation for the high-flow and low-flow identification from the streamflow 
timeseries is presented in Figure S2. All the p-values from the statistical significance tests 
conducted for the manuscript are provided in Table S1 to S3. 
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Figure S1. The spatial distributions of land use land cover in UMRB and ORB. 
 
 
 
 
 
 

 

Figure S2. Schematic representation of high flow and low flow definitions used in this 
study. 
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Table S1. The statistical significance (p-value) of the NWM performance change between 
experiments estimated using Wilcox signed rank test for the calibration period.  Red font 
indicates the changes are significant at 0.05 significance level. 

Period Season Metric 

Default 
[V2.0] and 
Default 
[V2.0+TD] 

Default 
[V2.0] 
and 
Calibrate
d [V2.0] 

Default 
[V2.0] and 
Calibrated 
[V2.0+TD] 

Calibrated 
[V2.0] and 
Calibrated 
[V2.0+TD] 

Calibration DJF COR 0.0721 0.0000 0.0000 0.4404 
Calibration DJF RMSE 0.8375 0.3610 0.1896 0.6254 
Calibration DJF PBIAS 0.8708 0.0000 0.0000 0.1306 
Calibration DJF NSE 0.1039 0.0000 0.0000 0.0605 
Calibration DJF NSEWT 0.4115 0.0000 0.0000 0.0557 
Calibration DJF KGE 0.2201 0.0000 0.0000 0.0951 
Calibration MAM COR 0.0006 0.0000 0.0000 0.0768 
Calibration MAM RMSE 0.6055 0.1288 0.1438 0.6006 
Calibration MAM PBIAS 0.5665 0.0000 0.0000 0.0221 
Calibration MAM NSE 0.0010 0.0000 0.0000 0.0699 
Calibration MAM NSEWT 0.0411 0.0000 0.0000 0.0557 
Calibration MAM KGE 0.0018 0.0000 0.0000 0.2509 
Calibration JJA COR 0.6105 0.0001 0.0000 0.0189 
Calibration JJA RMSE 0.8430 0.3390 0.0909 0.3499 
Calibration JJA PBIAS 0.7664 0.0000 0.0002 0.1101 
Calibration JJA NSE 0.5618 0.0014 0.0000 0.0035 
Calibration JJA NSEWT 0.7664 0.0018 0.0000 0.0059 
Calibration JJA KGE 0.7718 0.0000 0.0000 0.1183 
Calibration SON COR 0.7990 0.0000 0.0000 0.0994 
Calibration SON RMSE 0.9831 0.1872 0.0243 0.2912 
Calibration SON PBIAS 0.9099 0.0000 0.0000 0.0010 
Calibration SON NSE 0.7881 0.0025 0.0000 0.0049 
Calibration SON NSEWT 0.9436 0.0006 0.0000 0.0110 
Calibration SON KGE 0.9492 0.0000 0.0000 0.0189 
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Table S2. The statistical significance (p-value) of the NWM performance change between 
experiments estimated using Wilcox signed rank test for the validation period. Red font 
indicates the changes are significant at 0.05 significance level. 

Period Season Metric 

Default 
[V2.0] and 

Default 
[V2.0+TD] 

Default 
[V2.0] and 
Calibrated 

[V2.0] 

Default 
[V2.0] and 
Calibrated 
[V2.0+TD] 

Calibrated 
[V2.0] and 
Calibrated 
[V2.0+TD] 

Validation DJF COR 0.0217 0.0000 0.0000 0.9718 
Validation DJF RMSE 0.5908 0.0909 0.1644 1.0000 
Validation DJF PBIAS 0.2509 0.0000 0.0000 0.3799 
Validation DJF NSE 0.0124 0.0000 0.0000 0.9380 
Validation DJF NSEWT 0.0135 0.0000 0.0000 0.4531 
Validation DJF KGE 0.0021 0.0000 0.0001 0.9549 
Validation MAM COR 0.0008 0.0000 0.0000 0.8763 
Validation MAM RMSE 0.5859 0.1288 0.1824 0.8486 
Validation MAM PBIAS 0.8597 0.0000 0.0000 0.2912 
Validation MAM NSE 0.0031 0.0000 0.0000 0.6868 
Validation MAM NSEWT 0.0496 0.0000 0.0000 0.3462 
Validation MAM KGE 0.0005 0.0000 0.0000 0.7025 
Validation JJA COR 0.3838 0.0000 0.0000 0.0152 
Validation JJA RMSE 0.8375 0.3799 0.1518 0.5570 
Validation JJA PBIAS 0.8320 0.0000 0.0000 0.0149 
Validation JJA NSE 0.4531 0.0003 0.0000 0.0093 
Validation JJA NSEWT 0.6558 0.0002 0.0000 0.0067 
Validation JJA KGE 0.5288 0.0000 0.0000 0.5570 
Validation SON COR 0.8375 0.0000 0.0000 0.1419 
Validation SON RMSE 0.8875 0.6204 0.4573 0.5908 
Validation SON PBIAS 0.9718 0.0000 0.0000 0.0332 
Validation SON NSE 0.8100 0.1458 0.0003 0.0805 
Validation SON NSEWT 0.8875 0.1039 0.0001 0.0073 
Validation SON KGE 0.8154 0.0015 0.0000 0.0548 
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Table S3. The statistical significance (p-value) of the NWM performance change between 
experiments estimated using Wilcox signed rank test for the regional simulation. Red 
font indicate the changes are significant at 0.05 significance level. 

Domain Season Metric 
Default and 
DefaultTD 

Default 
and Calib  

Default and 
CalibTD 

Calib and 
CalibTD 

Regional DJF COR 0.0000 0.0000 0.0000 0.0000 
Regional DJF RMSE 0.3787 0.0508 0.1708 0.8287 
Regional DJF PBIAS 0.0266 0.0000 0.0000 0.0001 
Regional DJF NSE 0.0000 0.0000 0.0000 0.1617 
Regional DJF NSEWT 0.0000 0.0000 0.0000 0.0024 
Regional DJF KGE 0.0000 0.0000 0.0000 0.0008 
Regional MAM COR 0.0000 0.0000 0.0000 0.0000 
Regional MAM RMSE 0.4326 0.2935 0.1369 0.2161 
Regional MAM PBIAS 0.8638 0.0000 0.0000 0.5096 
Regional MAM NSE 0.0000 0.0000 0.0000 0.0000 
Regional MAM NSEWT 0.0000 0.0000 0.0000 0.0001 
Regional MAM KGE 0.0000 0.0000 0.0000 0.0000 
Regional JJA COR 0.0731 0.0005 0.0000 0.0000 
Regional JJA RMSE 0.6772 0.8345 0.0641 0.0276 
Regional JJA PBIAS 0.9227 0.0000 0.0000 0.0000 
Regional JJA NSE 0.0409 0.0409 0.0000 0.0000 
Regional JJA NSEWT 0.1897 0.1200 0.0000 0.0000 
Regional JJA KGE 0.0339 0.0000 0.0000 0.0000 
Regional SON COR 0.5707 0.0000 0.0000 0.0000 
Regional SON RMSE 0.8369 0.9239 0.3731 0.2500 
Regional SON PBIAS 0.8790 0.0000 0.0000 0.5231 
Regional SON NSE 0.5348 0.5328 0.0006 0.0027 
Regional SON NSEWT 0.6718 0.5840 0.0016 0.0003 
Regional SON KGE 0.4136 0.0000 0.0000 0.0124 

 

 

 

 

 


	Figure S1. The spatial distributions of land use land cover in UMRB and ORB.
	Figure S2. Schematic representation of high flow and low flow definitions used in this study.
	Table S1. The statistical significance (p-value) of the NWM performance change between experiments estimated using Wilcox signed rank test for the calibration period.  Red font indicates the changes are significant at 0.05 significance level.
	Table S2. The statistical significance (p-value) of the NWM performance change between experiments estimated using Wilcox signed rank test for the validation period. Red font indicates the changes are significant at 0.05 significance level.
	Table S3. The statistical significance (p-value) of the NWM performance change between experiments estimated using Wilcox signed rank test for the regional simulation. Red font indicate the changes are significant at 0.05 significance level.

