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Abstract

Measuring the deformation at the Earth’s surface over a range of spatial and temporal scales is vital for understanding seismic

hazard, detecting volcanic unrest and assessing the effects of vertical land movements on sea level rise. Here, we combine

˜10 years of InSAR observations from Envisat with interseismic campaign and continuous GNSS velocities to build a high-

resolution velocity field of New Zealand. Exploiting the horizontal GNSS observations, we estimate the vertical component

of the deformation to provide the vertical land movement (VLM) for the entire 15,000 km-long coastline. The estimated

vertical rates show large variability around the country as a result of volcanic, tectonic and anthropogenic sources. Interseismic

subsidence is observed in Kaikoura region supporting models of at least partial locking of the southern Hikurangi subduction

interface. Despite data challenges in the mountainous regions from landslides, sediment compaction and glaciers, InSAR data

shows localised uplift of the Southern Alps.
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Abstract16

Measuring the deformation at the Earth’s surface over a range of spatial and tem-17

poral scales is vital for understanding seismic hazard, detecting volcanic unrest and as-18

sessing the effects of vertical land movements on sea level rise. Here, we combine ∼1019

years of InSAR observations from Envisat with interseismic campaign and continuous20

GNSS velocities to build a high-resolution velocity field of New Zealand. Exploiting the21

horizontal GNSS observations, we estimate the vertical component of the deformation22

to provide the vertical land movement (VLM) for the entire 15,000 km-long coastline.23

The estimated vertical rates show large variability around the country as a result of vol-24

canic, tectonic and anthropogenic sources. Interseismic subsidence is observed in Kaik-25

oura region supporting models of at least partial locking of the southern Hikurangi sub-26

duction interface. Despite data challenges in the mountainous regions from landslides,27

sediment compaction and glaciers, InSAR data shows localised uplift of the Southern Alps.28

Plain Language Summary29

Interferometric Synthetic Aperture Radar (InSAR) data provides a method to mea-30

sure the deformtion of the Earth’s surface at high spatial resolutions over large geographic31

footprints. Here we exploit historical SAR and GNSS data acquired over New Zealand32

between 2003 and 2011 to measure the nationwide surface velocities. With the combi-33

nation of GNSS and InSAR data, we are able to estimate the vertical deformation for34

the entire country and provide a first estimate of the coastal vertical land movements35

which are a key dataset for future projections of sea level rise. As a result of New Zealand’s36

dynamic tectonic setting, there is large temporal and spatial variability around the coun-37

try as a result of volcanic, tectonic and anthropogenic processes.38

1 Introduction39

From mapping the build up and release of strain associated with the earthquake40

cycle (Cavalié et al., 2008; Weiss et al., 2020; H. Wang et al., 2012; Haines & Wallace,41

2020) to tracking the movement of magma in volcanic systems (I. J. Hamling et al., 2019;42

Pritchard & Simons, 2002; Ebmeier et al., 2018; Biggs & Wright, 2020), geodetic obser-43

vations have become powerful tools for studying the deformation of the Earth’s crust over44

a range of spatial and temporal scales. While GNSS data can provide high precision (mm/yr)45

measurements of the deformation field, the low-density of observation points (typically46

>10 km) frequently limits our ability to resolve short wavelength variations in land move-47

ments. Since 1992 and the development GNSS networks in New Zealand, there have been48

numerous efforts to measure and model the velocity field across New Zealand (Beavan49

& Haines, 2001; Beavan et al., 2016; Wallace et al., 2004, 2007). While the current cam-50

paign and continuous network provides comprehensive coverage of both islands, with a51

spacing of 10-20 km and repeat campaign measurements every 8 years, resolving short52

wavelength deformation signals remains challenging. Furthermore, since the early 2000s,53

New Zealand has been rocked by numerous Mw 6.5 and larger earthquakes (Reyners et54

al., 2003; I. Hamling & Hreinsdóttir, 2016; Beavan, Samsonov, et al., 2010; Beavan et55

al., 2012; I. Hamling et al., 2014; I. J. Hamling et al., 2017) adding additional uncertainty56

in estimating the interseismic velocity field. Here we present a new InSAR derived ve-57

locity field based on historic Envisat data acquired between 2003 and 2010 largely span-58

ning a time period isolated from some of the larger earthquake sequences.59

Across New Zealand, the oblique convergence between the Pacific and Australian60

plates at rates of ∼30-40 mm/yr has resulted in a complex plate boundary with large61

along strike variations in tectonic regimes. In the North Island, the tectonics are dom-62

inated by the westward subduction of the Pacific plate along the Hikurangi trough (Wallace63

& Beavan, 2010). While the normal component of plate motion is accommodated along64

the subduction thrust and shortening within the overriding plate (Nicol & Beavan, 2003),65
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the margin parallel component is accommodated via strike slip faulting and rotation of66

the forearc (Wallace et al., 2004). Along the Hikurangi margin, block modelling of cam-67

paign GNSS data suggests a transition from aseismic creep in the north to interseismic68

coupling in the south down to depths of 30-40 km (Wallace, Barnes, et al., 2012; Wal-69

lace, Beavan, et al., 2012). Slow Slip Events (SSEs) have been well documented beneath70

and offshore the North Island in a number of locations (Wallace, Beavan, et al., 2012;71

I. J. Hamling & Wallace, 2015; Wallace & Beavan, 2010; Wallace, 2020) with periodic-72

ities ranging from weeks to years. More frequently occurring, but shorter duration, SSEs73

are located along the northern margin and largely occur along the offshore portion of74

the plate boundary. Conversely, SSEs at southern and central Hikurangi margin are deeper75

and typically last for periods of years and have previously been captured by InSAR data76

(I. J. Hamling & Wallace, 2015).77

In the northern South Island, ∼80 % of plate motion is taken up along four ma-78

jor strike slip faults through the Marlborough Fault system (Holt & Haines, 1995; Van Dis-79

sen & Yeats, 1991) with increasing slip rates from ∼4 mm/yr in the north to ∼23 mm/yr80

in the south along the Hope Fault (Van Dissen & Yeats, 1991; Langridge & Berryman,81

2005; Wallace et al., 2007). The region has been struck by a number of moderate to large82

earthquakes over the last 10 years, including the 2013 Cook Strait and Lake Grassmere83

sequence (I. Hamling et al., 2014) and the 2016 Kaikōura earthquake which ruptured mul-84

tiple faults through area. South of the Marlborough fault system, 70-75% of the Pacific-85

Australia relative motion is taken up along the Alpine Fault with the remainder accom-86

modated across the South Island (Wallace et al., 2007). The convergent component of87

motion has led to the growth of the Southern Alps (Norris & Cooper, 2001; Sutherland88

et al., 2006) which, in the central portion, has experienced long-term exhumation at rates89

of 6-9 mm/yr (Little et al., 2005; Michailos et al., 2020) with current estimates from geode-90

tic data suggesting lower rates of ∼5 mm/yr (Beavan et al., 1999; Beavan, Denys, et al.,91

2010). Further south, the zone of deformation broadens from ∼70 km in the Canterbury92

region to ∼200 km across Central Otago (Fig. 1) and has been explained by along strike93

rheological variations (Upton & Koons, 2007; Upton et al., 2009).94

2 SAR observations95

Between 2003 and 2011, the European Space Agency’s Envisat satellite captured96

∼700 SAR scenes covering the North and South Islands of New Zealand across 20 as-97

cending tracks (Fig S1-S6). The SW plate motion across most of New Zealand is well98

orientated with respect to the geometry of the ascending tracks and while the tempo-99

ral sampling and number of images per track were variable, most had ∼20 scenes over100

the ∼8 year observation period. Unfortunately, only limited descending data were ac-101

quired across New Zealand making it largely unusable for deriving a long-term rate. For102

the ascending data, we use the StaMPS (Stanford Method for Persistent Scatterers) small103

baseline time series technique (Hooper, 2008; Hooper et al., 2012) to form ∼2700 inter-104

ferograms across the 20 tracks. SAR data were initially focused using the JPL/Caltech105

ROI PAC software (Rosen et al., 2004) and interferograms were made using DORIS (Kampes106

et al., 2003). Topographic corrections were made using a 1 arc-second (30 m) digital el-107

evation model (DEM) generated by the NASA Shuttle Radar Topography Mission (Farr108

et al., 2007). To minimise phase unwrapping errors, we apply an iterative unwrapping109

algorithm (Hussain et al., 2016) which utilises the standard StaMPS unwrapping method110

but calculates the sum of the unwrapped phase around closed loops for every coherent111

pixel (Hussain et al., 2016). With large Mw 7.8 and 7.2 earthquakes in Fiordland (2009)112

and Darfield (2010) respectively (Fig. 1), interferograms spanning these events were dropped113

from the analysis.114

To estimate the interseismic velocity field, we adopted two slightly different pro-115

cedures for the North and South Islands. For both Islands, to prevent the removal of the116

expected long wavelength interseismic deformation and help with the correction of non117
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Figure 1. Best fitting LOS (left) and vertical (right) displacement rates. The figure shows a

subsampled version of the full dataset derived using a distance weighted sampling procedure. The

histogram shows the difference in rates within all the overlap regions for the North and south

Islands. The black lines show the location of mapped faults (Langridge et al., 2016). On the

right hand panel, dashed lines show the location of the profiles shown in Figure 2 and the black

boxes show the regions in Figure 3. The coloured dots are the vertical rates derived from GNSS

covering the same observation period.
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tectonic signals, including orbits and long wavelength atmospheric errors, we first removed118

the expected horizontal component of the velocity field from each interferogram using119

the velocity field extracted from the Vertical Derivatives of Horizontal Stress (VdoHS)120

rate inversion derived by (Haines & Wallace, 2020). Although this is calculated using121

continuous and campaign data (Beavan et al., 2016) over a longer period than the In-122

SAR observations, the difference between the long term and InSAR period velocites are123

negligible (Fig. S7). For the top of the South Island and North Island, due to the larger124

expected vertical deformation and better continuous GPS coverage, we also estimated125

the vertical rate at GNSS with data spanning the same period as the InSAR observa-126

tions (Supplementary Material). We then removed the vertical component from each in-127

terferogram by fitting a cubic plane through the vertical GNSS data (Fig. S8). For the128

remainder of the South Island, where there are insufficient GNSS observations to robustly129

extrapolate the vertical deformation field, we did not remove any a priori model. Due130

to large vertical deformation through the Taupo Volcanic Zone into the Bay of Plenty131

(Fig. 1, (I. Hamling et al., 2015; I. J. Hamling et al., 2016)), we also removed the ver-132

tical deformation based on the contraction model of (I. Hamling et al., 2015) (Fig. S8).133

We then used the remaining data to estimate and remove orbital and atmospheric er-134

rors. To separate the vertical and horizontal components of the velocity field, we per-135

form two inversions. In the first, after correcting the inferograms, we added back the GNSS136

derived horizontal velocities and, using a linear least-squares inversion, we solved for the137

best fitting displacement rate, x, at each scatterer such that138

AT Σ−1Ax = AT Σ−1d. (1)139

where the design matrix, A, contains the time interval of each interferogram, d is a ma-140

trix containing the displacements at each scatterer and Σ is the variance-covariance ma-141

trix. In the second inversion, to isolate the vertical component of the deformation field,142

we only add the vertical components back to the interferograms and assumed that af-143

ter removal of the horizontal component, the residual deformation is representative of144

the vertical deformation field (Fig. 1). For the final rate maps, we removed scatterers145

deemed to be outliers based on the estimated vertical rates. For each scatterer in the dataset146

(∼3×106), we first calculated the mean abosolute deviation of all neighbouring scatter-147

ers within a 1 km radius. If a scatterer had a standard deviation of more than 2σ, it was148

deemed an outlier and given a score of 1. The process is repeated through the entire dataset149

and scatterers which are identified as being outliers more than 10% of the time are re-150

moved. This reduces the final dataset by ∼30 % to ∼2×106 points.151

To check for consistency between tracks, we compared the estimated displacement152

rates in the overlap regions between the frames and with the GNSS velocities at collo-153

cated sites (Fig. 1, S9). There is a good match between the InSAR derived displacement154

rates in the overlap regions with a mean difference and standard deviation of -0.05 and155

1.6 mm/yr respectively (Fig. 1, S10). The mean difference and standard deviation be-156

tween the horizontal component of the velocity field from GNSS and InSAR is 0.03 and157

1.1 mm/yr respectively.158

3 Discussion159

3.1 North Island160

Across the North Island, both InSAR and GNSS data are dominated by the clock-161

wise rotation of the fore-arc and the effect of interseismic coupling on the southern Hiku-162

rangi subduction interface shown by the ∼-15 mm/yr LOS displacement rates through163

the southern North Island (Fig. 2). In the central North Island, deformation is strongly164

influenced by the TVZ. Earlier studies (I. Hamling et al., 2015; Holden et al., 2015) have165

shown that the deformation is largely in the vertical component leading to some hori-166

zontal contraction (Fig. 1, (Haines & Wallace, 2020)). Subsidence of 10-15 mm/yr is ob-167
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Figure 2. Profiles along six profiles shown in Figure 1. Blue dots and associated errorbars are

from the InSAR derived vertical velocities and the red dots are from GNSS located within 10 km

of the profile. The grey polygons show the topography along each of the profiles. Locations,

including Kaikōura, the Southern Alps and the TVZ are also highlighted.

served through the central TVZ extending from Lake Taupo to the Okataina caldera in168

the north with more focussed subsidence over some of the active geothermal fields. The169

large scale subsidence has previously been attributed to the cooling and contraction of170

pockets of magma at depth (I. Hamling et al., 2015; Holden et al., 2015) or from the deep171

upwelling of mantle material (Lamb et al., 2017). During the observation period, there172

was uplift in the Lake Taupo region in the central/southern TVZ, and the Bay of Plenty173

region at the northern end. Unrest in the vicinity of Taupo caused a period of uplift in174

2008 focussed around the northern tip of the lake which is also captured by the InSAR175

observations (Fig. 1). In the Bay of Plenty, a ∼30 km wide zone of uplift between 2005176

and 2011 along the coast has been attributed to an off-axis magma body undergoing a177

pulse of inflation (I. J. Hamling et al., 2016).178

Much of the north and west coasts of the North Island are relatively stable with179

slight subsidence of ∼1 mm/yr predicted in the vicinity of New Zealand’s largest city,180

Auckland. Along the east coast, InSAR and GNSS both indicate widespread subsidence181

increasing in magnitude from Hawkes Bay in the north towards Cook Strait in the south182

consistent with the inferred locking along the subduction interface ((Wallace et al., 2004;183

Wallace, Barnes, et al., 2012), Fig. 1). Within Hawkes Bay, the InSAR derived rates high-184

light short wavelength variations in the vertical deformation. Subsidence of ∼5 mm/yr185

in the vicinity of Napier extends inland through the Heretaunga Plains and is bounded186

to the south east by the Maraetotara Plateau and to the north west by the North Island187

dextral fault belt (Figs. 2, 3). Based on the horizontal velocity field, VDoHS strain rates188

(Dimitrova et al., 2016; Haines & Wallace, 2020) show a local zone of contraction which189

has been explained as a possible locked patch on the subduction interface at the central190

Hikurangi margin (Dimitrova et al., 2016). Although the plate interface is only ∼15-20 km191

deep, the fairly sharp transition to subsidence (Fig. 3A) may indicate a shallower crustal192

source pointing towards partitioning of strain from the interface onto overlying crustal193

faults or a combination of subduction locking and crustal faulting sources. Additionally,194

shallow groundwater abstraction from across the plains is likely to contribute to some195

of the subsidence signal.196
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Figure 3. A: Zoom in of the vertical deformation across Hawkes Bay and the Heretaunga

Plains and profile showing the sharp transition to subsidence. B: Zoom in of the central Southern

Alps highlighting the non-tectonic deformation along some of the glacial river valleys. The black

triangle shows the location of Aoraki/Mt Cook (170.177E, -43.585S). The black dashed line shows

the location of the Alpine Fault, the black box shows the region covered in C and the coloured

circles are the GNSS derived vertical rates.
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3.2 South Island197

While data across the South Island successfully captures the large scale right lat-198

eral motion across the plate boundary (Fig. 1), the estimated vertical velocities have larger199

uncertainties. Challenges in deriving the InSAR velocity field stem from the limited dis-200

tribution of scatterers and contamination from non-tectonic signals. In the mountain-201

ous regions, which form the back bone of the South Island, a combination of snow cover,202

dense vegetation and steep terrain often restrict the distribution of scatterers to exposed203

slopes. These are often associated with past debris falls or landslides, or within rapidly204

changing glacial river valleys (Fig. 3). This is especially problematic when looking at the205

vertical component of the deformation field where the expected displacement rates are206

an order of magnitude smaller than the horizontal component (Fig. 1). Scatterers located207

on downward facing slopes, relative to the ascending look direction, often indicate mo-208

tion away from the satellite suggesting either subsidence or downslope motion consis-209

tent with landsliding (Figs. 1, 3). We also observe complex displacement patterns in the210

vicinity of the Tasman glacier. Continuous GNSS data in the region suggests uplift of211

the southern Alps by ∼ 5 mm/yr (Beavan, Denys, et al., 2010). However, near the out-212

flow of Lake Tasman at the base of the Tasman Glacier (Fig. 4), subsidence of ∼3-5 mm/yr213

is observed over a ∼3 km2 area with a similar pattern observed along the connecting Murchi-214

son valley (Fig. 3). While the source of the subsidence isn’t immediately clear, based on215

the spatial distribution of the subsiding regions it is possible that it is related to the com-216

paction of the sediment load after abandonment of the river channel (Higgins et al., 2014;217

Zhang et al., 2015).218

Limited numbers of continuous GNSS across the South Island, makes resolving the219

vertical component of the deformation challenging. Previous estimates suggest gener-220

ally low magnitudes of vertical deformation across much of the South Island at rates of221

∼ ±1-2 mm/yr (Houlié & Stern, 2017). The InSAR derived rates also suggest overall222

low rates. Across some of the more agricultural areas to the east of the Alps, there is223

a tendency towards slight subsidence (Fig. 1). There is also some focussed subsidence224

through the city of Dunedin associated with zones of reclaimed land. Across the central225

Alps, which GNSS suggests is uplifting at rates of ∼5 mm/yr (Beavan, Denys, et al., 2010),226

the InSAR derived uplift rates give similar values of ∼4-5 mm/yr (Fig. 2) but are lim-227

ited by the poor distribution of scatterers and non-tectonic signals (Fig. 3).228

One of the ongoing debates around the Kaikōura earthquake relates to the involve-229

ment of the southern portion of the Hikurangi subduction zone (I. J. Hamling et al., 2017;230

Clark et al., 2017; I. J. Hamling, 2020; Bai et al., 2017; Hollingsworth et al., 2017; T. Wang231

et al., 2018). Prior to the earthquake, studies based on seismological indicators suggested232

that the subduction interface south of the Cook Strait was permanently locked (Reyners233

et al., 1997, 2017). Although estimates of the amount of slip vary, most of the co-seismic234

models suggest that there was at least some co-seismic slip along the subduction inter-235

face beneath the northern South Island (I. J. Hamling et al., 2017; Clark et al., 2017;236

I. J. Hamling, 2020; Bai et al., 2017; Hollingsworth et al., 2017; T. Wang et al., 2018).237

Furthermore, early post-seismic deformation (Wallace et al., 2018; Mouslopoulou et al.,238

2019) was consistent with afterslip (and/or triggered slip) along the subduction inter-239

face. Long term geological strain rates across the northern South Island (Holt & Haines,240

1995) show that the majority of the relative plate motion is accommodated via defor-241

mation of the overriding plate. Elastic block models based on horizontal GNSS veloc-242

ities and fault slip rate data indicate that ∼80% of the plate motion is taken up by known243

crustal faults (Wallace, Barnes, et al., 2012; Wallace et al., 2018) with a remaining com-244

ponent on the subduction interface and suggest at least partial locking of the southern245

portion of the subduction zone. Simple elastic back-slip models (Savage, 1983; Kanda246

& Simons, 2010) produce downward tilting towards the trench during the interseismic247

period. Although smaller in magnitude than in the southern North Island, both the In-248

SAR and GNSS show a narrow (∼15-20 km) band of coastal subsidence of 1-3 mm/yr249

consistent with partial locking of the interface (Figs. 1, 2, 4; (Wallace, Barnes, et al., 2012))250

in the decades prior to the Kaikōura earthquake.251
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4 Nationwide coastal VLM252

With sea levels rising globally, the ability to measure the vertical land movements253

(VLM) and its effect on relative sea-level rise around our coastlines is vital in assessing254

its future impacts (Blackwell et al., 2020). With 15,000 km of coast, measuring the VLM255

across New Zealand’s entire coastline through traditional approaches, such as with sparsely256

distributed GNSS, is challenging. However, based on our vertical estimate of the veloc-257

ity field by combining InSAR and GNSS, we can provide a first, almost continuous, es-258

timate of the coastal VLM. To extract the coastal strip, we bin and average all of the259

InSAR and GNSS observations which are located within 5 km of the coast at ∼1 km in-260

tervals. Unfortunately, due to lack of coverage in some areas there are not always suf-261

ficient data points located within 5 km of the coast. For these locations, we expand the262

search radius up to a maximum of 40 km to estimate the VLM. In addition to the for-263

mal error of the displacement rate, we also produce a quality factor which is based on264

the number of observations available for each coastal location and the radial distance used265

to bin the observations over (Fig. 4, Table S1). Locations with large numbers of obser-266

vations and a smaller radius have a higher ranking than those with fewer data points and267

larger search radii (Table S1). For example, points located at the northern tip of North-268

land, where there aren’t any InSAR observations, the coastal VLM is estimated purely269

from a single GNSS site giving it a low quality factor despite the low formal uncertainty270

in the measurement.271

A major challenge for estimating the long term VLM for New Zealand is it’s dy-272

namic tectonic and volcanic setting. While the Envisat data presented here spans a time273

period where New Zealand was relatively unaffected by earthquakes, areas of coastline274

are not stable through time. The uplift across the Bay of Plenty reached rates of ∼10 mm/yr275

during the observation period. However, GNSS now shows much lower levels of uplift.276

Similarly, the majority of the east coast margin is currently experiencing subsidence of277

∼5 mm/yr but is largely a result of coupling along the plate interface. Assuming that278

in the future there will be a rupture along the margin, this pattern of subsidence will likely279

be reversed as was seen during the Kaikōura earthquake in 2016. There, the coastline280

was subsiding at rates of ∼2-3 mm/yr but was uplifted by 3-10 m by the co-seismic de-281

formation (I. J. Hamling et al., 2017) causing long-term changes to the coast.282

5 Conclusions283

Using GNSS and archived Envisat SAR data acquired between 2003 and 2011, we284

have generated a new InSAR based velocity field for New Zealand. By removing the ex-285

pected horizontal velocities, we have produced a nationwide estimate of the vertical de-286

formation field for the first time. Despite data limitations, the estimated vertical rates287

show large variability around the country as a result of volcanic, tectonic and anthro-288

pogenic sources. Large scale subsidence across the North Island’s east coast associated289

with locking of the Hikurangi margin appears to extend into the northern South Island290

supporting previous observations of partial locking of the subduction zone beneath Kaikōura291

(Wallace, Barnes, et al., 2012). Exploiting the vertical rates, we have produced a map292

of coastal VLM which can be integrated into sea level rise predictions. The large vol-293

umes of SAR data now being acquired through different satellite missions will enable reg-294

ular updates of deformation fields, feeding into nationwide strain mapping (Weiss et al.,295

2020; Haines & Wallace, 2020) and aiding in estimates of coastal VLMs.296
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Figure 4. The main figure shows the VLM for the New Zealand coastline. The two panels on

the right show the 1-σ uncertainties and the quality factor (Table S1)
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