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Abstract

A new model of high-latitude convection derived using machine learning (ML) is presented. The ML algorithm random forests

regression was applied to a database of velocity observations from the Super Dual Auroral Radar Network (SuperDARN). The

features used to train the model were the IMF components Bx, By, and Bz; the solar wind velocity, vsw; the auroral indicies,

Au and Al; and the geomagnetic index, SYM-H. The SuperDARN velocities were separated into north-south, and east-west

components and sorted into a magnetic local time - magnetic latitude grid that ran from 55° to the magnetic pole with a bin

size of 2° in latitude, and 1-hour in MLT. Separate models were created for each velocity component in each bin of the grid. It

is found that even though the models in each bin are independent of one another a coherent convection pattern is formed when

the models are viewed in aggregate. The resulting convection pattern responds to changes in the auroral indicies by expanding

and contracting in a way that is consistent with expectations for a substorm cycle. Further it is found that the mean-squared

difference between predictions of the model and observed values of the velocity are substantially lower than the same quantity

calculated for an existing climatology that was not formed with ML techniques
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Abstract6

A new model of high-latitude convection derived using machine learning (ML) is presented. The ML7

algorithm random forests regression was applied to a database of velocity observations from the Su-8

per Dual Auroral Radar Network (SuperDARN). The features used to train the model were the IMF9

components Bx, By, and Bz; the solar wind velocity, vsw; the auroral indicies, Au and Al; and the ge-10

omagnetic index, SYM-H. The SuperDARN velocities were separated into north-south, and east-west11

components and sorted into a magnetic local time - magnetic latitude grid that ran from 55° to the12

magnetic pole with a bin size of 2° in latitude, and 1-hour in MLT. Separate models were created for13

each velocity component in each bin of the grid. It is found that even though the models in each bin14

are independent of one another a coherent convection pattern is formed when the models are viewed15

in aggregate. The resulting convection pattern responds to changes in the auroral indicies by expand-16

ing and contracting in a way that is consistent with expectations for a substorm cycle. Further it is found17

that the mean-squared difference between predictions of the model and observed values of the veloc-18

ity are substantially lower than the same quantity calculated for an existing climatology that was not19

formed with ML techniques.20

1 Introduction21

Climatological convection modeling has been carried out for decades by binning various localized mea-22

surements of the ionospheric plasma velocity or electric field collected over the high-latitude regions23

versus some set of parameters, most often the interplanetary magnetic field (IMF) components. Such24

models often are used to drive circulation models such as the Thermospere Ionosphere Electrodynamic25

General Circulation Model (TIEGCM) (Roble & Ridley, 1994) and the Global Ionosphere-Thermosphere26

Model (GITM) (Ridley et al., 2006). They are also used to constrain the data driven convection pat-27

terns produced from SuperDARN data (Ruohoniemi & Baker, 1998). The measurements have been col-28

lected using a variety of instruments such as satellite based drift meters (e.g. Heelis et al., 1982) or elec-29

tric field booms (e.g. Heppner & Maynard, 1987), incoherent-scatter radar (Foster, 1983), ground-based30

magnetometers (e.g. Papitashvili et al., 1994), and coherent-scatter radars (e.g. Ruohoniemi & Green-31

wald, 1996). Construction of the models typically has involved grouping observations based upon pre-32

vailing IMF conditions and perhaps some other parameter such as the planetary K-index (kp) (Heppner33

& Maynard, 1987), or the geomagnetic Auroral Electrojet Index (Ae) (Weimer, 2005), or the dipole34
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tilt angle (Thomas & Shepherd, 2018), and then using the binned observations to constrain an expan-35

sion of the electrostatic potential in a set of orthogonal functions.36

The underlying assumption of such a binning is that when repeated, a given set of driving conditions37

will on average produce the same unique convection pattern. In a general sense, physical reasoning and38

observations show this to be true. For example, when the IMF is southward, there is magnetic merg-39

ing on the dayside magnetopause and the near-noon field lines connecting from the ionosphere out to40

the magnetopause are directly influenced by the electric field across the merging region. Those field41

lines are convected anti-sunward across the polar cap from noon to midnight where they eventually re-42

connect to the field lines from the opposite hemisphere. Once reconnected, the demand for magnetic43

flux on the dayside causes the field lines to return, following a path through the magnetosphere that44

maps to the ionosphere just equatorward of the polar cap boundary. The total potential drop across45

the polar cap should be equal to the projection of the solar wind electric field along the magnetopause46

reconnection region multiplied by the length of that region. Hence, for a set of solar wind/IMF param-47

eters, the electric field would be the same and if the merging line is of the same length, the potential48

imposed in the ionosphere would be the same. This scenario leads to a two-celled pattern with flow from49

noon to midnight across the polar cap and return flow in the opposite direction at lower latitudes.50

Numerous studies have examined the influence of the driving conditions on various aspects of convec-51

tion. The 1987 article titled “Empirical High-Laittude Electric Field Models” by J. P. Heppner and N.52

C. Maynard, provides an excellent summary of the patterns that have been observed and how the IMF53

influences them. In particular, they highlighted the influence of the sign of the IMF y-component on54

the location and direction of the flow in the dayside throat. Their study contrasts with most others in55

that rather than binning the observations on a grid and then constraining a functional expansion of the56

potential with the binned observations, they examined individual satellite passes and categorized them57

as signatures or “quasi-signatures” and then sorted them based on the IMF. Their result was a set of58

three basic patterns that covered the majority of southward IMF situations. Those patterns illustrated59

sharper features (Harang Discontinuity, dayside throat) than are evident in most other models. In ad-60

dition, they examined the influence of kp and Ae, but only by comparing the average total cross po-61

lar cap potential drop for ranges of the parameters.62

As illustrated by Hepner and Maynard’s discussion of kp and Ae, there several factors that influence63

convection that are not accounted for by the instantaneous state of the IMF and solar wind alone. For64
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example, while dayside merging converts closed magnetospheric field lines into open polar-cap field lines,65

night-side merging in the magnetotail converts open field lines to closed, moving them from the po-66

lar cap to the magnetosphere. The diameter of the polar cap and hence the latitude of the convection67

reversal boundary is determined by the total open magnetic flux, which is determined by the balance68

between the dayside and nightside merging rates (Siscoe & Huang, 1985). That nightside merging rate69

is highly variable and depends on the internal state of the magnetosphere. In the growth phase of a70

substorm the nightside merging rate may be substantially lower than the dayside rate, leading to an71

expanding polar cap and expanding convection pattern. During a substorm expansion phase the op-72

posite is true and rapid night-side merging can lead to a contracting polar cap and convection pattern.73

Further, features like the enhancement of the Harang Discontinuity during growth phase (Bristow &74

Jensen, 2007) change the shape of the pattern in addition to its diameter.75

To account for some of the dependence on conditions beyond the solar wind and IMF, a new convec-76

tion model was constructed using parameters that provide some indication of the state of the magne-77

tosphere in addition to the solar wind and IMF parameters. Specifically, the auroral indicies Au and78

Al, and the mid-latitude geomagnetic index Sym−H. The auroral indicies give an indication of the79

strength of convection (Au) and of the level of substorm activity (Al), while the Sym−H index gives80

an indication of the strength of the ring current, which has been shown to influence the diameter of81

the auroral oval (Schulz, 1997). These indicies are readily available for use from the NASA OMNI database82

(King & Papitashvili, 2005), which also provides the solar wind and IMF parameters aligned in time83

to reflect solar wind propagation delays from the point of observation to the Earth’s bow shock. In-84

cluding the magnetospheric parameters increases the dimension of the parameter space to seven, which85

is fairly large for traditional method of binning the observations. In addition, as will be demonstrated86

the dependence of the convection velocities on some of the parameters is nonlinear. Because of these87

two factors, machine learning (ML) was used to form the model.88

The paper begins with discussion of the SuperDARN data and how the database influenced the choice89

of algorithms for generating the model. The form of the data motivated producing independent mod-90

els for the velocity at the points of a latitiude-MLT grid rather than an orthogonal function expansion91

of the global-scale potential pattern. That discussion is followed by examination the output of the model92

at a single location and comparison to an existing climatology. Next, the individual models are com-93

bined to generate global-scale potential patterns that could be used in the same way as existing clima-94
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tologies. Finally, it’s demonstrated that the resulting model predicts observations with a lower error than95

the climatology.96

2 Machine learning implementation97

(a) (b)

Figure 1: (a) Example convection map from March 21, 2014 created using observations from 0400 UT

to 0405 UT, and (b) potential map generated by the Thomas and Shepherd 2018 climatological model

for the IMF conditions at the time.

The convection model was based on observations from the Super Dual Auroral Radar Network (Super-98

DARN) (Greenwald et al., 1995) processed with the potential mapping technique, Map-Potential (Ruohoniemi99

& Baker, 1998). Potential maps were generated for every 5-minute interval from January 1, 2013 to100

December 31, 2017. The Thomas-Shepherd 2018 (TS18) statistical model (Thomas & Shepherd, 2018)101

was used as the background for Map-Potential, with the IMF from the OMNI database used to select102

the patterns. An example pattern from 0400 UT to 0405 UT on March 21, 2014, is shown in Figure 1.103

The map shows contours of the electrostatic potential along with flow vectors at locations where radar104

observations constrained the fit. At the time of the plot, the IMF was weekly southward with a neg-105

ative y-component. Figure 1b shows the potential contours predicted by the TS18 model for the con-106
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ditions observed at the time from the observed IMF conditions. There are several subtle differences be-107

tween observed pattern and that predicted by the model. First, the total cross-cap potential drop is108

significantly lower in the observations. The drop is only 30 kV, while the predicted value was 58 kV. The109

observed pattern is shifted toward midnight and rotated slightly toward dusk. That is, the flow across110

the polar cap in the observation is from pre-noon to pre-midnight, while the model predicted flow di-111

rectly from noon to midnight. Such differences are typical for any given interval and simply illustrates112

the inherent variability of the convection pattern and the need for using observations whenever pos-113

sible rather than relying on climatologies.114

Several methods were considered for generating the ML model. The simplest implementation concep-115

tually would have been to bin the line-of-sight observations from the individual radars similarly to the116

way they have been used to construct previous models. This works well for constraining global mod-117

els of the potential since the plasma velocity in the F-region ionosphere is very nearly the so called E x B118

velocity and the observation can be written as the negative gradient of the potential (E = −∇V ) crossed119

with the local magnetic field and projected along the line-of-sight. Having an ensemble of observations120

at different locations is sufficient to constrain the fit for the entire high-latitude region. A second al-121

ternative considered was to form potential patterns and treat them as images. Convolutional neural net-122

works are adept at using such observations, however because the pattern obtained at any given time123

can be dominated by the influence of the statistical model, any ML model trained on such patterns would124

tend simply to reproduce the statistical model.125

Another method considered was to use vectors formed at locations where two or more radars provided126

measurements. These merged vectors are not influenced by a model, however they would have provided127

rather sparse coverage and would have required discarding data from locations where only one radar128

had an observation. In addition, vectors formed in this way can be noisy because the LOS observations129

from the two radars can potentially be separated in time by tens of seconds which often means they130

are observing significantly different conditions. Small changes in the azimuth of a flow can result in sig-131

nificant changes in the LOS projections, which are amplified when they are recombined to form a vec-132

tor, especially when the viewing angle between the lines of sight is small.133

The method we chose was to use the vectors from the SuperDARN potential mapping obtained at lo-134

cations where there were there were one or more observations contributing to the fit. While the vec-135

tors are influenced by the statistical model, having the observation at a location significantly lessens136
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that influence. In addition the since the fitted vectors are consistent with an electrostatic potential, which137

is a strong physical constraint, using them minimizes the impact of noise and radar-to-radar inconsis-138

tencies in the observations. The method had the added benefit of decreasing the size of the database139

from what would have been required if we had used the observations from the individual radars. One140

disadvantage of using the data in this way is that values at any given location are not continuous in141

time, which limited the ML algorithms that could be applied. Individual radars do not have continu-142

ous observations and the longitudinal distribution of radars ls not uniform so some longitude ranges are143

not covered. The Russian sector is the most obvious illustration of the gap in coverage.144

The fitted vectors were binned on a magnetic latitude-local-time (MLT) grid from 55° magnetic lat-145

itude to the pole with a cell size of 2° in latitude and 1-hour in MLT. The vectors were resolved into146

north-south and east-west components and written to comma-separated-value files along with the as-147

sociated value of the IMF vector (Bx, By, and Bz), the solar wind velocity (vsw), the Auroral Elec-148

trojet Indicies (Au, Al), and the Sym-H index, all from the OMNI database.149

Figure 2 shows the components of the database for a representative 3-day period for the bin at 65° mag-150

netic latitude and 2000 MLT. As discussed above the data are not continuous in time, which limits the151

type of ML techniques that can be employed. While it might be desirable to use something like the Long-152

Short-Term Memory technique (LSTM) since it is a good technique for predicting time evolution based153

on time-series drivers, continuous observations are necessary to train such a model.154

While not continuous, the database is relatively large. Figure 3a shows the number of data points in155

each grid cell. The highest values illustrated in the figure are in excess of 1-million, however at the low-156

est latitudes some cells have less than 100,000 observations. These locations are often equatorward of157

the convection zone so there are no usable observations available. The low-latitude extent of signifi-158

cant convection is highly variable in time, like most aspects of convection, and is determined by the159

magnetospheric drivers and state. In general convection is confined to latitudes above a low-latitude160

convection boundary referred to as the Heppner-Maynard Boundary (HMB) (Shepherd & Ruohoniemi,161

2000). Fortunately, by examining the observations from the entire SuperDARN network at a given time162

it is possible to identify this boundary with some confidence. With that determination, it is possible163

to assign a zero value at those times to the velocity in cells that lie at latitudes below the HMB. Fig-164

ure 3b shows the density of points including the assignment of zero velocity when a bin is at a lower165

latitude than the HMB. With this assignment, there are in excess of 400,000 points in all bins between166
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Figure 2: Time series of observations and feature values in the grid cell at 65° magnetic latitude and

2000 MLT for the interval March 20 - 22, 2014.

55° and 80°. Above about 85° there are not many observations, so uncertainties will be larger there than167

in other regions.168

Figure 4 illustrates the relationships between the velocity components in the grid cell at 67° magnetic169

latitude and 1800 MLT, and some of the parameters from the database. In each frame of the figure,170

the vertical axis is one of the velocity components (vns or vew) and the horizontal axis is one of the171

database parameters. Pixel color indicates the density of points in a bin. Solid black dots indicate the172

average velocity in each of the parameter bins. No color scale is provided since the goal is to exam-173

ine trends and not to extract quantitative information. The purpose of examining the data in this way174

is to select parameters for inclusion as features for training the ML model. If the velocities were un-175

correlated with any of the parameters it would be possible to exclude them and decrease the complex-176

ity of the model. With that in mind, it is still interesting to examine the trends that the plots show.177

As would be expected for the auroral zone latitude dusk MLT location, the magnitude of the north-178

south component (vns) is significantly smaller than the east-west component (vew). vew shows a strong179

dependence on each of the selected parameters, though the dependence is clearly nonlinear for Au and180

Al. Frame 4a illustrates that vew is negative (westward) for the vast majority of the data, indicating181
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(a) Number of observations (b) Observations + assigned zeros

Figure 3: Density of points in the database. Color corresponds to a) number of observations in cell, or

b) number of observations plus the number of assigned zero values.

that the location remains equatorward of the convection-reversal boundary under most conditions. The182

plot shows significant scatter of velocity values for all IMF values, though the average shows a roughly183

linear trend of increasing westward velocity with increasing negative Bz magnitude. The average val-184

ues of the velocity are offset from the highest density of points indicated by the color contours, which185

shows that the distributions are non-Gaussian. Frame 4b shows that vns also has significant scatter,186

however it remains small for all values of Bz. It demonstrates a nearly linear trend of increase with in-187

creasing negative Bz magnitude, however the trend is small and the spread of velocities is significantly188

larger than the trend. 4c shows vew vs the auroral index Al which is an indicator of substorm activ-189

ity. Again, there is significant scatter in the velocity values for all values of Al. There is also a clear190

nonlinear dependence of the velocity on the index. For small values of Al, the velocity magnitude in-191

creases rapidly with increasingly negative Al, while at higher index values the velocity increase is small.192

Similar behavior is illustrated for the dependence of vew on the Au index (4d).193

Figure 5 is the same format as Figure 4 but for the bin at 81° latitude and 1300 MLT, which lies in the194

post-noon polar cap under most conditions. The dependencies differ significantly from the auroral zone195

dusk cell. vns at this location shows a clear nearly linear dependence on Bz, with positive (antisunward)196

values for negative Bz and negative (sunward) values for positive average Bz in excess of about 2.5 nT.197
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(a) (b)

(c) (d)

Figure 4: Dependence of velocity components in the bin at 67° magnetic latitude and 1800 MLT versus

select parameters from the database. (a) shows the relationship between vew and the IMF z-component,

(b) shows vns vs IMF z-component, (c) shows vew vs Al, and (d) shows vew vs Au.
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The east-west velocity component is small magnitude and appears weakly correlated with the param-198

eters (Bz, Au, and Al).199

As the two figures show, the relationship between the velocity components and the database features200

is complex and varies from place to place. In some regions the velocity may be much more strongly cor-201

related with one parameter than with another, while in another location the opposite is true. Because202

of this, none of the parameters was eliminated from consideration. All seven parameters were used to203

train the models.204

The database was used to train an independent model of each velocity component (vns and vew) in205

each latitude-MLT grid cell. With the 17 latitude bins and 24 longitude bins, there are 408 grid cells.206

Fitting the model components separately means that there are a total of 816 independent models. Three207

algorithms were tested for forming the model. The algorithms were the LinearRegression, DecisionTreeRe-208

gressor, RandomForestRegressor provided by the Scikit-Learn software package (Pedregosa et al., 2011).209

To test each algorithm, the data base was processed with each model in a ten-cell subset of the grid210

space. To limit over-fitting, the maximum-depth hyperparameter for the Random Forest and Decision211

Tree model was set to 15. The resulting models were used to predict velocities in a sample of data out-212

side of the training set and the model with the lowest root-mean-squared error (rmse) was selected.213

In each case, the Random Forest Regressor was substantially better than the others. For example in214

the bin at 67° latitude 1800 MLT, linear prediction of vew resulted in a rmse of 169.3 m/s, the decision215

tree resulted in a rmse of 126.5 m/s, and the random forests resulted in a rmse of 113.2 m/s. In Scik-216

itLearn, the Random Forest model is trained by fitting multiple decision trees to random subsamples217

of the inuput data and aggregating the predictions of all the trees. This is one way to address the over-218

fitting in addition to controlling the maximum depth of each tree.219

After model selection on the subset of grid cells, the full dataset was split into data from the years 2014220

to 2017, which was used to train the model, with data from 2013 used as a test set. Figure 6 shows221

a 2000 sample interval from the model in the bin latitude 67°, MLT 1800. The horizontal axis is sam-222

ple number from the database which corresponds to time, however because of the data are not con-223

tinuous multiple time intervals contribute to the plot resulting in discontinuities in the plot traces that224

do not represent temporal discontinuities of the values. The upper frame of the plot shows the observed225

values in red, the model predictions in green, and the predictions from the TS18 model in blue. The226

lower two frames show the IMF y and z components, and the Au and Al indicies. For most of the in-227
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(a) (b)

(c) (d)

Figure 5: Same as Figure 4 except for the bin at 81° magnetic latitude and 1300 MLT.
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Figure 6: Sampling of the driving features and model predictions for the bin at 67° magnetic latitude

and 1800 MLT. The 2000 sample interval is composed of multiple time intervals. In the top panel, the

red trace is the observed velocity, the green trace is the velocity predicted by the ML model, and the

blue trace is the velocity predicted by the TS18 model.
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Figure 7: Scatter of model predictions versus observed values of vew in the bin at 67° latitude

1800 MLT.

terval, the predicted value ls close to the observed value, with differences of less than 100 m/s. The228

predictions from the TS18 model at times show much larger differences from the observations as is es-229

pecially well illustrated in the values from samples between 12400 and 13000 where the difference is230

on the order of 500 m/s.231

Figure 7 shows the difference between the predictions and observations for the full year of 2013. The232

figure shows the scatter of predicted velocity (vertical axis) versus measured velocity (horizontal axis)233

in the bin at 67° and 1800 MLT. The solid black circles show the average values and the horizontal lines234

show the average plus and minus one standard deviation. The average values follow the equality line235

for most of the range, with significant deviation only for values where there are relatively few points.236

Where the average values lie above the equality line, there is a small bias (< 50 m/s) for the model237

values to be smaller magnitude than the observed values. While the scatter appears large, the stan-238

dard deviations demonstrate that the majority of the predictions are within 100 m/s of the observations239

for all values with a significant number of observations.240
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Figure 8 shows the result of running the model for two intervals with similar IMF values but significantly241

different values for Au and Al. The north-south at east-west models were run for each grid cell and242

then combined to form vectors. Each grid cell is independent, so there was no guarantee that the out-243

put would produce a coherent convection pattern. The results do in fact illustrate a well defined co-244

herent convection pattern that is consistent with expectations based upon the observed driving con-245

ditions. During the two intervals the IMF was southward with Bz = 4.7 nT and By = -3.85 nT in the246

first interval (8a) and By = -0.76 nT in the second interval (8b). In frame 8a, the auroral indicies are247

small with Au = 84 nT and Al = -31 nT. In frame 8b Au was roughly two and a half times and Al was248

roughly four times the value in 8a . While the IMF values are similar, the patterns show significant dif-249

ferences. The most obvious of which are that the pattern driven by the larger values of Au and Al ex-250

tends to lower latitudes and has larger magnitude at nearly all locations. In 8a the convection is con-251

fined to latitudes above about 65°, while in 8b it extends to below 60° in the pre-midnight sector. Day-252

side plasma flows extend to slightly lower latitude in the later interval, though not by as much as the253

night-side flows. The main difference in the dayside is that the direction and local time of plasma en-254

try to the polar cap reflects the influence of the larger IMF By in the earlier interval. The nightside exit255

of plasma differs significantly between the two plots. In 8a flow near midnight is small magnitude and256

mainly equatorward before turning to connect to the return flow regions. In 8b the dawn cell is roughly257

“D” shaped with the flow turning directly from cross-cap to the return flow region, while in the dusk258

cell, there is the flow rotates first dawnward before rotating back to connect with the dusk return flow.259

This dusk-cell shear flow illustrates the development of the Harang Discontinuity with increasing au-260

roral activity.261

–15–



manuscript submitted to Space Weather

(a) (b)

Figure 8: Output of the 816 independent models displayed on the latitude-MLT grid for similar IMF

conditions but differing auroral indicies a) Bz = -4.53 nT, By = -2.45 nT, Au = 82 nT, Al = -34 nT b)

Bz = -4.6 nT, By = -1.41 nT, Au = 157 nT, Al = -128 nT

To examine the accuracy of the model prediction over the entire grid, the root-mean-squared differ-262

ence between the predictions and observations were calculated in each grid cell for all observations the263

year of 2013. The models were used to predict the velocity components at each time for which there264

as an observation in a given grid cell based upon the values in the OMNI database from the time of265

the observation. For comparison, the TS18 model was used similarly to predict the velocity components266

and compared to the observations. Figure 9 shows the results for vew over the grid for both the ML267

model and the TS18 model.268
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(a) (b)

Figure 9: Root-mean-squared difference between model predictions and the observations of the east-

west velocity component for the year of 2013. a) RMSE from the ML model, b) TS18 model

The figure shows that the RMSE for the ML model is less than about 250 m/s over the entire grid. The269

lowest values occur on the low-latitude dayside, where velocities are typically low. The highest values270

occur in the prenoon sector between 75° and 80°, and at the lowest latitude bins near dawn and dusk.271

In addition errors on the night-side are highest in the region between 70° and 75°. The plot for the TS18272

model shows higher RMSE for all bins, with particularly large errors (>350 m/s) near 70° for all local273

times.274

3 Discussion275

The need for accurate forecasting of space weather increases on a nearly daily basis. There isn’t a bet-276

ter example of this than the requirement for accurate orbit prediction that becomes more critical with277

the launch of every new low-Earth-orbit satellite. Orbit prediction is based on thermospheric density,278

which can be predicted using global circulation models driven by convection models such as described279

in this study. Hence, it is imperative that we have models of convection that accurately capture the280

variation of the high-latitude potential with IMF and internal magnetospheric state. The ML model pre-281
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Figure 10: Potential pattern resulting from a spherical harmonic expansion constrained by the ML

model

sented here shows a marked improvement over traditional climatological models, however it requires282

specification of auroral indicies, Al and Au, which are based upon magnetometer observations. Recently283

there have been successful efforts at predicting these and other magnetospheric indicies using machine284

learning techniques using the solar wind and IMF as inputs. With these predicted indicies it would be285

possible to predict the convection, and in turn the thermospheric density, several hours into the future286

(Topliff et al., 2019).287

For retrospective studies, observations of the indicies are readily available and can be used to select model288

patterns for use in GCMs or to serve as a constraint on instantaneous convection patterns generated289

using MapPotential. GCMs and MapPotential use models of the electrostatic potential rather than ve-290

locities. Such maps can be generated from the output of the ML model by using the same technique291

that has been applied in generating other climatological models. Figure 10 shows the result of expand-292

ing the potential in spherical harmonics using the ML model velocity field in Figure 8b as a constraint293

on the fit. Because the fit is a functional expansion it can be calculated on a fine grid, which gives the294

smooth variation with position illustrated in the figure. The pattern is similar to that shown in Figure295

1b, which was generated from TS18 using similar values of the IMF. The dusk cell is not quite as round296

in the ML model plot and the flow near midnight extends to lower latitudes.297
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Figure 8, shows that changes in Al and Au result in changes in the convection predicted by the ML298

model which reflect the expected behavior of the polar cap. Convection extended to lower latitudes in299

Figure 8b than in Figure 8a in response to the significantly larger values of Au and Al. The latitude300

of the convection reversal is impacted by the changes in the indicies, though the change is not uniform301

in local time. At dawn the boundary was lower by several degrees in 8b than in 8a, and the develop-302

ment of the Harang Discontinuity appears in 8b, which gives a convection reversal at low latitudes in303

the premidinght region and extending across 0000 MLT. The extension of the convection reversal across304

midnight results in the tongue of negative potential extending across midnight illustrated in Figure 10.305

The dayside convection reversal and that at dusk shows little difference between the two intervals. The306

dayside differences between the two intervals that do appear are more likely due to the differing val-307

ues of the IMF By.308

As illustrated by the comparisons to the TS18 climatology, the ML model represents an improvement309

over models that do not attempt to capture variability driven by internal magnetospheric processes. Fig-310

ure 9 showed that the RMSE of the ML model predictions vs SuperDARN observations is substantially311

lower than that for the TS18 model. The region of large RMSE in the TS18 model concentrated be-312

tween 70° and 75° is most likely due to the inability of the model to capture the expansion and con-313

traction of the polar cap boundary during substorm cycles. The region of large RMSE is close to the314

average position of the polar cap boundary, which is close to the latitude of the convection reversal bound-315

ary (CRB). The CRB is of course, the latitude separating the antisunward flow in the polar cap and the316

sunward flow on field lines that map into the magnetosphere. When the polar cap expands so that the317

CRB latitude is below it’s average position for a given set of IMF/solar wind conditions, grid cells just318

below the boundary would be predicted to lie in magnetosphere and have sunward flow, while in fact319

they lie in the polar cap and have antisunward flow. Likewise, when the boundary contracts above it’s320

average position, grid cells just poleward of the average boundary would be predicted to have antisun-321

ward flow while in fact it is sunward. When either of these conditions happens, the difference between322

the prediction and the observation would be on the order of double the average magnitude of the ve-323

locity in the cell. Since the boundary is so dynamic it is likely that this is a common occurrence, which324

is reflected by the large average errors that appear in the figure. It should be noted that the largest er-325

rors in the ML model also appear in this region, however they are significantly lower magnitude than326

in the TS18 model indicating that the ML model does a better job of representing the changes in the327

boundary position.328

–19–



manuscript submitted to Space Weather

Another advantage of the ML model over existing climatologies is that the way it was formed allows329

for easy characterization of the distribution of velocities in each grid cell, which can be used when as-330

similating the model output. The RMSE is returned for each grid cell as part of the ML regression. If331

the model is assumed to be unbiased, the RMSE value can be used as the square root of the variance332

and combined with the model output value to generate a distribution function assuming a Gaussian dis-333

tribution. A Bayesian assimilation scheme would use the distribution of model as prior information. Hav-334

ing an RMSE in each grid cell contrasts with the information obtained when expanding the potential335

in orthogonal functions. In such a fit, the function coefficients are returned, which distributes errors336

over the domain. While it would be possible to generate a covariance matrix for a functional expan-337

sion, it requires the extra step of using the model to predict a local velocity and calculating the sam-338

ple variance around that value.339

4 Conclusions340

This paper describes a climatological model of high-latitude convection derived using machine learn-341

ing (ML) techniques applied to observations from the SuperDARN radar network. The model was gen-342

erated from a database of four years of observations and tested over a separate fifth year. SuperDARN343

convection patterns were generated for every five minute period over the five year period. From those344

patterns, velocity vectors were calculated at locations where there was at least one radar contributing345

observations. Those velocities were separated into north-south, and east-west components and sorted346

into a magnetic local time - magnetic latitude grid that ran from 55° to the magnetic pole with a bin347

size of 2°, and MLT bins of 1-hour.348

In each MLT-MLAT bin, the two velocity components were used separately to train a ML model us-349

ing random forests regression. Random forests was selected after testing three different ML algorithms350

to find the one that produced the lowest RMSE in a subset of the points in the grid. The features used351

to train the model were the IMF components Bx, By, and Bz; the solar wind velocity, vsw; the auro-352

ral indicies, Au and Al; and the geomagnetic index, SYM-H.353

After the model was trained on data from the years 2014 to 2018 (inclusive), it was tested using data354

from the year 2013. Predictions from the model were compared to the SuperDARN observations and355

distributions of predicted versus observed velocity were examined. While there was significant scatter356
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of the predictions around the line of equality with the observations, the average of the distributions tracked357

the average measured velocity well with a small bias to lower values. The standard deviation of the model358

predictions was less than 100 m/s for all bins where there were a significant number of observations.359

RMSE values for the model were compared to those from the TS18 model in each bin of the grid. The360

ML model exhibited smaller errors than TS18 at all locations. In particular, errors in the ML showed361

the largest improvement over TS18 in bins that are near the average latitude of the convection rever-362

sal boundary. It is likely that the improvement was due to the ML model’s ability to expand and con-363

tract in latitude in response to changes of Al and Au.364

The software for generating the model is free and available for download from the scikit-learn web site.365

The web site has links to numerous examples and tutorials for application of the various algorithms it366

provides. The software is simple to use even by senior investigators with no prior experience with ML367

techniques. Despite the simplicity, good results can be obtained with some time spent reading the tu-368

torials.369

5 Data Availability370

The raw SuperDARN data are available from the British Antarctic Survey (BAS) SuperDARN data server371

(https://www.bas.ac.uk/project/superdarn).372
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