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Abstract

We present PetroChron Antarctica, a new relational database including petrological, geochemical and geochronological datasets

along with computed rock properties from geological samples across Antarctica. The database contains whole-rock geochemistry

with major/trace element and isotope analyses, geochronology from multiple isotopic systems and minerals for given samples,

as well as an internally consistent rock classification based on chemical analysis and derived rock properties (i.e., chemical

indices, density, p-velocity and heat production). A broad range of meta-information such as geographic location, petrology,

mineralogy, age statistics and significance are also included and can be used to filter and assess the quality of the data.

Currently, the database contains 11,559 entries representing 10,056 unique samples with varying amounts of geochemical and

geochronological data. The distribution of rock types is dominated by mafic (36%) and felsic (33%) compositions, followed

by intermediate (22%) and ultramafic (9%) compositions. Maps of age distribution and isotopic composition highlight major

episodes of tectonic and thermal activity that define well known crustal heterogeneities across the continent, with the oldest

rocks preserved in East Antarctica and more juvenile lithosphere characterising West Antarctica. PetroChron Antarctica allows

spatial and temporal variations in geology to be explored at the continental scale and integrated with other Earth-cryosphere-

biosphere-ocean datasets. As such, it provides a powerful resource ready for diverse applications including plate tectonic

reconstructions, geological/geophysical maps, geothermal heat flow models, lithospheric and glacial isostasy, geomorphology,

ice sheet reconstructions, biodiversity evolution, and oceanography.
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Key Points: 16 

● PetroChron Antarctica is a new relational database containing petrological, geochemical 17 

and geochronological datasets from sampled rocks across Antarctica. 18 

● Lithology and age of geolocated samples, along with computed chemical and physical 19 

rock properties, facilitate quantitative analysis and data integration for interdisciplinary 20 

use (e.g. geodynamics, oceanography, ice sheet dynamics, biodiversity and soil studies). 21 

● The PetroChron Antarctica database is accessible online via a web portal, where data can 22 

be freely downloaded as comma-separated text (CSV) flat files or individual tables to be 23 

used in a relational database system. 24 

  25 
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Abstract 26 

We present PetroChron Antarctica, a new relational database including petrological, geochemical 27 

and geochronological datasets along with computed rock properties from geological samples 28 

across Antarctica. The database contains whole-rock geochemistry with major/trace element and 29 

isotope analyses, geochronology from multiple isotopic systems and minerals for given samples, 30 

as well as an internally consistent rock classification based on chemical analysis and derived 31 

rock properties (i.e., chemical indices, density, p-velocity and heat production). A broad range of 32 

meta-information such as geographic location, petrology, mineralogy, age statistics and 33 

significance are also included and can be used to filter and assess the quality of the data. 34 

Currently, the database contains 11,559 entries representing 10,056 unique samples with varying 35 

amounts of geochemical and geochronological data. The distribution of rock types is dominated 36 

by mafic (36%) and felsic (33%) compositions, followed by intermediate (22%) and ultramafic 37 

(9%) compositions. Maps of age distribution and isotopic composition highlight major episodes 38 

of tectonic and thermal activity that define well known crustal heterogeneities across the 39 

continent, with the oldest rocks preserved in East Antarctica and more juvenile lithosphere 40 

characterising West Antarctica. PetroChron Antarctica allows spatial and temporal variations in 41 

geology to be explored at the continental scale and integrated with other Earth-cryosphere-42 

biosphere-ocean datasets. As such, it provides a powerful resource ready for diverse applications 43 

including plate tectonic reconstructions, geological/geophysical maps, geothermal heat flow 44 

models, lithospheric and glacial isostasy, geomorphology, ice sheet reconstructions, biodiversity 45 

evolution, and oceanography. 46 

Plain Language Summary 47 

On a continent with less than 0.18% of outcrop, information such as the rock type, chemistry and 48 

age of Antarctic rock samples are critical inputs for understanding complex interactions between 49 

the lithosphere, cryosphere, biosphere, and ocean. We have created PetroChron Antarctica, a 50 

relational database containing a compilation of petrological, geochemical and geochronological 51 

data from geological samples across Antarctica. The database contains more than 10,000 52 

samples, along with chemical indices and rock properties calculated from chemical analyses. 53 

PetroChron Antarctica contains spatial meta-information to enable visualisation and analysis of 54 

the database using an online interactive map, which highlights the variability in crustal geology 55 

at the continental scale and can be used for interdisciplinary scientific studies. PetroChron 56 

Antarctica is freely available through Zenodo and an ESRI Web Feature Service 57 

(http://bit.ly/petrochron). 58 

1 Introduction 59 

The Antarctic lithosphere was built over billions of years (e.g., Boger, 2011; Harley et al., 60 

2013), and it is increasingly clear that this long and complex lithospheric evolution both records 61 

and influences interactions with the oceans and cryosphere (e.g., Burton-Johnson et al., 2020; 62 

Hochmuth et al., 2020; Paxman et al., 2020; Whitehouse et al., 2019). Understanding these 63 

interrelated processes critically depends on the ability to integrate large heterogeneous datasets 64 

from regional to continental scale (Stål et al., 2020). Antarctic datasets are typically poorly 65 

represented in global databases. In the Antarctic geosciences, dataset hosting and dissemination 66 

are mainly supported through the Scientific Committee on Antarctic Research (SCAR; 67 

https://www.scar.org/resources/data/) and NASA’s Earth Science Data Systems Program 68 

https://protect-au.mimecast.com/s/NLzbCGvmG7f1p1PG8iKd8Qm?domain=bit.ly
https://www.scar.org/resources/data/
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(https://search.earthdata.nasa.gov/search). However, geological datasets are poorly resolved 69 

compared with the burgeoning geophysical data streams. Where available, geological data are 70 

typically hosted within national databases (e.g., OZCHEM; Champion et al., 2007; Petlab; 71 

Strong et al., 2016) or individual publications and are therefore difficult to utilise. 72 

Here we present PetroChron Antarctica, a new geological database that includes 73 

geochemical, geochronological and petrological datasets from Antarctic rock samples, compiled 74 

from existing databases and individual publications. We also generate compositionally-based 75 

classifications, geochemical indices and physical properties derived from the geochemical data 76 

where possible. This database builds upon the global whole-rock geochemistry compilation 77 

developed by Gard et al. (2019). A newly generated schema implemented to account for the 78 

newly incorporated data types and associated meta-information is described, including the data 79 

integration procedure. Finally, we relate some applications to highlight potential future uses of 80 

the database. 81 

2 Existing initiatives and motivation for data augmentation and integration 82 

The PetroChron Antarctica database incorporates various geochemical and 83 

geochronological datasets, together with related petrological information, from both global and 84 

national initiatives (Table 1). Whereas these collections are a valuable asset for the geoscience 85 

community and are incorporated in numerous regional and global studies, they are mostly 86 

organised around data types of interest (Fig. 1a) or localised in specific geographic areas where 87 

national campaigns have focused mapping and sampling efforts on accessible outcrop (Fig. 1b, 88 

c). This lack of integration between geochemical and geochronological data (and other rock-89 

based data), along with a strong asymmetry in data density from these existing databases, 90 

demonstrates the need to augment and integrate additional Antarctic geological data streams. 91 

PetroChron Antarctica, therefore, incorporates standardised peer-reviewed academic publications 92 

and some unpublished data (Fig. 1d). Currently, the PetroChron Antarctica database contains 93 

10,056 rock samples representing 11,559 data entries, of which around 40% are compiled from 94 

existing data repositories spanning over 80 years of research (Table 1). Whereas the existing 95 

databases are mostly located in West Antarctica, the distribution of geological data incorporated 96 

from individual publications is more widespread, and mostly located in East Antarctica (Fig. 1d; 97 

72%). 98 

 99 

Data source 

No. sample 

entries 

Others (publications, unpublished...)             5,266 

OZCHEM (Champion et al., 2007)             1,792  

Petlab (Strong et al.,2016)             1,819  

GEOROC (http://georoc.mpch-mainz.gwdg.de)             1,464 

Burton-Johnson BAS compilation (in Gard et al., 2019)             1,074  

DateView (Eglington, 2004)                 144  

Total           11,559  

https://search.earthdata.nasa.gov/search
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Table 1. Number of sample entries per data source. The Geochemistry of Rocks of the Oceans 100 

and Continents (GEOROC) data compilation contains chemical, isotope and limited age data for 101 

igneous rocks. National government collections include the Australian national whole-rock 102 

geochemical database (OZCHEM; Champion et al., 2007), the New Zealand national rock, 103 

mineral and geoanalytical database (Petlab; Strong et al., 2016) and the whole-rock geochemical 104 

data compilation from Burton-Johnson, British Antarctic Survey (BAS; included in Gard et al., 105 

2019). Part of the geochronological database DateView (Eglington, 2004) is also included, but 106 

are not cited as such when the data have been modified or independently entered from individual 107 

publications. 108 

109 
Figure 1. Spatial distribution of PetroChron Antarctica samples categorised by (a) data type, and 110 

data source including (b) national databases, (c) international compilations, and (d) international 111 

peer-reviewed publications. 112 
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3 Database foundational framework 113 

3.1 Data model  114 

The database architecture follows the key concept described in Figure 2. We decided to 115 

use a simplified relational database structure including only five sub-tables (metadata, petrology, 116 

geochemistry, geochronology and rock properties) representing the core elements of sample-117 

related information (Table 2). In an effort to meet the FAIR (findable, accessible, interoperable 118 

and reusable) data standard for inter- and intradisciplinary studies, we organise the different sub-119 

tables around subdomains of knowledge used across the research community. 120 

The minimalist relational model simplifies maintenance and minimizes file size. Indeed, 121 

complex relational models are usually not sustainable in the long term to support the expansion 122 

of datasets or fields to track provenance and modification. Our approach facilitates the extraction 123 

of the data from the database, the incorporation of the data into other databases with different 124 

schemas, and enables its use in various scientific workflows. 125 

Figure 2. The PetroChron Antarctica data model using a simple five-table structure representing 126 

metadata information and sub-domains of knowledge (petrology, geochemistry, geochronology 127 

and rock properties). Text in blue represents computed data based on chemical analyses. For 128 

readability purposes, chemical and isotopic elements are grouped by element types (i.e., major 129 

elements, trace elements, isotopes) as shown by the asterisks.  130 
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Table name Table content 

description 

Field Attribute Field description 

metadata Contains metadata 

information related to 

the recorded data 

including the 

approximative location 

and spatial reference 

(name, geographic 

coordinates, datum...) of 

the sample, the source 

of the data (existing 

database, original paper 

reference), the type of 

sample and the 

technique used to 

collect it, the sample 

name and other 

geological information 

related to the terrane 

and/or stratigraphic unit 

the sample may belong 

to. 

geolocation Information on the sample 

location (geographic area, 

place name). Additional 

information may be included, 

such as sites number, distance. 

Note that SCAR Gazeteer 

place names were used in 

most cases to consistently 

populate location names 

coordinfo Indicates the technique used 

to flag how geographic 

coordinates were recorded in 

the database 

data_source Source of the data if the 

record was extracted from an 

existing database or data 

compilation 

sample_type Type of the sample collected - 

e.g. veins, dyke, xenolith… 

sampling Sampling technique used to 

collect sample - e.g. outcrop, 

dredge, core… 

sample_name Sample name as recorded by 

the author in the publication 

or existing database. 

Duplicate number may occur 

petrology Comprises rock group, 

type, name, description, 

facies, mineralogy of 

the sample. Additional 

information are in 

chemical based 

classification (TAS, 

SIA granite type, frost 

classification). For 

further explanation, the 

reader is referred to 

Hasterok et al. (2018) 

rock_group High-level rock group of the 

sample (igneous, 

metamorphic and sedimentary 

rocks) assigned by original 

author/database 

rock_type Standardised rock type - e.g. 

plutonic, volcanic, 

metavolcanic, metaplutonic, 

metasedimentary, clastic, 

assigned or inferred by the 

original author/database 

rock_name Non-standardised rock name 

designated by the original 

author/database 

rock_description Non-standardised detailed 

description of the rock sample 

from the original 

author/database 
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rock_facies Metamorphic facies 

information 

mineralogy_major List of major minerals present 

in the rock sample 

mineralogy_minor List of minor minerals present 

in the rock sample 

lithology Chemical based rock type 

following methods described 

in Hasterok et al. (2018) 

qap_name Computed rock names based 

on the TAS igneous 

classification (Middlemost, 

1994), including high-Mg 

volcanics (Le Bas & 

Streckeisen, 1991) 

sia_scheme S-, I-, and A-type granite 

classification 

frost_class1 Magnesian or Ferroan (Frost 

et al., 2001) 

frost_class2 Calcic, calc–alkalic, alkali–

calcic, alkalic (Frost et al., 

2001) 

frost_class3 Metaluminous, peraluminous, 

peralkaline (Frost et al., 2001) 

geochemistry Sets of major, trace and 

isotope analyses. It also 

includes a set of 

chemical based indices 

computed from major 

element normalised 

(LOI-free) geochemical 

composition. 

geochem_mineral Mineral/fraction analysed - 

e.g., whole rock, zircon… 

geochem_tech_analysis Analytical technique used for 

geochemical measurements 

geochem_major Major element analyses - 

Includes major element oxides 

as well as volatile, carbonate 

and LOI content where 

available 

geochem_trace Trace element analyses 

geochem_isotopes Isotopic ratio analyses, 

including initial ratio 

mg_number Magnesium number. Fe2+ 

estimated using 0.85 × FeOT 

fe_number Iron number (Frost et al., 

2001) 

mali Modified alkali–lime index 

(Frost et al., 2001) 

asi Alumina Saturation Index 

(ASI) (Frost et al., 2001) 

maficity nFe + nMg + nTi 
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cia Chemical index of alteration 

(Nesbitt & Young, 1989) 

wip Weathering index of Parker 

(1970) 

spar Modified from Debon and Le 

Fort (1983) to remove apatite 

qtzindex Quartz Index (Debon & Le 

Fort, 1983) 

r1  R1R2 chemical variation 

diagram (De la Roche et al., 

1980) 

r2  R1R2 chemical variation 

diagram (De la Roche et al., 

1980) 

geochronology Includes age, age 

uncertainty and 

associated statistics of 

the age calculation (if 

provided in original 

reference/database). A 

set of metadata 

information related to 

the type of 

radiochronometer, the 

mineral dated, the 

approach and analytical 

technique used, and the 

significance of the age 

are populated. 

age_type Radiochronometer used to 

estimate the rock sample age - 

Ar-Ar, U-Pb… 

age_mineral Mineral used for dating - e.g. 

mica, zircon… 

age_significance Significance of the calculated 

age - e.g. Crystallisation, 

Cooling… 

age_approach The approach used to 

calculate      n age - e.g. 

Regression, Concordia, 

Discordia, Ar Plateau 

age_techgeochem The technique used to 

measure isotopic ratio used 

for dating - e.g. TIMS (single 

grain, multigrain), SHRIMP, 

Laser… 

age_ma Radiometric age in Ma 

age_2SD_ma Standard deviation - 95% or 2 

sigma - in Ma 

age_mswd The calculated MSWD 

age_probffit The calculated probability of 

fit 

age_probchi2 The calculated probability of 

Chi2 test 

age_analyse_n Total number of analyses used 

to calculate an age 

rock 

properties 

List of physical rock 

properties including 

heat production, seismic 

velocity and density 

p_velocity Empirically calculated seismic 

velocity based on chemical 

composition. The 

compositional empirical 
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estimation computed 

from geochemical 

analysis. For further 

information on the 

computation, see 

Hasterok et al. (2018). 

model used was Vp (km s−1) 

= 6.9 − 0.011CSiO2 + 

0.037CMgO + 0.045CCaO. 

For discussion on the 

computation, the reader can 

refer to Hasterok and Webb 

(2017) 

s_velocity Empirically calculated seismic 

velocity based on chemical 

composition. For further 

discussion on the 

computation, the reader can 

refer to Jennings et al. (2019) 

density_model Rock density computed from 

chemical analyses using linear 

regression as described in 

Hasterok et al. (2018) 

thermal_conductivity Empirically calculated 

thermal conductivity based on 

chemical composition. For 

further discussion on the 

computation, the reader can 

refer to Jennings et al. (2019). 

heat_production Heat production mass 

multiplied by the density 

estimate (in kg.m−3) (Rybach, 

1988) 

heat_production_mass Estimated from the chemical 

rock composition using the 

empirical formula HPmass = 

10−5 *(9.67CU + 2.56CTh + 

2.89CK2O) where C are the 

concentrations of the Heat 

Producing Elements in ppm 

except K2O in wt. % 

(Rybach, 1988). 

 Table 2. Description of table contents and detailed information of key field attributes. 131 

  132 
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3.2 Data compilation workflow  133 

To ensure data consistency and enhance database reliability over PetroChron Antarctica’s 134 

lifetime, we implemented several procedures written in a combination of programming 135 

languages (i.e., Python, PostgreSQL) for data standardisation to create a common data schema 136 

(Fig. 2, Table 2).  137 

Collecting a useful Antarctic geological dataset starts with accurate sample location 138 

information. Historically (i.e., prior to GPS), this information was not readily recorded in a 139 

useful format, or it may have been lost in the process of transcribing notes or maps. In the case 140 

where accurate absolute spatial information is not provided in the original paper or dataset, 141 

geographic locations along with latitude and longitude from the SCAR Gazetteer is used 142 

(Secretariat SCAR, 1992 updated 2014). For each entry, an attribute identifies the source of the 143 

geographic coordinate (i.e., Geographic Coordinate Information). This approach allows us to 144 

retain 45% of the geological samples in PetroChron Antarctica that would previously have been 145 

excluded due to the lack of location information.  146 

Lithology has a dominant control over the physical and chemical properties of rocks. We 147 

therefore categorise the database according to rock group (i.e., igneous, sedimentary, 148 

metamorphic) and rock type (e.g., plutonic, clastic, metavolcanic) where known or inferred. 149 

However, there are a variety of lithology names based on different criteria (mineralogical, 150 

textural, chemical). Thus, to achieve consistency and reproducibility and avoid any subjectivity 151 

in assigning rock names to samples, we include a computed lithology based on whole-rock 152 

geochemical data as described by Hasterok et al. (2018) and Gard et al. (2019). 153 

The database structure is then focused on the integration of geochronological datasets 154 

with geochemical data. In the global whole-rock geochemical database of Gard et al. (2019), 155 

petrological information and geochemical analyses were linked to "estimated” crystallisation 156 

ages of the sample as presented in the original paper. A key difference in PetroChron Antarctica 157 

is that geochronological information is stored as a set of parameters including the age type (i.e., 158 

isotopic system), the mineral isotope (i.e., analysed mineral and/or whole rock), the age 159 

significance (e.g., crystallisation age), the age approach (e.g., Concordia age), and the analytical 160 

technique (e.g., SHRIMP; Fig. 2). This configuration significantly increases the flexibility to 161 

support geochronological data from multiple isotopic systems and minerals for a given sample, 162 

which potentially have different geological significances. The inclusion of age-related statistical 163 

information if applicable (e.g., Mean Squared Weighted Deviation – MSWD, and probability of 164 

fit) enables data to be manipulated through more complex statistical analyses and could also be 165 

useful for data quality assessment. Geochronological parameters generally follow the schema of 166 

the established geochronological database DateView (Eglington, 2004) for consistency and easy 167 

transfer between databases. 168 

4 PetroChron Antarctica data and applications 169 

4.1 Data statistics 170 

Igneous rocks included in PetroChron Antarctica correspond to 60% of the total entries, 171 

followed by 39% for metamorphic rocks (Fig. 3a, b). Sedimentary rocks are poorly represented 172 

at only 1%. Igneous rocks are mainly represented by plutonic rocks (42%), whereas 173 

metamorphic rocks are dominated by metaplutonic varieties (20%). A large proportion (38%) of 174 

igneous rocks are mafic in composition, followed by those of felsic (29%) and intermediate 175 
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(24%) compositions (Fig. 3d). Metamorphic and sedimentary rocks are dominated by felsic 176 

compositions (42% and 39%, respectively). Overall, the compositional range across all sampled 177 

rocks recorded in PetroChron Antarctica compared with the global whole-rock geochemical 178 

database (Gard et al., 2019) is similar (Fig. 3c, 3d), when excluding samples marked as oceanic 179 

from the global dataset.  180 

Computed properties in PetroChron Antarctica include lithology based on chemical 181 

classification (Fig. S1). There is a clear dominance of granitoid (32%) and gabbroic rocks (22%). 182 

Dioritic and syenitoid compositions (including geochemically equivalent volcanic rocks) are also 183 

a significant proportion of the igneous rocks (19% and 16%, respectively). Other computed 184 

geochemical indices include ASI, WIP, CIA or CPA that are often used in soil science as a proxy 185 

for alteration/weathering conditions of sampled rocks (see the full list of computed indices in 186 

Table 2). Petrophysical properties (density, P-and S-wave velocity, thermal conductivity and heat 187 

production) were computed from geochemical data, following the method described in Hasterok 188 

et al. (2018) and Jennings et al. (2019). 189 
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190 
Figure 3. Sample rock type and composition. (a) Sample distribution coloured by rock type. (b) 191 

Bar chart representing rock type. (c) Compositional distribution coloured by SiO2 wt% content. 192 

(d) Comparison of SiO2 wt% content between the global whole-rock geochemical database 193 

(Gard et al., 2019) and PetroChron Antarctica. 194 

4.2 Visualisations and applications 195 

To illustrate the versatility and the utility of PetroChron Antarctica, we describe below 196 

some applications that could use interrelated datasets (i.e. geological, geochemical, and 197 

geochronological data associated with rock properties) to gain insights through map 198 

visualisation.  199 
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Figure 4 shows a set of maps illustrating some of the geochronological components of 200 

PetroChron Antarctica. For example, the “crystallisation age” map (Fig. 4a), based on zircon U-201 

Pb isotopic data and typically interpreted to date high-temperature magmatic processes, 202 

highlights the dominance of Phanerozoic crust-forming events in the Antarctic Peninsula and 203 

Transantarctic Mountains (e.g., Allibone & Wysoczanski, 2002; Burgess et al., 2015; Goodge et 204 

al., 2012; Hagen-Peter & Cottle, 2016; Pankhurst et al., 1998; Riley et al., 2017; Zheng et al., 205 

2018). In contrast, the majority of East Antarctic crust formed during the Proterozoic and 206 

Archean (Fig. 4a; e.g., Adachi et al., 2013; Boger et al., 2006; Corvino et al., 2008; Elburg et al., 207 

2016; Elburg et al., 2015; Goodge & Fanning, 2010; Grew et al., 2012; Hokada et al., 2019; Liu 208 

et al., 2016; Maritati et al., 2019; Mikhalsky et al., 2017; Morrissey et al., 2017; Tsunogae et al., 209 

2016; Tucker et al., 2017; Zhang et al., 2012), including some of the oldest rocks on Earth (c. 3.9 210 

Ga in Enderby Land; e.g., Black et al., 1986).  211 

A “metamorphic age” map (Fig. 4b) based on U-Pb and Sm-Nd isotopic data from zircon, 212 

monazite, garnet and whole-rock samples, show the predominance of late Neoproterozoic‒213 

Cambrian (~630‒500 Ma) ages in the Transantarctic Mountains, Dronning Maud Land, 214 

MacRobertson Land and Princess Elizabeth Land (e.g., Baba et al., 2015; Bisnath et al., 2006; 215 

Board et al., 2005; De Vries Van Leeuwen et al., 2019; Goodge & Fanning, 2016; Halpin et al., 216 

2007; Jacobs et al., 2003; Kawakami et al., 2017; Liu et al., 2018; Mikhalsky et al., 2013; 217 

Morrissey et al., 2016; Wang et al., 2016). These tectonothermal events record prolonged ocean 218 

closure, terrane accretion and collision-related processes related to Gondwana amalgamation and 219 

active margin tectonics (e.g., Boger, 2011; Fitzsimons, 2003; Goodge, 2020; Harley et al., 2013; 220 

Jacobs et al., 2015; Jordan et al., 2020; Mulder et al., 2019). 221 

A map of “cooling ages” (Fig. 4c), recorded by low-temperature thermochronology 222 

across numerous minerals and whole-rock samples, is dominated by ages < 600 Ma (84% of ages 223 

recorded by FT, Ar-Ar, He). The youngest cooling ages (~140‒30 Ma with a larger proportion of 224 

Paleogene ages) are located along the elevated Transantarctic Mountains (e.g., Fitzgerald & 225 

Stump, 1997; Foland et al., 1993; Gleadow & Fitzgerald, 1987; Prenzel et al., 2018; Zattin et al., 226 

2014), whereas East Antarctica records a predominance of Late Carboniferous‒Permian (~340‒227 

200 Ma) ages and to a lesser extent Cretaceous ages (e.g., Rolland et al., 2019; Sirevaag et al., 228 

2018). The variability in spatial and temporal cooling patterns across Antarctica, although poorly 229 

documented, has fuelled debate about whether topographic relief evolved via continental-scale 230 

tectonic and/or climatic processes during the Phanerozoic (e.g., Maritati et al., 2020; Rolland et 231 

al., 2019). 232 

Collectively, geochronological and isotopic data from across Antarctica reveal major 233 

episodes of tectonic and thermal activity, as well as denudation and deposition associated with 234 

complex crustal forming processes operating during at least three supercontinent cycles (i.e., 235 

Nuna, Rodinia, Gondwana/Pangea). This provides a valuable resource for testing possible links 236 

between plate tectonic configurations, major climatic and paleoenvironmental change and 237 

Antarctic landscape evolution. 238 
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Figure 4. PetroChron Antarctica isotopic age/composition distributions. Maps of (a) zircon 240 

crystallisation ages; (b) metamorphic ages for different minerals/whole rock; (c) cooling ages for 241 

different minerals/whole rock. The colour scale follows the GeoMAP (© SCAR GeoMAP and 242 

GNS Science 2019) chronostratigraphic chart and highlights the variability in isotopic age within 243 

the mapped geological units. Dashed rectangles show the location of inset maps. 244 

 245 

Figure 5 shows a map of rock properties computed from geochemical data across 246 

Antarctica. Density estimates peak at ~2630 and ~2930 kg m
-3

, and P-wave seismic velocity 247 

estimates peak at ~6.2 and ~7.0 km s
-1

, corresponding to felsic and mafic rock compositions, 248 

respectively. These values agree with the densities (2690 and 2950 kg m
-3

) and velocities (~6.1 249 

and 7.1 km s
-1

) recorded in the global whole-rock geochemical database (Gard et al., 2019), 250 

when calculated from the same bin size. Antarctic heat production has a median value of ~1.3 251 

µW m
-3

, with first and third quartiles at 0.6 and 2.4 µW m
-3

 (Fig. 5c), which is higher than the 252 

value of 1.0 µW m
-3

 estimated by Gard et al. (2019), who included oceanic samples. At a 253 

regional and local scale, crustal heat production shows a high degree of heterogeneity (Fig. 5c) 254 

due to the high variability of Antarctic local geology (Carson et al., 2014; Goodge, 2018) that 255 

can be integrated into geothermal heat flow models (Stål et al., 2021). This compositional 256 

variability clearly highlights the need to include robust and petrologically valid constraints from 257 

direct measurements in geophysical interpretations and numerical computations (Stål et al., 258 

2020).  259 

 260 

 261 
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Figure 5. Computed physical property estimate distributions including (a) density; (b) P-wave 264 

velocity; and (c) heat production. Histograms compare distributions for the global whole-rock 265 

geochemical database (Gard et al., 2019) and PetroChron Antarctica. 266 

5 Future work 267 

We hope the PetroChron Antarctica database can be applied and integrated across 268 

Antarctic Earth-cryosphere-biosphere-ocean research. Future work will aim at expanding the 269 

database by incorporating not yet considered and newly published data, as well as correcting any 270 

errors and adding new data types including metamorphism, protolith and data-quality 271 

parameters. We also invite researchers to collaborate on our data compilation using the user 272 

input XLSX template (Table S1). Note that we make no claim on the accuracy of database 273 

entries or on ownership of these data. 274 
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