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Abstract

The discovery of slow slip events (SSEs) based on the installation of dense geodetic observation networks has provided important

clues to understanding the process of stress release and accumulation in subduction zones. Because short-term SSEs (S-SSEs)

do not often result in sufficient displacements that can be visually inspected, refined automated detection methods are required

to understand the occurrence of S-SSEs. In this study, we propose a new method based on which S-SSEs can be detected in

observations derived by a Global Navigation Satellite System (GNSS) array by using l1 trend filtering, a variation of sparse

estimation, in conjunction with combined -value techniques. The sparse estimation technique and data-driven determination

of hyperparameters are utilized in the proposed method to identify candidates of S-SSE onsets. In addition, combined -value

techniques are used to provide confidence values for the detections. The results of synthetic tests demonstrated that almost all

events can be detected with the new method, with few misdetections, compared with automated detection methods based on

Akaike’s information criteria. The proposed method was then applied to daily displacements obtained at 39 GNSS stations in

the Nankai subduction zone in western Shikoku, southwest Japan. The results revealed that, in addition to all known events,

new events can be detected with the proposed method. Finally, we found the number of low-frequency earthquakes in the target

region increased around at the onsets of potential events.
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Key Points:

• We developed a sparse estimation detection method for short-term slow
slip events based on a Global Navigation Satellite System array. (134
characters)

• Synthetic tests revealed that slow slip events can be detected with our
method and the onset of events can be accurately determined. (132 char-
acters)

• Our method was applied to real data from the array at the Nankai subduc-
tion zone in Southwest Japan and identified new events. (126 characters)

Abstract

The discovery of slow slip events (SSEs) based on the installation of dense
geodetic observation networks has provided important clues to understanding
the process of stress release and accumulation in subduction zones. Because
short-term SSEs (S-SSEs) do not often result in sufficient displacements that
can be visually inspected, refined automated detection methods are required to
understand the occurrence of S-SSEs. In this study, we propose a new method
based on which S-SSEs can be detected in observations derived by a Global
Navigation Satellite System (GNSS) array by using l1 trend filtering, a variation
of sparse estimation, in conjunction with combined 𝑝-value techniques. The
sparse estimation technique and data-driven determination of hyperparameters
are utilized in the proposed method to identify candidates of S-SSE onsets. In
addition, combined 𝑝-value techniques are used to provide confidence values
for the detections. The results of synthetic tests demonstrated that almost all
events can be detected with the new method, with few misdetections, compared
with automated detection methods based on Akaike’s information criteria. The
proposed method was then applied to daily displacements obtained at 39 GNSS
stations in the Nankai subduction zone in western Shikoku, southwest Japan.
The results revealed that, in addition to all known events, new events can be
detected with the proposed method. Finally, we found the number of low-
frequency earthquakes in the target region increased around at the onsets of
potential events. (243 words)

Plain language summary

Slow slip events characterized by a slower fault rupture compared to regular
earthquakes have been discovered in tectonic zones worldwide and have helped
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us understand the surrounding stress environment including megathrust zone.
This study focuses on short-term SSEs (S-SSEs) with a duration of several days.
S-SSEs have been observed by a Global Navigation Satellite System (GNSS)
array, but do not often result in sufficient displacements that can be visually
detected. So, refined detection methods have become necessary. We present a
new automated detection method of S-SSE using a GNSS array. Our method
utilizes l1 trend filtering, a sparse estimation technique, and combined p-value
techniques to provide not only candidates of S-SSEs but also confidence values
for detections. The synthetic tests showed that our method successfully detect
almost all events with few misdetections. The application to real data in the
Nankai subduction zone in western Shikoku, southwest Japan, revealed our
method detected new potential events in addition to all known events. (160
words)

1 Introduction

Slow slip events (SSEs) have been observed in many subduction zones in which
megathrust earthquakes occur using geodetic instruments (Schwartz & Rokosky
2007; Beroza & Ide 2011; Obara & Kato 2016). During these events, which
often occur at downdip extensions of strongly locked seismogenic zones on plate
interfaces, accumulated interplate stress is released with over days to years. The
surrounding stress environment is then perturbed and the events potentially
affect the occurrence of megathrust earthquakes (c.f., Graham et al., 2014; Ito
et al., 2013; Kato et al., 2012; Ozawa et al., 2012; Radiguet et al., 2016; Ruiz
et al., 2014; Socquet et al., 2017; Voss et al., 2018; Yokota & Koketsu, 2015).
Therefore, identifying SSEs is an important first step toward understanding
megathrust earthquakes.

The visual inspection of observations based on the installation of dense geodetic
observation networks, including tilt/strain meters and the Global Navigation
Satellite System (GNSS), has led to the discovery of a large number of SSEs.
For example, long-term SSEs (L-SSEs) with a duration ranging from 6 months
to 5 years have been observed beneath the Bungo channel and in the Tokai
region, Southwest Japan (Hirose et al., 1999; Ozawa et al., 2002). In addition,
short-term SSEs (S-SSEs) with a recurrence interval of several months that last
for several days have been discovered in these areas (Obara et al., 2004; Hirose
& Obara 2005; Obara & Sekine, 2009). Discoveries of S-SSEs have also been
reported in tectonic zones worldwide such as Cascadia (Dragert et al., 2001;
Miller et al., 2002), Alaska (Ohta et al., 2006), New Zealand (Douglas et al.,
2005; Wallace and Beavan 2006), and Guerrero, Mexico (Kostgrodov et al.,
2003). In many cases, S-SSEs coexist with the tectonic tremors. The coupling
phenomena between tectonic tremors and S-SSEs are referred to as episodic
tremor and slip (ETS) events (c.f., Obara et al., 2004; Rogers & Dragert 2003;
Payero et al., 2008).

Because S-SSEs do not often result in sufficient displacements that can be vi-
sually detected, refined detection methods have become necessary. The idea of
using other types of slow fault slip phenomena have been discussed (Frank et
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al., 2015; Bartlow 2020). Based on the assumption that S-SSEs occur in asso-
ciation with low-frequency earthquakes (LFEs), Frank et al. (2015) used LFE
bursts as indicators for the occurrence of SSEs to select short time windows of
GNSS data and stacked them. Based on this method, SSE-like signals along
the average surface motion of all stacked events were successfully identified in
Guerrero. The similar method was applied in the Nankai subduction zone to
estimate the detailed spatial slip distributions (Kano et al., 2019; Kano & Kato
2020), and to characterize the crustal deformation caused by SSEs (Fujita et al.,
2019). Bartlow (2020) added a spatial criterion to the method to accommodate
larger study areas, such as Cascadia, and studied the time-averaged ETS slip
rate at the interface of the Cascadia subduction plate.

However, according to the spatial studies of S-SSEs in Cascadia (Hall et al.,
2018) and in southwest Japan (Kano et al., 2019; Kano & Kato 2020), not all
S-SSEs coincide with LFE activities. Therefore, methods must be developed
that can be used to detect S-SSEs based on GNSS data alone. In addition,
as the stacking of GNSS time series potentially prevents the understanding of
the spatiotemporal differences between individual S-SSEs, detection methods
without stacking the original GNSS time series are preferable. Several such
automated detection methods have been proposed. To determine whether an
offset representing the occurrence of an S-SSE exists in sliding windows of a given
window time length in a GNSS time series, Nishimura et al. (2013) utilized
the difference of Akaike’s information criteria (AIC; Akaike 1974), �AIC, of
a model assuming the existence of an offset and the model without such an
assumption, and stack them over neighboring stations (stacked �AICs). Based
on this method, 207 S-SSEs along the Nankai Trough that occurred from 1996
to 2012 (Nishimura et al., 2013), 223 S-SSEs along the Ryukyu Trench that
occurred from 1997 to 2013 (Nishimura 2014), and 176 S-SSEs in the Kanto
and Tokai regions (Nishimura 2020) were successfully identified. Rousset et
al. (2017) developed a geodetic matched filter, which creates SSE templates
by utilizing a source function multiplied by Green’s functions for a discretized
fault and the correlation between templates and post-processed GNSS data and
identified 28 SSEs that occurred from 2005 to 2014 in Guerrero.

In this study, we propose an approach utilizing l1 trend filtering in conjunction
with combined 𝑝-values for the automated detection of S-SSEs using a GNSS
array. The l1 trend filtering (Kim et al., 2009) is a type of sparse estimation
that produces piecewise linear trend estimates without prior knowledge of the
knot locations based on which the cutting of time series into fixed-length sliding
time windows can be avoided and any specific template can be used for slip
deformations. We modeled the GNSS time series along the plate motion and
detected candidates for the start and end points of S-SSEs as knots of l1 trend
filtering. Sparse estimation, including l1 trend filtering, has recently been uti-
lized in seismology (c.f., Loris et al., 2007; Klinger 2010; Yao et al., 2011; Evans
& Meade, 2012; Nakata et al., 2016; Nakata et al., 2017; Hirose et al., 2020). In
most studies, it has been used to improve the spatial resolution of the inversion
analysis in the presence of sharp discontinuities. An exception is the work of
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Klinger (2010) who used l1 trend filtering to segment strike-slip earthquake sur-
face ruptures. We employed a sparse estimation technique for the change point
detection in GNSS time series.

We examined the validity of the proposed method by using a synthetic dataset
in comparison with the automated detection method proposed by Nishimura et
al. (2013). The comparison showed that our method yielded a better detection
rate and small false positive rate. We also applied our method to real data from
the GNSS array of the GNSS Earth Observation Network System (GEONET)
in the Nankai subduction zone, Southwest Japan. Subsequently, we conducted
inversion analysis using the Markov chain Monte Carlo (MCMC) method to
analyze and discuss the occurrence of new potential events and their relation to
LFEs.

2 Data
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Figure 1. Map of the study area. (a) Tectonic setting around west-
ern Shikoku Island in Southwest Japan. (b) Map of GNSS stations
(inverted red triangles) used in this study with the fault locations
of known S-SSEs (green rectangles) from Sekine et al. (2010) and
Nishimura et al. (2013). (b’) Map of GNSS stations on the Goto
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Islands. (c) The N45ºW component of the GNSS time series at sta-
tion 0434 for 800 days starting on April 1, 2004. Onsets ±7 days of
known S-SSE catalogs (Sekine et al., 2010; Nishimura et al., 2013)
are shaded in orange. (d) Enlarged time series obtained on the
200th day.

In this study, we used daily GNSS time series from 39 GEONET stations in the
Nankai subduction zone beneath western Shikoku Island in Southwest Japan
(Figure 1) derived from the GEONET F3 solution by the Geospatial Informa-
tion Authority of Japan (Nakagawa et al., 2009). In this region, the Philippine
Sea Plate is subducting beneath the Amurian Plate and large megathrust earth-
quakes with a moment magnitude (Mw) ∼ 8 have ruptured shallow parts of the
plate interface at intervals of 90–200 years (Ando 1975). The 1944 Mw 8.1 To-
nankai earthquake and 1946 Mw 8.3 Nankai earthquake (Sagiya and Thatcher
1999; Baba et al., 2002, 2006) are the most recent ones. In the deep transition
zone at depth of ~35km, S-SSEs were often detected by GNSS or tilt meters
(Figure 1b; Sekine et al., 2010; Nishimura et al., 2013). We used a period of 800
days, from April 1, 2004, to June 11, 2006.

We calculated the relative displacements with respect to the average time series
of three stations on the Goto Islands (Figure 1b’) to remove common model
errors (Kano et al., 2019). Two horizontal displacements at each GNSS station
were projected onto the N45ºW direction, which is the direction of the motion
of the Philippine Sea Plate relative to the Amurian Plate. We expected that
the SSE signals along this direction will be large. Figure 1c shows an example
of the GNSS time series obtained at stations 1048, 0433, and 0434. When an
S-SSE occurs, the time series generally moves in the opposite direction of the
steady movement; see the displacements at station 0434 from days 375 to 385.

3 Methods

In this study, an approach utilizing l1 trend filtering, a variation of sparse esti-
mation, in conjunction with combined 𝑝-values is proposed for the automated
detection of S-SSEs using a GNSS array. A schematic flow of the proposed
method is shown in Figure 2. First, we applied l1 trend filtering to the GNSS
time series at all stations. We then identified candidates for S-SSE occurrences.
Finally, we calculated the confidence values for the S-SSE detection. The details
of each procedure are described in the following subsections.

6



Figure 2. Outline of the proposed method.

3.1 l1 trend filtering

First, we applied l1 trend filtering to the GNSS time series at all stations. Let
{𝑋𝑠

𝑡 ∶ 𝑡 = 1, … , 𝑇 } be a (projected) GNSS time series of length 𝑇 at station 𝑠,
l1 trend filtering {𝑋𝑠

𝑡 ∶ 𝑡 = 1, … , 𝑇 } of this series with hyperparameter 𝜆 > 0
can be obtained by minimizing

∑𝑡=1,…,𝑇 (𝑋𝑠
𝑡 − 𝜃𝑡)

2 + 𝜆 ∑𝑡=1,…, 𝑇 −2 | (𝜃𝑡+2 − 𝜃𝑡+1) − (𝜃𝑡+1 − 𝜃𝑡)| (1)

with respect to a sequence {𝜃𝑡 ∈ ℝ ∶ 𝑡 = 1, … , 𝑇 }. Here, the first term of Eq.
(1) represents the misfit and the second term of Eq. (1) represents the degree of
violating the constraint that the first-order differences {𝜃𝑡+1−𝜃𝑡 ∶ 𝑡 = 1, … , 𝑇 −1}
are piecewise constant.

The l1 trend filtering for any 𝜆 > 0 is known to be piecewise linear without
prior determination of locations of knots (breaks at which the slopes change);
see Section 3 in Kim et al. (2009). As 𝜆 increases, the number of knots increases.
As 𝜆 decreases, the number of knots decreases. This hyperparameter 𝜆 can be
determined by minimizing Mallows’ Cp (Mallows 1973; Tibshirani & Taylor
2012; Tibshirani 2014), which is defined as follows:

𝐶𝑝(𝜆) = ∑𝑡=1,…,𝑇
(𝑋𝑠

𝑡 −𝑋𝑠
𝑡 )2

(𝜎𝑠)2 + {Number of knots in 𝑋𝑠
𝑡 } + 2, (2)

where 𝜎2
𝑠 is the noise variance at station 𝑠. When 𝜎2

𝑠 is unknown, its estimate
is plugged in. Mallows’ Cp balances the misfit (first term on the right-hand
side of Eq. (2)) and the number of knots (second term), that is, the number
of segmentations of the fitted piecewise linear function. Therefore, l1 trend
filtering with Mallows’ Cp can yield the piecewise linear fitting with data-driven
determination of locations and the number of knots.

In real data applications, GNSS stations are divided into two groups (primary
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and secondary stations) based on the behavior of Cp with respect to 𝜆 because
not all GNSS time series can be fitted with a piecewise linear function. If a
curve of 𝐶𝑝(𝜆) with respect to 𝜆 displays a unique minimizer (implying that
the piecewise linear function fits the target time series well), we call the target
station primary; we call stations within 30 km from the primary station the
secondary stations. In synthetic tests, we selected one arbitrary station as a
primary station. The other stations were used as secondary stations because
the stations of the synthetic tests did not differ.

3.2 Confidence of S-SSE detection

Subsequently, we employed (a) knots of l1 trend-filtered time series at primary
stations and (b) original time series at secondary stations to provide candidates
for S-SSEs including the event duration and detection confidence.

We selected knots {𝑇 𝑠
𝑖 ∶ 𝑖 = 1, … , 𝑁} with the number of knots 𝑁 when the

second-order difference in the l1-trend-filtered time series, that is, 𝑋𝑠
𝑇 𝑠

𝑖 +1 −
2𝑋𝑠

𝑇 𝑠
𝑖

+ 𝑋𝑠
𝑇 𝑠

𝑖 −1, was negative at a primary station 𝑠 as candidates for the start-
ing time of S-SSEs. A negative second-order difference is required because dis-
placements caused by S-SSEs are expected to yield sign changes from positive
to negative velocities. For each 𝑖 = 1, … , 𝑁 and for each primary station 𝑠, we
then defined 𝐷𝑠

𝑖 as the time difference between 𝑇 𝑠
𝑖 and the first time at which

𝑋𝑠
𝑡+1 − 2𝑋𝑠

𝑡 + 𝑋𝑠
𝑡−1 at the primary station 𝑠 becomes non-zero after 𝑇 𝑠

𝑖 . We
considered {𝐷𝑠

𝑖 ∶ 𝑖 = 1, … , 𝑁} as candidate values for the duration of S-SSEs.

By using {𝑇 𝑠
𝑖 ∶ 𝑖 = 1, … , 𝑁} and {𝐷𝑠

𝑖 ∶ 𝑖 = 1, … , 𝑁}, we conducted statistical
hypothesis tests at secondary station 𝑠′ and for each event candidate 𝑖 of the
null hypothesis that S-SSE does not occur at 𝑇 𝑠

𝑖 . We express this null hypothesis
as the condition under which

𝑍𝑠′
𝑖 =

̂𝑣𝑠′

after,𝑖 − ̂𝑣𝑠′

global

𝑠𝑑( ̂𝑣𝑠′
after,𝑖 − ̂𝑣𝑠′

global)

is zero, where ̂𝑣𝑠′

after,𝑖 is an estimate of the first-order differences of the GNSS time
series at a secondary station 𝑠′ during the period from 𝑇 𝑠

𝑖 to 𝑇 𝑠
𝑖 +𝐷𝑠

𝑖 , ̂𝑣𝑠′

global is an
estimate of the stationary slope of the GNSS time series at a secondary station 𝑠′,
and sd is the standard deviation. The parameter ̂𝑣𝑠′

global was calculated as follows:
We applied the l1 trend filter to the GNSS time series at station 𝑠′ to obtain
𝑋𝑠′

𝑡 and used the mean of {𝑋𝑠′

𝑡𝑗+1 − 𝑋𝑠′

𝑡𝑗
∶ 𝑗 = 1, … , 𝐽} for all time steps {𝑡𝑗 ∶

𝑗 = 1, … , 𝐽} at which 𝑋𝑠′
𝑡𝑗+1 − 𝑋𝑠′

𝑡𝑗
>0. The parameter ̂𝑣𝑠′

after,𝑖 was calculated by
least square fitting a linear function to {𝑋𝑠′

𝑇 𝑠
𝑖
, … , 𝑋𝑠′

𝑇 𝑠
𝑖 +𝐷𝑠

𝑖
}. Based on the as-

sumption that 𝑍𝑠′

𝑖 follows the standard normal distribution when the change in

8



the first-order difference of the GNSS time series does not occur at 𝑇 𝑠
𝑖 , the statis-

tical hypothesis testing produces 𝑝-values, that is, 𝑝𝑠′
𝑖 = Pr (𝑍 ≤ 𝑍𝑠′

𝑖 ) = Φ(𝑍𝑠′
𝑖 ),

where Φ(⋅) is the cumulative distribution function of the standard Gaussian
distribution. If 𝑝𝑠′

𝑖 approaches 0, rejecting the null hypothesis becomes more
confident, implying that S-SSEs may occur at 𝑇 𝑠

𝑖 with high confidence. If 𝑝𝑠′
𝑖

approaches 1, accepting the null hypothesis becomes more confident, implying
that S-SSEs may not occur at 𝑇 𝑠

𝑖 .

Finally, we combine station-wise non-confidence values {𝑝𝑠′

𝑖 ∶ 𝑠′ ∈
secondary stations} by using the combined p-value technique (Good 1958;
Wilson 2019): 𝑝−1

i = ∑𝑠′
1

𝑝𝑠′
𝑖

. This harmonic mean stacking produces a single
robust value {𝑝𝑖 ∶ 𝑖 ∈ candidates} with respect to the non-confidence of the
S-SSE occurrence. By setting { ̃𝑝𝑖 = 1 − 𝑝𝑖 ∶ 𝑖 ∈ candidates}, we obtain
candidates for the S-SSE occurrence time including their confidence.

4. Synthetic test

In this section, we demonstrate the performance of our method by using syn-
thetic data in comparison with the �AIC-based S-SSE detector (Nishimura et
al., 2013).

We created a synthetic dataset of multiple projected GNSS time series with a
length of 730 days (2 years) as follows: For each station 𝑠, the value at time
step 𝑡 is given by:

𝑋𝑠
𝑡 = 𝑣0𝑡 − ∑

𝑖=1,…,𝑁
{𝑣𝑠

𝑖 (1 − exp (−(𝑡 − 𝑡𝑖)
𝜏𝑖

)) 𝐻(𝑡 − 𝑡𝑖)} + 𝜎𝑠𝜀𝑠
𝑡 ,

where 𝑣𝑠
0 > 0 is the stationary velocity of the displacement of station 𝑠, 𝑁

is the number of S-SSEs, and the function 𝑣𝑠
𝑖 (1 − exp (− (𝑡−𝑡𝑖)

𝜏𝑖
)) 𝐻(𝑡 − 𝑡𝑖) is

the displacement caused by the 𝑖-th S-SSE starting at 𝑡𝑖 with duration 𝜏𝑖 and
magnitude 𝑣𝑠

𝑖 with the Heaviside step function 𝐻(𝑥). We set the number of
stations to seven. We set the recurrence interval of S-SSEs to 30 days and then
the whole time series contained 23 S-SSEs. We set the duration of each S-SSE
to five days and the stationary velocity 𝑣0 to 2/365 cm/day. The noise standard
deviations 𝜎𝑠 were assigned to be 0.05, 0.07, 0.1, 0.04, 0.05, and 0.06 cm by
referring to the noise variances of real data in Section 2. We set the strengths
of SSEs observed at station 𝑣𝑠

𝑖 to 0.105, 0.04, 0.02, 0.07, 0.06, 0.05, and 0.04 cm
by referring to the actual values of the S-SSE event on April 21, 2004. Figure
3a shows the sequence obtained at the primary station.
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Figure 3. (a) Synthetic time series (colored in black) with S-SSEs (orange
shades). (b) Sequence of confidence ̃𝑝𝑖 including the values of zero-padded non-
candidates. The 90% line is green. The 68% line is red. (c) Sequence of stacked
ΔAICs (converted to probability values) with a window length of 10 days. (d)
Sequence of stacked ΔAICs (converted to probability values) with a window
length of 100 days.

We first discuss the performance of the proposed method. Figure 3b shows the
sequence of confidence ̃𝑝𝑖 including the values of zero-padded non-candidates.
Based on our method, 17 and 20 events were successfully detected, with a con-
fidence greater than 0.9 and 0.68, respectively. Note that the threshold value
of 0.68 is the value of 𝑃𝑟(ΔAIC ≥ 0) with the AIC difference ΔAIC because
the distribution of ΔAIC between two models with the number of parameters
𝑑 and 𝑑′(𝑑 < 𝑑′) is the chi-square distribution with a degree of freedom 𝑑′ − 𝑑.
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In contrast, our method yields three misdetections for both the 90% and 68%
thresholds. Figure 3b also shows that, based on our method, confidence values
are only assigned to the starting points of events, which implies that the start-
ing points of S-SSEs can be accurately determined with our method. This may
be because we employed an exponential function as the synthetic form of SSE
deformation and the second derivative monotonically decreases.

Subsequently, we compared our method with that reported by Nishimura et al.
(2013) based on which sliding windows with a fixed window length are produced
and ΔAICs between two models are sequentially calculated: one model assumes
an offset representing the occurrence of an S-SSE, whereas the other model
does not. Finally, the sequences of ΔAIC over stations are stacked. A high
stacked ΔAIC value indicates the existence of a S-SSE. Two window lengths
(𝐿 = 10 and 100) were chosen for this comparison. For both window lengths,
the stacked ΔAIC sequence did not produce confidence values above 0.9. For
𝐿 = 10, all events are detected by this method, but many misdetections occur
(Figure 3c). For 𝐿 = 100, misdetections were not observed, but only eight
events with confidence values above 0.68 were detected (Figure 3d). In general,
the way of determining the optimal window length remains unclear. The results
therefore show that our method can improve the method of ΔAIC stacking.

5 Application to real data

We applied our method to daily GNSS time series obtained at 39 GEONET sta-
tions in the Nankai subduction zone beneath western Shikoku Island in South-
west Japan, as described in Section 2. Seven S-SSEs occurred during the analysis
period (Figure 4): the 4th and 7th events were discovered only by tiltmeters
(Sekine et al., 2010); the 1st, 3rd, and 6th events were discovered only by GNSS;
and the other events were discovered by both tiltmeters and GNSS (Nishimura
et al., 2013).
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Figure 4. (a) Primary stations (red inverted triangles) with their
station numbers. (b) Confidence values above 90% for all primary
stations. Orange shades denote known S-SSEs (known onsets
±7 𝑑𝑎𝑦𝑠) based on Sekine et al. (2010) and Nishimura et al. (2013).
(c) Sequence of confidence values at station 0680 (blue lines). The
green dashed line denotes the threshold of 90%. The green shades
represent periods of five days starting on the detected day. Each
known SSE was numbered in black and marked with (G) or (T) if
it was discovered by GNSS or tiltmeters, respectively. Otherwise,
it is marked by (G,T). New potential events were numbered in red.
The inversion results obtained for the four potential events marked
with red arrows are shown in Figure 6.

Figure 4a represents the primary stations selected based on the behavior of
Mallows’ 𝐶𝑝. Note that the spatial distribution of the primary stations is not
concentrated in specific regions. Figures 4b and c show the sequences of the
confidence values at all primary stations and at a single station (station 0680),
respectively. Figure 4b shows that all known S-SSEs (1st, 2nd, 3rd, 5th, and
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6th event), which have been previously detected by GNSS, were successfully
detected with our method. In addition, two S-SSEs (4th and 7th event) were
detected, which had not been previously detected by GNSS. Figure 4c also
shows that our method highlights the onsets of potential events only. Figure 4c
suggests that, based on station 0680, our method reveals 13 events that have
not been detected with other methods based on station 0680. These events are
discussed below.

Figure 5. (a) Sequences of daily LFE counts (black line) and confidence values
at station 0680 (blue line) starting on April 1, 2004. (b) Boxplot of LFE counts
within intervals of six days around the detected days with a confidence above
0.9 and that outside these intervals. Mean values are shown in red.

We investigated new potential events detected by our method from the perspec-
tive of their correlation with the daily LFE counts. We used the LFE catalog
for the Nankai subduction zone created by Kato and Nakagawa (2020) and ex-
tracted the LFEs around Shikoku Island (Figure 1b). The local peaks of daily
LFE counts starting on April 1, 2004 are concordant with the sequence of con-
fidence values at station 0680 (Figure 5a). This can be clearer by comparing
the LFE counts within the intervals of six days around the detected days with a
confidence above 0.9 and those outside these intervals (Figure 5b), showing that
the LFE occurrences on the detected days are significantly larger than those on
the other days.
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Figure 6. Inversion results of potential events detected with our method. In
each figure, the gray and red arrows at a station (inverted red triangle) represent
the observation and calculation using a rectangular fault model, respectively.
Blue dots represent Markov chain Monte Carlo (MCMC) samples of the fault
location. Black dots represent the epicenters of low-frequency earthquakes that
occurred during the detection period ±3 days. Blue rectangles with thick and
thin frames denote rectangular faults calculated by the means and the 25%
and 75% percentiles of the MCMC samples, respectively. The yellow arrow
represents the slip vector calculated based on the mean of the MCMC samples.

Finally, we discuss the inversion results of the potential events detected by our
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method. We conducted Markov chain Monte Carlo (MCMC; e.g., Hastings,
1970) using a rectangular fault model buried in an elastic half-space (Okada,
1992). For the detail of MCMC method, see supplemental file Text S1. We
used the displacements at 39 stations three days after the detected day for the
inversion process. Ten source parameters, i.e., longitude, latitude, depth, length,
width, slip amount, rake, strike, dip, and dislocation of the tensile component,
were determined. Figure 6 shows representative examples with different posi-
tions of fault locations and epicenters of LFEs that occurred during the detection
period ±3 days. The determined faults of these events (Figure 6) locate near
the fault locations of known S-SSEs in this area (Figure 1b). The determined
fault size, slip size, and depth are similar to those of known S-SSEs, and the
determined rake suggests that these events have reverse faults (Figures S1-S4
in the supplemental file). Taking the uncertainty into consideration, the deter-
mined faults of these events cover the epicenters of LFEs, which might suggest
the spatio-temporal co-occurrence of S-SSEs and LFEs.

6 Conclusion

We developed a new detection method for S-SSEs based on observations made
by a GNSS array. Our method utilizes l1 trend filtering, a variation of sparse
estimation, in conjunction with combined 𝑝-value techniques. The results of
synthetic tests show that almost all events were successfully detected by the
proposed method, with few misdetections, compared to automated detection
methods based on the AIC. We then applied the proposed method to the daily
displacements obtained at 39 GNSS stations in the Nankai subduction zone,
Southwest Japan. The results show that new potential events can be identified
with the proposed method in addition to all known events detected by tiltmeters
or GNSS. Finally, we discuss the correlation between these potential events and
LFEs in the target region and inversion results.
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