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Abstract

This work documents the ICON-Earth System Model (ICON-ESM V1.0), the first coupled model based on the ICON (ICOsa-

hedral Non-hydrostatic) framework with its unstructured, isosahedral grid concept. The ICON-A atmosphere uses a nonhydro-

static dynamical core and the ocean model ICON-O builds on the same ICON infrastructure, but applies the Boussinesq and

hydrostatic approximation. The oceanic carbon cycle and

biogeochemistry is represented by the HAMOCC6 module and the terrestrial biogeophysical and biogeochemical process are

integrated in the new JSBACH4 module.

We describe the tuning and spin-up of a base-line version at a resolution typical for models participating in the Coupled Model

Intercomparison Project (CMIP). The performance of ICON-ESM is assessed by means of a set of standard CMIP6 simulations.

Achievements are well-balanced top-of-atmosphere radiation, stable key climate quantities in the control simulation, and a good

representation of the historical surface temperature evolution. The model has overall biases, which are comparable to those of

other CMIP models, but ICON-ESM performs less well than its predecessor, the MPI-ESM. Problematic biases are diagnosed

in ICON-ESM in the vertical cloud distribution and the mean zonal wind field. In the ocean, sub-surface temperature and

salinity biases are of concern as is a too strong seasonal cycle of the sea-ice cover in both hemispheres. ICON-ESM V1.0 serves

as a basis for further developments that will take advantage of ICON-specific properties such as spatially varying resolution,

and coupled configurations at very high resolution.

1



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

The ICON Earth System Model Version 1.01

J.H. Jungclaus1, S.J. Lorenz1, H. Schmidt1, V. Brovkin1,6, N. Brüggemann1,2,2
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Key Points:18

• This work documents ICON-ESM 1.0, the first version of a coupled model based19

on the ICON framework20

• Performance of ICON-ESM is assessed by means of CMIP6 DECK experiments21

at standard CMIP-type resolution22

• ICON-ESM features good performance in the stability of TOA radiation balance23

and reproduces the observed temperature evolution. Biases in clouds, winds, sea-24

ice, and ocean properties are somewhat larger than in MPI-ESM at similar res-25

olution.26
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Abstract27

This work documents the ICON-Earth System Model (ICON-ESM V1.0), the first cou-28

pled model based on the ICON (ICOsahedral Non-hydrostatic) framework with its un-29

structured, isosahedral grid concept. The ICON-A atmosphere uses a nonhydrostatic dy-30

namical core and the ocean model ICON-O builds on the same ICON infrastructure, but31

applies the Boussinesq and hydrostatic approximation. The oceanic carbon cycle and32

biogeochemistry is represented by the HAMOCC6 module and the terrestrial biogeophys-33

ical and biogeochemical process are integrated in the new JSBACH4 module. We describe34

the tuning and spin-up of a base-line version at a resolution typical for models partic-35

ipating in the Coupled Model Intercomparison Project (CMIP). The performance of ICON-36

ESM is assessed by means of a set of standard CMIP6 simulations. Achievements are37

well-balanced top-of-atmosphere radiation, stable key climate quantities in the control38

simulation, and a good representation of the historical surface temperature evolution.39

The model has overall biases, which are comparable to those of other CMIP models, but40

ICON-ESM performs less well than its predecessor, the MPI-ESM. Problematic biases41

are diagnosed in ICON-ESM in the vertical cloud distribution and the mean zonal wind42

field. In the ocean, sub-surface temperature and salinity biases are of concern as is a too43

strong seasonal cycle of the sea-ice cover in both hemispheres. ICON-ESM V1.0 serves44

as a basis for further developments that will take advantage of ICON-specific properties45

such as spatially varying resolution, and coupled configurations at very high resolution.46

Plain Language Summary47

ICON-ESM is a completely new coupled climate and earth system model that ap-48

plies novel design principles and numerical techniques. This article describes how the com-49

ponent models for atmosphere, land, and ocean are coupled together and how we achieve50

a stable climate by setting certain tuning parameters and performing sensitivity exper-51

iments. We evaluate the performance of our new model by running a set of experiments52

under pre-industrial and historical climate conditions as well as a set of idealized greenhouse-53

gas-increase experiments. These experiments were designed by the Coupled Model In-54

tercomparison Project (CMIP) and allow us to compare the results to those from other55

CMIP models and the predecessor of our model, the Max Planck Institute for Meteo-56

rology Earth System Model. While we diagnose overall satisfying performance, we find57

that ICON-ESM features somewhat larger biases in several quantities compared to its58

predecessor at comparable grid resolution. We emphasize that the present configuration59

serves as a basis from where future development steps will open up new perspectives in60

earth system modelling.61

1 Introduction62

ICON-ESM (V1.0) is the first release of a new Earth System Model that is devel-63

oped at the Max Planck Institute for Meteorology (MPI-M). It is based on the ICON64

framework, a joint development of MPI-M, the German Weather Service (Deutscher Wet-65

terdienst, DWD), the Karlsruhe Institute for Technology, and other partner institutions66

in Germany and Switzerland. ICON-ESM combines the ocean ICON-O (Korn, 2017) and67

atmosphere ICON-A (Giorgetta et al., 2018) components of the ICON modelling sys-68

tem together with ICON-Land, including JSBACH 4, a complete re-write of the land model69

JSBACH 3 (Reick et al., 2021, 2013), and the ocean biogeochemistry module HAMOCC670

(Ilyina et al., 2013). The ocean and atmosphere are coupled using the newly developed71

coupling software Yet Another Coupler (YAC; Hanke et al., 2016). ICON stands for ICOsa-72

hedral Nonhydrostatic, where the latter is only realized for the atmosphere component.73

At MPI-M, ICON-ESM succeeds the well-established Max Planck Institute for Me-74

teorology Earth System Model (MPI-ESM; Mauritsen et al., 2019) with its component75

models for the atmosphere ECHAM6 (Stevens et al., 2013) and the ocean MPIOM (Jungclaus76
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et al., 2013), the land model JSBACH 3 (Reick et al., 2013, 2021), and the ocean bio-77

geochemistry module HAMOCC (Ilyina et al., 2013). Together with its predecessors, MPI-78

ESM1.2 has represented three decades of successful model development (see Mauritsen79

and Roeckner (2020)). The development of a completely new model system is an answer80

to the requirement for increasing resolution, the need for conservation for the represen-81

tation of chemical tracers in the atmosphere, and for excellent scalability at high-performance82

computers (HPC). While these properties of ICON-ESM will be most beneficial in very83

high-resolution coupled configurations, we present here, as a first step to introduce ICON-84

ESM to the scientific community, the physical model at a resolution that can be called85

“standard” in the context of climate simulations for the ongoing Coupled Model Inter-86

comparison Project (CMIP6, Eyring et al. (2016)). We focus on a set-up with 158 km87

grid spacing in ICON-A and 40 km in ICON-O. Focusing on experiments in climate mode,88

i.e. at least century-long simulations with parameterized physics, the set-up described89

here offers an efficient configuration for simulations of past, present and future climates,90

and large ensembles. It also forms the basis for higher-resolution versions as well as for91

configurations using specific properties of the ICON system, for example grid refinement92

in ICON-O (Logemann et al., 2021) or nesting in ICON-A (Klocke et al., 2017). In this93

manuscript, we present the first results of ICON-ESM and provide an examination of94

the model characteristics in a set of experiments following the CMIP6 Diagnosis, Eval-95

uation, and Characterization of Klima (DECK) protocol and include an ensemble of five96

CMIP6 “historical” simulations (Eyring et al., 2016). We compare and evaluate the sim-97

ulations with observations and reanalysis data as well as other CMIP6 models and MPI-98

ESM.99

Typically, model tuning happens initially at the component model level (Giorgetta100

et al. (2018), Korn P. et al., ”ICON-O: The ocean component of the ICON Earth Sys-101

tem Model - global simulation characteristics and local telescoping capability”). Cou-102

pled together, the completely new ICON components for ocean, sea-ice, land and atmo-103

sphere repeatedly revealed unexpected behavior that required detailed investigations and104

major tuning efforts, which we partly describe in this manuscript (section 3). In the fol-105

lowing, we provide information on the general circulation models for atmosphere and ocean,106

the land and sea-ice components, the ocean biogeochemistry module, and the coupler.107

Then we describe the spin-up and tuning of the coupled system that has led to the pre-108

industrial control simulation (piControl) under constant forcing agents. Evaluation in109

comparison with observations and reanalyses data is based on the last decades of a small110

ensemble of CMIP6 historical simulations and the model’s climate sensitivity character-111

istics are assessed in idealized global warming experiments (i.e., the 1 %CO2 yr−1 increase112

experiment (1pctCO2) and the experiment with an abrupt four-fold CO2 concentration113

(abrupt4xCO2)). We discuss tuning choices in section 5 and end with a summary and114

conclusion (section 6).115

2 Model overview116

The ICON model system (Zängl et al., 2015) provides common infrastructure (e.g.117

grid construction and output handling) and, in part, common numerical operators for118

the component models. A common feature is the basic grid construction based on un-119

structured, icosahedral grids. The grids for both the ICON-A and ICON-O model are120

created by recursively dividing the original twenty triangles of the icosahedron. This is121

done by bisecting the edges. The vertices at each step are projected at the Earth sphere.122

The primary cells are triangles, while the dual cells are hexagons, except for the orig-123

inal twelve pentagons of the icosahedron which remain. A detailed description of the pro-124

cess is given in H. Wan et al. (2013) and Giorgetta et al. (2018). The spring dynamics125

optimization is applied on both grids, as described in Tomita et al. (2001) and Tomita126

et al. (2002). The grids are symmetrized with respect to the equator by reflecting the127

northern hemisphere to the south. The equatorial-symmetric grid has been tested with128
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the ICON-O for shallow water set-ups and showed reduced errors (Korn & Linardakis,129

2018). Local asymmetries in grids can be the cause of increased numerical errors (Weller130

et al., 2009). For the icosahedron, these asymmetries occur most profoundly in the vicin-131

ity of the pentagons (Korn & Linardakis, 2018). It is desirable to keep these “hot” spots132

away from areas where large velocities may occur, for example due to the orography. There-133

fore the grid was rotated 37o eastwards, to avoid placing a pentagon over the Himalaya134

region. In the set-up presented here, the resolution for the ICON-A grid is 158 km, mea-135

sured as the square root of the average triangle area, with a total of 20480 triangles (the136

R2B4 grid in Table 1 of Giorgetta et al. (2018)). The ICON-O grid has an average res-137

olution of 40 km and 235403 triangles, the land triangles being removed to reduce mem-138

ory and computing resources. The bathymetry was interpolated from the SRTM3 PLUS139

dataset (Becker et al., 2009), adjusted to conform with the sea-land mask given by the140

GLCC 2.0 dataset (Global Land Cover Characterization (GLCC), doi:10.5066/F7GB230D).141

The ICON-O sea-land mask is then projected to the coarser ICON-A grid, allowing for142

triangles to be partially ocean.143

The numerical schemes of the atmosphere and the ocean share commonalities but144

feature also significant differences. Identical in both components is the spatial discretiza-145

tion of differential operators such as divergence and curl through mimetic methods (cf.146

Korn (2017)). This takes advantage of identical grid structures and the staggering of vari-147

ables. The staggering necessitates reconstructions and interpolations to connect variables148

that are located at different grid positions to calculate fluxes. This is accomplished in149

ICON-O by the novel concept of Hilbert space admissible reconstructions (for details see150

Korn (2017), Korn and Linardakis (2018)). In contrast, ICON-A relies on several inter-151

polation methods (see Zängl et al. (2015)).152

ICON-A

ICON-Land

ICON-OHAMOCC

YAC Coupler

Energy/Momentum Water Carbon

Rivers

JSBACH 4

Figure 1. Schematic representation of the model components of the ICON-ESM and the

coupling scheme.

2.1 Atmosphere153

The atmosphere component of the ICON-ESM is the icosahedral nonhydrostatic154

atmospheric general circulation model ICON-A. The model version used here is similar155

to version 1.3.00 described in detail by Giorgetta et al. (2018), which was evaluated by156

Crueger et al. (2018). Modifications with respect to this earlier version are described be-157
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low. The dynamical core of the model (Zängl et al., 2015) and the transport scheme are158

shared with a configuration used for numerical weather prediction (NWP) at the DWD.159

Other variants of the ICON atmosphere model include the option to interactively cou-160

ple to the Aerosol and Reactive Trace gases scheme ART (Rieger et al., 2015) and a con-161

figuration including the upper atmosphere (UA-ICON, Borchert et al., 2019). The ex-162

cellent scaling capabilities of ICON have enabled global storm-resolving simulations down163

to a horizontal grid resolution of about 2.5 km (Stevens et al., 2019).164

The model configuration used here differs from the NWP variant in particular with165

respect to the physics package, which was adopted from the ECHAM6 general circula-166

tion model (Stevens et al., 2013) used in the MPI-ESM (Giorgetta et al., 2013; Maurit-167

sen et al., 2019). The physics parameterizations include the PSrad radiation scheme of168

Pincus and Stevens (2013), a scheme for turbulent vertical diffusion based on a total tur-169

bulent energy approach as proposed by Mauritsen et al. (2007), a convection parame-170

terization based originally on the Tiedtke (1989) mass flux scheme, a parameterization171

for the representation of stratiform clouds including microphysics based on a scheme by172

Lohmann and Roeckner (1996) and cloud cover diagnosed following Sundqvist et al. (1989),173

a representation of the effects of gravity waves and blocking from sub-grid scale orog-174

raphy following Lott (1999), and the Hines (1997) parameterization of the effects of non-175

orographic gravity waves. Adaptations of the original ECHAM parameterization schemes176

for the use in ICON-A are described by Giorgetta et al. (2018). As in the latter publi-177

cation, we are using ICON-A here with a horizontal grid resolution of 158 km. In the178

vertical, the model employs a terrain following hybrid sigma-height grid with 47 layers179

extending to a model lid at 83 km.180

Compared to the ICON-A version 1.3.00 described by Giorgetta et al. (2018) the181

following modifications have been made. (A) The coupling of the physical processes has182

been serialized completely using the following sequence: (1) radiative effects by terres-183

trial longwave and solar shortwave radiation, (2) vertical diffusion with implicitly cou-184

pled land surface processes, (3) non-orographic gravity wave drag, (4) subgrid-scale oro-185

graphic (SSO) effects, (5) cumulus convection, and (6) cloud microphysics. This improved186

the numerical stability and allowed to increase the model time step from 10 to 15 min-187

utes. Further, the time step for radiation, the only process not computed at every model188

time step, was shortened from 120 to 90 minutes. (B) The non-orographic gravity wave189

and SSO effects were re-tuned. Here, new SSO parameters for the statistical description190

of the unresolved terrain were used, which resolve both issues discussed in section 4.7.1191

of Giorgetta et al. (2018), i.e. the error in the azimuthal angle of the unresolved moun-192

tains, and the standard deviation of unresolved orographic height, which is now computed193

with respect to the resolved sloped terrain. Further, a weighting factor for the non-ocean194

fraction has been introduced to account for the fact that the SSO parameters are com-195

puted for the area fraction that is land or lake or glacier, i.e. non-oceanic. And (C) the196

physical processes were re-tuned for a balanced top-of-atmosphere (TOA) radiation bal-197

ance and in order to minimize the systematic errors in AMIP simulations.198

In step (B), tuning parameters (see Table 1) G, which scales the magnitude of the199

orographic gravity wave drag, and Cd, which scales the blocking of low-level flow by un-200

resolved orography, were tested with values in the range of 0.01 to 1 with the following201

goals: The first target was to reduce the systematic error in zonal mean zonal wind in202

DJF at 60o N at 10 hPa. The secondary target was then to minimize errors in the zonal203

mean zonal wind in JJA as well as errors in annual mean pressure at sea level and an-204

nual mean zonal wind stress at the ocean surface. This led to new default parameters205

G = 0.05 and Cd = 0.05, instead of G = 0.10 and Cd = 0.01 (Giorgetta et al., 2018).206

The tuning parameters for the non-orographic gravity wave drag remained as in Giorgetta207

et al. (2018).208

In step (C) a range of tests was conducted with modifications in tuning parame-209

ters for fractional cloud cover, entrainment of environmental air in convective plumes,210
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overshooting mass flux fraction at the top of convection, and cloud microphyiscs. From211

all tests a configuration with three modifications was chosen, compared to Giorgetta et212

al. (2018): The entrainment coefficients for deep and shallow convection were set to εshallow =213

εpen = 0.0003 m−1, and the convective mass flux fraction across the level of neutral buoy-214

ancy at the top of convection was reduced to cmfctop = 0.1. This configuration performed215

best following a similar evaluation as presented in Giorgetta et al. (2018). However, it216

should be noted that other tested configurations were equally acceptable concerning the217

radiation balance at the top of the atmosphere, which was the primary tuning goal.218

The resulting atmospheric model configuration provided the starting point for the219

development of the coupled model system in the pre-industrial control experiment, which220

lead to additional changes of tuning parameters for dynamics as well as physics, as de-221

scribed in Section 3 and reviewed in the discussion section.222

2.2 Ocean223

ICON-O, the ocean general circulation model that provides the ocean component224

of ICON-ESM, solves the hydrostatic Boussinesq equations. These dynamical equations225

are also referred to as the “primitive equations”. The state vector consists of horizon-226

tal velocity, the oceanic tracers potential temperature and salinity, as well as the sur-227

face elevation, due to the free surface boundary condition. The primitive equations are228

solved on the triangular ICON grid with an Arakawa C-type staggering that places trac-229

ers at the circumcenter of a triangular cell and the normal component of the velocity vec-230

tor at the midpoint of the cells edge. The vertical coordinate-axis is given by the z-coordinate231

(or geopotential height). The two-dimensional triangles are simply extended by a height-232

based dimension. This generates three-dimensional prisms. The number of vertical lev-233

els depends on the topography and varies from cell to cell Nz = Nz(K). The thickness234

of the prisms is constant, except for the surface layer, where the sea surface elevation is235

taken into account. Alternative vertical coordinates such as the z∗-coordinate are avail-236

able in ICON-O and are described in Sing and Korn, manuscript in preparation ”A structure-237

preserving discretization of ocean models in generalized vertical coordinates”. In the work238

presented here we use z-coordinates as the classical choice with well-understood advan-239

tages and disadvantages.240

The subgrid scale closure for velocity uses a biharmonic operator based on the vec-241

tor Laplacian with a viscosity coefficient that scales with the square root of edge length242

times cell center distance to the third power. Eddy-induced diffusion and eddy-induced243

advection are parameterized following Redi (Redi, 1982) and Gent-McWilliams (GM)244

(P. Gent & McWilliams, 1990), respectively. We employ the variational approach of Griffies245

et al. (1998) and Griffies (1998). The discretization of the variational approach is, how-246

ever, different from the triad approach of Griffies et al. (1998) and uses inherently un-247

structured grid methods. The Hilbert-space-compatible reconstructions and mimetic dif-248

ferential operators of ICON-O’s dynamical core provide a discrete Hilbert space that al-249

lows a direct and structure-preserving discretization of the eddy parameterization. Full250

details are given in Korn (2018). Since the 40km ocean grid used here is barely eddy-251

permitting, we keep the GM scheme switched on using a default eddy diffusivity param-252

eter of 400 m2s−1.253

As equations of state that approximates the density as a function of potential tem-254

perature, salinity and depth we use the UNESCO-80 formulation. For the parameter-255

ization of turbulent vertical mixing, ICON-O offers different choices: a Richardson-number-256

dependent parameterization (Pacanowski & Philander, 1981) (PP) including an addi-257

tional wind-mixing formulation as in MPIOM, the KPP scheme (Large et al., 1994), or,258

as the standard setting used here, a scheme based on a prognostic equation for turbu-259

lent kinetic energy (TKE) that implements the closure suggested by Gaspar et al. (1990).260

Vertical dissipation and vertical diffusion are discretized implicitly. The transport of the261
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oceanic tracers potential temperature and salinity uses a flux-corrected transport method262

with a Zalessak limiter that utilizes flux calculation by compatible reconstructions (Korn,263

2017).264

The sea-ice model consists of a dynamic and a thermodynamic component. The265

thermodynamics of sea-ice describe the freezing and melting of sea-ice by a single-category,266

zero-layer formulation (Semtner, 1976). The sea-ice dynamics are based on the sea-ice267

dynamics component of the Finite Element Sea Ice Model (FESIM, (Danilov et al., 2016)),268

which uses the standard elastic-viscous-plastic (EVP) formulation. As ICON-O applies269

an analogue of an Arakawa C-grid and FESIM uses an Arakawa A-grid type staggering,270

an interpolation between the ICON-O grid and the FESIM sea-ice dynamics is neces-271

sary. Furthermore, an additional rotation of the oceanic and atmospheric variables is re-272

quired, because ICON-O uses local coordinates, whereas FESIM is based on rotated ge-273

ographic spherical coordinates. Besides the computational overhead, the coupling be-274

tween FESIM and ICON-O introduces numerical diffusion, e.g. at least three grid cell275

wide passages are required to allow a sea-ice transport. To overcome this limitations we276

are currently working on the integration of a newly developed sea ice dynamic model (Mehlmann277

& Korn, 2021).278

ICON-O’s time stepping applies a semi-implicit Adams-Bashford-2 scheme. The279

free surface equation is solved implicitly in time with an iterative solver based on the con-280

jugated gradient method. The remaining state variables are discretized explicitly. For281

details we refer to Korn (2017).282

2.3 Ocean Biogeochemistry283

In ICON-ESM, ocean biogeochemistry is represented by the HAMburg Ocean Car-284

bon Cycle module, HAMOCC6, which simulates biogeochemical tracers in the water col-285

umn and in the upper sediment (Ilyina et al., 2013; Paulsen et al., 2017; Mauritsen et286

al., 2019). In the water column, currently at least 20 biogeochemical tracers are prog-287

nostically calculated, generally following an extended nutrient, phytoplankton, zooplank-288

ton, and detritus (NPZD) approach, also including dissolved organic matter, as described289

in Six and Maier-Reimer (1996). The co-limiting nutrients consist of phosphate, nitrate,290

silicate and iron. A fixed stoichiometry for all organic compounds is considered. Phy-291

toplankton is represented by bulk phytoplankton and diazotrophs (nitrogen fixers; Paulsen292

et al. (2017)). Particulate organic matter (POM) is produced by zooplankton grazing293

on bulk phytoplankton and enters the detritus pool. Export production is separated ex-294

plicitly into CaCO3 and opal particles, each sinking with its own sinking velocity. The295

POM sinking speed can be assigned using one of the three implemented methods: con-296

stant speed, linearly increasing speed with depths below the euphotic zone (also known297

as the ‘Martin curve’; Martin et al. (1987)) or calculated using the recently developed298

M4AGO scheme (Maerz et al., 2020). The remineralization of detritus throughout the299

water column is either aerobic (if seawater oxygen concentration > 0.5 µmolL−1) or anaer-300

obic by denitrification and sulphate reduction. The upper sediment is resolved by 12 bi-301

ologically active layers and a burial layer and simulates the dissolution and decompo-302

sition of particulate inorganic and organic matter and the diffusion of pore water con-303

stituents. The HAMOCC model is also part of the MPI-ESM and has been extensively304

evaluated in previous single-model, e.g. Ilyina et al. (2013); Paulsen et al. (2017); Müller305

et al. (2018a); Mauritsen et al. (2019); Maerz et al. (2020) and multi-model studies, e.g.306

Bopp et al. (2013); Kwiatkowski et al. (2020); Séférian et al. (2020).307

Within the HAMOCC core subroutines, only the biological and chemical sources308

and sinks, as well as tracer sinking and ascending are computed. Therefore, when im-309

plementing HAMOCC6 (a model version used in CMIP6 simulations) in ICON-ESM,310

the HAMOCC6 interface to the ocean and atmosphere components was adjusted to the311

ICON-ESM infrastructure accordingly. This adjustment includes the transport of bio-312
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geochemical tracers with the same routines and numerical schemes as the physical trac-313

ers of the ICON-O model. As in previous model versions, it was ensured that all chem-314

ical constituents in HAMOCC are mass conserving within computational precision in this315

implementation.316

2.4 Land317

ICON-Land is a novel framework developed at MPI-M for the modeling of land pro-318

cesses in ICON that clearly separates model infrastructure from land surface process de-319

scriptions. It features a flexible scheme of land surface tiling and object-oriented organ-320

ization of physical and biogeochemical processes. Apart from the ICON-ESM configu-321

ration, ICON-Land is used in the ICON-A atmosphere configuration and can also be run322

in a land stand-alone mode (see e.g. Nabel et al., 2020). The ICON-Land implementa-323

tion used in the ICON-ESM v1, comprises physical and biogeochemical processes pro-324

vided by the JSBACH 4 land model, a port of JSBACH 3.2 (Reick et al., 2021) to the325

ICON-Land framework. Previous JSBACH versions have been the land components of326

the MPI-ESM versions used in CMIP5 (Giorgetta et al., 2013) and CMIP6 (Mauritsen327

et al., 2019).328

Comparing to Reick et al. (2021) JSBACH 4 features certain improvements of the329

physical processes at and below the surface, including a five-layer snow scheme and the330

phase change of water within the soil (Ekici et al., 2014; de Vrese et al., 2021). Also in-331

cluded are the options to calculate the soil thermophysical properties depending on the332

soil water content and the general properties depending on the organic matter content333

of a given soil layer. Surface runoff and sub-surface drainage from ICON grid cells are334

routed through a hydrologic discharge model (Hagemann & Dümenil, 1997) using a novel335

method for generating river directions (Riddick, 2021); the resulting river discharge is336

coupled as freshwater flux to the ocean via the YAC coupler (see section 2.5). Surface337

temperature of lakes is computed by a simple mixed-layer scheme including ice and snow338

on lakes (Roeckner et al., 2003). The surface energy balance and the soil thermal lay-339

ers on land are coupled implicitly to the vertical diffusion scheme of ICON-A.340

Biogeochemical processes in JSBACH 4 in this study are simplified relative to JS-341

BACH 3 (Reick et al., 2021). Natural vegetation dynamics (Brovkin et al., 2009) cou-342

pled to land-use transitions (Reick et al., 2021), as well as the coupling of terrestrial car-343

bon and nitrogen cycle (Goll et al., 2017) have not yet been ported from JSBACH 3, how-344

ever, are partially planned to be ported for future ICON-ESM versions. In the piCon-345

trol and historical simulation ensemble (section 4), natural vegetation and anthropogenic346

land cover change have been prescribed by annual maps of cover fractions on these 11347

PFTs based on Pongratz et al. (2008) and transient crop and pasture fractions derived348

from LUH2 v2h (Hurtt et al., 2019) as described in Mauritsen et al. (2019).349

2.5 Coupling350

Ocean and atmosphere processes run concurrently and perform a parallel neigh-351

bourhood search and data exchange between the two horizontal grids via the YAC cou-352

pling library (Hanke et al., 2016). Fig 1. depicts a schematic view of the model compo-353

nents and the exchange of coupling fields.354

Here, we use YAC version 1.5, which contains bug fixes and performance improve-355

ments. The components of the wind- and velocity vectors are interpolated using Bernstein-356

Bézier polynomials following Liu and Schumaker (1996). We use the interpolation stack357

of YAC and fill all target cells, which do not get any data with this standard interpo-358

lation, by applying a 4-nearest-neighbour arithmetic average interpolation. The river dis-359

charge is remapped to the target grid in a way that each source cell containing a river360

discharge value is assigned to a coastal target cell on the ocean grid. All other fields are361
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interpolated using 1st-order conservative remapping. The grids and masks are constructed362

in a way that all source cells are covered with this standard interpolation. The calcu-363

lation of the neighbourhood-relations and the interpolation stencils is performed by YAC364

repeatedly during the initialisation of each model run, solely based on geographical lo-365

cations of grid cell vertices and centers.366

The atmosphere component provides the zonal and meridional components of the367

wind-stress separately over ice and over water, the surface fresh water flux as rain and368

snow over the whole grid cell and evaporation over the ocean fraction of the cell, short-369

and longwave radiation and latent and sensible heat fluxes over the ocean, sea ice sur-370

face and bottom melt potentials, the 10 m wind speed and sea level pressure. The ocean371

provides the sea surface temperature, the zonal and meridional components of velocity372

at the sea surface as well as ice- and snow thickness, and ice concentration. The data373

exchange encompasses aggregation, averaging and re-partitioning of the exchange fields.374

YAC routines are called at every model time step, and data are accumulated inside the375

YAC library. At user-defined coupling events - here every 1800 seconds - data are av-376

eraged and sent to the respective receiving processes.377

2.6 Computational configuration and performance378

All simulations were performed with the bullx DLC 720 high performance comput-379

ing system for Earth system research (HLRE-3) of the “Deutsches Klimarechenzentrum”380

(DKRZ). The simulations utilize 120 “Broadwell” compute nodes of the system named381

“Mistral”, which include 36 processing units each.382

The domain decomposition is performed separately for ocean and atmosphere: the383

ocean decomposition at 40 km horizontal resolution, which includes only ocean grid points,384

and the global atmosphere decomposition of 158 km horizontal resolution. The sea-ice385

model is included in the ocean code and runs on the ocean grid, the land model works386

within the atmospheric decomposition. The YAC coupling library is linked to each of387

the two components of the ICON model (atmosphere/land and ocean/sea-ice) and per-388

forms the aggregation, averaging and re-partitioning of the exchange fields using their389

respective decomposition.390

Due to this technical setup, the load balancing has to be optimized for these two391

major components, only. The heavy workload due to multiple tracers in configurations392

with HAMOCC requires different weightings for run with and without ocean biogeochem-393

istry. The best compromise between shortest return time and parallelization overhead394

was obtained for a load balancing of 74 nodes (2664 mpi-processes) for running ocean395

and sea-ice (without HAMOCC) on the 40 km grid and concurrently using 46 nodes (1656396

mpi-processes) for atmosphere and land on the 158 km grid. With this configuration we397

achieve an average performance of ten simulation years in one batch-job executing within398

roughly two hours. Without any queuing-time at the machine (depending on the load399

of the machine, or by assigning high-priority to the job-chain) it results in a performance400

of 120 simulated years per day. A hybrid configuration using mpi- as well as openmp-401

(shared memory) parallelization was tested and exhibited less performance on the DKRZ402

machine, which is probably due to partly missing optimizations in the code. In the runs403

including HAMOCC, the best optimization was achieved for a load balancing of 46 nodes404

for atmosphere and land and 154 nodes for the ocean (physics and biogeochemistry) and405

sea ice. An average performance of 40 simulated years per day was achieved with this406

configuration.407
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3 Tuning and spin-up408

3.1 Tuning principles and targets409

Model tuning is an integral part of the model development process (Mauritsen et410

al., 2012). In the coupled system, a first-order tuning goal is to achieve stable climate411

conditions to minimize drifts in the piControl climate used as reference for climate change412

simulations. A near-zero top-of-atmosphere energy-flux balance is required as well as long-413

term stable circulation, for example the Atlantic Meridional Overturning Circulation (AMOC)414

in the ocean. Furthermore, it is desired to match the model results with observed cli-415

mate conditions, for example a global mean surface air temperature close to the obser-416

vational estimates for the second half of the 19th century. Based on experience gained417

in the tuning of the stand-alone ocean and atmosphere set-ups (Giorgetta et al., 2018),418

a small number of parameters associated with the parameterization of specific processes419

were selected for tuning. In the atmosphere these are mainly related to cloud proper-420

ties and to subgrid-scale orographic processes. Parameters modified for tuning purposes421

in the ocean include the value of biharmonic viscosity, parameters in the TKE mixing422

scheme, and the isoneutral diffusion and eddy diffusivity coefficients in the Gent-McWilliams423

closure (Korn, 2018). Apart from albedo settings in the atmosphere, the sea-ice tuning424

parameters determine the change in ice-thickness distribution during melting and freez-425

ing, respectively (Notz et al., 2013; Mauritsen et al., 2012).426

The tuning parameters used in the initial sensitivity experiment and the final spin-427

up are listed in Table 1.428

Table 1. Parameters used for tuning.

ICON Parameter Symbol in reference Reference Description

Atmosphere

crs r0,surf Giorgetta et al. (2018) critical relative humidity for condensation (surface)

crt r0,top Giorgetta et al. (2018) critical relative humidity for condensation (upper troposphere)

entrpen ε1 Nordeng (1994) entrainment in deep convection

gkdrag G Lott (1999) subgrid-scale orographic (SSO) gravity wave drag

gkwake Cd Lott (1999) SSO low-level blocking

gklift C1 Lott (1999) SSO lifting

Ocean

K K Korn (2018) GM isoneutral diffusion

κ κ Korn (2018) eddy diffusivity

sea ice

leadclose 1 cmelt Notz et al. (2013) ice area change during melting

leadclose 2/3 cfreeze Notz et al. (2013) ice area change during freezing

3.2 Spin-up and tuning history429

The ocean initial conditions for temperature and salinity were taken from the Po-430

lar Science Center Hydrographic Climatology data set (Steele et al., 2001). First, a 200-431

year long stand-alone ICON-O simulation was carried out using the atmospheric clima-432

tology forcing and the respective bulk formulae described in Marsland et al. (2003). Start-433

ing from the restart fields obtained from the stand-alone ocean simulation, several ex-434

periments with different tuning choices were conducted, partly sequentially with param-435

eter changes on the fly, partly in parallel to study difference in drift behavior. The fi-436

nal tuning sequence is documented in Fig. 2.437

The start of the coupled simulation (slo1304) is characterized by a large drift, where438

both atmosphere and ocean are cooling and the TOA radiation balance is negative (not439

shown). Introducing background tropospheric aerosols in the run slo1307 led to even stronger440
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Figure 2. Spin-up history of the coupled simulation: time series of global mean surface air

temperature from a sequence of simulations leading to the piControl experiment.

decrease in GSAT that required counter-tuning. This was achieved by increasing the crit-441

ical relative humidities for condensation crs and crt and the entrainment parameter entrpen442

which led in particular to a reduction of global mean cloud fraction and an increase of443

net incoming radiation at the TOA. While this resulted initially in overly strong warm-444

ing, the long-term drift cooled the model to acceptable values and we finally obtained445

a solution with small overall drift. While this may appear as a very straightforward tun-446

ing process, a large number (order 100) of further model experiments with different pa-447

rameter settings and simulated lengths of a few years to several hundreds of years have448

been performed to arrive at this spin-up sequence. The influences of some of the tun-449

ing choices on the simulated climate are discussed in several parts of the model evalu-450

ation of Section 4 and in cection 5.451

A bug-fix related to erroneous snow accumulation in a few grid points required an452

update of the code in run slo1325 without noticeable effects on the climate. This sim-453

ulation was carried out for another 500 years, where we defined the start of the piCon-454

trol simulation. The starting point of piControl was also used to initialize the DECK ex-455

periments 1pctCO2 and abrupt4xCO2, and one realization of the historical simulations.456

Further realizations were started from different dates of piControl. In addition, an AMIP457

simulation was included using the same code version as the coupled experiments.458

After the completion of the DECK experiments presented in this paper, a coding459

error was detected in the vertical diffusion of ICON-A. The bug is related to the way ocean460

currents are taken into account in the wind-stress calculation. The effects of the error461

turned out to be time-step and grid-size dependent and had detrimental effects in a very462

high-resolution (5km) coupled proto-type model. At the low resolutions applied here,463

we were able to identify typical effects of this error (e.g. some changes in the represen-464

tation of the equatorial current system in the ocean), but most of the analyzes and il-465

lustrations presented here remain largely unaffected. The most notable effect is an even466

stronger variance of the ENSO time series, but we diagnosed otherwise very similar char-467

acteristics of the variability (not shown). We have concluded that the bug must be fixed468

but changes to the results were too minor to justify a repetition of the DECK experi-469

ments and their post-processing. All conclusions regarding benefits and shortcomings470

of the ICON-ESM DECK simulations presented here remain unaffected.471

The tuning of the ocean biogeochemistry was carried out after the tuning of the472

coupled setup. A first-order tuning goal for the ocean biogeochemistry in an ESM is to473

limit significant drifts in the biogeochemical tracer fields and fluxes in the piControl run.474

Furthermore, parameters are adapted within a reasonable range to drive the model closer475

to observations. In the first step of the tuning procedure, presented here, the focus is on476
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the upper ocean biogeochemical fields reflecting the representation of the chemical and477

biological processes in the model. The initial conditions for the biogeochemical tracer478

fields in the water column and sediment were interpolated from a previously well spun-479

up MPIOM piControl run. Ocean and atmosphere were initialized from the end of the480

slo1325 run and ICON-ESM was run with the piControl climate. The atmospheric CO2481

concentration was set to 278 ppm, representing a pre-industrial climate. The dust de-482

position climatology of Mahowald et al. (2005) and historical nitrogen deposition fields483

from the CMIP6 input database (https://esgf-node.llnl.gov/projects/input4mips/) were484

used. The POM sinking speed was calculated based on the Martin curve.485

To account for the ocean circulation simulated by ICON-ESM, some of the HAMOCC486

tuning parameters were changed from their default values. The appropriate weathering487

rates, which are used to compensate the loss of carbon and nutrients from the water col-488

umn to the sediment, were calculated and updated during the spin-up procedure. Af-489

ter a simulation length of 500 years, the model approached a semi-steady state in the490

upper ocean global monitoring values such as the global surface alkalinity, POM export491

and nutrients.492

Table 2. Overview on the ICON-ESM simulations.

Experiment Description Period Ens.size Initialization

piControl Preindustrial Control 500 years 1 spin-up run

1pctCO2 idealized CO2-increase 150 years 1 spin-up run

abrupt4xCO2 idealized CO2 increase 150 years 1 spin-up run

historical Transient forcing 1850-2014 5 piControl (yrs 0, 100, 200, 300, 400)

AMIP atmosphere-only 1978-2014 1 n.a.

4 Model evaluation493

The set of experiments described in this paper is listed in table 2. We start with494

a brief account of the piControl experiment. Since the evaluation in comparison with ob-495

servations is based on data from the recent decades, we base the analyzes on the histor-496

ical ensemble. The idealized climate change experiments 1pctCO2 and abrupt4xCO2 are497

used to estimate the climate sensitivity of ICON-ESM in section 4.4.498

4.1 The pre-industrial control simulation (piControl)499

The global mean surface air temperature (GSAT) is stable over the 500 year long500

piControl simulation with a small cooling of -0.01 K per century (Fig. 3). The time mean501

of 13.73oC is consistent with estimates of warming over the historical period and the es-502

timated global temperatures from reanalyses (Hawkins & Sutton, 2016). The goal of a503

very stable TOA radiation is achieved and only a small residual of less than 0.02 Wm−2
504

assures that long-term integrations can be run with this model version. The AMOC is505

a key quantity for the meridional heat exchange in the Atlantic Ocean and its stability506

is important for maintaining a proper sea-ice distribution and North Atlantic deep wa-507

ter formation (for more details see section 4.2.5). The control run has a time-mean AMOC508

strength at 26oN of slightly less than 16 Sv (1Sv = 1Sverdrup = 106m3s−1). The AMOC509

is stable over the simulation, but exhibits relatively strong multidecadal variations with510

an amplitude of up to 3 Sv.511
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Figure 3. Evolution of key quantities during the piControl experiment: (upper) global mean

surface air temperature, (middle) top-of-atmosphere radiation balance, and (lower) the strength

of the Atlantic Meridional Overturning streamfunction at 26oN and 956m depth. Red lines indi-

cate the time mean.

4.2 The historical simulation ensemble512

4.2.1 Temperature evolution during the historical period513

ICON-ESM reproduces the evolution of the global mean surface temperature largely514

in good agreement with observational products (Fig. 4). The mid-20th century warm-515

ing and the subsequent cooling towards the 1970s agree in magnitude and timing, and516

the effects of volcanic eruptions like Agung (1963/64) and Pinatubo (1991) are captured.517

The simulations slightly disagree with the observational records in the late 20th to early518

21st century because the model overestimates the warming trends from the 1970s on-519

ward. On the other hand, the warming trends are underestimated near the end of the520

simulation so that the simulated temperatures agree with the observations at the end521

of the simulated period. A decomposition into northern (Fig. 4b) and southern (Fig. 4c)522

hemispheres reveals that the deviations stem mainly from the northern hemisphere. As-523

sessing the reason for this discrepancy requires further investigations but the more pro-524

nounced biases in the northern hemisphere point to an underestimation of the cooling525

effect of anthropogenic aerosols (Mauritsen et al., 2019) rather than too high climate sen-526

sitivity in ICON-ESM (see section 4.4).527
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a) b) c)

Figure 4. Time series of surface temperature over a) the globe, b) the northern hemisphere,

and c) the southern hemisphere for (red-orange) the ICON-ESM historical ensemble, and obser-

vational compilations by (blue) the Goddard Institute for Space Studies Surface Temperature

product (Lenssen et al., 2019), (black) the blended Hadley Center/Climate Research Unit global

temperature data set (Morice et al., 2012), and (light blue) the NOAA NCDC historical merged

land–ocean surface temperature data set (Smith et al., 2008; Zhang et al., 2019). The simulated

global temperature is constructed using SSTs over the ocean and surface air temperatures over

land.

4.2.2 Atmosphere528

Table 3. Data used for evaluation of atmospheric quantities. Further data used for the compu-

tation of skill scores are specified by Crueger et al. (2018).

Quantity Name Period Reference

sea level pressure ERA-Interim 1979 - 2014 Dee et al. (2011)

zonal mean temperature ERA-Interim 1979 - 2014 Dee et al. (2011)

zonal mean zonal wind ERA-Interim 1979 - 2014 Dee et al. (2011)

cloud fraction CALIPSO-GOCCP (v3.1.2) 2007-2019 Chepfer et al. (2010)

precipitation GPCP (v2.2) 1979-2013 Adler et al. (2003)

For the evaluation of atmospheric quantities we follow as closely as possible plot-529

ting styles and use of data sets as in Crueger et al. (2018) to enable a comparison of the530

performance of the coupled ICON-ESM with AMIP-style (i.e. atmosphere-only) simu-531

lations by ICON-A and predecessors. Data sets used in the comparison are listed in Ta-532

ble 3. We only use data from after the beginning of the satellite era and compare to ICON-533

ESM output from the same period of the historical simulation. As model biases are in534

general large in comparison to the spread between different ensemble members we only535

use one ensemble member for the comparisons.536

To allow a quantitative comparison of global model performance with predecessors537

and uncoupled simulations of this and earlier model versions, we present skill scores for538

simulated annual mean quantities as proposed by Reichler and Kim (2008) in Fig. 5. We539

calculate these scores in the same way and with respect to the same observational data540

as described by Crueger et al. (2018). Skill scores for model biases are calculated with541

respect to model biases in a reference simulation for which we use the historical CMIP6542

simulation with the MPI-ESM-LR-1.2 (Mauritsen et al., 2019). It is obvious that the ICON-543

ESM performs worse than the reference model for many quantities both globally and in544

the three geographic regions tropics, northern and southern extratropics. It performs also545
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worse than the predecessor MPI-ESM-LR (Stevens et al., 2013). The performance has546

clearly improved only for some quantities in the southern extratropics.547

In general, a better agreement of uncoupled simulations with observations is ex-548

pected as they are driven by observed sea surface temperatures and sea ice. This bet-549

ter agreement is clearly visible in Fig. 5, where uncoupled scores for many quantities are550

below one in most regions, i.e. the agreement with observations is better than in the cou-551

pled reference simulation. Differences between our simulation and the uncoupled AMIP552

experiment of Crueger et al. (2018) are expected due to the coupling, but also due to553

parameter changes related to the tuning of the coupled model as described in Sections 3.2554

and small code modifications as described in Section 2.1. The latter two effects can be555

estimated from comparing the skill scores of the ICON-ESM AMIP simulation with the556

predecessor ICON-A-1.3.00 used by Crueger et al. (2018). Although some quantities im-557

prove, the skill in the uncoupled experiment is lower than in the AMIP simulation. A558

lower skill can be expected because our tuning aimed at the performance in the coupled559

simulation. In the following we evaluate the spatial patterns of some atmospheric quan-560

tities.561

Figure 6 shows annual mean sea level pressure from the ERA-Interim reanalysis562

and the difference of the ICON-ESM to this dataset. Maximum anomalies of up to about563

10 hPa are of the same order as anomalies simulated in the uncoupled model (Crueger564

et al., 2018). However, the spatial structure is very different. While in the uncoupled model565

there was an underestimation in most parts of the tropics and sub-tropics and a strong566

positive bias in particular over the Arctic, here we simulate strong positive biases cen-567

tred near about 45◦ in both hemispheres. Extratropical biases showed some sensitivity568

to the SSO parameters (see Table 1) in the tuning process. The Arctic positive bias of569

mean sea-level pressure over the Arctic found in Crueger et al. (2018) could be reduced570

by activating SSO mountain lift forces of using the parameter gklift. The tropical low571

bias was a feature in all our tuning attempts.572

According to the skill scores presented in Fig. 5, the ICON-ESM simulates precip-573

itation over land and ocean in the extratropics similar or even better than predecessors574

or uncoupled model versions. It performs worse, however, in the tropics. Fig. 7 shows575

annual mean precipitation patterns in the ICON-ESM in comparison to data from the576

Global Precipitation Climatology Project (GPCP). The model simulates the typical dis-577

tribution of tropical and extratropical rainfall patterns. In the Pacific, rainfall maxima578

are too high and a double-ITCZ bias, typical for many climate models, can be identi-579

fied. These features were also reported for the uncoupled ICON AMIP simulation from580

Crueger et al. (2018). Improvements with respect to this uncoupled simulation can be581

identified in the tropical Atlantic and Indian oceans. Concerning the seasonal cycle, a582

major bias is a shift of maximum precipitation from summer to winter in the boreal for-583

est zone (50N-65N) over the continental interior of Eurasia (not shown), which leads to584

a large regional deficit in simulated vegetation productivity.585

Figs. 8 and 9 show global annual mean total cloud fraction and zonal mean ver-586

tically distributed cloud fraction, respectively, in comparison to the GCM Oriented Cloud587

Calipso Product (CALIPSO-GOCCP) data. Total cloud fraction is clearly too low in sub-588

tropical regions in both hemispheres, a feature which was visible but less strong in the589

AMIP simulations of Crueger et al. (2018). The vertical distribution of cloud fraction590

indicates that this is in particular related to an underestimation of low clouds in the sub-591

tropics and tropics. High clouds are, by contrast, overestimated in the tropics and mid-592

dle to high latitudes. Different tuning choices would be able to alleviate these deficien-593

cies, but we did not reach a global energy balance for a realistic global mean tempera-594

ture and better cloud distributions at the same time.595

The skill scores indicate that the performance of the ICON-ESM for annual zonal596

means of both temperature and zonal wind is in general worse than that of its prede-597
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Figure 5. Standardized annual mean climatological errors of selected variables in several

simulations with reference to the CMIP6 historical simulation with MPI-ESM-LR-1.2. A value

smaller/larger than 1 indicates a smaller/larger bias compared to this reference for the evaluation

period 1979 – 2008. Scores are averaged over (from top to bottom) the full globe, the northern

extratropics, the tropics (30◦S - 30◦N), and the southern extratropics. Colored dots indicate

scores for the coupled simulations with (red) the ICON-ESM and (orange) the MPI-ESM-LR

(Stevens et al., 2013), as well as for the AMIP simulations with (dark blue to light blue) the

ICON-ESM, ICON-A-1.3.00 (Crueger et al., 2018), and ECHAM6.3 (Mauritsen et al., 2019). See

Section 4.2.2 for further details on the skill scores.
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Figure 6. Sea level pressure (hPa) averaged over the period 1979-2014 a) from the ERA-

Interim reanalysis and b) difference between ICON-ESM historical simulation and ERA-Interim.

Figure 7. Precipitation (mm/day) a) from the GPCP observations averaged over 1979-2013

and b) from the ICON-ESM historical simulation averaged over 1979-2014 and GPCP.

Figure 8. Total cloud fraction (%) a) from the CALIPSO-GOCCP observations averaged over

2007-2019 and b) from the ICON-ESM historical simulation averaged over 1979-2014.
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Figure 9. Zonal mean vertical distribution of cloud fraction (%) a) from the CALIPSO-

GOCCP observations averaged over 2007-2019 and b) from the ICON-ESM historical simulation

averaged over 1979-2014.

cessors. In particular, the score for zonal wind is high in all geographical regions, but598

it should be noted, that zonal wind biases were very low for the reference simulation (Fig.599

B3, Mauritsen et al., 2019). The large positive temperature bias in the high latitude mid-600

dle atmosphere and the cold bias near the high-latitude tropopause (Fig. 10) are recur-601

rent features of our models (Crueger et al., 2018), but partly stronger in the ICON-ESM.602

In the troposphere, the model shows in general a warm bias at low and a cold bias at603

high latitudes. The large zonal wind bias (Fig. 11) is dominated by too strong wester-604

lies in the mid-latitude troposphere and stratosphere, a feature which is strongest in both605

hemispheres during boreal winter. The position of subtropical jets is biased poleward606

in both hemispheres. A reduction of the zonal wind biases would be possible through607

different tuning choices in the parameterization of SSO effects, but in our tuning exper-608

iments this came in general at the expense of larger biases in sea ice and the AMOC.609

4.2.3 Land610

We compare our model ensemble results for the surface albedo with the MODIS611

MCD43C3 CMG Albedo Product (C. Schaaf & Wang, 2015). Cescatti et al. (2012) and612

C. B. Schaaf et al. (2002) show that the product is suitable for climate model compar-613

isons. It comes with quality information for each data point (quality flags). These flags614

condense uncertainties in the elicitation of the data, such as atmospheric scattering and615

absorption, anisotropy, inadequate temporal, spatial and spectral sampling, and narrow-616

band to broadband conversions. For our comparison we first exclude MODIS data with617

a minor quality of the inversion (quality flags 4 and 5). Then we interpolate the data618

from the original MODIS grid of 0.05ox 0.05o (about 5.6 km at the equator) and from619

our model grid to a Gaussian lon-lat grid of 96 x 192 (about 1.88o or 210 km at the equa-620

tor). As the albedo varies strongly throughout the year due to variations in the angle621

of the incoming radiation, in leaf area index (LAI), and in snow cover, we take January622

and July data to represent the winter and summer extremes, for which we average our623
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Figure 10. Zonal mean temperature (K) averaged over the period 1979-2014 (top row) from

the ERA-Interim reanalysis and (bottom row) difference between ICON-ESM historical simula-

tion and ERA-Interim. From left to right are shown the annual, boreal winter (DJF), and austral

winter (JJA) averages.

Figure 11. Zonal mean zonal wind (K) averaged over the period 1979-2014 (top row) from

the ERA-Interim reanalysis and (bottom row) difference between ICON-ESM historical simula-

tion and ERA-Interim. From left to right are shown the annual, boreal winter (DJF), and austral

winter (JJA) averages.
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model results and the MODIS data over the years 2001 till 2014. The differences are shown624

in Figure 12.625

[-]

∆∆

∆ ∆

White Sky Albedo NIR January White Sky Albedo NIR July

White Sky Albedo VIS January White Sky Albedo VIS July

Figure 12. White Sky Albedo (WSA) differences between the ICON-ESM historical ensemble

and the MODIS data. Shown are the NIR and VIS bands for January and July averaged from

2001 till 2014.

All albedo differences are in the range +/- 0.1. In general the biases are weak as626

compared to the absolute MODIS albedos. E.g. in January the global NIR albedo is 0.31627

for the absolute values of MODIS while the corresponding bias is only 0.003. Over glaciers628

we find a common pattern where the near-infrared (NIR) albedo is too high and the vis-629

ible (VIS) albedo is too low (see in January over Antarctica and in July over Greenland),630

which is a direct result of the prescribed minimum and maximum albedo values for glaciers631

in JSBACH 4. In January, NIR and VIS albedo are too low in the northern mid latitudes,632

especially in eastern Europe and central Asia. Further analysis reveals that these biases633

are largely caused by a too small snow cover in JSBACH 4 (not shown). In July, the NIR634

albedo in eastern North America and large parts of Asia is too low. These low albedos635

are caused solely by the prescribed soil albedo of the model. Except for the mentioned636

areas, the albedos tend to be higher in JSBACH 4, e.g. in most of Africa, Australia and637

India. However, the causes for this overestimation are rather complex and their inves-638

tigation is beyond the scope of this paper; a deeper analysis of this issue will be published639

in a forthcoming paper.640

For the evaluation of land surface temperature (LST) of our model ensemble, we641

use the MOD11C1 Moderate Resolution Imaging Spectroradiometer (MODIS) Terra Land642

Surface Temperature/Emissivity V006 data set (Z. Wan et al., 2015). For our analysis643

we excluded the data points where the quality flags indicate no retrieval because of clouds.644

The spatial resolution of the data set is 0.05o x 0.05o (about 5.6 km at the equator). Fur-645

thermore, we compare our results with the first five ensemble members of the MPI-ESM646

CMIP6 historical simulations (Wieners et al., 2019).647

The global ICON-ESM LST time series (Figure 13, green lines) fits well with sim-648

ulation results from MPI-ESM 1.2 (blue lines) but shows a higher monthly variability649
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Figure 13. Land Surface Temperature evolution over historical times. Thin lines are monthly

means, thick lines are yearly means. Red: MODIS data. Green: ICON-ESM historical ensemble.

Blue: MPI-ESM CMIP6 ensemble mean of the first five ensemble members. Black: CRUTEM4

historical reconstruction. Note, as CRUTEM4 includes only temperature changes without a de-

termined absolute temperature the absolute offset is chosen to fit the curve with the satellite

data.

(about 2oC). Over the historical period until about 1990, the annual averages of ICON-650

ESM are slightly colder than those of MPI-ESM 1.2 but about 0.6oC warmer than ob-651

served by MODIS (red lines) while monthly variability is - as for MPI-ESM - about 2oC652

higher than observed. However, its January temperatures are more or less the same as653

for MODIS, only the July temperatures are much higher causing the warmer annual tem-654

peratures. Even when on short time scales both models annual means are not in good655

agreement with the historical CRUTEM4 reconstruction (black lines), they agree with656

long term trend (e.g. the temperature rise after 1980).657

The geographical LST comparison between ICON-ESM and MODIS averaged be-658

tween 2001 and 2014 (Figure 14) reveals strong regional differences. The zonal means659

show a warm bias in the inner tropics and the extratropics. In principle, this can also660

be seen in the January and July averages. Regionally, the warm bias is throughout the661

year mostly pronounced in Europe, central Asia, central to north-eastern N-America, the662

Amazon region, and western Antarctica. The warm bias over Eurasia in January is at663

least partly caused by the too low snow cover and the associated snow-albedo feedback.664

The comparison with MPI-ESM (Figure 15) shows that the warm bias in Europe, cen-665

tral Asia and Amazonia, which is most pronounced in July, was much weaker or not ex-666

istent in MPI-ESM. ICON-ESM is colder than the MODIS data in the outer tropics (see667

zonal means). Regionally, the locations of the cold biases vary with the seasons but Aus-668

tralia, India and central eastern Antarctica (except for the coastal areas) are colder through-669

out the year. In Australia and central eastern Antarctica the cold bias was much weaker670

or not existent in MPI-ESM.671

Overall, the zonal mean bias pattern of ICON-ESM as compared to MODIS de-672

picts more or less the global atmospheric circulation and thus indicates mainly an at-673

mospheric origin. Due to the complex continental distribution a land origin seems un-674
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likely. Nevertheless, the albedo biases surely contribute to the LST biases of ICON-ESM,675

especially in central Asia and over glaciers.676

4.2.4 Ocean677

The simulated sea surface temperature (SST) obtained from the ensemble mean678

of the historical simulations and averaged over the period 1980 – 2014 is compared to679

the PHC 3.0 data set in Figure 16 a, c. Deviations from the observation-based data set680

are largely smaller than 1oC over the open oceans, but we diagnose prominent regions681

with large errors. The most pronounced cold anomalies are found in the subpolar North682

Atlantic. As in many other coarse-resolution and even eddy-permitting models (e.g., Kee-683

ley et al., 2012) this feature is related to an overly zonal North Atlantic Current (Drews684

et al., 2015) and likely also related to too weak meridional heat transport. For MPI-ESM,685

Gutjahr et al. (2019) have shown that moving to eddy-resolving resolution in the ocean686

improves the sub-polar cold bias in the North Atlantic. Corresponding errors in atmo-687

spheric sea-level pressure (Fig. 6) indicate that wind-driven circulation biases also con-688

tribute to the error. Large atmospheric SLP and circulation biases in the North Pacific689

are likely responsible for strong warm biases over the Kuroshio region.690

The cold-tongue bias in the equatorial Pacific is also a well known model feature,691

but the ICON-ESM performs less well than the MPI-ESM (Müller et al., 2018b), even692

though MPI-ESM-LR features much lower resolution in the ocean compared to the ICON693

ocean used here. The bias is a surface expression of the generally too cold sub-surface694

waters in the tropical oceans (Fig. 17) so that the outcropping isotherms in the west-695

ern Pacific are too cold. In the coupled system, the equatorial cold bias is important for696

the variability characteristics of ENSO and the associated precipitation distribution (sec-697

tion 4.2.7). Warm biases are diagnosed in the upwelling regions at the western coasts698

of the tropical oceans. They are most pronounced at the African coast south of the Equa-699

tor. These features are common in coupled models and, in particular in the case of Africa,700

are related to insufficient resolution in the atmosphere where coastal orography and along-701

shore winds cannot be properly simulated (Milinski et al., 2016).702

The sea surface salinity (SSS) biases (Fig. 16b, d) in ICON-ESM are relatively small703

over most of the oceans, except the high northern latitudes and around the Antarctic704

continent. The Arctic fresh bias extends also into the sub-polar North Atlantic, where705

overly fresh water is transported with the gyre circulation into the interior ocean mak-706

ing the cold bias in Fig. 16c a fresh bias as well.707

The time-mean bias in zonal averages over the global ocean reflect misrepresenta-708

tions of water mass pathways and processes like vertical and along-isopycnal mixing. The709

most prominent error feature in the ICON-ESM ocean is a generally too cold interior710

ocean with strong cold biases in the sub-tropical and tropical oceans (Fig. 17) that are711

accompanied by overly fresh conditions. The reasons for the overly strong cooling are712

not fully understood, but comparison with an earlier version using the Pacanowski-Philander713

mixing scheme (PP, Pacanowski and Philander (1981)) showed that the PP scheme in714

combination with the wind-mixing parameterization used in MPIOM (Marsland et al.,715

2003) showed a better performance than the TKE scheme used here. Regarding the up-716

per ocean, this is consistent with the findings of Gutjahr et al. (2019) for the MPI-ESM.717

Since the TKE scheme is more advanced and shall be further improved by including an718

energy-consistent scheme for the background mixing in the interior (see Gutjahr et al.,719

2021), we decided to keep the TKE scheme and attend to an improved tuning in forth-720

coming versions of ICON-ESM.721

The overly cold sub-thermocline waters lead to a too strong stratification near the722

thermocline in particular in the tropical oceans and are likely responsible for too strong723

ENSO variability (see section 4.2.7). The salinity biases resemble those in temperature724

in the tropical and southern sub-tropical region, but higher northern latitudes feature725
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Figure 14. LST differences between the ICON-ESM historical ensemble and MODIS data

averaged from 2001 to 2014. The curves on the right side show zonal means.
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Figure 15. LST differences between the ICON-ESM historical ensemble and MPI-ESM en-

semble mean (r1i1p1f1, r2i1p1f1, r3i1p1f1, r4i1p1f1 and r5i1p1f1) averaged from 2001 to 2014.

The curves on the right side show zonal means.
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Figure 16. Climatology (1980 -2014) of a) sea surface temperature and b) sea surface salinity

simulated in the ICON-ESM historical simulations together with the model biases for c) SST and

d) SSS with respect to the observation-based PHC climatology (Steele et al., 2001). TODO: add

labels

pronounced positive salinity in the sub-surface ocean. These underlay a too fresh sur-726

face layer and lead to a too strong halocline in the Arctic Ocean. The too fresh surface727

salinities could be related to an underestimation of Fram Strait sea ice export.728

a) b)

Figure 17. Zonal mean global ocean a) temperature, and b) salinity bias relative to the PHC

climatology.

4.2.5 Large-scale ocean circulation729

The AMOC is an important part of the global overturning circulation and it is an730

important carrier of heat and fresh water in the Atlantic. The AMOC stream function731

(Fig. 18a) represents the zonally integrated view. Facing west, the North Atlantic Deep732

Water cell is oriented clockwise and includes the downward motion associated with deep733

water formation in the Labrador Sea and Nordic Seas, as well as the overflows across the734

Greenland-Scotland Ridge. The maximum strength of the AMOC exceeds 16 Sv at ap-735

proximately 40oN and we diagnose an export of about 14 Sv at 30oS. The lower, counter-736

clockwise oriented cell is associated with Antarctic Bottom Water (AABW) entering the737

Atlantic and upwelling in the basins. The strength of the AABW cell in the North At-738

lantic is roughly consistent with the observations from the RAPID project, but for the739

South Atlantic the simulations likely underestimate the AABW inflow. While the sim-740
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ulated AABW maximum is slightly above 2 Sv, observation-based estimates point to val-741

ues of 6 Sv (Ganachaud & Wunsch, 2003) or 8 Sv (Talley et al., 2003). Although the over-742

turning stream function cannot be compared directly with observation, the RAPID project743

has provided measurements of the respective flow components at 26.5oN. The profile ob-744

tained over more than a decade of observations (Smeed et al., 2018) is shown together745

with the profiles from the piControl runs and one historical simulation (Fig. 18b) and746

with their variability range estimated from the standard deviation of monthly fields. In747

the upper ocean, the model reproduces well the shape of the profile, the maximum near748

1000 m depth and also the range of variability. The zero crossing is located above 4000 m749

in the model, but resides a few hundred meters deeper in the RAPID data. Compared750

to various versions of MPI-ESM1.2 (Gutjahr et al., 2019) and other CMIP6 models (e.g.751

Held et al. (2019); Danabasoglu et al. (2020)), which show even shallower NADW cells,752

the ICON-ESM results are, however, closer to the observations.753

a) b)

Figure 18. AMOC in ICON-ESM: a) ensemble mean overturning stream function in the At-

lantic from the five historical simulations averaged over the period 1980-2014; b) AMOC profile

at 26.5N for the historical ensemble (blue) and the piControl simulation (red) together with the

observational estimate from RAPID (black); shown are the mean profiles (thick lines) and the

range of variability derived from monthly standard deviations.

Table 4. Simulated and observed net volume transports (Sverdrups) across sections (positive

means northward).

Section ICON-ESM Obs. Reference

Bering Strait 0.7-0.8 0.7-1.1 Woodgate et al. (2006, 2012)

Fram Strait - (2.6-2.8) -1.75 ± 5.01 Fieg et al. (2010)

Denmark Strait - (4.7-4.9) -4.8 Hansen et al. (2008)

-3.4± 1.4 Jochumsen et al. (2012)

Iceland-Scotland 4.7-4.9 4.8 Hansen et al. (2008)

4.6± 0.25 Rossby and Flagg (2012)

Indonesian Throughflow 9.9-10.1 11.6 - 15.7 Gordon et al. (2010)

Drake Passage 108-112 134.0± 14.0 Nowlin Jr. and Klinck (1986)

173.3± 10.7 Donohue et al. (2016)
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The transport through selected passages reflects the representation of the large-754

scale ocean circulation and can be evaluated in comparison with observational estimates.755

The total depth-integrated transports through the passages given in Table 4 are mostly756

simulated within the observational uncertainty found in the literature. The transport757

through Bering Strait is a key element of the Arctic fresh water budget and the histor-758

ical simulations are close to the estimates by Woodgate et al. (2006, 2012). The exchange759

of water masses between the Atlantic Ocean and the Nordic Seas is important for the760

overturning circulation. The simulated transports are consistent with the circulation scheme761

by Hansen et al. (2008). The Indonesian Throughflow is another important contributor762

to the warm-water route of the global conveyor. The simulated transports are slightly763

underestimated in comparison with the estimate by Gordon et al. (2010). The Drake Pas-764

sage transport is clearly underestimated in ICON-ESM, both in comparison with the tra-765

ditional estimate around 135 Sv (Cunningham et al., 2003; Nowlin Jr. & Klinck, 1986)766

and with the more recent compilation by Donohue et al. (2016). At this stage it is not767

clear if the mismatch between observed and simulated Drake Passage (and likely Antarc-768

tic Circumpolar Current) is related to biases in the wind stresses or the settings of the769

eddy and background diffusivity in the ocean circulation (P. R. Gent et al., 2001).770

The equatorial hydrography and the representation of the zonally-oriented current771

systems is important for variability features such as Tropical Instability Waves and for772

coupled ocean-atmosphere phenomena like the El-Nino Southern Oscillation (ENSO).773

Johnson et al. (2002) provided a compilation of temperature and salinity data and cur-774

rent measurements from the 1990s, which we compare with ICON-ESM results in Fig-775

ure 19. At 110oW, the placement of the eastward equatorial undercurrent (EUC) and776

the westward flows on its northern and southern flanks are reproduced well in the model777

and the depth of the core of the undercurrent lies roughly at the correct depth of 75m778

(Figure 19a, b). The model underestimates, however, the speeds of the eastward under-779

current and the westward currents flanking the undercurrent. Although the 24o and 26o780

isotherm outcrop at roughly the correct position, the stratification is stronger than in781

the observations and the 20o isotherm outcrops near the Equator whereas it stays sub-782

surface in the observations. The stratification in the thermocline in the northern and south-783

ern flanks is also much stronger than in the observations. Generally, ICON-ESM pro-784

duces too cold conditions above the thermocline (Figure 17) which is responsible for a785

pronounced cold bias along the Equator in the Pacific and possibly affects ENSO vari-786

ability (see section 4.2.7). The section along the Equator confirms that the position of787

the EUC’s core depth is well captured in the model, as are the amplitudes of the EUC788

and the westward flow near the surface. The weaker EUC seen in (b) is more related to789

a biased longitudinal positioning of the maximum strength of the EUC.790

4.2.6 Sea ice791

Sea-ice thickness distributions and extents for late winter and late summer are pre-792

sented in Figures 20 and 21 for both hemispheres. Arctic and Antarctic sea-ice edges are793

reproduced in good agreement with the EUMETSAT OSI SAF data set (EUMETSAT,794

2015) for the respective winter seasons but summer ice cover is clearly underestimated.795

In particular in the Arctic, simulated summer sea-ice concentrations are above 15% only796

between Fram Strait and the North Pole whereas observational data show sea-ice extents797

almost reaching the Canadian and Siberian coasts. Summer sea ice is also very thin, rarely798

reaching 1 m thickness. Winter sea-ice thickness is overly too homogeneous and lacks799

the typical pile-up of thicker ice (exceeding 3 m thickness) that is seen in the PIOMAS800

Arctic sea-ice volume reanalysis (Schweiger et al., 2011) (compare also: http://psc.apl801

.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/piomas-monthly-thickness802

-map.) Deficits in the sea-ice thickness distributions are likely related to biases in the at-803

mospheric circulation as indicated by the sea-level pressure errors in Figure 6. Mismatches804

in the seasonal amplitude and the too thin summer ice need further attention. During805

the tuning process we tried different options for albedo parameters or the lead-closing806
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a)

c)

b)

d)
Figure 19. Tropical Pacific zonal velocities (color shading) and temperatures (contour lines)

in the ICON-ESM simulation (left) compared to the observation-based estimate by Johnson et al.

(2002) (right) at 110o W (upper row) and along the Equator (lower row).

scheme. These were either unsuccessful in improving summer sea ice or lead to overly807

large sea-ice extent in winter (in particular in the Labrador Sea) with negative conse-808

quences for deep water formation and the strength of the AMOC.809

4.2.7 Variability simulated by ICON-ESM810

The El-Nino-Southern Oscillation (ENSO) is one of the most important modes of811

tropical variability with global teleconnections. To analyse characteristic features of ENSO812

and related quantities we apply the Climate Variability Diagnostics Package (CVDP; Phillips813

et al., 2014). CVDP allows assessment of simulations in comparison with observation to814

be carried out in a consistent way. CVDP results presented here can easily be compared815

with collections of CMIP5 and CMIP6 model evaluations carried out by NCAR (www.cesm816

.ucar.edu/workinggroups/CVC/cvdp/data-repository.html). CVDP provides also817

links to observational data sets for comparison (ERSST (Smith et al., 2008) and HADSST818

(Rayner et al., 2003) for sea surface temperature and GPCP (Adler et al., 2018) for pre-819

cipitation). We show here a subset of ENSO features that are based on SST time series820

from the Nino3.4 region. First, we present spectra (Fig. 22) obtained for boreal winter821

(DJF) conditions from the five-member historical ensemble (red lines) and from the pi-822

Control simulation (blue lines). The latter was split into three sections of 160 years. All823

time series show a peak near three years and similar variability in the control and his-824

torical runs. The spectra are more pronounced than those from the CMIP6 version of825

the MPI-ESM-LR and the level of variability is considerably higher than the observed826

spectra. ERSST data as well for the entire period (ERSST5, 1920-2014) as well as those827

from the last 35 years (ERSST5 1) show a much broader spectrum and indicate less strong828

variability on the three-year scale. Regarding the level of spectral power, ICON-ESM829

is not an exception compared to other CMIP5 and CMIP6 models according to the NCAR830

repository, but it belongs certainly not to the better performing models. We presume831
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Figure 20. Ensemble mean sea-ice thickness (shading) for a) March and b) September in

the northern hemisphere. Thick colored lines depict the 15% sea-ice extent boundary in the

simulations (orange) and from the EUMETSAT OSI SAF observational data set (red).
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Figure 21. Ensemble mean sea ice thickness (shading) for a) March and b) September in the

southern hemisphere. Thick colored lines depict the 15% ice extent boundary in the simulations

(orange) and from the EUMETSAT OSI SAF observational data set (red).

that the sharp spectral peak at three years is related to the pronounced cold bias along832

the equatorial Pacific (Fig. 17) and the related upper ocean stratification. Spatial com-833

posites of boreal winter ENSO-related anomalies of temperature and precipitation are834

shown in Figures 23a and 23b, respectively. While the general patterns are reproduced835

well, there are deficits in the amplitude of SST variations at the Equator. In particular,836

positive anomalies reach too far into the warm pool region, where they also shift the pos-837

itive precipitation anomaly too far to the west (Fig. 23b).838

4.3 Ocean biogeochemistry simulated by HAMOCC839

The performance of ICON-ESM in simulating the ocean carbon cycle is evaluated840

in the piControl run. We compare the surface water pCO2 averaged over the last 10 years841

of the spin-up run to the piControl results from MPI-ESM 1.2-LR (Mauritsen et al., 2019)842
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Figure 22. El Nino - Southern Oscillation (ENSO) variability derived from Nino3.4 time

series from (red) the historical ensemble, (blue) the piControl simulation, and (orange) a MPI-

ESM-LR historical simulation (Mauritsen et al., 2019). The piControl experiment was subdivided

into three 160-year long sections. Estimates from the observational ERSST5 data set are in-

cluded, where ERSST5 1 denotes a subset from the last 35 years). TODO: refrence ERSST!

(Fig. 24). The overall regional patterns are well reproduced in this simulation with max-843

imum values detected in the tropical Pacific and minimum values in the extra-tropical844

regions; but differences are also detected. ICON-ESM simulates a lower pCO2 than MPI-845

ESM 1.2-LR in the equatorial Pacific, most regions of the subtropical Pacific and along846

the Kuroshio Current. On the contrary, in the Labrador Sea, Barents Sea and along the847

southern Chilean coast, ICON-ESM simulates higher pCO2 than MPI-ESM 1.2-LR. The848

simulated annual global flux of CO2 into the ocean is about 0.05 PgC/yr, representa-849

tive for the assumption of the pre-industrial steady-state condition.850

To understand the drivers for the difference in the surface water pCO2 in the two851

models, we decompose the changes in pCO2 to changes in dissolved inorganic carbon (DIC),852

total alkalinity (TA), SST and SSS following Menviel et al. (2018). The sum of changes853

in DIC and TA are referred to as biogeochemical contributions and the sum of changes854

in SST and SSS are the physical contributions, respectively. The change in pCO2 due855

to these contributions is calculated in each model and the difference is illustrated (Fig.856

24c,d). The sum of the biogeochemical and physical contributions (not shown) closely857

matches the difference between ICON-ESM and MPI-ESM pCO2 shown in Fig. 24b. The858

lower pCO2 in ICON-ESM in the eastern equatorial Pacific can be attributed to the lower859

SST, while in the subtropical Pacific, western equatorial Pacific and along the Kuroshio860

Current it is due to the biogeochemical contribution, mostly counteracting the impact861

of the circulation. Along the Labrador Current, the higher pCO2 in ICON-ESM is at-862

tributed to biogeochemical changes, a result of lower simulated TA in ICON-ESM. In863

the Barents Sea, the higher pCO2 results from the combined effect of a higher SST and864

higher DIC simulated by ICON-ESM.865

These HAMOCC results represent a first-order tuning attempt and further sim-866

ulations will be required to obtain a fully tuned HAMOCC model. Therefore, the eval-867

uation of ocean biogeochemistry in a historical run will be the topic of a future study.868
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Figure 23. Spatial composites of ENSO (Nino3.4) events for a), c) SST, and b), d) precipi-

tation from a), b) the historical ensemble mean, c) the HadSST, and d) the GPCP precipitation

data sets.

4.4 Idealized CO2 increase simulations and climate sensitivity869

Two measures of the model’s response to changes in radiative forcing are computed870

using the idealized CO2-increase experiments in CMIP6 DECK: Transient Climate Re-871

sponse (TCR) and Equilibrium Climate Sensitivity (ECS). TCR is computed from the872

experiment where CO2 increases by 1 percent per year (1pctCO2). The TCR is estimated873

as the global temperature (TAS) increase around the time of CO2-doubling, which hap-874

pens after 70 years of simulation. To minimize effects of internal variability we take a875

20-year average between years 60 and 79 as suggested by Meehl et al. (2020) and we ar-876

rive at a TCR of 2.1K. This value is slightly higher than the 1.8 K derived for the CMIP6877

version of MPI-ESM-LR and in the middle of the range found in the CMIP6 multi-model878

assessment by Meehl et al. (2020). Differences in TCR are often related to variations in879

the ocean heat content changes under global warming, which could be different in MPIOM880

and ICON-O due to different formulations of vertical mixing and the GM parameters.881

ECS is estimated using the DECK “abrupt4xCO2” experiment applying the method of882

Gregory et al. (2004), which has also been used by Meehl et al. (2020). We perform a883

linear regression between the global mean TAS and the net downward radiative flux at884

the top-of-atmophere over 150 years of simulation. ECS is then estimated from an ex-885

trapolation of the regression line to zero net heat imbalance (Fig. 25b). This procedure886

results in an ECS of 3.7 K, which can be compared with the value of 2.9 in MPI-ESM-887

LR. MPI-ESM and ICON-ESM are quite similar in their estimate of the effective forc-888

ing (estimated as the crossing of the regression lines with the y-axis in Fig. 25b), but889

the slopes of the regression lines are considerably different. We note that the change of890

temperature over time differs for the later part of the experiments. Redoing the ECS es-891

timation excluding the first 20 years in the regression, we find a much higher value of892

4.3 K in ICON, whereas there is only a relatively small change to 3.1 K in MPI-ESM.893

This difference is likely related to different evolution of local or regional feedbacks (Armour894

et al., 2013). The higher TCR and ECS in ICON-ESM compared to MPI-ESM-LR may895

be responsible for part of the more pronounced warming in the second half of the 20th896

century (Fig. 4). However, for the ICON-ESM no effort was made to tune the climate897

sensitivity in order to better match the historical record as it was done for MPI-ESM1.2898

(Mauritsen & Roeckner, 2020).899
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Figure 24. Surface pCO2 in a) ICON-ESM piControl simulations and b) ICON-ESM minus

MPI-ESM piControl simulations. The contribution of biogeochemical factors (alkalinity and DIC)

(c) and physical factors (SST and SSS) (d) to the difference in ICON-ESM and MPI-ESM pCO2

are also shown.

5 Discussion900

During the tuning phase we have explored different parameter settings and, in the901

case of ocean vertical mixing, the choice between two different parameterization schemes902

(TKE, PP, see section 2.2). We started the coupled experiments using parameter set-903

tings inherited from the stand-alone ocean and atmosphere simulations. While these gave904

good or at least acceptable results in ICON-A (Crueger et al., 2018) and ICON-O (Korn905

et al., manuscript in preparation), solutions meeting our tuning goals (see Section 3) were906

much harder to obtain.907

Problematic biases increased or became more apparent as feedbacks between the908

coupled components evolved. For example, the ICON-A AMIP simulation described in909

Crueger et al. (2018) exhibits relatively good skill scores, but features strong positive sea-910

level pressure biases in high northern latitudes (their Figure 3). In the coupled simula-911

tion, this error is accompanied by too weak winds over the subpolar North Atlantic that912

could lead to biases in ocean circulation, water mass transformation and, eventually, to913

a strong reduction or collapse of the AMOC. Changing parameter settings in the SSO914

parameterization (see Table 1) turned out to be an effective way to reduce the SLP bias.915

However, for instance, small values of gkdrag reducing SLP biases also led to stronger916

errors in upper tropospheric and stratospheric zonal wind strength and distribution. There-917

fore, the results presented here are the results of compromises. Avoiding detrimental ef-918

fects in some key quantities, such as the collapse of the AMOC or a freeze-over of the919

Labrador Sea in the ocean, required sometimes parameter settings in the atmosphere that920

turned out to be sub-optimal in terms of atmospheric performance skill scores (Figure921

5).922

In general, we found that tuning choices had often complex and unexpected effects923

in the coupled system. Partly, these were hard to grasp as they required relatively long924

adjustment times. Moreover, obtaining a tuning target is often dependent on several pa-925

rameter settings and these may influence each other. We demonstrate this with the ex-926
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a) b)
Figure 25. Estimating the Transient Climate Response (TCR) and Equilibrium Climate Sen-

sitivity (ECS) from idealized DECK experiments. a) Evolution of global surface air temperature

in the 1pctCO2 (blue) and abrupt4XCO2 (red) together with the piControl experiment (black).

Vertical lines indicate the period for the TCR calculation, b) Gregory-style regression analyses to

estimate ECS in ICON-ESM (dark red) and in the CMIP6 model MPI-ESM1.2.

ample of the AMOC strength taken from several experiments with different parameter927

settings. ICON-O stand-alone experiments, where only the coefficients for isoneutral dif-928

fusion K and eddy-induced diffusion κ have been changed, indicated that larger K and929

κ lead to weaker overall AMOC strength, likely due to a stronger flattening of isopyc-930

nals (not shown). However, an inspection of the multitude of experiments leads us to con-931

clude that it is possible to arrive at any AMOC state even for K and kappa set to zero.932

We found fewer solutions with weak overturning at high K and kappa, but this may be933

due to the smaller number of experiments. It is also difficult to relate the AMOC strength934

uniquely to other parameters. For example, the experiments run with K/kappa equal935

400 ms−2 in Figure 26 come with various settings of the wave drag parameter gkdrag and936

an inspection of this column in isolation would lead us to conclude that lower wave drag937

parameters produce higher ocean overturning, possibly due to the effect on wind and wind938

stress discussed above. But again, looking at all experiments using a moderately low gk-939

drag of 0.02 we find an AMOC range between 7.6 and almost 25 Sv.940

It is obvious that another round of tuning and an even more extensive set of sen-941

sitivity experiments could have improved some of the shortcomings mentioned above.942

We decided, however, to finalize “version 1” at this stage to set a milestone in the model943

development. Moreover, model development activities in the component models have con-944

tinued in parallel and we prefer to postpone a second round of major tuning efforts un-945

til some innovations can be included in the standard model configurations. We mention946

here two developments in ICON-O: the z* vertical coordinate and a newly developed dy-947

namical sea-ice model. z* is designated to replace “z-level” as standard coordinate and948

comes together with an improved representation of the bottom topography in the form949

of “partial cells”, which was already implemented in MPIOM and its predecessors. The950

implementation process includes a slight reorganization of level distribution in the up-951

per ocean and we plan to achieve a better representation of the mixed layer processes952

and mixing by re-assessing the TKE parameterization. Mehlmann and Korn (2021) have953

developed a novel sea-ice dynamics formulation, which is based on an analogue of the954

Arakawa-CD grid. The CD-grid placement has appealing resolving properties at high955

spatial resolution compared to traditionally used discretizations (Mehlmann et al., 2021).956

Furthermore, the development allows a straightforward coupling to the Arakawa C-grid-957
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Figure 26. Scatterplot relating the eddy diffusion parameter κ with the strength of the

AMOC at 26oN. The black circle indicates the standard experiment (piControl) and colors refer

to different choices of the gravity wave drag parameter gkdrag.

like discretization used in ICON-O. As the new sea ice dynamics are realized on the same958

grid as ICON-O the coupling requires no rotations and promises a better representation959

of the bathymetry. While the deficits in the simulated sea-ice climatology documented960

here may be related to problems in sea-ice thermodynamics, we expect improvement from961

the new dynamics, e.g., for the representation of narrow passages and the related ice trans-962

ports. By affecting fresh-water exchanges, the latter could lead to improvements in wa-963

ter mass properties and air-sea exchanges for example in the Labrador Sea.964

Ongoing development work will further explore ICON-specific opportunities like965

grid refinement in ICON-O (Logemann et al., 2021) and nesting in the atmosphere (Jungandreas966

et al., 2021). The excellent scaling capabilities of ICON have been documented in the967

DYAMOND project with ICON-A setups between 80 and 2.5 km (Stevens et al., 2019;968

Hohenegger et al., 2020) and are further explored in very high resolution coupled set-969

ups with grid spacing of a few kilometers in the DYAMOND-WINTER project (https://970

www.esiwace.eu/services/dyamond/winter).971

While the ICON-A version described herein uses the physical parameterization pack-972

age inherited from ECHAM6 (Stevens et al., 2013; Giorgetta et al., 2018), which was de-973

signed for “climate” applications at grid sizes from 50 to 350 km, higher-resolution ICON974

application will require other choices. At km-scale, some parameterizations may become975

obsolete or will be better represented by schemes from the numerical weather-prediction976

version of ICON (Zängl et al., 2015). Therefore, a longer-term goal of the ICON com-977

munity is the development of a system for “seamless” predictions from weather to cli-978

mate scales.979

6 Summary and conclusions980

In this paper, we have documented ICON-ESM (V1.0), the first coupled model that981

is based on the ICON framework (Zängl et al., 2015) with its isosahedral grid concept.982

We have presented the first simulations with the coupled ICON-ESM (Lorenz et al., 2021)983

confronting it with the task to deliver reasonable results in a well-defined experimental984
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framework, the CMIP6 DECK simulations. Coupling of the newly developed component985

models and the tuning of the coupled model turned out to be more challenging than ex-986

pected. Tuning choices that revealed robust results in stand-alone simulations needed987

adjustment or reconfiguration in the presence of coupled feedbacks. The performance988

of the ICON-ESM reported in this paper can be summarized as follows:989

1. We were able to fulfil the primary tuning goals: The 500-year long piControl sim-990

ulation exhibits little drift in key quantities like GSAT, radiation, sea-ice cover, and the991

AMOC TOA radiation is well balanced with little remaining drift. GSAT and other global992

quantities are close to observational estimates for the pre-industrial climate.993

2. A set of five historical simulations reproduces the observed global surface tem-994

perature evolution largely in agreement with observational data sets, albeit with some-995

what too strong warming in the second half of the 20th century.996

3. ICON-ESM’s climate sensitivities (TCR, ECS) are slightly higher than the cor-997

responding values from MPI-ESM, but well in the range of the CMIP6 multi-model en-998

semble.999

4. The present-day climate simulated for the last decades reproduces largely the1000

climatology from observations and reanalyses, but biases are often larger than in ICON-1001

ESM’s predecessor model MPI-ESM1.2 and other CMIP6 models.1002

Problematic issues identified in the analyses are: In the atmosphere, the represen-1003

tation of both low-level and high-level clouds showed considerable deficits. Bias patterns,1004

which were already identified in stand-alone atmosphere simulations became more pro-1005

nounced in the coupled system. Counter-tuning that could have improved cloud distri-1006

butions had negative side effects on other parts of the climate system. Skill scores based1007

on wind and temperature data are worse than in MPI-ESM. In particular zonal wind bi-1008

ases remain and there is some indication that the parameterization of sub-grid scale oro-1009

graphic effects requires further attention.1010

Overall, the rather zonal pattern of the LST biases hints to the global atmospheric1011

circulation as their major cause. Nevertheless, the land surface temperatures show re-1012

gional biases that may be traced to a misrepresentation of surface albedo values. The1013

biases over Antarctica and Greenland partly reflect albedo deviations over glaciers. Er-1014

rors in land temperatures over Eurasia are substantially caused by a too low snow cover1015

and the associated snow-albedo feedback. The biases could be partly improved by changes1016

in the near-infrared and visible albedo settings in JSBACH 4, but others are complex1017

and related to deficits in snow cover or soil and canopy albedo biases.1018

In the ocean, SST and SSS climatologies show bias patterns and magnitudes com-1019

parable to other coarse-resolution CMIP5 or CMIP6 models, whereas the relatively large1020

sub-surface biases are of concern in particular in the tropical oceans. Here, a re-tuning1021

of the vertical mixing scheme might alleviate misrepresentation of wind-induced mixing.1022

From improvements in the upper-ocean stratification we expect also positive effects on1023

ENSO variability and processes in the tropical oceans. Northern hemisphere sea ice con-1024

centrations is somewhat too high in winter with too much ice cover, for example in the1025

Labrador Sea. On the other hand, the seasonal cycle is too strong leading to too thin1026

sea-ice in summer with only half of the Arctic basis being ice-covered in summer. The1027

seasonal cycle is also too strong in the southern hemisphere.1028

ENSO variability in ICON-ESM is less close to observations than MPI-ESM’s, but1029

similar to many other CMIP5 and CMIP6 models. The spectra derived from Nino3.4 time-1030

series of the historical simulations show a too narrow peak at about three years and an1031

overly high level of variance. The spatial patterns associated to ENSO variability agree1032

with the observed ones, but there are too strong signals in the warm pool and in the In-1033

dian Ocean.1034
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We emphasize that the present configuration is the first milestone in establishing1035

ICON-ESM as a highly flexible modelling system. ICON-ESM V1 serves as a basis for1036

further developments that will take advantage of ICON-specific properties such as spa-1037

tially varying resolution, and coupled configurations at resolutions of a few kilometers1038

in atmosphere, land, and ocean.1039

7 Data Availability Statement1040

The data from the ICON-ESM V1.0 DECK simulations are available at the CMIP61041

repository of the Earth System Grid Federation (Lorenz et al., 2021) and can be accessed1042

at http://esgf-data.dkrz.de/search/cmip6-dkrz/. The model code of ICON is avail-1043

able to individuals under licenses (https://mpimet.mpg.de/en/science/modeling-with1044

-icon/code-availability). By downloading the ICON source code, the user accepts1045

the licence agreement. The source code of the ICON-ESM-V1.0 used in this study, pri-1046

mary data, and sripts used in the analyses and for producing the figures can be obtained1047

from the WDCC Long Term Archive (http://cera-www.dkrz.de/WDCC/ui/Compact.jsp1048

?acronym=RUBY-0 ICON- ESM V1.0 Model).1049

Acknowledgments1050

We thank the German Climate Computer Centre DKRZ for providing the computational1051

resources. TI was supported by the European Union’s Horizon 2020 research and inno-1052

vation program under grant agreement No 101003536 (ESM2025 – Earth System Mod-1053

els for the Future) and under grant agreement No 820989 (COMFORT)”. TI and FC1054

were supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-1055

dation) under Germany’s Excellence Strategy - EXC 2037 ’Climate Climatic Change and1056

Society’ (CLICCS) - Project Number: 390683824 and by the European Union’s Hori-1057

zon 2020 research and innovation programme under grant agreement number 773421 -1058

project ”Nunataryuk”.” This paper is a contribution to the project S2 (PIs JJ and NB)1059

of the Collaborative Research Centre TRR 181 ”Energy Transfers in Atmosphere and1060

Ocean” funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-1061

dation) - Project nr. 274762653. HP received funding by DWD’s ”Innovation Programme1062

for Applied Researches and Developments” (IAFE VH3.5). FZ was supported by the Ger-1063

man Federal Ministry of Education and Research (BMBF) as a Research for Sustain-1064

ability initiative (FONA) through the project PalMod (FKZ: 01LP1502A) and by the1065

European Union’s Horizon 2020 research and innovation programme under grant agree-1066

ment No 823988 (ESiWACE2). The CMIP6 participation received funding by the BMBF1067

via the project CMIP6-DICAD (FKZ: 01LP1605A).1068

References1069

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., . . .1070

others (2003). The version-2 global precipitation climatology project (gpcp)1071

monthly precipitation analysis (1979–present). Journal of Hydrometeorology ,1072

4 (6), 1147–1167.1073

Adler, R. F., Sapiano, M. R., Huffman, G. J., Wang, J.-J., Gu, G., Bolvin, D., . . .1074

others (2018). The global precipitation climatology project (gpcp) monthly1075

analysis (new version 2.3) and a review of 2017 global precipitation. Atmo-1076

sphere, 9 (4), 138.1077

Armour, K. C., Bitz, C. M., & Roe, G. H. (2013). Time-varying climate sensitivity1078

from regional feedbacks. Journal of Climate, 26 (13), 4518–4534.1079

Becker, J., Sandwell, D., Smith, W., Braud, J., Binder, B., Depner, J., . . . others1080

(2009). Global bathymetry and elevation data at 30 arc seconds resolution:1081

Srtm30 plus. Marine Geodesy , 32 (4), 355–371.1082

Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., . . .1083

–36–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

others (2013). Multiple stressors of ocean ecosystems in the 21st century:1084

projections with cmip5 models. Biogeosciences, 10 (10), 6225–6245.1085

Borchert, S., Zhou, G., Baldauf, M., Schmidt, H., Zängl, G., & Reinert, D. (2019).1086

The upper-atmosphere extension of the icon general circulation model (version:1087

ua-icon-1.0). Geoscientific Model Development , 12 (8), 3541–3569.1088

Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M., & Gayler, V. (2009). Global1089

biogeophysical interactions between forest and climate. Geophysical research1090

letters, 36 (7). doi: 10.1029/2009GL0375431091

Cescatti, A., Marcolla, B., Vannan, S. K. S., Pan, J. Y., Román, M. O., Yang, X.,1092

. . . others (2012). Intercomparison of MODIS albedo retrievals and in situ1093

measurements across the global FLUXNET network. Remote sensing of envi-1094

ronment , 121 , 323–334.1095

Chepfer, H., Bony, S., Winker, D., Cesana, G., Dufresne, J., Minnis, P., . . . Zeng, S.1096

(2010). The gcm-oriented calipso cloud product (calipso-goccp). Journal of1097

Geophysical Research: Atmospheres, 115 (D4).1098

Crueger, T., Giorgetta, M. A., Brokopf, R., Esch, M., Fiedler, S., Hohenegger,1099

C., . . . Stevens, B. (2018). ICON-A, The Atmosphere Component of1100

the ICON Earth System Model: II. Model Evaluation [Journal Article].1101

Journal of Advances in Modeling Earth Systems, 10 (7), 1638-1662. doi:1102

10.1029/2017ms0012331103

Cunningham, S. A., Alderson, S. G., King, B. A., & Brandon, M. A. (2003). Trans-1104

port and variability of the Antarctic circumpolar current in Drake Passage. J.1105

Geophys. Res., 108 (C5), 8084. doi: 10.1029/2001JC0011471106

Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D., DuVivier, A., Ed-1107

wards, J., . . . others (2020). The Community Earth System Model version 21108

(CESM2). Journal of Advances in Modeling Earth Systems, 12 (2).1109

Danilov, S., Wang, Q., Timmermann, R., Iakovlev, N., Sidorenko, D., Kimmritz, M.,1110
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