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Abstract

The rate of background seismicity, or the earthquakes not directly triggered by another earthquake, in active seismic regions

is indicative of the stressing rate of fault systems. However, aftershock sequences often dominate the seismicity rate, masking

this background seismicity. The identification of aftershocks in earthquake catalogs, also known as declustering, is thus an

important problem in seismology. Most solutions involve spatio-temporal distances between successive events, such as the

Nearest-Neighbor-Distance algorithm widely used in various contexts. This algorithm assumes that the space-time metric

follows a bi-modal distribution with one peak related to the background seismicity and another peak representing the aftershocks.

Constraining these two distributions is key to accurately identify the aftershocks from the background events. Recent work

often uses a linear-splitting based on nearest-neighbor distance threshold, ignoring the overlap between the two populations and

resulting in a mis-identification of background earthquakes and aftershock sequences. We revisit this problem here with both

machine-learning classification and clustering algorithms. After testing several popular algorithms, we show that a random forest

trained with various synthetic catalogs generated by an Epidemic Type Aftershock Sequence model outperforms approaches

such as K-means, Gaussian-mixture models, and Support Vector Classifications. We evaluate different data features and discuss

their importance in classifying aftershocks.

We then apply our model to two different actual earthquake catalogs, the relocated Southern California Earthquake Center

catalog and the GeoNet catalog of New Zealand. Our model capably adapts to these two different tectonic contexts, highlighting

the differences in aftershock productivity between crustal and intermediate depth seismicity.
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Abstract7

The rate of background seismicity, or the earthquakes not directly triggered by another8

earthquake, in active seismic regions is indicative of the stressing rate of fault systems.9

However, aftershock sequences often dominate the seismicity rate, masking this background10

seismicity. The identification of aftershocks in earthquake catalogs, also known as declus-11

tering, is thus an important problem in seismology. Most solutions involve spatio-temporal12

distances between successive events, such as the Nearest-Neighbor-Distance algorithm widely13

used in various contexts. This algorithm assumes that the space-time metric follows a bi-14

modal distribution with one peak related to the background seismicity and another peak rep-15

resenting the aftershocks. Constraining these two distributions is key to accurately identify16

the aftershocks from the background events. Recent work often uses a linear-splitting based17

on nearest-neighbor distance threshold, ignoring the overlap between the two populations18

and resulting in a mis-identification of background earthquakes and aftershock sequences.19

We revisit this problem here with both machine-learning classification and clustering al-20

gorithms. After testing several popular algorithms, we show that a random forest trained21

with various synthetic catalogs generated by an Epidemic Type Aftershock Sequence model22

outperforms approaches such as K-means, Gaussian-mixture models, and Support Vector23

Classifications. We evaluate different data features and discuss their importance in classify-24

ing aftershocks. We then apply our model to two different actual earthquake catalogs, the25

relocated Southern California Earthquake Center catalog and the GeoNet catalog of New26

Zealand. Our model capably adapts to these two different tectonic contexts, highlighting27

the differences in aftershock productivity between crustal and intermediate depth seismicity.28

Plain Language Summary29

The seismic catalog of earthquakes that have occurred in a given fault zone is a window30

into the tectonic processes that occur at depth. These earthquakes rupture faults when the31

fault can no longer support the stress built-up by tectonic motion. When an earthquake oc-32

curs spontaneously from tectonic stresses, this mainshock will trigger aftershocks, which can33

themselves trigger even more aftershocks. Aftershock sequences often dominate catalogs due34

to the sudden increase in the number of earthquakes. Distinguishing between mainshocks35

and aftershocks requires an understanding of the connection between earthquakes. An ac-36

curate classification of mainshocks and aftershocks in a catalog allow notably a more precise37

investigation of the evolution of accumulated stress on a fault and is often a necessary tool38

to estimate the seismic hazard of a region. In this work, we develop a machine-learning39

algorithm to achieve such classification. We tested our model on large earthquake catalogs40

of Southern California and New Zealand to demonstrate the effectiveness of our approach.41

We show that our approach is generalizeable to any region of the world, independent of the42

style of seismicity or period of time.43

1 Introduction44

That earthquakes form clusters in time and space, regardless of the tectonic context, is a45

fundamental characteristic of earthquakes. The simplest classification of earthquakes breaks46

down the total seismicity rate into two categories: background events that are generated47

by long-term, large-scale tectonic forcings and aftershocks that are directly triggered by a48

background event or another aftershock. Isolating the background seismicity is crucial for49

a wide range of studies: from the monitoring of transient loading along faults (Marsan,50

Prono, & Helmstetter, 2013; Marsan, Reverso, et al., 2013; Reverso et al., 2015), fluid51

injections (Hainzl & Ogata, 2005; Bachmann et al., 2011; Kothari et al., 2020) for hazard52

assessments where declustering is essential to remove the spatial bias introduced by clustered53

seismic activity in non-declustered catalogs (Marzocchi & Taroni, 2014; Azak et al., 2018;54

Galina et al., 2019; Taroni & Akinci, 2021). Aftershocks can be modeled with empirical55

laws, such as Omori’s law or the productivity law (Omori, 1894; Utsu, 1961), that predict56
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the rate and magnitude of aftershocks following some background event. The classification57

of an earthquake as a mainshock or an aftershock then relies on the identification of the58

relationship between a given event and the events that preceded it. If an earthquake is likely59

to be triggered by a preceding earthquake, it can then be confidently labeled as an aftershock.60

Several algorithms have been proposed to tackle this classification problem, also known61

as declustering. Early declustering algorithms were mostly based on space-time windows62

(Gardner & Knopoff, 1974; Reasenberg, 1985). More recently, declustering approaches have63

made use of the Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, 1988, 1998;64

Zhuang et al., 2002) or space-time-magnitude metric describing the link between event-pair65

(Baiesi & Paczuski, 2004; Zaliapin et al., 2008); we refer to (Van Stiphout et al., 2012) for66

an exhaustive list of declustering algorithms. Each method possess its own parameters but67

most of them rely on the estimation of the “reach” of each earthquakes to others.68

Teng and Baker (2019) have recently compared several declustering methods: the space-69

time window based algorithms proposed by Gardner and Knopoff (1974) and by Reasenberg70

(1985), the Nearest-Neighbor-Distance (NND) Algorithm (Baiesi & Paczuski, 2004; Zaliapin71

et al., 2008) relying on a space-time-magnitude metric and stochastic declustering (Zhuang72

et al., 2002). Their study suggests that both Reasenberg and NND declustering methods73

are suitable for the declustering of the seismicity in particular to estimate the background74

seismic rate useful for seismic hazard analysis. The NND algorithm presents non-negligible75

advantages as it does not use tuning parameters other than characteristic features of the76

observed seismicity, such as the b value or the fractal dimension.77

However, as pointed out by Bayliss et al. (2019), there is room to improve NND-based78

declustering. The frequency distribution of the NND metric is often observed as a bi-modal79

distribution characterizing the background seismicity and the aftershocks. A threshold is80

then used to split the distribution and classify the earthquakes into two categories, main-81

shocks or aftershocks, neglecting the overlap of both distributions. This implies that the82

declustered background seismicity will contain clustered seismicity and vice-versa. Bayliss83

et al. (2019) developed a probabilistic clustering framework using a Markov Chain Monte84

Carlo mixture modelling approach allowing the overlap of two Weibull function with the aim85

to quantify the uncertainties in event-pair linkage. Zaliapin and Ben-Zion (2020) recently86

introduced a modified version of the Nearest-Neighbor-Distance algorithm by introducing 387

additional steps. Their algorithm discriminates background events and aftershocks following88

a random thinning approach which aims to remove events according to a space-dependent89

threshold, which is estimated using randomized-reshuffled catalogs. In this work, we have90

decided to revisit the problem of the declustering of earthquake catalogs with a machine-91

learning based take on the NND algorithm but with the aim to keep the simplicity of the92

original algorithm. The declustering can be seen either as a clustering or a classification93

problem; both utilize data features to describe an earthquake. Machine learning techniques94

are now commonly used in seismology (Kong et al., 2019), especially for the detection and/or95

classification of seismic waveforms with neural networks (Perol et al., 2018; Li et al., 2018;96

Ross et al., 2018; Zhu & Beroza, 2019; Thomas et al., n.d.), driven by either supervised97

(Rubin et al., 2012; Lara-Cueva et al., 2016) or unsupervised learning algorithms (Seydoux98

et al., 2020; Shi et al., 2021; Steinmann et al., 2021). Beyond waveform classification,99

many other applications have benefited from machine learning algorithms, including but100

not limited to early warning systems (Kong et al., 2016), earthquake relocation (Trugman101

& Shearer, 2017), predicting fault slip cycles (Rouet-Leduc et al., 2017), and forecasting102

earthquake magnitudes (Asim et al., 2017; González et al., 2019; Hoque et al., 2020). How-103

ever, only few studies have used machine learning to classify earthquakes within catalogs104

(Picozzi & Iaccarino, 2021), and they have not addressed the declustering problem. Here105

we implement and compare different machine learning algorithms apply to the the declus-106

tering of earthquake catalogs. Building on the nearest-neighbor algorithm, we perform a107

thoughtful comparison between clustering and classification approaches apply to synthetic108

catalogs with the aim to identify the most accurate algorithm. We apply our model to 2109
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real catalogs from Southern California and New Zealand and discuss the potential of our110

declustering model.111

2 Method112

2.1 Nearest-Neighbor Distance algorithm113

The NND represents a good compromise between computational efficiency and stability,114

relying on a generalizeable metric of earthquake catalogs. The NND does not depend directly115

on the location and magnitude of earthquakes, but is rather based on the computation of116

a space-time metric taking into account both the Gutenberg-Richter law (Gutenberg &117

Richter, 1955) and the Omori-Utsu law (Omori, 1894; Utsu et al., 1995). It consists of the118

estimation of the metric ηij between the jth event and a preceding event i. We call the119

nearest-neighbor event of j, the event i that minimizes this distance:120

ηij = tij × (rij)
df × 10−bmi (1)

where tij = tj − ti is the inter-event time, rij = |ri − rj | the inter-event physical121

distance (epicenter to epicenter; we ignore depth here), mi is the magnitude of the event i122

and df is the fractal dimension. Zaliapin et al. (2008) introduced a re-scaled time-difference123

Ti,j and spatial distance Ri,j for discriminating clustered and non-clustered events in a 2D124

visualisation, thus allowing to account for both time and space distributions:125

ηij = Tij ×Rij
Tij = tij × 10−

1
2 bmi (2)

Rij = (rij)
df × 10−

1
2 bmi

For simplification, we refer to Tij as the rescaled time and Rij as the rescaled distance.126

We measured the NND η for the relocated seismicity of Southern California, between127

1981 and 2019 (Hauksson et al., 2012), and the GeoNet catalog of New Zealand, between128

2010 and 2020 (Figure 1a and b). We identify two populations: aftershocks have system-129

atically small rescaled times Ti,j and distances Ri,j , while the mainshocks exhibit a wider130

distribution of rescaled time and distance (Figure 1c and d). The simplest way to dis-131

criminate between the two populations is by drawing a line at the local minimum of the η132

distribution (Figure 1e and f); this vertical line to split the NND distribution becomes a di-133

agonal in the 2D representation of rescaled time and distance. Knowing that the background134

distribution follows a Weibull distribution (Zaliapin et al., 2008), by cutting the η distribu-135

tion aggressively we neglect any overlap and thus a portion of mainshocks are considered as136

mainshocks and vice versa for aftershocks. To better constrain this problem, we consider the137

declustering of earthquake catalog as both a clustering problem and a classification problem138

to compare both approaches.139

2.2 A Clustering or a Classification problem140

To decluster an earthquake catalog is to distinguish the mainshocks from the after-141

shocks. In a clustering (unsupervised learning) approach, we would expect both popula-142

tions to separate without any a priori on the data set or on any sort of model that would143

have generated the earthquakes in the catalog. This idealized approach ignores the diffi-144

culty of evaluating the quality of the prediction because there is no explicit loss function145

that quantifies the quality of a given clustering. In a classification (supervised learning)146

approach, one can evaluate how well a model performs during training and testing phases147

by comparing the results with the synthetic labels. In our particular case of earthquake148
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declustering, training such a model can be achieved by using a Epidemic-Type Aftershock149

Sequence (ETAS) model to generate synthetic catalogs in an exercise of transfer learning.150

In this work, we have compared the results of four well-known machine learning models.151

The unsupervised learning algorithms we tested here are the K-means algorithm (linear and152

deterministic) and a Gaussian-Mixture model (non-linear and probabilistic). The supervised153

learning models we tested rely on either a Support Vector Machine Classifier (linear and154

deterministic) or a Random Forest classifier (non-linear and probabilistic). We describe155

each of the four models below.156

The K-means algorithm will separate the samples into k groups, here k = 2 to account157

for mainshocks and aftershocks, by minimizing the cluster variances, also called inertia,158 ∑Nk

i=0(||xi − µk||2).159

A Gaussian Mixture model (GMM) is a probabilistic model and considers the sample160

distribution as a mixture of a finite number K of Gaussian distributions with unknown161

parameters; each Gaussian is defined by a mean µk and a variance σk. GMM is initialized162

by applying the k-means algorithm in order to assign a label to each data point and a first163

set of model parameters. Then a two-step technique called Expectation Maximization is164

performed to estimate the mixture model parameters. First, the membership weights (or165

probabilities) φik for each sample with the given set of model parameters are computed.166

For each data point, the membership weight is defined as
∑K
k=1 φik = 1. In a second step,167

it infers the new set of model parameters for the given membership weights by maximizing168

the log-likelihood function. This is an iterative process and eventually converges to a final169

set of parameters.170

A Support Vector Machine Classifier (SVC) is an unsupervised learning model that can171

be used to solve classification or regression problems. We decided to use a linear kernel for172

the SVC to have a supervised, linear and deterministic model to compare with K-means.173

With SVC, a sample is considered as a k-dimensional vector, with k the number of features.174

The linear SVC can be trained to separate the data set with k−1 dimensional hyperplane(s).175

If the solution of this problem is not unique, the best hyperplane is the one that create the176

largest separation or margin between the two populations; the “best” hyperplane maximizes177

the distance from it to the nearest sample(s) on each side, also called the support vectors.178

A Random Forest (RF) is an ensemble classifier represented by a forest of decision trees.179

One main advantage of a RF is to prevent over-fitting of the training data set. The ensemble180

of uncorrelated trees is generated following a method of Bootstrap Aggregating (also called181

bagging): each tree is trained with a randomly selected (with replacement) sub-set of the182

data. Until now, RFs have been most often used to classify events such as earthquakes,183

landslides, geyser or period of volcanic activation based on time-frequency features (Rubin184

et al., 2012; Hibert et al., 2017; Maggi et al., 2017; Provost et al., 2017; Yuan et al., 2019;185

Dempsey et al., 2020); an RF model has not yet been applied to seismic catalogs. During186

the training of a tree, at each node, the best split is found either from all input features187

or more generally from a random subset of it, thus contributing to the randomness which188

reduces potential overfitting. From this set of features, the idea is to find the feature and the189

associated threshold that allows the best splitting of the remaining data-set into two groups,190

based on the provided data labels. The selected feature and the given threshold minimize191

the class impurity of the two populations according to the Gini impurity index computed192

from the known class of the samples. The Gini impurity at a split is the probability that a193

randomly chosen sample would be incorrectly labeled. It is expressed for the node n:194

IG(n) = 1−
K∑
i=1

p2i (3)

This is done recursively until one sample remains in the leaves or when the trees reach a195

maximum depth. When all trees are built, the classification of a sample is done by feeding it196

to the ensemble of trees and comparing its features to the selected feature and its respective197
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threshold at each node. At the end of each tree, in the leaf where the sample falls, a198

prediction is made. The class prediction is then obtained by a vote of all trees. The final199

probability to belong to each class is derived by the percentage of trees in the forest that200

voted for a given classification.201

We also considered using Gradient Boosted Trees as a supervised learning model but202

knowing that the approach relies on the fit of the prediction residuals in a series of weak203

learners, i.e. shallow decision trees, we believe it would be difficult to use for the declustering204

of seismic catalogs without over-fitting the training data set. We also considered a neural205

network, but we judged the training and the estimation of the model’s architecture param-206

eters too demanding computationally and likely not adequate for this particular problem207

with a potential small number of features compared to a large number of samples.208

2.3 Synthetic catalogs for training209

To train and later test the supervised learning models, the Support Vector Machine210

Classifier and the Random Forest, we need to build a labelled data set, i.e. synthetic211

catalogs where we know which earthquakes is a mainshock or an aftershock. To do so,212

we have followed the model of Epidemic-Type Aftershock Sequence (ETAS) (Ogata, 1988;213

Marsan, Reverso, et al., 2013; Marsan et al., 2017). The spatio-temporal distribution of214

earthquakes λ(x, y, t) is defined as the sum of the background seismicity µ(x, y, t) and the215

aftershocks ν(x, y, t):216

λ(x, y, t) = µ(x, y, t) + ν(x, y, t) (4)

The mainshock distribution µ(x, y, t) is characterized by a Poisson point-process: the events217

are independent from each other and the inter-event time follows the Poisson probability218

density function as:219

f(τ) =
1

T0
exp

(
− τ

T0

)
for τ ≥ 0 (5)

We have drawn coordinates from a 2D probability density function (PDF) to give a location220

for each mainshocks. This PDF can be uniform for a randomly distributed background221

seismicity or can be generated from an existing seismicity.= by222

Following Marsan, Reverso, et al. (2013), the aftershock distribution ν(x, y, t) can be223

expressed as a spatio-temporal distribution, which results from the product of the Omori-224

Utsu law, a productivity law and a power spatial density:225

ν(x, y, t) =

Nafter∑
i

K10a(mi−mc)

(t− ti + c)p
× (γ − 1)Lγ−1

i

2π ((x− xi)2 + (y − yi)2 + L2
i )

(γ−1)/2
(6)

K and a are constant and part of the aftershock productivity of the i-th event which follow a226

Poisson law with the average, with K and a constants (Gu et al., 2013). ti is the occurrence227

time of the mainshock and Li is the characteristic length in kilometers (Utsu & Seki, 1955)228

such as Li = L0 × 10(mi−mc)/2 with L0 = 0.1km (Marsan, Reverso, et al., 2013; Reverso et229

al., 2016).230

2.4 Training Data Set, Feature Space and Model Optimization231

We create the mainshock seismicity in three steps:232

(1) To account for variability in the inter-event time, we have randomly selected an averaged233

number of events per day for each catalog ranging from 1 to 3. The total average number234
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of mainshocks < N > is obtained by multiplying the average number of events per day by235

the duration of the catalog desired. Here the duration is set to 8000 days (∼ 22 years) to236

account for long-term seismic interactions, which we will discuss later on. The actual number237

of mainshocks N is drawn from a Poisson-law with a mean equal to < N >. The averaged238

inter-event time T0, which is simply N divided by the actual duration of the catalog, is239

injected in equation 5 to draw N inter-event times. The origin times of the N mainshocks240

are simply obtained by computing the cumulative sum of the inter-event times.241

(2) To account for variability in the inter-event distance, we have used a 2D-PDF obtained242

from the declustered interface seismicity for Northern-Chile from Aden-Antoniów et al.243

(2020). From this catalog, we built a earthquake density map, smoothed it with a Gaussian244

filter and normalized it by the total event count. Using a 2D PDF that is not uniform and245

generated from a subduction zone seismicity is allowing us to simulate a broader distribution246

of distance between the events.247

(3) To obtain the magnitude of each mainshock, we have randomly selected a b-value,248

uniformly distributed between 0.8 and 1, and did the same for the completeness magnitude,249

uniformly distributed from 2 to 3. The magnitudes are then drawn from the probability250

density function following the Gutenberg-Richter law (Gutenberg & Richter, 1955) with251

a maximum magnitude set to 7.5. We selected this maximum magnitude on the basis252

that for larger magnitude, some catalogs with low b value presented aftershock sequences253

lasting for decades continuously triggering M6+ events resulting in catalogs constituted of254

a disproportionate number of aftershocks in comparison of mainshocks.255

We have generated the aftershocks and the aftershocks of the aftershocks and so on256

following the method presented in section 2.3. To generate each catalog, we have drawn257

a set of parameters of equation 6 such as the p and c, corresponding to the parameters of258

the Omori-Utsu law (Omori, 1894; Utsu, 1957; Utsu et al., 1995), the parameter γ for the259

power spatial density function, K and a for the productivity law. The magnitude of each260

aftershocks is drawn from the same PDF as the mainshocks of the a given catalog. An261

example of these synthetic catalogs is shown Figure S1 and the range of each parameters262

of the ETAS model are shown Table 1. Finally, we have labeled each events of the catalogs263

with 0 if it is a mainshock or 1 if it is an aftershock. We have generated 200 synthetic264

catalogs representing a total of 5,461,475 earthquakes, 68% of which are aftershocks. This265

corresponds to an average of 27,307 events per catalog with a minimum of 9,382 and a266

maximum of 386,054.267

For each event j in each synthetic catalog, we conducted the search of its nearest-268

neighbor i which is not necessarily it’s mainshock if j is an aftershock. We estimated the269

fractal dimension df necessary to compute the nearest-neighbor-distance metric for each270

catalog following the Minkowski-Bouligand approach, also called the box counting method.271

For different size boxes that divide the area covered by the synthetic catalogs, we counted272

the number of boxes actually containing earthquakes. The relation between the size of the273

boxes and the number of non-empty boxes can be described by a power law with the fractal274

dimension df as exponent. The df of the synthetic catalogs are on average 1.7 with minimal275

variations.276

For both supervised and unsupervised approaches, we need to identify the relevant277

features that are useful to distinguish background events from aftershocks. To keep our278

model generalizable, the features necessary to classify an earthquake should not rely on279

absolute locations or origin times. The NND framework (equation 3) provides several relative280

metrics well suited to use as data features. To predict the label of event j, we describe281

the link with its nearest neighbor i with five features: (1) the rescaled time Tij and (2)282

the rescaled distance Rij both described in equation 3; (3) the difference in magnitude283

∆mij = mi −mj between the event j and its nearest-neighbor i, which we would expect284

to be high if j is an aftershock of a larger event; (4) Np the number of siblings or events285

that share the same nearest neighbor as event j, which if relatively high would suggest that286
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event j is one of many aftershocks following a background event; and (5) Nc the number287

of offspring of the event j, which if high would suggest that event j has generated many288

aftershocks. Associated together, these features provide information on the linkages between289

earthquakes so that we may distinguish between mainshocks and aftershocks.290

Of the 200 synthetic catalogs we generated (see section 2.3), we used 100 catalogs to291

train the supervised learning models; the remaining 100 serve to test and compare all the292

different models on a known data set. Besides training a supervised learning model, one293

should also estimate the best hyper-parameters of the model, i.e. the unique parameters294

defining the architecture of the model. To do so we have conducted a stratified k-Fold295

cross-validation (Mosteller & Tukey, 1968). This consists of first splitting the training data296

set into k groups or folds, in a stratified fashion. In this context, stratified means that in297

each fold, a similar percentage of samples of each label as the original data set is preserved,298

this is particularly useful and recommended when the population to classify are not equally299

represented in the data set. A new model is then trained k times and at each time a300

different group is left out to be used later for validation purposes. The whole procedure is301

repeated for each subset of potential hyperparameters, allowing a better estimation of the302

model performance and a more robust selection of the hyperparameters. The best model303

hyperparameters are chosen by computing the average validation accuracy of the k folds.304

One chose the number of folds with the goal that each fold should remain statistically305

representative of the whole training data set; usually 5 or 10 folds are sufficient.306

There are several hyper-parameters that control the architecture of the Random Forest,307

including: (1) the number of trees; (2) the number of features that are randomly selected308

at each split to minimize the Gini impurity, from 1 to total the number of features; (3)309

the minimum number of training samples in a leaf. We do not consider here other param-310

eters such as the maximum depth of a tree or the minimum number of sample to allow311

a split because they would be in competition with parameter (3). Our most accurate RF312

model, with hyperparameters chosen after a Stratified 5-Fold Cross-Validation (approxi-313

mately 620,000 samples per fold), is composed of 100 trees, 2 features considered at each314

split and a minimum number of sample in each leaf of 1.315

The linear SVC is mainly controlled by the soft margin parameter C. It is a regular-316

ization parameter: a larger C will result in smaller acceptance margins, where the model317

will allow fewer aftershocks to be on the mainshocks side of the hyper-plane; a lower C318

will allow larger acceptance margins which in return will generate a simpler and less pre-319

cise hyper-plane, implying a lower training accuracy. Similar to the RF hyperparameters320

estimation, we performed a 5-Fold cross-validation to look for the best parameter C with321

the same training and testing data set and found that the value C = 0.1 gives the best322

validation accuracy.323

3 Results324

3.1 Model Comparison325

Fernández-Delgado et al. (2014) found that the RF is the best classification model326

among many other available algorithms, including Support Vector Machine or Logistic Re-327

gression, but we prefer to conduct our own comparison tailored to the data set at hand. A328

rather implicit hyper-parameter of this study is the number of feature to use. To investi-329

gate its impact on the accuracy of the different models, we have predicted the label of the330

earthquakes in 100 test catalogs with a different number of features nf for each model. If331

nf = 1, only ηij , the nearest-neighbor distance metric is used. For nf = 2, Rij and Tij are332

used. Then if nf = 3, the magnitude difference dm is added to the list of features, then Np333

for nf = 4 and finally Nc for nf = 5. We have trained both supervised learning models,334

the Random Forest and the Support Vector Machine Classifier, beforehand on the training335

–8–



manuscript submitted to Journal of Geophysical Research: Solid Earth

data set with the corresponding number of features and each time their hyperparameters336

have been determined using a 5-Fold Cross-Validation.337

We also compared the four models to the classical way of declustering with the NND,338

which is to use a threshold η0 to split the nearest-neighbor distance distribution ηij in339

two. We estimated this threshold by rounding the membership probabilities given by the340

GMM only using ηij distribution. η0 is often defined as the local minimum or in its vicinity341

between the two lobes of the ηij distribution if the two populations are easily discernible342

(e.g. Zaliapin & Ben-Zion, 2013; Gu et al., 2013; Davidsen et al., 2015; Shebalin & Narteau,343

2017; Peresan & Gentili, 2018; Aden-Antoniów et al., 2020). To account for the overlap of344

the two populations using the GMM, we drew a random number between 0 and 1 for each345

event to test and if the probability to be an aftershocks is greater than this random number,346

the event is labelled as aftershock; if not we label it as a mainshock.347

An important consideration is most machine learning models benefit from a particular348

pre-processing of the data. For most algorithms dealing with several features, such as the349

K-means, GMM or the SVC, the different features need to be scaled or standardized, for350

example by removing the mean and dividing by the standard deviation. Because most351

models treat the features as an ensemble, they tend to weigh higher numerically large352

features, regardless of the unit of the features, which is clearly problematic. Accordingly,353

we have considered the logarithm of ηij , Rij and Tij because they span over a large range;354

for example ηij distribution is comprised between 10−15 and 103 (Figure 1c and d); this is355

sometimes called a kernel trick. We emphasize though that we did not have to do this for356

the RF model. Because the RF randomly selects a single feature at each split it spares us357

any extra step of scaling because the features are not directly compared to each other. The358

comparison of the different models according to the number of features nf on the testing359

catalogs is shown in Figure 2a. For each number of features nf , each testing catalog has360

been declustered separately and we estimated the accuracy of the model’s prediction. We361

can then look at the testing accuracy confidence interval (32%-68%) for each model with362

respect to the median (50%) and the mean (Figure 2a).363

The classical approach consisting of splitting the ηij into two groups with the threshold364

η0 performs well, with an average testing accuracy of 88%, in comparison to the unsupervised365

learning models, except when 2 features are considered where the GMM performs slightly366

better. We note that this is not too surprising as the large majority of events are easily367

classified, such as aftershocks with small values of ηij . The “tricky” part that is key is to368

distinguish between aftershocks and mainshocks at the border between the two populations.369

This is where we observe that the supervised learning models have an advantage over the370

other approaches. Introducing this non-linear transformation of the nearest-neighbor dis-371

tance metrics clearly benefits the Linear Support Vector Machine Classifier, as it is the best372

model when using one or two features with a maximum testing accuracy greater than 90%.373

The additional features dm, Np and Nc seem to only benefit the RF model which reaches374

a maximum testing accuracy around 92% using all five features. We look into the feature375

importance in the RF model as it is possible to measure which feature as been used the376

most to do a split. We can have access to the uncertainty of the importance by considering377

each tree or estimator separately. We can see Figure 2b that Rij and Tij constitute more378

than 70% of the model. Each feature is important in this model as even Nc, which as a very379

limited importance, is essential to explain more than 95% of the model.380

Figure 3 shows the difference between the different models for the declustering of a381

testing catalog as an example which can give us a lot of information about the differences382

between the models (See other examples in Figures S2, S3 and S4). We selected the number383

of features that gave the best testing accuracy for each model (Figure 2a): the best model384

of GMM uses only Tij and Rij while the KM, the SVC and the RF show better results385

using all the features. In Figure 3a, we can identify where the misclassified events are386

located in the 2D rescaled-feature space. Not surprisingly, the classical approach shows a387

clear boundary between the two populations of earthquakes and the resulting misclassified388
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events distribution correspond directly to the overlap between the two distributions. The389

simple threshold on ηij still was able to correctly classify almost 90% of the catalog that was390

away from this boundary. For this catalog, the KM is the least accurate model with around391

82% of accuracy; it has clearly missed large chunks of both aftershocks and mainshocks.392

The GMM, on the contrary, identifies the region of overlap between the aftershock and the393

mainshock distributions, however the accuracy is similar to that of the classical approach.394

This means that if the GMM can handle the overlap as expected, it does not improve395

significantly the quality of the overall prediction of the catalog. Both supervised learning396

models show an improvement over the classical method and unsupervised learning models397

with accuracies of around 93% and 98% respectively for the SVC and the RF. Because398

we used a linear kernel for the SVC, it is not surprising to see we have a clear boundary399

between the mainshock and aftershock distributions. It is clearly visible in the rescaled-400

feature space, especially because the additional features don’t seem to improve the model401

prediction capability as seen in Figure 2a. The RF, while greatly improving the accuracy402

of this catalog, reduces the overlap uncertainties range and does not show a clear boundary403

between the two populations. It in fact draws a region where it is difficult to access the404

true nature of an earthquake, whether it is a long-term aftershock not directly “linked” to405

its mainshock or a mainshock linked to a spatially distant earthquake but with a very small406

separation in time. If we compare the ηij distributions with the Weibull function of the407

true mainshock distribution, we can also see where there are differences between the models408

(Figure 3b). The confusion matrices (Figure 3c) allow us to see that the RF model is as409

good at labelling mainshocks as it is at labelling aftershocks, while the other models have410

a tendency of favoring one population over the other. Only based on synthetic catalogs411

built using an ETAS model, the RF seems to be a promising model to use for a real case412

application as it is flexible, does not require a scaling of the features and is able to reproduce413

with high fidelity the mainshock distribution.414

3.2 Application to Southern-California and New Zealand of the Random415

Forest Model416

We have shown in the previous section that the Random Forest is our ideal machine417

learning model for the declustering of seismic catalog, whose hyperparameters have been418

optimized with a k-Fold Cross-Validation. We have also shown that the accuracy of the419

model’s predictions increases as we include additional data features: the rescaled distance420

Rij , the rescaled time Tij , the difference in magnitude dm between the event considered and421

its nearest neighbor, Np and Nc. Here, we present the declustering with our RF model of422

two actual, extensive seismic catalogs shown in Figure 1: the relocated Southern Californian423

earthquake catalog (Hauksson et al., 2012) and the GeoNet catalog of New Zealand.424

For Southern California, we have used the SCEDC catalog from 1981 to 2019 (Hauksson425

et al., 2012), relocated with GrowClust (Trugman & Shearer, 2017). We estimated the cat-426

alog completeness at magnitude 2.3 with a b-value of 1.03 following the maximum curvature427

method (Wiemer & Wyss, 2000) and maximum-likelihood method (Aki, 1965). The total428

number of events whose magnitude is greater than 2.3 is 72,911. We estimated the fractal429

dimension of this catalog to be approximately 1.6 using the box counting method, similar430

to our synthetic catalogs and to what was used by Corral (2003), Zaliapin and Ben-Zion431

(2013) and Moradpour et al. (2014). The result of declustering with the Random Forest432

model is shown Figure 4. As expected from our model testing, the RF model is capable433

of resolving an overlap of the aftershock and the mainshock distributions (Figure 4a and434

b). Both the 2D distribution Rij-Tij and the distribution of the NND η (Figure 4a and435

b) show that the separation of the aftershocks from the background seismicity is similar to436

what we observed with our synthetic catalogs. We minimized the L2-norm to fit both the437

aftershocks and mainshocks distributions to two Weibull functions as suggested by Bayliss438

et al. (2019). When we look at the prediction of the model and how the probability of being439

an aftershock is distributed, we observe how the model struggled to predict the label of440

the events. We show in Figure 4b the distribution of the probability to be an aftershock.441
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We note that it is more difficult for the model to label an event as a mainshock, because442

the probability distribution is relatively flat from 0 to 50%; the model is more “decisive”443

in determining an aftershock, given that more aftershocks are clearly labeled as aftershocks444

(probabilities greater than ∼75%). By looking at the classification of the catalog through445

time, Figure 4c, we clearly identify the largest aftershock sequences associated with major446

regional earthquakes (vertical black lines). We can also see how the mainshock seismicity447

rate is changing through the years, although these variations could be related to changes in448

network configuration or detection methods. Overall though, this background rate remains449

remarkably constant. This suggests that our model is able to effectively distinguish between450

real mainshocks and aftershocks.451

We took a closer look at the aftershock sequences of four major earthquakes that oc-452

curred in Southern California: the M7.3 Landers earthquake in 1992 (Figure 4e), the M7.1453

Hector Mine earthquake of 1999 (Figure 4f), the M7.2 Baja California in 2010 (Figure 4g),454

and finally the recent 2019 M7.1 Ridgecrest earthquake (Figure 4h). We analyzed the seis-455

micity 180 days prior to and following these earthquakes, separating the seismicity into456

inside and outside groups, depending on whether each earthquake was further or closer457

than 350 km from the mainshock epicenter. We observe that we are able to well isolate the458

aftershock sequence that resembles a characteristic Omori-type sequence, leaving a fairly459

constant background sequence. We remark that the background or the mainshock seismic-460

ity rate slightly decreases in the days following the Landers, the Hector Mine and Ridgecrest461

earthquakes (Figure 4f and h) only to recover after a week or two. We speculate that this is462

the case is due to the fact that network analysts focus on the aftershock sequence for several463

days and weeks following the mainshock, creating this artificial rate decrease in background464

seismicity. Inside the 350km perimeter, the decrease of the background seismicity rate could465

also be explained by the fact that there are few mainshocks distinguishable (with the data466

features we have used) from the ongoing an aftershock sequence.467

We also applied our random forest model to the GeoNet New Zealand catalog; we468

used the seismicity recorded by GeoNet from 2010 to 2020. Similar to Southern California,469

we estimated the completeness magnitude to be 2.6 with the maximum curvature method470

(Wiemer & Wyss, 2000), associated with a b value of 0.89. The resulting catalog is com-471

posed of 64,200 earthquakes. This catalog comprises a various type of tectonic and volcanic472

settings originating from New Zealand volcanoes, the Hikurangi subduction zone where the473

Pacific plate subducts beneath the North Island (Australian plate), and more shallow ac-474

tivity related to crustal intraplate faulting in the South Island along the Alpine fault and475

the transpressional transition from the Alpine fault to the Hikurangi subduction zone. We476

estimated the fractal dimension of the catalog at around 1.9 from the box counting method;477

this is slightly higher than our estimate for the Southern California catalog, but we suggest478

it is reasonable given the presence of intermediate depth seismicity related to the Hikurangi479

subduction zone and the larger study region considered. The results of our declustering480

are shown Figure 5. Comparably to Southern California, the declustering of the GeoNet481

catalog is in agreement with our expectations as we were able to fit two Weibull functions482

to the mainshock and the aftershock ηij distributions (Figure 5b). We also observe a similar483

distribution of probability to be an aftershock (Figure 5c) with Southern California, where484

aftershocks are more decisively classified. When looking at the seismicity rates for both485

mainshocks and aftershocks, we clearly identified the aftershock sequences of large earth-486

quakes which occurred in the last 10 years over New Zealand (Figure 5d). We can see that487

the seismicity rate was slightly higher between 2010 and 2012, the background rate remains488

constant afterwards. We focus again on four major aftershock sequences to evaluate the489

quality of the declustering: the M7.1 Darfield earthquake of 2010 (Figure 5e), the M6.5490

Cook Strait earthquake which occurred in 2013 (Figure 5f), the M7.1 East Coast event of491

2016 (Figure 5g) preceding the complex M7.8 Kaikoura earthquake of 2016 (Figure 4h). For492

all of these sequences, we observe that these major events did not affect the seismicity out-493

side a radius of 350km from the mainshock; away from these sequences the seismic activity494

was calm as shown by the constant rate of mainshocks and aftershocks. We can also observe495
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that these major events had no incidence on the background seismicity inside their area as496

it does not show significant deviations from a constant rate.497

We can speculate that our results could be different depending on how a catalog was498

built. If events are detected visually and picked manually by an operator, the magnitude499

completeness of a catalog could vary significantly in space and time during major after-500

shock sequences as more events would be added to the catalog close to these sequences.501

By presenting these two applications of our model to real seismicity in very distinct tec-502

tonic contexts, we have demonstrated the model robustness and its increased capability of503

classifying mainshocks and aftershocks compared to the classical approach of the Nearest-504

Neighbor-Distance approach, especially at the critical boundary between aftershocks and505

mainshocks in the 2D NND space.506

4 Discussion and conclusions507

In this work we present a new transfer learning approach to solve one of the classical508

problems in modern seismology, the declustering of aftershocks. As each seismicity cata-509

log is different, we built a generalizeable model that is capable of declustering regardless510

of tectonic context. We based our model on one of the most used algorithms to decluster511

earthquake catalogs, the nearest-neighbor distance (NND) approach. This approach relies512

on the computation of a metric ηij between one event and the events that precede it to513

identify its nearest neighbor, interpreted here as the mainshock that triggered the event in514

question. Recent work has focused on thresholding the NND ηij to define the boundary515

between mainshocks and aftershocks, but we have shown that this neglects in most catalogs516

a significant overlap of the two populations. We tackled this problem with a data-science517

and machine learning approach, testing different supervised or unsupervised learning models518

to identify which model is best suited to decluster. We use features issued from the NND519

algorithm, differences in magnitude, the number of times the nearest neighbor has been520

selected as such, and the number of potential offspring. Our model of choice is a Random521

Forest trained on synthetic catalogs built following an ETAS model with a different set of522

parameters. The RF is the model with the best testing accuracy on synthetic catalogs.523

The RF model does not require any preprocessing, standardization or normalization of the524

features and it is scalable; regardless of the size of the catalog to be declustered, the model525

classifies each earthquake one by one rather than the distribution of all earthquakes. The526

hyperparameters of the model have been selected following a 5-Fold Cross-Validation. We527

applied our declustering model to two real catalogs: the relocated Southern California cata-528

log from 1981 to 2019 and New Zealand GeoNet catalog from 2010 to 2020. We have shown529

that our model significantly improves the quality of the declustering in comparison of the530

classical use the NND metrics. Additionally, our approach is simple and fast to train, espe-531

cially in comparison to Monte Carlo Markov Chains inversions that can be computationally532

demanding (Bayliss et al., 2019) or stochastic declustering (e.g. Zhuang et al., 2002) that533

does not make use of relative NND metrics and relies on many more parameters.534

One has to keep in mind that these results reflect the performance of the model trained535

on a set of synthetic catalogs with a certain duration and fixed ETAS parameters for each536

catalog and stationary background seismic rates. Hainzl et al. (2016) found that aftershock537

sequences only last for about 100 days for moderate mainshocks (M = 6) and to a few538

years for larger events (M ≥ 7). The estimated duration of an aftershock sequence is539

impacted by the background activity rate, which can potentially hide the trailing edge of540

a postseismic sequence as the process rate slows down with time. We have tested our541

models on shorter catalogs (approximately 500 days long) and noticed that the relative542

performance remains similar (see Figure S5 and S6). However, models trained on shorter543

catalogs do not reach similar accuracy when applied to longer catalogs. This is not surprising544

as long-term aftershocks could eventually be considered as mainshocks which means a larger545

nearest-neighbor-distance metric with their real mainshocks than what the model has been546

trained on. Indeed, another earthquake could have occurred closer in time and/or space but547

–12–



manuscript submitted to Journal of Geophysical Research: Solid Earth

eventually not sufficiently close for these long-term aftershocks to be labelled as aftershocks548

anymore. If this problem is difficult to evaluate, better prediction performances are actually549

achieved if we don’t force the nearest neighbor of the aftershocks to be their real mainshock,550

thus somewhat challenging the model.551

Another aspect to keep in mind is that we used only five features to build the model552

presented here. It is of course possible to add more features by considering not only the553

nearest-neighbor but the N -nearest-neighbors, providing information to the model to classify554

an earthquake based on its relationship with many associated events, not just its single555

nearest neighbor. We can also consider using the nearest neighbor of the nearest neighbor,556

creating a family (Zaliapin & Ben-Zion, 2013). This would be a likely extension of our557

approach, as one aftershock can trigger another, and so on. Finally we can also imagine using558

N Random Forests to classify N neighbors based on a single set of features. Prelimary tests559

with our training data set, however, did not improve the accuracy of our model significantly,560

but this could represent a potential improvement for future work.561

Regarding the comparison between the Southern California and the New Zealand cat-562

alogs, we could observe a significant difference between the shapes of their ηij distribu-563

tions (Figure 1e and f). The GeoNet catalog exhibits a higher number of mainshocks than564

aftershocks, respectively 57% against 43% (Figure 5), while the Southern California cata-565

log is 70% aftershocks (Figure 4a). This difference can be explained by comparing their566

Nearest-Neighbor Distance distributions (see Figures 4b and 5b). Southern California’s ηij567

distribution shows the two expected lobes associated with mainshocks and aftershocks; the568

mainshock lobe of the ηij distribution is less pronounced for New Zealand. The NZ catalog,569

while being shorter, has a higher background seismic rate according to our declustering570

model (see Figures 5d and 5d). We investigated this significant difference by comparing the571

ηij distributions of the mainshock and aftershock seismicity as a function of depth (Figure572

6a). We observe a rapid decrease in seismicity with depth of the Southern California seis-573

micity that reaches approximately a maximum of 30-40 km depth, while NZ earthquakes can574

still be observed until 300 km depth. This reflects the difference in tectonics between the two575

regions and the type of seismicity observed in both catalogs: crustal seismicity in Southern576

California and a seismicity dominated by subduction earthquakes in New Zealand, whether577

located on the upper plates, the plate interface or at intermediate depths. We see for both578

regions that there are more aftershocks than mainshocks at shallow depth, above 25km. To579

understand how much deep mainshocks account for the observed NND distribution for NZ,580

we segmented the ηij distribution for different depth ranges (Figure 6b). The seismicity581

comprised between 0 and 25 km exhibits a bimodal NND distribution and includes most582

of the aftershocks within the entire catalog. We see that the seismicity deeper than 50 km583

corresponds mostly to mainshocks. A similar behavior has been observed for Northern Chile584

by Aden-Antoniów et al. (2020), where no aftershocks were observed at intermediate depth585

(z ≥ 70km); this results in a single-lobe NND distribution. The limited aftershock produc-586

tivity at intermediate depths has been documented for different subduction zones in the past587

(e.g. Frohlich, 1987; Wiens et al., 1994). Only large intermediate-depths earthquakes seem588

to be able to trigger significant aftershock sequences but it still depends on the subduction589

zone (Frohlich, 1989). Temperature, geometry and hydration of the subducting slab seem to590

be the main parameters to control the aftershock productivity at these depths (e.g. Wiens,591

2001; Ye et al., 2017; Cabrera et al., 2021).592

To conclude, it is important to keep in mind that this model has been trained on593

synthetic data in an exercise of transfer learning. The synthetic data is controlled by range594

of reasonable ETAS parameters (see Table 1), but neither do these parameters or even the595

ETAS model reflect the entire spectrum of possibilities within earthquake catalogs. If this596

model might not be applicable to very particular seismicity i.e. mining related seismicity or597

seismicity with high earthquake rate variations, we suggest that it will be useful in a large598

majority of study regions. This work also provides a route to go beyond the classical use of599

the NND as the framework would be easy to reproduce.600
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Figure 1. Examples of real catalogs. The seismic catalogs used in this study are the Southern

California catalog (a) from 1981 to 2019 (Hauksson et al., 2012) and New Zealand (b) from 2010

to 2020 from GeoNet. (c) and (d) show the respective 2D distribution of the Nearest-Neighbor

distance (NND) as a function of the rescaled time Tij and distance Rij while (e) and (f) show their

1-D NND metric distribution. The dashed orange line represents the threshold that would be used

for a classical approach of the NND for the declustering of earthquake catalogs.
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Figure 2. Machine Learning algorithms comparison and feature importance for the Random

Forest model. (a) We declustered 100 synthetic catalogs using different number of features with

different models and estimated the testing accuracies. The shaded area represent the 38% - 68%

inter-quartiles range of the accuracy distributions, the solid line represent the median of this dis-

tributions and the dashed line is their mean. (b) We estimated the features importance in the

Random Forest using all 5 features. The black lines show the relative importance of these features

in a descending order for the model while the black line is the cumulative. The vertical bars shows

the standard variation of the features importance. This was computed from the distribution of each

feature importance across all trees of the forest.
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Figure 3. Example of the declustering of a synthetic catalog with different machine learning al-

gorithms. (a) For the different algorithms, we show the distribution of the nearest neighbor rescaled

distance Rij and time Tij where the color corresponds to the mis-labelled events whether there are

originally mainshocks (purple) or aftershocks (blue). The accuracy of the model is displayed in the

title of each subplot. (b) ηij distribution obtained by applying each model. The orange corresponds

to the inferred mainshock population while yellow is for the aftershock population. The black curve

shows the real background distribution. (c) shows the different confusion matrices where we show

the number of correctly identified samples in the colored cells and mis-labelled events with their

corresponding proportion regarding their population in the white cells.
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Figure 4. Our best Random Forest model for the declustering of earthquake catalog applied

to Southern California seismicity between 1981 and 2019. (a) shows the nearest-neighbor rescaled

distance Rij and time Tij distribution. The color indicate if the events have been classified as main-

shocks (orange) or aftershocks (yellow). The dashed grey line shows where the classical approach

of the NND whould have separated the two populations. (b) shows the obtained the two stacked

ηij distributions. The dashed black lines corresponds to the fit of a Weibull function to both dis-

tributions while the black line shows the resulting sum and fit to the overall ηij distribution. (c)

displays the probability density function of the probability to be an aftershock, obtained from the

data. (d) exhibits the stacked histograms on the earthquake count per window of 30 days. The

black vertical lines mark the date of large earthquake that occurred during the period covered by

the catalog. (e) - (h) show the normalized cumulative number of mainshocks (dashed curves) and

aftershocks (plain curves) for 4 remarkable sequences of aftershocks. The color indicates whether

these events are located at distance larger or lower than 350km.

Figure 5. Our best Random Forest model for the declustering of earthquake catalog applied to

New Zealand seismicity between 2010 and 2020. Similar to Figure 4.
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Figure 6. Mainshock/Aftershock depth distributions in relation to the Nearest-Neighbor Dis-

tance distribution for New Zealand. a) The histograms represent the distribution of the depth

of the background seismicity and aftershocks for the Southern California and New Zealand. b)

The NND ηij distribution for the New Zealand catalog is represented by the colored histograms

for different depth range. The green histogram represents the complete NND ηij distribution for

Southern California for comparison purposes.
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Figure S1. Example of a short synthetic catalog generated for this study. (left) Spatial

distribution of the synthetic mainshocks (orange) and aftershocks (yellow). The black contours

represent the 2D probability function use to generate the location of these earthquakes. (right)

Cumulative number of the mainshocks and the aftershocks.
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Figure S2. Example of the declustering of a synthetic catalog with different machine learning

algorithms. (a) For the different algorithms, we show the distribution of the nearest neighbor

rescaled distance Rij and time Tij where the color corresponds to the mis-labelled events whether

there are originally mainshocks (purple) or aftershocks (blue). The accuracy of the model is

displayed in the title of each subplot. (b) ηij distribution obtained by applying each model.

The orange corresponds to the inferred mainshock population while yellow is for the aftershock

population. The black curve shows the real background distribution. (c) shows the different

confusion matrices where we show the number of correctly identified samples in the colored cells

and mis-labelled events with their corresponding proportion regarding their population in the

white cells.
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Figure S3. Other example of the declustering of a synthetic catalog with different machine

learning algorithms. Same as S2.
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Figure S4. Other example of the declustering of a synthetic catalog with different machine

learning algorithms. Same as S2.
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Figure S5. Machine Learning algorithms comparison with different catalog duration for train-

ing and testing phases. (a) We declustered 100 synthetic catalogs of an approximated duration

of 1.5 years using different number of features with different machine learning models (KM: K-

Means, GMM: Gaussian Mixture Model, LSVC: Linear Support Vector Classifier, RF: Random

Forest) and estimated the testing accuracies. The Linear Support Vector Classifier and the Ran-

dom Forest have been trained on synthetic catalogs with a duration of approximately 10 years.

The shaded area represent the 38% - 68% inter-quartiles range of the accuracy distributions, the

solid line represent the median of this distributions and the dashed line is their mean.
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Figure S6. Example of the declustering of a short synthetic catalog (1.5 year) with different

machine learning algorithms. (a) For the different algorithms, we show the distribution of the

nearest neighbor rescaled distance Rij and time Tij where the color corresponds to the mis-

labelled events whether there are originally mainshocks (purple) or aftershocks (blue). The

accuracy of the model is displayed in the title of each subplot. (b) ηij distribution obtained by

applying each model. The orange corresponds to the inferred mainshock population while yellow

is for the aftershock population. The black curve shows the real background distribution. (c)

shows the different confusion matrices where we show the number of correctly identified samples

in the colored cells and mis-labelled events with their corresponding proportion regarding their

population in the white cells.
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