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Abstract

Carbonate clumped isotope thermometry (Δ 47) is a temperature proxy that is becoming more widely used in the geosciences.

Most calibration studies have used ordinary least squares linear regressions or York models to describe the relationship between

Δ 47 and temperature. However, Bayesian models have not yet been explored for clumped isotopes. There also has not

yet been a comprehensive study assessing the performance of commonly used regression models in the field. Here, we use

simulated datasets to compare the performance of seven regression models, three of which are new and fit using a Bayesian

framework. While Bayesian and non-Bayesian ordinary least squares linear regression models show the best overall accuracy

for calibrations, Bayesian models outperform other models in terms of precision, especially if datasets are sufficiently large

(>50 data points). For temperature reconstructions where a given regression model is applied to predict temperature from

Δ 47), Bayesian and non-Bayesian models show variable performance advantages depending on the the structure of errors

in the calibration dataset. Overall, our analyses suggest that the advantages of using Bayesian models for calibrating and

reconstructing temperatures using clumped isotope paleothermometry are realized through the use of large calibration datasets

(>50 data points). When used with large datasets, Bayesian regressions are expected to substantially improve the accuracy

and precision of (i) calibration parameter estimates and (ii) temperature reconstructions (e.g., typically improving precision

by at least a factor of two). We implement our comparative framework into a new web-based interface, BayClump. This

data tool should increase reproducibility by enabling access to the different Bayesian and non-Bayesian regression models.

Finally, we utilize BayClump with three published datasets to examine precision and accuracy in regression parameters and

reconstructed temperatures. We show that BayClump yields similarly accurate results to published studies. However, the

use of BayClump generally produces temperature reconstructions with meaningful reductions in temperature uncertainty, as

demonstrated through reanalysis of data from a Late Miocene hominoids site in Yunnan, China.
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Key Points: 

● We implement Bayesian methods for calibrating the carbonate ‘clumped’ isotope 
thermometer and reconstructing temperatures. 

● Bayesian and ordinary least squares linear models recover regression parameters and 
reconstruct temperatures with the highest accuracy, and Bayesian regression with the 
highest precision. 

● BayClump is a Shiny dashboard with web-interface and standalone versions, that 
facilitates the use of Bayesian models which are data intensive and non-Bayesian models 
for calibration and reconstruction by the broader community.
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Abstract 

Carbonate clumped isotope thermometry (𝛥!") is a temperature proxy that is becoming more 
widely used in the geosciences. Most calibration studies have used ordinary least squares linear 
regressions or York models to describe the relationship between 𝛥!" and temperature. However, 
Bayesian models have not yet been explored for clumped isotopes. There also has not yet been a 
comprehensive study assessing the performance of commonly used regression models in the 
field. Here, we use simulated datasets to compare the performance of seven regression models, 
three of which are new and fit using a Bayesian framework. While Bayesian and non-Bayesian 
ordinary least squares linear regression models show the best overall accuracy for calibrations, 
Bayesian models outperform other models in terms of precision, especially if datasets are 
sufficiently large (>50 data points). For temperature reconstructions where a given regression 
model is applied to predict temperature from 𝛥!"), Bayesian and non-Bayesian models show 
variable performance advantages depending on the the structure of errors in the calibration 
dataset. Overall, our analyses suggest that the advantages of using Bayesian models for 
calibrating and reconstructing temperatures using clumped isotope paleothermometry are 
realized through the use of large calibration datasets (>50 data points). When used with large 
datasets, Bayesian regressions are expected to substantially improve the accuracy and precision 
of (i) calibration parameter estimates and (ii) temperature reconstructions (e.g., typically 
improving precision by at least a factor of two). We implement our comparative framework into 
a new web-based interface, BayClump. This data tool should increase reproducibility by 
enabling access to the different Bayesian and non-Bayesian regression models. 

 

Plain Language Summary 

Inferring past temperatures is central to research in many areas of geoscience, evolutionary 
biology, and ecology. The carbonate clumped isotope geothermometer is becoming more widely 
used as a tool for reconstructing temperatures since it allows for direct constraints on carbonate 
mineral formation temperature. However, to date, no study has critically examined the relative 
performance of statistical models used to define the relationship between clumped isotopes and 
formation temperature, that in turn are used for temperature reconstructions. In this study, we 
develop new Bayesian models that, in contrast to classical linear regression models, are able to 
account for parameter uncertainty and use information from prior studies to infer regression 
parameters and reconstruct temperatures. These models have the potential to improve regression 
parameter estimation for clumped isotope calibrations and reduce uncertainties in 
paleotemperature predictions.  

 

1 Introduction 

A temperature proxy that has emerged as a potentially transformative tool in multiple 
disciplines is carbonate clumped isotope thermometry, which is based on the analysis of 13C-18O 
bond abundance in carbonate minerals (e.g., Schauble et al., 2006; Ghosh et al., 2006; Eiler, 
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2007; Eagle et al., 2010; Passey et al., 2010; Tripati et al., 2010, 2015; Henkes et al., 2013; 
Meinicke et al., 2020), that is referred to using the notation 𝛥!" (Eiler and Schauble, 2004). A 
major advantage of clumped isotope thermometry is that it is based solely on thermodynamics, 
and therefore allows the simultaneous determination of both carbonate formation temperature 
and the oxygen isotopic composition of source water (δ18Owater) from a single measurement of a 
carbonate sample (Schauble et al., 2006; Hill et al., 2014, 2020). Furthermore, unlike more 
traditional carbonate-based proxies, the clumped isotope paleothermometer does not rely on 
assumptions about the phase or the δ18Owater (Ghosh et al., 2006). The temperature dependence of 
carbonate clumped isotope thermometry has led to applications as broad-ranging as evolutionary 
biology (e.g., Eagle et al., 2011, 2015; Garzione et al. 2014; Pérez-Escobar et al. 2017), 
paleoclimate (Eiler 2011; Tripati et al., 2014; Leutert et al., 2019; Kelson et al. 2020), and 
paleoaltimetry (Garzione et al., 2014).  

𝛥!" has been found to scale linearly with 1/T2 across temperature ranges of 0–100 oC, 
leading to the use of linear regression models to calibrate the temperature dependence of this 
proxy, and for the estimation of clumped isotope-derived temperatures (Ghosh et al., 2006; Eiler 
2007). Most prior clumped isotope calibration studies have relied on either ordinary least squares 
linear (Ghosh et al., 2006) or error-in-variables regression models (e.g., Deming; Tripati et al., 
2010; e.g., York; Kelson et al., 2017) for inferring model parameters that relate 𝛥!" and 10#/𝑇$ 
values (i.e., regression slope and intercept). The ordinary least squares linear and York 
regression models mostly differ in how they treat uncertainty in measured 𝛥!" and 10#/𝑇$. Each 
has their own advantages and limitations. For instance, ordinary least squares linear are already 
implemented in many statistical packages and a commonplace in the field. However, a clear 
limitation of ordinary least squares linear models is the inability to account for errors in 10#/𝑇$ 
from the modeling framework, even though error is intrinsic to both clumped isotope and 
temperature measurements used for deriving calibrations. Furthermore, the magnitude of 
uncertainty in 𝛥!" and 10#/𝑇$ varies for different calibration datasets (e.g., depending on 
material, instrumentation used, standardization, knowledge of temperature for environment 
samples are from) and ordinary least squares linear regressions treat all of these equally when 
different datasets are combined. In contrast, the York and Deming regression models account for 
error in both variables (e.g., Tripati et al., 2010; Peral et al., 2018; Meinicke et al. 2020; 
Anderson et al., 2021). Nevertheless, the performance of these two later models is still to be 
tested under simulated conditions that are relevant to the field. 

To date and to our knowledge, no study has critically and comparatively evaluated the 
performance of error-in-variable regression models on the accuracy and precision of clumped 
isotope temperature calibrations. Similarly, although Bayesian frameworks have been used for 
other temperature proxies including TEX86 and Mg/Ca and have provided a more robust method 
for estimating uncertainties in tracer-based estimates of temperature (Tingley and Huybers, 2010; 
Tierney and Tingley, 2014, 2015; Khider et al., 2015; Tierney et al., 2019; Crampton-Flood et 
al., 2020; Martinez-Sosa et al., 2021), no study has utilized these frameworks for the calibration 
of clumped isotopes, or for reconstructing temperatures using 𝛥!". Thus, it remains unclear 
whether accounting for uncertainties in both variables actually improves the reliability of 
inferred regression parameters and reconstructed temperatures using 𝛥!", and how error-in-
variable models compare to Bayesian methods. 
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In this study, we extend the classic regression approach for calibrating the clumped 
isotopes paleothermometer into a Bayesian framework, and compare Bayesian and non-Bayesian 
regression models utilizing synthetic datasets. We focus on answering whether Bayesian models 
and error-in-variable models outperform models that ignore uncertainty in 𝛥!". Our main goal is 
to discuss relative model performance between newly developed and existing models commonly 
used for calibrating the clumped isotope paleothermometer. In this study, we do not intend to 
provide a general equation for analyzing clumped isotopes datasets. Instead, we provide a critical 
overview on the methods that are used in the field. Given the increasing availability of clumped 
isotope data, the Bayesian models developed in this study should help to pave the way for a 
unified calibration equation for the clumped isotopes paleothermometer. 

Inspired by BAYSPAR, a web-interface for Bayesian models for the TEX86 temperature 
proxy (Tierney and Tingley, 2014), we developed BayClump, a shiny dashboard created in R 
that provides community-wide access to the Bayesian and non-Bayesian models for the clumped 
isotope proxy from this study. We derive calibration regression parameters using a published 
synthesis of calibration data (Petersen et al., 2019; Anderson et al. 2021; Sun et al. 2021). 
Overall, this work allows us to demonstrate the conceptual and practical advantages of using 
Bayesian models for inferring model parameters and deriving reliable reconstructions for 
clumped isotopes, as it has been outlined before in other temperature proxies (Tierney and 
Tingley 2015).  

 

2 Materials and Methods 

2.1 General modeling framework 

We examine the performance of Bayesian and non-Bayesian linear models primarily 
using synthetic datasets (but see section 3.4 for analyses using real-world data). Tables 1, 2, S1, 
S2 show the range of uncertainties in 𝛥!", T, and 10#/𝑇$ from existing calibration datasets, 
respectively. We use these distributions to define “low”, “intermediate”, and “high” uncertainties 
in each of the variables. Thus, the analyzed synthetic datasets, assuming the linear relationship 
between 𝛥!" and 10#/𝑇$, follow different levels of error in 𝛥!" and 10#/𝑇$.  

Note that although the general practice in the field is to predict 10#/𝑇$ from 𝛥!" values 
to reconstruct temperature using a regression model defined from a temperature calibration 
dataset, our approach relied on a “forward” modeling where regression model parameters are 
estimated by using 𝛥!" as the response variable. This forward approach is consistent with 𝛥!" 
being a response to temperature, as opposed to the cause. Using synthetic datasets (with low, 
intermediate, or high uncertainties in 𝛥!" and 10#/𝑇$), we utilize different models to estimate 
regression parameters. Specifically, we compare the parameters inferred from each statistical 
model with the true parameters used to simulate the synthetic datasets. This approach allows us 
to assess whether different models (ordinary and weighted least squares linear, York, Deming, 
and Bayesian models) yield accurate and precise values for the slope and intercept. Finally, we 
utilize the inferred regression parameters and their uncertainties from each model to reconstruct 
temperatures for specific target 𝛥!" values of 0.600‰, 0.700‰, and 0.800‰ that correspond to 
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temperatures that are low (~10 oC), moderate (~19 oC), and high (~60 oC). We account for 
different values of uncertainty in the analyzed target 𝛥!" (low, intermediate, and high). 

 

2.2 Regression models 

We fit seven types of regression models to the synthetic clumped isotope-𝛥!"calibration 
datasets (Fig. 1). Four models are non-Bayesian regressions and three are Bayesian models. Note 
that we use Bayesian linear models as a way to propagate uncertainty in regression parameters. 
Additionally, depending on the Bayesian model, we also propagate uncertainty in the 
measurements of both 10#/𝑇$ and 𝛥!". Model performance for proxy calibration is in this 
section assessed with 10#/𝑇$ as the independent variable and 𝛥!" as the response variable.  

 

2.2.1 Non-Bayesian linear regression models 

Ordinary least squares: We first fit an ordinary least squares linear regression model. 
This regression model is the simplest model used in this study and assumes no errors in 10#/𝑇$ 
(the independent variable in the regression). We fit the ordinary least squares linear regression 
model using the lm function in the stats R package version 4.1.0 (R Core Team, 2021) under 
default parameters. The approach implemented in the lm function in R minimizes the sum of 
squared error (i.e., sum over the squared of residuals in 𝛥!") in the relationship between 10#/𝑇$ 
and 𝛥!". 

Weighted least squares: Second, we fit an ordinary least squares linear model with 
observations being weighted based on the inverse of their squared uncertainty. In this model, 
observations with larger residual values (estimated using ordinary least squares linear models) 
have less importance in estimating the error of alternative proposed lines during the least square 
optimization of the model. Although this approach accounts for variable uncertainty in 𝛥!", the 
weighted least squares model still does not account for uncertainties in 10#/𝑇$. The weighted 
least squares regression was fit using the lm function in the stats R package version 4.1.0 (R 
Core Team, 2021). The weights argument is set to the inverse of the squared residuals for the 
observations.  

Deming: Third, we fit a Deming regression using the deming R package version 1.4 
(Therneau, 2018). In this study, the Deming regression model is the simplest model that 
explicitly accounts for measurement error in both 𝛥!" and 10#/𝑇$. With the Deming regression, 
the ratio of the variance in 𝛥!" and 10#/𝑇$ (calculated in the deming R package using 
jackknifing-based uncertainties on 10#/𝑇$ and 𝛥!") is assigned to be constant over all data 
points (Martin, 2000). To fit this model, we specify values for 𝛥!" and 10#/𝑇$, along with the 
corresponding inverse of the squared standard error for each of the observations of temperature 
and 𝛥!". The Deming model also aims to minimize the sum of squared residuals, where the 
residuals are a function of the inferred errors in both variables and the specified variance ratio 
(Deming, 1943). 
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York: Fourth, we analyzed a York model using the york function in the IsoplotR R 
package version 3.4 (Vermeesch, 2018). This approach is based on the same ideas that underlie 
the Deming regression model, specifically accounting for errors in both 𝛥!" and 10#/𝑇$. 
However, under the York model, the ratio of the weights in 𝛥!" and 10#/𝑇$varies across data 
points instead of being constant for the whole dataset as in the Deming regression (Martin 2000). 
Note that the weights are based on the correlation between errors in variables. We specify 
observations in 𝛥!" and 10#/𝑇$, along with the corresponding standard error (transformed to the 
inverse of the squared error within IsoplotR’s york function) for each observation, when fitting 
York models. 

2.2.2 Bayesian linear regression models 

Bayesian linear: Fifth, we fit a Bayesian linear regression, the simplest Bayesian model 
fit in the study, and is equivalent to the ordinary least squares linear regression model presented 
above. For this regression, instead of parameter estimates being derived based on ordinary least 
squares optimization, regression parameters are estimated under a Bayesian framework (see 
below). Under a Bayesian approach, we use information from prior studies and newly generated 
clumped isotope data (synthetic datasets) to update the relevant regression parameters (e.g., slope 
and intercept) that are used in the calibration and reconstruction steps. Below, we present the 
mathematical definition of this model: 

𝛥!"! ∼ 	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇% , 𝜏)		

𝜇% 	= 𝛼	 + 	𝛽
10#

𝑇$ %
	

𝛼 ∼ 	𝑁𝑜𝑟𝑚𝑎𝑙(0.231, 0.065)	
𝛽	 ∼ 	𝑁𝑜𝑟𝑚𝑎𝑙(0.039, 0.004)	

	𝜏 = 	
1
𝜎$	

𝜎	 ∼ 	𝑈(0, 100)	
𝑖 = 1, . . . . , 𝑁	

Priors for 𝛼 and 𝛽 follow previous publications (Table S3; references therein). We use 
diffuse priors (priors that make weak assumptions about the model) on the precision parameter 
𝜎$. We also present results that utilize diffuse priors for 𝛼 and 𝛽 by selecting the same mean 
parameter value outlined above but with three times a wider standard deviation.  

Bayesian linear with errors: Sixth, we fit a linear regression model that accounted for 
uncertainties in both 10#/𝑇$ and 𝛥!". The Bayesian linear model with error in variables is 
defined as the Bayesian linear model outlined above except for the following terms that account 
for measurement error in both variables:  

𝛥!"! ∼ 	𝑁𝑜𝑟𝑚𝑎𝑙(𝛥!"!
&'() , 𝜎*"#!

+$ )		
𝛥!"!
&'() ∼ 	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇% , 𝜏)		

10#

𝑇$ %
∼ 	𝑁𝑜𝑟𝑚𝑎𝑙(

10#

𝑇$ %

&'()

, 𝜎,-$
.% ;%

+$ )	
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10#

𝑇$ %

&'()

∼ 	𝑁𝑜𝑟𝑚𝑎𝑙(11, 0.394)		

The true values (i.e., those uncontaminated by measurement and sampling error) are 

indicated as 𝛥!"&'() and ,-
$

.%

&'()
.  We consider 𝛥!"&'() values taken from realizations of a random 

variable with an underlying normal distribution, with unknown variance, and whose mean is 
linearly related to ,-

$

.%
. Therefore, the observed response is 𝛥!"!, with errors 𝜎*"# (see also 

Daëron, 2021). The T explanatory variable is the temperature in the form ,-
$

.%
, with errors 𝜎&'$

(%
. 

Note that the prior used for ,-
$

.% %

&'()
 corresponds to the mean value of temperature within the 

environmental range and a standard deviation reflecting high temperature uncertainty (Table 1). 

 

Bayesian linear mixed: Seventh, we fit a Bayesian linear mixed model that accounts for 
error in both variables (Hilbe et al. 2007). This model is different from the above “linear with 
errors” in that it assumes that different calibration materials can potentially have distinguishable 
differences in the relationship between 𝛥!" and 10#/𝑇$. Note that for a single material, this 
regression model should behave similarly to the previous Bayesian regression model. We use the 
Bayesian linear mixed model to examine whether a relatively more complex model potentially 
assuming multiple materials under a single material dataset can still perform similarly to models 
that intrinsically assume equivalent material behavior. The utility of this model will be used in 
upcoming papers for assessing if there is evidence for material-specificity in real-world datasets. 
Below, we present the mathematical definition of this model. Except in the following aspects that 
allow for material-specific regression parameters, this model is equivalent to the Bayesian linear 
with errors presented above: 

𝜇% = 𝛼0(%) 	+ 𝛽0(%)
10#

𝑇$ %
		

𝛼0 	∼ 	𝑁𝑜𝑟𝑚𝑎𝑙(0.231, 0.065)	
𝛽0 	∼ 	𝑁𝑜𝑟𝑚𝑎𝑙(0.039, 0.004)	

𝑗	 ∈ 	 {1,2, . . . }, where j is an indicator of the type of material 

Therefore, this model allows for material-specific regression parameters. Material 
identities are indicated under alternative 𝑗.  

 

2.2.3 Implementation of Bayesian regression models 

All three Bayesian regression models are fit using the jags function in R2jags version 0.6-
1 in R version 4.02 under JAGS version 4.3.0 (Plummer 2003). Posterior distributions on 
parameter estimates are based on 20,000 iterations (three chains), with 50% of samples discarded 
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as burn-in. We used informative priors for the slope and intercept in alternative analyses that are 
presented in the supplement to this article. We use the same seed in R for all the analyses 
conducted in this study (set.seed() set to 3 in R). All the code and datasets used in this study are 
available on GitHub (https://github.com/Tripati-Lab/BayesPaper; https://github.com/Tripati-
Lab/BayClump). BayClump can be accessed at the following link: 
https://bayclump.tripatilab.epss.ucla.edu/.  

 

Fig. 1. Conceptual representation of the seven regression models used in this study for the 
derivation of 𝛥𝟒𝟕-temperature calibrations. We compared the performance of a total of seven 
regression models in deriving calibration relationships for use in carbonate clumped isotope 
thermometry. Parameter estimates, or slopes and intercepts of 𝛥!"-temperature calibrations 
derived for each of these models, were optimized through minimizing squared residuals (non-
Bayesian models) or maximizing a likelihood function (Bayesian models). A subset of the 
classical least squares and Bayesian models account for error-in-variables (i.e., the regression 
parameters calculated factor in uncertainties in both 𝛥!" and 10#/𝑇$). We also developed a 
Bayesian model that can potentially account for differences in parameter estimates between 
materials or other types of sample groups. This model is equivalent in complexity to a Bayesian 
simple linear regression with errors when the number of materials is one. 

 

2.3 Clumped isotope temperature proxy calibration: model performance based on 
parameter estimates on the synthetic datasets 

Comparisons of model performance for parameter estimates were based on three 
synthetic datasets of simulated values of 10#/𝑇$ and 𝛥!". We examine the performance of 
regression models by simulating errors in 10#/𝑇$ and 𝛥!". We account for three sources of 
uncertainty in the 10#/𝑇$ - 𝛥!" relationship: replication error in 𝛥!" across labs, instrument 
noise in 𝛥!", and errors in 10#/𝑇$. These three sources of uncertainty closely reflect the main 
three sources of uncertainty in real clumped isotope datasets, and span a realistic set of values 
reported across labs and 𝛥!"-10#/𝑇$ relationships for different materials (Table 1, 2, S1, S2). 
For each source of error, we model different scenarios with low, intermediate, and high levels of 
error.  
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2.3.1 Replication error in 𝛥!" across labs (𝜎5  parameter) 

Reproducibility error across labs can be caused by multiple factors, including the drift in 
instruments over time, choice of reference frame, and noise in the sample preparation for each 
replicate, among others. Therefore, this source of error is intrinsic to any clumped isotope 
dataset. 𝛥!" errors describing reproducibility across labs (see the 𝜎5  parameter below), we 
follow the distribution of reported 𝛥!" errors in the Petersen et al. (2019) compilation. We 
estimate typical reproducibility of 𝛥!" by examining the distribution of reproducibility for each 
lab that participated in the Intercarb interlaboratory exercise (Supplemental Table 1 in 
Bernasconi et al., 2021; see Section 2.3.2 below). In our lab, long-term reproducibility of better 
than 0.02‰ is typical, and that for recent instrumentation, better than 0.01‰ is also routinely 
feasible with sufficiently large numbers of standards being run. We assign reproducibility errors 
of 0.0125‰, 0.0225‰, and 0.0275‰ corresponding to low, intermediate, and high error 
scenarios, respectively.  

 

2.3.2 Instrument noise in 𝛥!" across labs (𝜎6 parameter) 

Instrument noise can be related to the stability of beams over a 1 to 2-hour period, or 
even the length of time that is used to integrate on a single gas. For error in 𝛥!" caused by 
instrument noise, we use 0.0025‰, 0.0075‰, and 0.0125‰ for low, intermediate, and high error 
scenarios, respectively (Bernasconi et al. 2021). This error describes stability of the instrument 
across the ~1 to 2-hour analysis time for each replicate.  

 

2.3.3 Errors in 10#/𝑇$ 

For measurement error in temperatures (10#/𝑇$) used for proxy calibration, we define 
our levels of error by examining the typical uncertainties reported for different types of 
carbonates used in published studies that have compiled different calibration data (Petersen et al., 
2019; Table 1). Low error in formation temperature is defined using reported values for synthetic 
carbonates (e.g., Ghosh et al., 2006; Tripati et al., 2015; Bonifacie et al., 2017), which have the 
most well constrained temperatures due to precipitating in controlled environments. Our 
estimates for high uncertainty for 𝛥!" error across labs reflects either naturally occurring 
terrestrial carbonates with larger variability in precipitation temperature, such as lacustrine 
samples (Huntington et al., 2010; Li et al., 2021; Wang et al., 2021) or naturally-occurring 
dolomites (Winkelstern et al., 2016; Came et al., 2017). Estimates for intermediate error fall in 
between those for low and high (e.g., foraminifera; Tripati et al., 2010; Meinicke et al., 2020; 
some naturally forming carbonates with less seasonal variability such as marine mollusks and 
brachiopods (Eagle et al., 2013; Henkes et al., 2013). We use 0.25°C, 2°C, 5°C as the low, 
intermediate, and high error scenarios for T when prescribing 10#/𝑇$, respectively. 

 

2.3.4 Integrating sources of error into the simulated 𝛥!" and 10#/𝑇$ datasets 
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We analyze model performance for an “all-low error scenario”, with low values of error 
in measurement error in 𝛥!" errors and measurement error in 10#/𝑇$. Next, we examine model 
performance in an “all-intermediate error scenario”, with intermediate values of error in 𝛥!" and 
measurement error in 10#/𝑇$. Finally, we use an “all-high error scenario” with high error in 𝛥!" 
and measurement error in 10#/𝑇$. For simplicity, we refer to each of these as low-, 
intermediate-, and high-error scenarios for proxy calibration. Analyses in the main text primarily 
focus on three simplified end-member error scenarios (Data Set S1–S3). 

For each error scenario, we simulate a total of 1,000 𝛥!" and 10#/𝑇$ observations 
assuming a true value for the slope of 0.0369 and intercept of 0.268. These values were chosen 
because they represent the mean in the range of values from previous calibrations across 
different materials (see Table S3 and references therein). We first generated a total of 1,000 
observations of 10#/𝑇$ with a normal distribution under the following parameters (informed 
using Table S2): 

10#

𝑇$(𝑡𝑟𝑢𝑒) ∼ 	𝑁𝑜𝑟𝑚𝑎𝑙(12.03, 2.5)	

These observations are treated as the true 10#/𝑇$ values (range of true 10#/𝑇$ in our dataset is 
between 5–19). Next, we simulate random error in 10#/𝑇$ using on a normal distribution with 
mean 0 and standard error following a given 10#/𝑇$ error scenario (𝜎; values of 0.019, 0.155, 
0.070 for low-, intermediate-, and high-errors based on Table 1): 

10#

𝑇$(𝑒𝑟𝑟𝑜𝑟) ∼ 	𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎)	

The observed values of 10#/𝑇$ result from the addition of ,-$

.%(&'())
 and ,-$

.%()''7')
. Next, we 

simulate 𝛥!" values based on a given true slope, intercept, true 10#/𝑇$, and random error in 
𝛥!"	under a given error scenario (𝜎6; values=0.0125‰, 0.0225‰, and 0.0275‰) based on 
Bernasconi et al. (2021; related to 𝜎$ in model 6):  

𝛥!"! ∼ 	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇% , 𝜎6)	

𝜇% 	= 𝛼	 + 	𝛽
10#

𝑇$(𝑡𝑟𝑢𝑒)	

Finally, we account for measurement error in 𝛥!" values representing replication error based on 
the error 𝜎5	as estimated in Petersen et al. (2019; related to 		𝜎*"#!

$  in model 6; values used in the 
simulation: 0.0025‰, 0.0075‰, 0.0125‰): 

𝛥!"!
)''7' ∼ 	𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎5)	

Thus, 𝛥!"!
768)'9): values are calculated as the addition of each initial 𝛥!"!value to a corresponding 

𝛥!"!
)''7'.  

 

2.4 Fitting regression models on the simulated ‘clumped isotope’ datasets 
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We examine whether each of the models correctly recover the true slope and intercept for 
the calibration. For non-Bayesian models, we examine the distribution of slopes and intercepts 
using 1,000 replicates per model per error scenario. For Bayesian models, we run a total of 
20,000 iterations (see details in Section 2.2.3). We analyze datasets with 10, 50, and 500 
observations randomly sampled from the original 1,000 data point calibration dataset. Datasets 
with n=50 generally reflect the size of calibration datasets for individual materials in published 
clumped isotope calibration studies (e.g., Tripati et al., 2010; Petersen et al., 2019; Anderson et 
al., 2021). 

 

2.5 Inverting the forward model to predict 106/T2 from 𝛥!": Temperature reconstructions 
for unknowns 

In addition to examining whether models accurately and precisely recover regression 
parameters (Section 2.4), we examine model performance during the temperature reconstruction 
phase. Paleotemperatures can be inferred by applying a regression model to sample 𝛥!" values. 
To evaluate model performance for temperature reconstructions, we apply the estimated 
regression parameters to three 𝛥!" values (0.600‰, 0.700‰, and 0.800‰) with several scenarios 
for replicate measurement errors in 𝛥!" (i.e., 0.005‰, 0.010‰, and 0.020‰). Our goal is to 
show whether reconstructions based on these carbonates under- or over-estimate true 
temperature under each of the examined regression models and scenarios of error. We 
reconstruct temperatures and their uncertainties following the usual practice in the field: 

	𝑇	(℃) = I
𝛽	 ∗ 10#

𝛥!"! − 	𝛼
		 	− 273.15		

𝑆𝐸, 𝑇	(℃) = 	OI
𝛽	 ∗ 10#

𝛥!"! − 	𝛼
	 − 273.15P − OI

𝛽	 ∗ 10#

Q𝛥!"! + 𝑠𝑒S𝛥!"!TU − 	𝛼
	 − 273.15P		

where, 𝑇	(℃) is the reconstructed temperature in degrees Celsius, 𝑆𝐸, 𝑇	(℃) is the error 
in reconstructed temperature (also in degrees Celsius), 𝛥!"! is the analyzed target 𝛥!"!, 𝑠𝑒S𝛥!"!T 
the uncertainty in the analyzed target 𝛥!"!, and both 𝛼 and 𝛽 the intercept and slope, both 
estimated during the calibration step. For non-Bayesian models, inversions were conducted using 
the invest function in the investr R package (Greenwell and Kabban, 2014). For Bayesian 
models, temperature reconstructions were conducted using Jags in two major steps (with 
uncertainty propagated across steps). First, we estimated the point estimate of temperature as 
follows: 

 
𝛥!") 	~	(𝜇; , 𝜏)	

𝜇; 	= 𝛼	 + 𝛽
10#

𝑇$ ;
		

𝑇; 	~	W
<	∗,-$

*"#)+	?
		 	− 273.15  
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,-$

.% ;
~	𝑁𝑜𝑟𝑚𝑎𝑙(11, 0.394)  

𝑘	 ∈ 	 {1,2, . . . }, where k is an indicator of the target 𝛥!") 

where, 𝛥!") is the analyzed target 𝛥!" , 𝛼 and 𝛽, the intercept and slope (both corresponding to 
samples of the post-burnin distribution in the calibration step of the analyses), 𝜏 is the precision 
(also based on the post-burnin distribution in the calibration phase of the analyses), ,-

$

.% ;
 is the 

reconstructed temperature (in °K), with priors set to reflect an environmental temperature range 
(mean) and high uncertainty (standard deviation; Table 1). Finally, the reconstructed point 
estimate of temperature in degrees Celsius is summarized in 𝑇;. 
 

Note that this Bayesian reconstruction model follows the same structure as the three 
Bayesian calibration models presented before in Section 2.2.2. However, in the reconstruction 
section (Section 2.2.2), we focus on k target 𝛥!", instead of i 𝛥!" from the calibration set. 
Similarly, values for 𝛼, 𝛽, and 𝜏 are derived from the posterior distribution estimates in the 
calibration step (Section 2.2.2) and not calculated here during the reconstruction phase of the 
analyses. We randomly sample 500 observations from the post-burnin posterior distribution for 
each of these parameters based on the calibration step. The 𝛼, 𝛽 for Bayesian Mixed models are 
specific to the material that is utilized as an archive for reconstructing temperature and are 
matched to calibration-derived values.  
 

Second, we estimated the uncertainty in reconstructed temperatures within a Bayesian 
framework by using a uniform prior for the true error in 𝛥!"). This prior on the temperature error 
was based on the uncertainty of the target 𝛥!") (𝑠𝑒(𝛥!")), which is here assumed to be 0.005‰, 
0.1‰, 0.2‰: 

 
𝛥!")
)''7' 	~	𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.0001, 𝑠𝑒(𝛥!")))  

𝛥!")
∗ =		𝛥!") +	𝛥!")

)''7' 	

𝜇;∗ 	= 𝛼	 + 𝛽
10#

𝑇$ ;

∗

		

,-$

.% ;

∗
~	𝑁𝑜𝑟𝑚𝑎𝑙(11, 0.394)  

𝑇;∗	~	W
<	∗,-$

*"#)
∗ +	?

		 	− 273.15  

𝑇)''7';	; = 𝑇; − 𝑇;∗		  
𝑇𝑒𝑚𝑝; 	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝑇; , 𝑇)''7';;+$)  

𝑘	 ∈ 	 {1,2, . . . }, where k is an indicator of the target 𝛥!") 

 
Here, all the parameters follow the same structure outlined above for the point estimates 

of temperature reconstructions under Bayesian models. However, we note that instead of 
focusing on 𝛥!"), we used 𝛥!")

∗  for reconstructions. 𝛥!")
∗  is here used to estimate a second point 

estimate of temperature (𝑇;∗), which is subtracted from the first point estimate of temperature 
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(𝑇;) to calculate the error in reconstructed temperature (𝑇)''7';	;). Finally, 𝑇𝑒𝑚𝑝;  summarize 
the estimated temperature (in °C) with propagated uncertainty. 
 
 

3 Results and Discussion 

3.1 Model performance in calibration datasets with 50 data points 

Most of the existing calibration datasets have 20–50 data points (e.g., Tripati et al., 2010; 
Petersen et al., 2019; Anderson et al., 2021). Therefore, we focus on results based on examining 
model performance on datasets with 50 observations. We found differences in the performance 
of classical and Bayesian models with our synthetic datasets for each error scenario considered. 
Our results suggest that while all the examined models are able to correctly recover true 
regression parameters, regressions differ in their accuracy and precision during the calibration 
stage (Figs. 2, 3). In general, Bayesian and non-Bayesian simple linear models generally 
outperform other methods for inferring regression parameters with the highest accuracy and 
precision. Precision and accuracy in parameter estimate under Bayesian and non-Bayesian linear 
models are not strongly affected by the analyzed error scenario. Deming and York regression 
models are consistently the least accurate and precise of the models. These models show the best 
performance when uncertainty in the analyzed calibration scenario is intermediate, again in 
datasets with n ~ 50 datapoints. Our results suggest that York regressions generally 
underestimate the intercept and overestimate the slope more strongly than any other model 
examined in this study. Conversely, Deming regressions generally overestimate the intercept and 
underestimate the slope. 

 

3.1.1 Patterns of accuracy and precision between models within scenarios of error 

Under a low-error scenario, accuracy and precision is relatively high for all the analyzed 
models (Figs. 2, 3). All the models slightly underestimate the true intercept. The slope is slightly 
underestimated by Bayesian models and slightly overestimated by non-Bayesian models. 
Overall, weighted and unweighted linear regression models show the best accuracy among the 
examined models and Bayesian models show the best precision. Specifically, York regressions 
underestimate the intercept by 2.7% and overestimate the slope by 1.5%. Deming regressions 
underestimate the intercept by 1.2% and overestimate the slope by 0.25%. Weighted and 
unweighted linear regression models underestimate the intercept by 1.3–1.6% and overestimate 
the slope by 0.7–0.87%. Finally, Bayesian models recover intercept values that are 1.3–1.4% 
smaller than true intercept and estimate slope values 0.15–0.2% smaller than the true slope. In 
terms of precision, Bayesian regressions recover at least 1.7 times less parameter uncertainty 
than any of the non-Bayesian models analyzed in this study. 

 Under an intermediate-error scenario, Bayesian models overestimate the intercept and 
underestimate the slope. Conversely, non-Bayesian models underestimate the intercept and 
overestimate the slope. Weighted and unweighted linear models show the best accuracy and 
Bayesian regressions the best precision. York regressions underestimate the true intercept by 7% 
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and overestimate the slope by 4%. Deming regressions underestimate the intercept by ~4% and 
overestimate the slope by 1.4%. Weighted and unweighted linear models underestimate the 
intercept by 2.6% and overestimate the slope by 1.4%. Finally, Bayesian models overestimate 
the intercept by ~4% and underestimate the slope by 3%. We also note that Bayesian models 
recover parameter estimates with at least 1.6 times less uncertainty than any of the alternatives.  

Under a high-error scenario, patterns of model performance are similar to an 
intermediate-error scenario. York regressions underestimate the intercept by 8% and 
overestimate the slope by 5%. Deming regressions underestimate the intercept by 4% and 
overestimate the slope by 1%. Weighted and unweighted linear models underestimate the 
intercept by ~2.6% and overestimate the slope by ~1.5%. Bayesian linear models overestimate 
the intercept by ~3–4% and underestimate the slope by 3–4%. Parameter uncertainty is >1.4 
times smaller in Bayesian models relative to any of the other models. 

 

 

Fig. 2. Performance of different statistical models for deriving regression 
parameters for clumped isotope temperature calibrations, evaluated using a synthetic 
dataset with different levels of uncertainty in both 𝛥𝟒𝟕 and T. We show the distribution of 
regression parameters (A-intercept; B-slope) based on re-sampling of the calibration dataset. 
Results are for seven models (panels), and different datasets (colors within panels) indicating 
alternative error scenarios, reflecting a low-error scenario (measurement error in 𝛥!"= 0.0025‰, 
instrument error 𝛥!"= 0.0125‰, measurement error in 10#/𝑇$= 0.25 °C), an intermediate-error 
scenario (measurement error in 𝛥!"= 0.0075‰, instrument error 𝛥!"= 0.0225‰, measurement 
error in 10#/𝑇$= 2 °C), and a high-error scenario (measurement error in 𝛥!"= 0.0125‰, 
instrument error 𝛥!"= 0.0275‰, measurement error in 10#/𝑇$= 5 °C). Also shown are the true 
slope = 0.0369 and intercept = 0.268 (red vertical lines). In the figure, “B-SL” stands for 
Bayesian simple linear model without errors, “B-SL-E” for Bayesian simple linear model with 
errors, “B-LMM” for Bayesian linear mixed model, “OLS” for ordinary least squares regression, 
“W-OLS” for weighted ordinary least squares regression, “D” for Deming regression, and “Y” 
for York model. 
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Fig. 3. Prior and posterior distributions for Bayesian analyses on the slope and 
intercept based on analyses run using informed and diffuse priors on regression 
parameters. Bayesian analyses yield posterior distributions that are robust. Results are for a 
low-error scenario (measurement error in 𝛥!"= 0.0025‰, instrument error 𝛥!"= 0.0125‰, 
measurement error in 10#/𝑇$= 0.25 °C). The true slope = 0.0369 and intercept = 0.268, and the 
vertical dashed black line in each panel indicates the true parameter value. Results shown for 
datasets with 50 calibration samples. We show results for analyses run using the Bayesian simple 
linear model with errors, including both informed and diffuse priors on regression parameters. In 
the figure, “B-SL” stands for Bayesian simple linear model without errors, “B-SL-E” for 
Bayesian simple linear model with errors, “B-LMM” for Bayesian linear mixed model, “P-I” for 
Prior – Informative, and “P-D” Prior–Diffuse. 

 

3.1.2 Conclusions on model performance with synthetic datasets with 50 data points 

In general, our analyses suggest that for calibration purposes (assuming 50-datapoint 
datasets) and across all error scenarios examined in this study, Bayesian and non-Bayesian linear 
models perform the best in terms of accuracy and precision. Non-Bayesian linear models 
generally outperform other models in terms of accuracy and Bayesian in terms of accuracy. We 
note that York and Deming regressions perform similarly across error scenarios, with these 
models over- or under-estimating the slope and intercept more strongly than any of the other 
models examined in this study. Therefore, our results suggest that Bayesian and non-Bayesian 
simple linear regression models should be used for calibrating the ‘clumped isotopes’ 
paleothermometer instead of York and Deming regression models. 

We acknowledge that our results on the performance of the York model in the calibration 
part of our study might be unexpected for some readers. To our knowledge, only two studies 
have examined the performance of York regressions relative to any other model, within any 
context (clumped isotopes or otherwise). First, Wu and Yu (2018) compared the performance of 
multiple regression models, including York and ordinary least squares linear regressions. Using 
synthetic data with errors in both variables, these authors concluded that parameter estimates 
under York were less biased than those estimated under simple linear models. Their approach 
also involved examining the distribution parameter estimates under a given set of independent 
“runs” of each model. However, critical details on how the characteristics of each of these “runs” 
are missing from the study. For instance, it is unclear whether each of these “runs” was 
conducted on the complete dataset or a smaller set of observations. If analyses were run on 
subsampled datasets, the size of each smaller datasets is not provided. Similarly, we note that Wu 
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and Yu (2018) concluded that ordinary least squares models tend to fail to recover true 
parameters when the mean Y to X ratio is larger than 1. Therefore, our results suggesting that 
OLS models outperform York regression potentially reflect the fact that the mean Y to X ratio in 
clumped isotopes datasets is consistently well below 1. Second, results presented in Höhener and 
Imfeld (2021) show similar patterns to the ones reported in our study. For instance, Höhener and 
Imfeld (2021) indicate that while ordinary least squares linear models produce narrower error 
estimates, York regressions recover true regression parameters with a larger error. Nevertheless, 
we highlight that results in Höhener and Imfeld (2021) are also not generalizable to our study. 
For instance, the simulated datasets analyzed in Höhener and Imfeld (2021) assumed no error in 
variables. Finally, we note that York et al. (2004) does not provide a direct comparison of the 
performance of the York regression relative to other models.  

 

3.2 Small and large calibration datasets: 𝛥!"-T calibration: Model performance with 
synthetic datasets 

In addition to examining model performance on calibration datasets with intermediate 
sample size (n=50; Figs. 2, 3), we compare precision and accuracy between models in calibration 
datasets with a smaller (i.e., n=10 data points) and larger sample size (i.e., n=500).  

Within our 10-datapoint datasets, Bayesian models show the worst performance across all 
the examined models regardless of the analyzed error scenario. For instance, under an 
intermediate error scenario, while the intercept was underestimated by ~20% in all the Bayesian 
models, non-Bayesian models underestimated the same parameter by only 2–7%. Among non-
Bayesian models, Deming, simple, and weighted linear regressions show a similar performance, 
greater than the one for the York regression. Deming regressions outperform the simple and 
weighted linear models when error in the calibration dataset is high. Therefore, we recommend 
using (1) simple or weighted linear models when uncertainty in the calibration dataset is low, (2) 
Deming, simple, or weighted models when uncertainty is intermediate, and (3) a Deming model 
when uncertainty is high. In general, we recommend avoiding the use of Bayesian regression 
models when datasets are small (~10 observations).  

Under 500-datapoint datasets, Bayesian regressions outperform any of the other models 
examined in this study in terms of both accuracy and precision. These results are independent of 
the analyzed scenario of error. For instance, under an intermediate scenario of errors, Bayesian 
models underestimate the true intercept by 0.5–0.7% and overestimate the slope by 0.3–0.5%. 
Non-Bayesian models underestimate the intercept by 2–5% and overestimate the slope by 1–3%. 
Therefore, Bayesian regressions are consistently a better choice for improving parameter 
estimation when the calibration dataset is large (n~500 datapoints). Therefore, as the size of 
datasets increase, the implementation of our Bayesian regressions will certainly help to improve 
the overall performance of reconstructions based on clumped isotope data. 
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 Fig. 4. Patterns of parameter uncertainty across regression models based on 
calibration datasets of variable size. Results are shown for an intermediate-error scenario 
(measurement error in 𝛥!"= 0.0075‰, instrument error 𝛥!"= 0.0225‰, measurement error in 
10#/𝑇$= 2 °C). Patterns are largely similar to those for low- and high-error scenarios. We 
present mean parameter estimates for regression models (black line), the associated 95% CI 
(shaded blue region), and true model (red line). We fit regression models based on datasets with 
10, 50, and 500 data points (columns) and using seven regression models (indicated by the 
column headings). As described in the text, for large calibration datasets (n > 50), Bayesian 
models typically yield the most accurate and precise regression parameters, while for n < 50, 
OLS is the best performing model. In the figure, “B-SL” stands for Bayesian simple linear model 
without errors, “B-SL-E” for Bayesian simple linear model with errors, “B-LMM” for Bayesian 
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linear mixed model, “OLS” for ordinary least squares regression, “W-OLS” for weighted 
ordinary least squares regression, “D” for Deming regression, and “Y” for York model. 

 

3.3 General recommendations for selecting models to use for calibration in clumped 
isotope studies 

We use the results presented in sections 3.1 and 3.2 to generalize major patterns of model 
performance between calibration datasets of different sizes and provide recommendations. Our 
analyses suggest that when the calibration dataset is small (n=10), Deming, weighted and 
unweighted OLS show the best accuracy. In datasets with intermediate sample size (n=50), 
weighted and unweighted OLS models recover the best accuracy. In large datasets (n=500), 
Bayesian regressions show the best performance in terms of precision and accuracy. Our 
analyses highlight the relative downsides of using York regressions in datasets of different 
sample size and with variable level of error. Instead, analyses conducted under OLS models 
(small and intermediate sample size) and Bayesian models (large sample size) should be 
prioritized for providing more reliable parameter estimates than other approaches. Due to the 
increasing trend in the number of observations in calibration datasets, our Bayesian framework 
provides a natural pathway to appropriately analyze large syntheses of clumped isotope data. 

Finally, we also suggest that significant improvements on the performance of Bayesian 
models could be achieved in small datasets (e.g., 10 datapoints) by using maximum a posteriori 
estimation of regression parameters based on models fit in a larger number of replicates for the 
calibration dataset. In this study, parameter estimates under Bayesian models were based on 
fitting each model only once in each of the analyzed datasets. A more computationally intensive 
approach, fitting each model multiple times (e.g., 100–1,000) in each dataset and summarizing 
parameter estimates across the same number of posterior distributions, could have led to a better 
performance of Bayesian models in small datasets. 

 

3.4 Inverting the forward model to predict 106/T2 from 𝛥!": Temperature reconstructions 
for unknowns 

We evaluate model performance for temperature reconstructions. We use regression 
parameters derived from calibration datasets with a total of 50 observations. The corresponding 
results, summarized in the sections presented below, are also included in the supplement. We 
present results in the main text that reflects patterns associated with an intermediate level of error 
for 𝛥!" (0.01‰).  

Note that patterns of accuracy across models outlined in this section are expected to 
generally reflect the overall patterns of model performance during the calibration step (see 
Section 3.1). Given that Bayesian models were fit a single time in each of the datasets, 
performance for these models in this section likely reflect only an example of parameter 
estimates that are possible for 50-datapoint datasets. Due to the sample size dependency in 
accuracy that was outlined in Section 3.2, slightly different results can be obtained if 
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reconstructions are conducted using an alternative version of the 50-datapoint dataset (see 
distributions in Fig. 2). 

 

3.4.1 Reconstructions for low-temperature carbonates (𝛥!"= 0.8‰; T ~ 10 oC) 

Fig. 5 shows that for low-temperature carbonates, non-Bayesian models generally recover 
true temperature with better accuracy than Bayesian models. Under a low-error scenario, 
Deming, weighted and unweighted OLS overestimates true temperature by 0.5%, York by ~2%, 
and Bayesian models between 0.4% (no errors) and 1% (Bayesian linear mixed model). Under an 
intermediate-error scenario, Deming regression overestimates true temperature by 0.34%, 
weighted and unweighted OLS by 0.67%, York models by 4.5%, Bayesian simple linear models 
by 0.7%, and the Bayesian linear mixed model underestimates true temperature by 0.38%. 
Finally, under a high-error scenario, while non-Bayesian models overestimate temperature 
between 0.19% (weighted, unweighted OLS, and Deming regressions) and 8% (York model), 
Bayesian models underestimate temperature by 20%. 

 

3.4.2 Reconstructions for intermediate-temperature carbonates (𝛥!" = 0.7‰; T ~ 19 oC) 

Fig. 6 shows that for intermediate-temperature carbonates, Bayesian reconstructions only 
outperform any other approach when the error associated with the calibration dataset is low. 
However, non-Bayesian models are more appropriate when the error in the calibration dataset is 
intermediate or high. Under a low-error scenario, Bayesian models overestimate true temperature 
by 0.4–0.6% and non-Bayesian models underestimate temperature by ~1%. Under an 
intermediate error scenario, Bayesian models underestimate true temperature by ~6% and non-
Bayesian models by ~2%. Finally, under a high-error scenario, Bayesian models underestimate 
true temperature by 7–8% and non-Bayesian models by 2–3%. In terms of precision, Bayesian 
reconstructions exhibit ~1.7 times less uncertainty in temperature relative to any of the 
alternative non-Bayesian models examined in this study. 

 

3.4.3 Reconstructions for high-temperature carbonates (𝛥!"= 0.6‰; T ~ 60 oC) 

Fig. 7 shows that for high-temperature carbonates, Bayesian reconstructions are more 
accurate when the uncertainty in the calibration dataset is low or high. However, non-Bayesian 
models show a better performance when the uncertainty in the calibration set is intermediate in 
value. Under a low-error scenario, Bayesian models overestimate true temperature by 0.2% and 
non-Bayesian models underestimate temperature between 1–2%. Under an intermediate error 
scenario, non-Bayesian models underestimate temperature between 1.8% (Deming regression) 
and 3.6% (York regression). Bayesian models underestimate temperature by ~6% under the same 
error scenario. Under a high-error scenario, Bayesian models underestimate temperature by 0.3–
1.5% and non-Bayesian models between 2–5%. In terms of precision, Bayesian reconstructions 
exhibit 1.5–1.8 less uncertainty in temperature relative to any of the alternative non-Bayesian 
models examined in this study. 
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Fig. 5. Comparison of model performance in temperature reconstructions for low-
temperature carbonates (𝜟𝟒𝟕 = 0.8‰). Mean reconstructed temperatures are shown in circles 
indicating accuracy. The precision of the reconstructions is also shown (standard error – error 
bars). We show results for 𝛥!" = 0.8‰, and multiple errors in 𝛥!" (corresponding to 0.005‰, 
0.01‰, and 0.02‰). We also present results for a low-error scenario (measurement error in 𝛥!"= 
0.0025‰, instrument error 𝛥!"= 0.0125‰, measurement error in 10#/𝑇$= 0.25°C), 
intermediate-error scenario (measurement error in 𝛥!"= 0.0075‰, instrument error 𝛥!"= 
0.0225‰, measurement error in 10#/𝑇$= 2°C), and high-error scenario (measurement error in 
𝛥!"= 0.0125‰, instrument error 𝛥!"= 0.0275‰, measurement error in 10#/𝑇$= 5°C). In the 
figure, “B-SL” stands for Bayesian simple linear model without errors, “B-SL-E” for Bayesian 
simple linear model with errors, “B-LMM” for Bayesian linear mixed model, “OLS” for 
ordinary least squares regression, “W-OLS” for weighted ordinary least squares regression, “D” 
for Deming regression, and “Y” for York model. 
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Fig. 6. Comparison of model performance in temperature reconstructions for 
intermediate-temperature carbonates (𝜟𝟒𝟕 = 0.7‰). Mean reconstructed temperatures are 
shown in circles indicating accuracy. The precision of the reconstructions is also shown 
(standard error – error bars). We show results for 𝛥!" = 0.7‰, and multiple errors in 𝛥!" 
(corresponding to 0.005‰, 0.01‰, and 0.02‰). We also present results for a low-error scenario 
(measurement error in 𝛥!"= 0.0025‰, instrument error 𝛥!"= 0.0125‰, measurement error in 
10#/𝑇$= 0.25°C), intermediate-error scenario (measurement error in 𝛥!"= 0.0075‰, instrument 
error 𝛥!"= 0.0225‰, measurement error in 10#/𝑇$= 2°C), and high-error scenario 
(measurement error in 𝛥!"= 0.0125‰, instrument error 𝛥!"= 0.0275‰, measurement error in 
10#/𝑇$= 5°C). In the figure, “B-SL” stands for Bayesian simple linear model without errors, “B-
SL-E” for Bayesian simple linear model with errors, “B-LMM” for Bayesian linear mixed 
model, “OLS” for ordinary least squares regression, “W-OLS” for weighted ordinary least 
squares regression, “D” for Deming regression, and “Y” for York model. 
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Fig. 7. Comparison of model performance in temperature reconstructions for high-
temperature carbonates (𝜟𝟒𝟕 = 0.6‰).  Mean reconstructed temperatures are shown in circles 
indicating accuracy. The precision of the reconstructions is also shown (standard error – error 
bars). We show results for 𝛥!" = 0.6‰, and multiple errors in 𝛥!" (corresponding to 0.005‰, 
0.01‰, and 0.02‰). We also present results for a low-error scenario (measurement error in 𝛥!"= 
0.0025‰, instrument error 𝛥!"= 0.0125‰, measurement error in 10#/𝑇$= 0.25°C), 
intermediate-error scenario (measurement error in 𝛥!"= 0.0075‰, instrument error 𝛥!"= 
0.0225‰, measurement error in 10#/𝑇$= 2°C), and high-error scenario (measurement error in 
𝛥!"= 0.0125‰, instrument error 𝛥!"= 0.0275‰, measurement error in 10#/𝑇$= 5°C). In the 
figure, “B-SL” stands for Bayesian simple linear model without errors, “B-SL-E” for Bayesian 
simple linear model with errors, “B-LMM” for Bayesian linear mixed model, “OLS” for 
ordinary least squares regression, “W-OLS” for weighted ordinary least squares regression, “D” 
for Deming regression, and “Y” for York model. 
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3.4.4 Recommendations 

We make a series of recommendations for calibration datasets with n=50 or more observations. 
For low-temperature carbonates (𝛥!"	 ~0.8‰), non-Bayesian linear models reconstruct 
temperatures with the highest precision (e.g., Deming and weighted/unweighted OLS) and 
Bayesian models with the highest accuracy. For intermediate-temperature carbonates (𝛥!" ~ 
0.7‰), Bayesian models outperform any other models when uncertainty in the calibration dataset 
is low. However, non-Bayesian models (e.g., York, Deming, weighted/unweighted) may be 
preferred when uncertainty in the calibration set is intermediate or larger. For high-temperature 
carbonates (𝛥!" ~ 0.6‰), Bayesian models reconstruct temperatures more accurately when the 
uncertainty in the calibration dataset is at either extreme (small or high). We recommend using 
non-Bayesian regression models (with the exception of York regressions) regression models 
when uncertainty in the calibration set is intermediate. 

 

3.5 BayClump: A Shiny app for paleothermometry using ‘clumped isotopes’ 

To support the use of Bayesian models and the analytical framework developed in this 
study for clumped isotope calibration and for temperature reconstructions, and to facilitate 
comparisons of Bayesian and classical models, we present a self-contained R Shiny Dashboard 
application, BayClump (Fig. 8). BayClump fits both classical and Bayesian linear regressions to 
calibration datasets and performs temperature reconstructions. It uses most of the models 
described in this study in a graphical user interface (GUI) environment, without the need for 
expertise in R or programming of any kind. BayClump is open source and analyses are highly 
reproducible. BayClump is available as a web application at 
https://bayclump.tripatilab.epss.ucla.edu, as a local application for users familiar with R and 
RStudio (https://github.com/Tripati-Lab/BayClump), or as a standalone Electron desktop 
application which requires no additional software (the Electron application will be made 
available through Zenodo upon acceptance for publication), as freeware with the only 
requirements being citation of this study, and including an appropriate statement if the software 
or calibrations are modified.  

BayClump currently includes two preloaded calibration datasets, compiled from Petersen 
et al. (2019) (Model 1) and Anderson et al. (2021) (Model 2), which will be updated as new 
calibration studies are published. Regression models can be developed using existing datasets or 
users can upload their own calibration data to work with by using a template available within the 
app. Users can also combine new calibration data with posted datasets to create a larger 
calibration set if desired. Any data that a user works with is not made available to others. 

Based on current best practices (Bernasconi et al., 2021; Upadhyay et al., 2021), both 
Model 1 and Model 2 calibration sets are provided in the Intercarb Carbon Dioxide Equilibrium 
Scale (I-CDES). For this, we used an AFF to adjust values (i.e., 0.088 from Petersen et al. 
(2019)) so they are projected to the same acid digestion temperature (I-CDES is anchored to 
values that assume a reaction T of 90°C, not 25°C). Users may project their data into the I-
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CDES90 reference frame prior to adding into the template and uploading, for compatibility with 
default datasets, or they can exclusively use their own calibration data in any reference frame. 
Calibration models may be selected independently of one another, and options are available to 
scale data if needed. BayClump provides the ability for the user to download full calibration 
regression model output and any of the associated calibration regression model plots.  

We also provide a GUI in BayClump for reconstructing temperature using both Bayesian 
and non-Bayesian models. A separate template in comma separated value (.csv) format is 
provided where users can add a table of sample Δ47 values and the combined error from 
measurement and standardization, and then download calculated temperatures in an Excel file. 
Currently, users can implement the Bayesian linear regression model with errors, utilize a 
Bayesian framework for estimating temperature that intrinsically accounts for both uncertainty in 
parameter estimates and error in target Δ47.  

Alternatively, BayClump users can transfer over a distribution of Bayesian or non-
Bayesian regression parameters derived from their own datasets from the Calibration tab to use 
for temperature reconstruction in the Reconstruction tab, either within or outside of a Bayesian 
framework. For non-Bayesian temperature estimates, reconstructed values of temperature will be 
shown for each of the selected models (in the calibration tab) when (1) parameter error is ignored 
in temperature reconstructions, or (2) when parameter error is accounted for in the reconstruction 
step.  



manuscript submitted to Geochemistry, Geophysics, Geosystems 

25 

 

 

Fig. 8. BayClump application screenshots for proxy calibration and for temperature 
reconstruction. A) Calibration options are chosen in the first tab of the application. Multiple 
preloaded datasets are included, or the user may opt to upload their own calibration data. 
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Summary information is provided for each selected regression model upon run completion. B): 
Plots of calibration data and each selected regression model are provided in the ‘Calibration 
Plots’ tab. Plots are fully interactive and downloadable. C) The application automatically 
transfers calibration models and data to the ‘Reconstructions’ tab. Users upload their own 𝛥!" 
data for temperature reconstructions using the provided template. Summary information is 
provided at run completion (output shown above is truncated). Both ‘Calibration’ and 
‘Reconstruction’ tabs provide buttons to download full model output in tabbed and labeled Excel 
spreadsheets.  

 

3.5.1 Reanalysis of the Petersen et al. (2019) dataset using BayClump  

In addition to providing a general summary of model performance using synthetic 
datasets, we utilize BayClump to estimate regression parameters for a published synthesis of 
calibration data that contained results for 451 samples measured in several different laboratories 
on the Carbon Dioxide Equilibrium Scale reference frame (Petersen et al. 2019). In that study, 
the authors provided estimates of the slope and intercept using a Monte Carlo least squares 
regression based on 10,000 replicates (Table 3). Here, we analyze the same dataset using all 
seven regression models analyzed in this study (Fig. 9). We perform a total of 1,000 replicates of 
each non-Bayesian model implemented in BayClump. Bayesian models were analyzed using 
50,000 iterations (50% burnin). Note that given our main focus was on re-examining the main 
equation in Petersen et al. (2019), we do not fit material-specific regression models (e.g., using 
B-LMM). The authors of the same study extensively discuss material specificity in the same 
article. Similarly, we focus on deriving a calibration for the full temperature range of the dataset 
(also largely the main goal of their study). 

Fig. 9 compares regression coefficients and their associated uncertainties. Except for 
York models, Bayesian and non-Bayesian linear models differed from the slope estimated in 
Petersen et al. (2019) by less than 1.5%. York recovered a slope estimate that was ~17% larger 
than the one in Petersen et al. (2019; slope in York=0.0397 vs Petersen 0.0383). In terms of the 
intercept, Deming and York models recovered parameter estimates that were between 5% 
(Deming) and 26% smaller than the ones in Petersen et al. (2019; intercept Deming=0.245 vs 
York=0.191 vs Petersen = 0.258). Based on our analysis of synthetic datasets, the divergence of 
York and Deming models from the rest of the regression models is expected. These two models 
generally show a poor performance and under- or over-estimate calibration regression 
parameters relative to Bayesian and OLS models. 
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Fig. 9. Reanalysis of the Petersen et al. (2019) dataset using BayClump. We present mean 
parameter estimates for each of the seven regression models implemented in BayClump (blue 
line), the associated 95% CI (shaded orange region), and the regression reported by Petersen et 
al. (2009) (red dashed line; 95% CI in grey). In the figure, “B-SL” stands for Bayesian simple 
linear model without errors, “B-SL-E” for Bayesian simple linear model with errors, “B-LMM” 
for Bayesian linear mixed model, “OLS” for ordinary least squares regression, “W-OLS” for 
weighted ordinary least squares regression, “D” for Deming regression, and “Y” for York model. 

 

3.5.2 Reanalysis of the Anderson et al. (2021) dataset using BayClump  

Using BayClump, we also reanalyze the Anderson et al. (2021) dataset (Fig. 10) using the 
same methodology as described in this study in Section 3.5.1. Anderson et al. (2021) provided 
parameter estimates based on York regression models. Instead of using a single version of the 
full dataset as in Petersen et al. (2019), we use two versions of the Anderson et al. (2021) 
calibration dataset. First, we fit regressions to the whole dataset, over the full range of 
temperature values. Second, we perform analyses that include only samples in the environmental 
temperature range (0–35 oC; Table 3). Specifically, given that the simulated datasets closely 
reflect an environmental temperature range, we subsampled the Anderson et al. (2021) dataset 
for being able to use our results in the synthetic component of this paper as a reference. Note that 
patterns of association between 106/T2 from 𝛥!" in a limited temperature range (~0–35 oC) we 
examined in Anderson et al. (2019) but not in Petersen et al. (2019). Similarly, we examined 
material-specific regression parameters (e.g., B-LMM) given that this aspect was not extensively 
discussed in Anderson et al. (2021).  

Note that the uncertainty in the full and subsampled Anderson et al. (2021) dataset with a 
mean temperature error ~0.5 °C and mean error in Δ47=0.012‰ (0.040‰ in the subsampled), 
roughly corresponds to the error structure of our low-error scenario. When using the entire 
Anderson et al. (2021) dataset, our parameter estimates for the based on the York model fit in 
BayClump differ by -0.5% (slope) and 1.1% (intercept) from parameter estimates in Anderson et 
al. (2021; Table 3). Our Bayesian simple linear models recover estimates of the slope that are -
0.5–1% different than the one in Anderson et al. (2021) and intercept values that are 0.04–1.27% 
larger than the published ones. The rest of the models differed from parameter estimates in 
Anderson et al. (2021) by less than 3%. The most important difference is not actually between 
models but related to the analyzed partition of the dataset. Relative to the original Anderson et al. 
(2021) calibration for their full dataset, all of our models yield different regression parameters 
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(15–29% smaller slope estimates and 27–55% larger intercept values relative to the published 
estimates) when the reduced Anderson et al. (2021) dataset, that includes only samples in the 
environmental temperature range, is used. Finally, we note that our Bayesian linear mixed 
models did detect differences in parameter estimates (full Anderson dataset: mostly related to the 
slope; ATM Anderson dataset: related to both the slope and intercept; Table 3) between calcite 
and dolomite samples in Anderson et al. (2021). 

 

 

Fig. 10. Reanalysis of the Anderson et al. (2021) dataset synthesis using 
BayClump. We present mean parameter estimates for each of the seven regression models 
implemented in BayClump (blue line), the associated 95% CI (shaded orange region), and the 
published syntheses (red dashed line; 95% CI in grey). Results are shown for Anderson et al. 
(2021) synthesis for all samples (top row), and Anderson et al. (2021) for samples in an 
environmental temperature range (0–35 oC; bottom row). Note that Bayesian linear mixed 
models estimate material-specific regression models (two lines and associated uncertainties in 
plot). However, parameter estimates for each material under might have suffered from further 
partitioning the already small dataset in Anderson et al. (2021). In the figure, “B-SL” stands for 
Bayesian simple linear model without errors, “B-SL-E” for Bayesian simple linear model with 
errors, “B-LMM” for Bayesian linear mixed model, “OLS” for ordinary least squares regression, 
“W-OLS” for weighted ordinary least squares regression, “D” for Deming regression, and “Y” 
for York model. 

 

3.5.3 Reanalysis of the Sun et al. (2021) dataset using BayClump  

We recalculate temperatures using data from Sun et al. (2021) for Late Miocene and 
recent carbonates from the Shuitangba hominoids site in Yunnan, China with BayClump (Fig. 
11). This study represents a relevant study case where the main focus is directly related to 
addressing whether temperatures between two sites differed at different times (~0 and 6.2 Ma). 
For this reanalysis, we take regression parameters for the different models from Table 3 that are 
calculated using the three datasets described above (dataset 1 - the Petersen et al. (2019) 
calibration dataset from section 3.5.1; dataset 2 – the full sample set from the Anderson et al. 
(2021) calibration from section 3.5.2; dataset 3 – a restricted subset of the Anderson et al. (2021) 
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calibration that uses their samples from environmental temperatures (0–35 °C) from section 
3.5.2). Next, we perform temperature reconstructions that account for both regression parameter 
uncertainty (Table 3) and error in Δ47 (Sun et al., 2021; Table 4). Note that the uncertainty in 
Petersen et al. (2019) (mean temperature error=1.49 °C, and mean error in Δ47=0.010‰), roughly 
corresponds to the error structure of our intermediate-error scenario (measurement error in Δ47= 
0.0075‰, error in true Δ47= 0.0225‰, measurement error in temperature=2 °C). The mean Δ47 in 
Sun et al. (2021) is similar to our intermediate-temperature carbonates scenario (~0.7‰), and 
most of their samples have an intermediate level of error (~0.01‰). Given our results based on 
synthetic datasets (section 3.4.2; Table 3), we expect that Bayesian models should be the most 
accurate and precise among the examined models. We also compare reconstructed temperatures 
to the results reported in Sun et al. (2021) that utilized published calibrations (Henkes et al., 
2013; Tripati et al., 2015).  

Overall, our mean estimates of temperature based on Bayesian regression models suggest 
that there are not major differences in reconstructed temperatures between sites (Table 3). 
Temperature estimates are, however, very similar to those reported by Sun et al. (2021) based on 
calibrations from Tripati et al. (2015) and Henkes et al. (2013) (see also Table 4). Our Bayesian 
framework generally yields temperature values with much smaller uncertainties, depending on 
the analyzed dataset.  

In general, our results based on the utilization of Bayesian and non-Bayesian regression 
models and a Bayesian framework for reconstructing temperatures support one of the main 
conclusions in Sun et al. (2021). Specifically, the authors and our study suggest similar 
temperatures in Shuitangba during the Late Miocene and the present-day temperatures in the 
Fuxian Lake area (both sites, ~17 oC). Results in Sun et al. (2021) noted that uncertainties in 
reconstructed temperatures were larger than the mean temperature difference between areas. Our 
Bayesian reconstructions were able to shrink uncertainty around median temperature values 
while also concluding that temperatures are similar between sites.  

 

 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

30 

Fig. 11. Temperature reconstructions presented in Sun et al. (2021) for a hominoid 
locality in Yunnan, China compared to those derived using BayClump. We present mean 
and associated error for reconstructed temperatures from Sun et al. (2021) based on calibrations 
by Henkes et al. (2013; “H-2013”) and Tripati et al. (2015; “T-2015”). Note that “H-2013” and 
“T-2015” are the same across rows in the figure (dotted lines). These reconstructions are used in 
each panel as a reference to the new calibrations performed in BayClump (solid lines). Our 
analyses in BayClump (i.e., solid lines) are shown for calibrations performed on the Petersen et 
al. (2019; top row), Anderson et al. (2021)’s full calibration dataset (second row), and Anderson 
et al. (2021)’s dataset reduced to environmental samples (bottom row). In each of these datasets, 
we fit seven regression models and reconstructed temperatures for the two sited in Sun et al. 
(2021). In the figure, “B-SL” stands for Bayesian simple linear model without errors, “B-SL-E” 
for Bayesian simple linear model with errors, “B-LMM” for Bayesian linear mixed model, 
“OLS” for ordinary least squares regression, “W-OLS” for weighted ordinary least squares 
regression, “D” for Deming regression, and “Y” for York model. 

 

4 Conclusions 

We examine the performance of seven regression models for calibrating the clumped 
isotope thermometer, including the first Bayesian implementations of regression models. We 
implement a Bayesian linear mixed model that can accommodate differences in regression 
parameters between groups, so that a range of materials can have different slopes and/or 
intercepts. Using simulated calibration datasets with variable number of observations (from 10 to 
500 samples) and degrees of error in clumped isotope measurements and temperature, we find 
that Bayesian and non-Bayesian ordinary least squares linear models consistently outperform 
other regression models in terms of accuracy and precision under most synthetic scenarios when 
reconstructing true regression parameters. The performance of Bayesian linear models strongly 
improves when the number of observations in the calibration dataset exceeds 50 data points. 

We also utilized different frameworks for reconstructing temperatures and found 
differences in temperature reconstruction performance between regression models. In general, 
Bayesian reconstructions were more precise and accurate than non-Bayesian reconstructions 
when error in the examined Δ47 was small (<0.01‰). Non-Bayesian reconstructions using 
Bayesian model-derived regression parameters were generally more robust than other 
approaches, and accurately recovered temperatures in a range of scenarios. Based on our 
analyses, we summarized the models that showed the best performance during the calibration 
and reconstruction phase. A Bayesian regression model when applied to published calibration 
syntheses yields reduced uncertainties. Some of the differences between temperature 
reconstructions based on published syntheses may originate from material-specific patterns in the 
calibration datasets, which should be investigated in future work. 

 The analytical tools developed in this study are available in BayClump, a Shiny 
dashboard with data templates that facilitates the use of Bayesian methods for both calibration 
and temperature reconstruction. Application to published clumped isotope data from Late 
Miocene and recent samples from the Shuitangba hominoids site in Fuxian Lake (Yunnan, 
China) show the potential of BayClump as a tool for resolving relatively small temperature 
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changes with confidence in paleoclimatology and support the published conclusions. We expect 
the tools developed in this study to provide a basis for robustly choosing to use particular 
regression models for temperature calibration and reconstruction in clumped isotopes, and to 
reduce the uncertainty of temperature reconstructions. 
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Table captions 

Table 1. Distribution of measurement error in temperature that was used to design the synthetic 
datasets for this study. We provide examples of the materials that correspond to each category. 
For example, calibration datasets for synthetic carbonates grown at known temperatures, or 
benthic foraminifera from intermediate and deep-ocean sites, often have very well-constrained 
temperatures with errors of less than 0.5 °C (e.g., Ghosh et al., 2006; Tripati et al., 2010). Levels 
of error were defined based on the distribution of typical uncertainties reported for calibration 
temperatures in a recent synthesis of calibration data (Petersen et al., 2019). Temperatures in 
degree °C are transformed into 10#/𝑇$, with T in °K, for calibration purposes (after Ghosh et al., 
2006).  

Table 2. Distribution of measurement error in 𝛥!" used to design our synthetic datasets. 
Measurement error in 𝛥!" was estimated using the distribution of reported 𝛥!" errors in a 
synthesis of calibration data (Petersen et al., 2019). We present distributions for natural, 
synthetic, calcite, and aragonite samples. Distribution across sample types are under the “all 
materials” heading. 

Table 3. Comparison of regression parameters estimated in Petersen et al. (2019) relative to our 
new estimates based on the same dataset. Results in Petersen et al. (2019) are based on a Monte 
Carlo sampling (10,000 replicates) for synthetic carbonate samples only (n = 451 replicates). We 
use a total of 10,000 replicates for estimating each regression parameter under each of the 
regression models implemented in BayClump. For our newly fit regressions, we report the mean and SE for 
each parameter. 

Table 4. Comparison of Miocene and Recent temperatures reconstructed by Sun et al. (2021) 
using published calibrations from Tripati et al. (2015) and Henkes et al. (2013) to values 
obtained using BayClump for different calibration datasets and the York, OLS, and Bayesian 
regression models. We use results presented in Table 2 from Sun et al. (2021), with data 
provided in their Table S4. Temperature uncertainties are in SE and 95% CIs.  



Very high

0.25 °C 0.5 °C 1 °C 2 °C 3 °C 5 °C 10 °C

0 13.403 0.025 0.049 0.099 0.198 0.299 0.504 1.038

5 12.925 0.023 0.047 0.093 0.188 0.283 0.478 0.982

10 12.473 0.022 0.044 0.089 0.178 0.269 0.452 0.930

15 12.044 0.021 0.042 0.084 0.169 0.255 0.429 0.882

20 11.636 0.020 0.040 0.080 0.160 0.242 0.407 0.836

25 11.249 0.019 0.038 0.076 0.152 0.230 0.387 0.794

30 10.881 0.018 0.036 0.072 0.145 0.219 0.368 0.755

35 10.531 0.017 0.034 0.069 0.138 0.208 0.350 0.718

40 10.198 0.016 0.033 0.065 0.132 0.198 0.334 0.684

45 9.880 0.016 0.031 0.062 0.125 0.189 0.318 0.652

50 9.576 0.015 0.030 0.060 0.120 0.180 0.303 0.621

0.019 0.038 0.077 0.155 0.234 0.394 0.808
Natural 

dolomites

High

Average:

Temperature uncertainty typical of 
calibrations for these material types

Some terrestrial 
carbonates

Synthetic carbonates, 
benthic foraminifera

Planktic foraminifera, 
lake carbonates

Temperature 
(°C)

Temperature 
(106/T2)

Low Intermediate



Bin (‰) Count Bin (‰) Count Bin (‰) Count Bin (‰) Count Bin (‰) Count

0.000-0.005 123 0.000-0.005 96 0.000-0.005 20 0.000-0.005 88 0.000-0.005 9 Low

0.005-0.010 244 0.005-0.010 182 0.005-0.010 58 0.005-0.010 191 0.005-0.010 26 Intermediate

0.010-0.015 103 0.010-0.015 60 0.010-0.015 42 0.010-0.015 55 0.010-0.015 25

0.015-0.020 44 0.015-0.020 18 0.015-0.020 24 0.015-0.020 10 0.015-0.020 4

0.020-0.025 18 0.020-0.025 7 0.020-0.025 11 0.020-0.025 8 0.020-0.025 2

0.025-0.030 7 0.025-0.030 2 0.025-0.030 5 0.025-0.030 1 0.025-0.030 1

0.030-0.035 3 0.030-0.035 1 0.030-0.035 2 0.030-0.035 2 0.030-0.035 0

0.035-0.040 2 0.035-0.040 1 0.035-0.040 1 0.035-0.040 1 0.035-0.040 0

0.040-0.045 2 0.040-0.045 1 0.040-0.045 1 0.040-0.045 0 0.040-0.045 0

0.045-0.050 2 0.045-0.050 1 0.045-0.050 1 0.045-0.050 1 0.045-0.050 1

0.050-0.055 1 0.050-0.055 0 0.050-0.055 1 0.050-0.055 0 0.050-0.055 0

0.055-0.060 1 0.055-0.060 0 0.055-0.060 1 0.055-0.060 1 0.055-0.060 0

0.060-0.065 1 0.060-0.065 0 0.060-0.065 1 0.060-0.065 1 0.060-0.065 0

Average: 0.01 Average: 0.0086 Average: 0.0133 Average: 0.0086 Average: 0.0105

Level of error

High

Very High

All data Natural data Synthetic data Calcite Aragonite



Study Regression model Slope SE Intercept SE

Petersen et al. (2021) Original calibration 0.0383 1.70E-06 0.258 1.70E-05

Bayesian simple linear model (w/o errors) 0.0377 7.20E-06 0.260 8.11E-05

Bayesian simple linear model (w/ errors) 0.0378 1.05E-05 0.259 1.16E-04

Bayesian mixed model 0.0378 1.02E-05 0.260 1.15E-04

Deming regression 0.0389 2.91E-05 0.245 2.85E-04

Linear model 0.0377 1.04E-05 0.260 1.14E-04

Inverse weighted linear model 0.0377 9.50E-06 0.259 1.03E-04

York regression 0.0447 8.33E-05 0.191 9.79E-04

Anderson et al. (2021; full range) Original calibration 0.0391 4.00E-04 0.154 4.00E-03

Linear model 0.0388 2.45E-05 0.158 2.82E-04

Inverse weighted linear model 0.0382 2.70E-05 0.164 3.10E-04

York regression 0.0389 2.43E-05 0.157 2.73E-04

Deming regression 0.0384 2.41E-05 0.160 2.83E-04

Bayesian simple linear model (w/o errors) 0.0388 1.20E-05 0.157 1.25E-04

Bayesian simple linear model (w/ errors) 0.0389 2.25E-05 0.157 2.29E-04

Bayesian mixed model (Calcite) 0.0388 1.14E-04 0.154 1.34E-03

Bayesian mixed model (Dolomite) 0.0395 3.54E-05 0.154 3.46E-04

Anderson et al. (2021; environmental temperature) Linear model 0.0312 7.50E-05 0.250 9.43E-04

Inverse weighted linear model 0.0315 9.20E-05 0.246 1.16E-03

York regression 0.0313 8.04E-05 0.249 1.00E-03

Deming regression 0.0313 6.20E-05 0.248 7.89E-04

Bayesian simple linear model (w/o errors) 0.0311 4.64E-05 0.251 5.78E-04

Bayesian simple linear model (w/ errors) 0.0305 9.09E-04 0.259 1.15E-02

Bayesian mixed model (Calcite) 0.0331 1.10E-03 0.224 1.37E-02

Bayesian mixed model (Dolomite) 0.0276 1.60E-03 0.296 1.97E-02



Sample Type Age Location Lat/Long. Elevation (m) Δ47 (Sun et al. 2021; CDES)

Fossil aragonite shells ~6.2 MaShuitangba, Zhaotong, Yunnan 27°19′44″ N, 103°44′15″ E 1918 0.706 ± 0.023

Modern aragonite shells 0 Fuxian Lake, Yunnan 24°26′55.5″ N, 102°51′18.3″ E 1722 0.708 ± 0.019

Published calibrations Age
Average T (°C)

(Henkes et al., 2013)
Average T (°C)

(Tripati et al., 2015)
Average T (°C)

(Petersen et al., 2019)

Sun et al. (2021; Table 2) ~6.2 Ma 21.4 ± 8.5 17.6 ± 5.4 22.7 ± 7.6

0 20.6 ± 7.3 17.1 ± 4.5 26.9 ± 4.4

BayClump - Dataset 1 Age
Average T (°C)

(this study - OLS)
Average T (°C)

(this study - B - LM)
Average T (°C)

(this study - B - LM - E)
Average T (°C)

(this study - B - LMM)

Petersen et al. (2019) ~6.2 Ma 17.5 ± 7.2 17.0 ± 3.5 16.8 ± 3.5 17.0 ± 3.5

0 16.8 ± 5.95 17.6 ± 4.2 17.4 ± 4.2 17.6 ± 4.2

BayClump - Dataset 2 Age
Average T (°C)

(this study - OLS)
Average T (°C)

(this study - B - LM)
Average T (°C)

(this study - B - LM - E)
Average T (°C)

(this study - B - LMM)

Anderson et al. (2021) – Full range ~6.2 Ma 17.1 ± 6.9 16.6 ± 3.3 16.4 ± 3.3 15.4 ± 3.2

0 16.4 ± 5.7 16.2 ± 5.8 17.0 ± 4.1 16.0 ± 4.0

BayClump - Dataset 3 (Anderson, Env) Age
Average T (°C)

(this study - OLS)
Average T (°C)

(this study - B - LM)
Average T (°C)

(this study - B - LM - E)
Average T (°C)

(this study - B - LMM)

Anderson et al. (2021) – Environmental range ~6.2 Ma 18.1 ± 8.7 17.8 ± 4.4 17.4 ± 4.2 16.0 ± 3.8

0 17.3 ± 7.2 18.7 ± 5.1 18.2 ± 5.1 16.7 ± 4.6



Δ47 (Sun et al. 2021; CDES90)

0.618 ± 0.023

0.620 ± 0.019

Average T (°C)
(this study - York)

20.6 ± 6.3

20.0 ± 5.2

Average T (°C)
(this study - York)

17.1 ± 6.9

16.5 ± 5.7

Average T (°C)
(this study - York)

18.1 ± 8.6

17.3 ± 7.2
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