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Abstract

Using 65,133 hourly averages of transpolar voltage Φ(PC) from observations made over 25 years by the SuperDARN radars,

with simultaneous SML and interpolated am geomagnetic indices, we study their optimum interplanetary coupling functions.

We find lags of 18, 31 and 45 min. for Φ {PC}, am and SML respectively, and fit using a general coupling function with three

free fit exponents. To converge to a fit, we need to average interplanetary parameters and then apply the exponent which is a

widely-used approximation: we show how and why this is valid for all interplanetary parameters, except the factor quantifying

the effect of the clock angle of the interplanetary magnetic field, sinˆ(d)(θ/2), which must be computed at high time resolution

and then averaged. We demonstrate the effect of the exponent d on the distribution, and hence weighting, of samples and

show d is best determined from the requirement that the coupling function is a linear predictor, which yields d of 2.50+/-0.10,

3.00+/-0.22 and 5.23+/-0.48 for Φ {PC}, am and SML. To check for overfitting, fits are made to half the available data and

tested against the other half. Ensembles of 1000 fits are used to study the effect of the number of samples on the distribution of

errors in individual fits and on systematic biases in the ensemble means. We find only a weak dependence of solar wind density

for Φ {PC} and SML but a significant one for am. The optimum coupling functions are shown to be significantly different for

Φ {PC}, am and SML.
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Abstract.  Using 65,133 hourly averages of transpolar voltage (PC) from observations made 11 

over 25 years by the SuperDARN radars, with simultaneous AL and interpolated am 12 

geomagnetic indices, we study their optimum interplanetary coupling functions.  We find lags 13 

of 18, 31 and 45 min. for PC,  am and AL respectively, and fit using a general coupling function 14 

with three free fit exponents.  To converge to a fit, we need to average interplanetary parameters 15 

and then apply the exponent which is a widely-used approximation: we show how and why this 16 

is valid for all interplanetary parameters, except the factor quantifying the effect of the clock 17 

angle of the interplanetary magnetic field, sind( / 2), which must be computed at high time 18 

resolution and then averaged.  We demonstrate the effect of the exponent d on the distribution, 19 

and hence weighting, of samples and show d is best determined from the requirement that the 20 

coupling function is a linear predictor, which yields d of 2.500.10, 3.000.22 and 5.230.48 21 

for PC, am and AL.  To check for overfitting, fits are made to half the available data and tested 22 

against the other half.  Ensembles of 1000 fits are used to study the effect of the number of 23 

samples on the distribution of errors in individual fits and on systematic biases in the ensemble 24 

means.  We find only a weak dependence of solar wind density for PC and AL but a significant 25 

one for am.  The optimum coupling functions are shown to be significantly different for PC, 26 

am and AL.  27 

Plain Language Abstract.  Coupling functions are mathematical combinations of variables 28 

observed in the solar wind, just before it impacts near-Earth space. They are used to predict the 29 



effect that the solar wind will have (or, for retrospective studies, will have had) on the space-30 

weather environment of the Earth. There is a very wide variety of proposed optimum forms for 31 

coupling functions in the literature, some of which work better than others and we show which 32 

performs best depends on which terrestrial disturbance indicator we are trying to predict and on 33 

what timescale. We look at the validity of some commonly-used assumptions made when 34 

compiling a coupling function and, using an unprecedentedly large data set of two different 35 

types of terrestrial space weather disturbance indicator, we derive the optimum coupling 36 

functions and their statistical uncertainties. We show that that the required coupling functions 37 

are significantly different in the two cases. The results establish some important principles for 38 

the development of these coupling functions and show they need to be tailored to the specific 39 

space weather disturbance indicator and timescale that they aim to predict. 40 

Main points  41 

• 1. Using a very large dataset we analyze the sources and effects of noise in correlation studies 42 

used to derive solar wind coupling functions   43 

• 2. We study effects of weighting by the distribution of samples which varies with the choice 44 

of IMF orientation factor and averaging timescale  45 

• 3. The optimum coupling functions for transpolar voltage and planetary geomagnetic activity 46 

are significantly different. 47 

1.   Introduction. 48 

Coupling functions are combinations of interplanetary parameters that are used to 49 

quantitatively predict terrestrial space weather indicators and indices. They should have a 50 

linear relationship with the index or measured parameter that they aim to predict. There are a 51 

great many combinations that have been proposed and tested since correlations between 52 

interplanetary parameters measured by spacecraft and terrestrial disturbance indices became 53 

possible (Arnoldy, 1971).  The concept of a combination of parameters capturing their net 54 

influence (i.e., a coupling function) grew out of the PhD studies of  Perreault (1974).  An 55 

excellent review of the development of coupling functions, the theories behind them and the 56 

empirical fits, has been given by McPherron et al. (2015). 57 



Some coupling functions are theoretical in origin, whereas others are from empirical fits to 58 

data. However, in truth all are, to some degree, a hybrid of the two.  This is because 59 

theoretical coupling functions almost always have to use coefficients, exponents or branching 60 

ratios that are defined empirically. Conversely, empirical coupling functions employ on 61 

formulations and parameters that are rooted in theory. We should also note the role of 62 

numerical global simulations in developing coupling functions. These have the advantage of 63 

testing the coupling function in unusual regions of parameter space; however, as always with 64 

models, the validity of the results depends on the assumptions, parameterizations and 65 

resolutions used in setting up the model.  66 

Coupling functions have generally, but not exclusively, taken the basic mathematical form of 67 

the product of measured parameters, each to the power of an exponent. Parameters used have 68 

been the interplanetary magnetic field (IMF), B= |𝐵⃗ | or its transverse component 69 

perpendicular to the Sun-Earth line, B⊥; the solar wind speed, VSW; the solar wind number 70 

density NSW or its mass density SW = mSWNSW (where mSW is the mean ion mass); and (for 71 

timescales shorter than about 1 year), a factor to allow for the orientation of the IMF in the 72 

Geocentric Solar Magnetospheric (GSM) frame of reference, such as the clock angle in GSM, 73 

.  We here denote magnetic field exponents by a, mass density or number density exponents 74 

by b, solar wind speed exponents by c and IMF orientation factor exponents by d.   75 

Some improvements to this basic multiplicative form have been suggested in the form of 76 

additive terms. For example, Newell et al. (2008) proposed adding to a term designed to 77 

predict the dayside magnetopause reconnection voltage with a smaller term to predict the 78 

voltage generated by non-reconnection “viscous-like” interaction.  Lockwood (2019) proposed 79 

a development to energy-transfer coupling functions whereby, in addition to the energy 80 

extracted from the dominant energy flux in the solar wind (namely the kinetic energy flux of 81 

the particles), the smaller one due to the solar wind Poynting flux is added.  Given that the 82 

Poynting flux in the solar wind is two orders of magnitude smaller than the particle kinetic 83 

energy flux, this appears an unnecessary complication: however, the Poynting flux enters the 84 

magnetosphere without the relative inefficiency with which kinetic energy of the solar wind is 85 

converted into Poynting flux by currents flowing in the bow shock, magnetosheath and 86 

magnetopause (Cowley, 1991; Lockwood, 2004; Ebihara et al., 2019).   87 



Other, more complex, forms with combinations of additive and multiplicative terms have 88 

been proposed (e.g., Borovsky, 2013; Luo et al. 2013).  The formulation of  Luo et al. (2013) 89 

aims take account of daily and seasonal variations in the terrestrial space weather index 90 

predicted (that are due to station locations and orientation of the Earth’s dipole) and non-91 

linearities caused by the expansion and contraction of the polar cap as solar wind driving 92 

varies.  It also removes rapid fluctuations using low-pass filters. The result is that it is highly 93 

complex and, as noted by McPherron et al. (2015), it is unclear how many free parameters are 94 

present in this coupling function, but they estimate that it is of order 35.  Because these more 95 

complex formulations add to the number of free fit parameters, this greatly increases the 96 

problem of statistical “overfitting” (Chicco, 2017).    Overfitting occurs when a fit has too 97 

many degrees of freedom and it can start to fit to the noise in the training data, which is not 98 

the same as the noise in the test or operational data. As a result,  the fit has reduced predictive 99 

accuracy.  This is a recognized pitfall when signal-to-noise ratio in the data is low, as is 100 

usually the case in disciplines such as climate science (Knutti et al., 2006) or population 101 

growth (Knape & de Valpine, 2011), but has not often been considered in space physics in the 102 

past. However, this is now changing with the advent of systems analysis of the magnetosphere 103 

and the application of machine-learning techniques to space weather data (e.g., Camporeale, 104 

2019; Stephens et al., 2020).  Overfitting is a problem for the generation of coupling functions 105 

because there are a great many sources of noise, not all of which have been recognized and 106 

some of which we cannot do much about when we take note of the need to have large datasets 107 

to cover all potential regions of solar wind/magnetosphere parameter space. The noise source 108 

in correlative solar wind magnetosphere studies include: instrumental observation errors in 109 

interplanetary measurements and in the terrestrial disturbance index or indicator to be 110 

predicted; propagation errors between the spacecraft observing the solar wind conditions and 111 

the magnetosphere (these include using the correct time lag but, more importantly, spatial 112 

structure in interplanetary space that means the solar wind sampled by the spacecraft is not 113 

always the same as that which impinges on Earth’s magnetosphere); gaps in data sequences; 114 

effects of averaging and timescale; non-linear responses of the magnetosphere, pre-115 

conditioning of the magnetosphere and the effects of prior solar wind/magnetosphere coupling 116 

history; dipole tilt effects on ionospheric conductivities, magnetospheric structure and current 117 

sheets.  118 



Hence the effect of adding more terms, even if based on sound physical theory, is not always 119 

a positive one. For example, Lockwood (2019) showed that although adding the solar wind 120 

Poynting flux term does increase the correlation with the geomagnetic am index and that the 121 

increase for daily or shorter timescales is a small but statistically significant improvement (at 122 

over the 3-σ level), the improvement for annual or Carrington rotation means was not 123 

statistically significant: hence in the latter cases no statistically significant improvement was 124 

achieved, despite the number of free fit variables being doubled from 1 to 2 and the additional 125 

term being based on theory.   It should also be noted that the branching ratios used with 126 

additive terms can become inappropriate if the coupling function is used outside the 127 

conditions that were used to derive them.  A common example is averaging timescale which, 128 

in general, has different effects on different terms and so the ratio of the two that is 129 

appropriate to one timescale does not apply on another. Hence coupling functions with 130 

additive terms tend to not be applicable outside the timescale that they were designed for. 131 

Table 1 lists a number of coupling functions that have been developed, based on theory and/or 132 

empirical fitting (Balikhin et al. , 2010; Bargatze et al , 1986;  Borovsky, 2013; Burton et al. , 133 

1975; Cowley , 1984; Feynmann & Crooker, 1978; Finch & Lockwood , 2007; Kan and Lee , 134 

1979; Lockwood , 2019; Lockwood et al. , 2014; Lockwood et al , 2019a; Luo et al. , 2013; 135 

McPherron et al. , 2015; Milan et al , 2012; Murayama , 1982; 1986; Newell et al., 2007; 136 

Perreault & Akasofu , 1978; Scurry and Russell , 1991; Siscoe et al., 2002; Svalgaard & 137 

Cliver, 2005; Temerin & Lee , 2006; Vasyliunas et al , 1982; Wang et al., 2013; Wygant et al., 138 

1983). This list is very far from complete, but examples have been chosen to illustrate both 139 

the variety and the similarities of proposed formulations, and also some of the principles of 140 

the physical theories used to develop them.  141 

Table 1 gives the timescale   on which each coupling function was derived and/or has been 142 

tested and/or deployed. It is noticeable that at larger  , simpler coupling functions have been 143 

very successful in yielding very high correlations (Finch and Lockwood, 2007).  These high 144 

correlations are achieved because averaging over long intervals gives cancellation of noise.  145 

The averaging timescale of the interplanetary and the terrestrial data that are compared is a 146 

crucial consideration because solar wind parameters have a variety of autocorrelation times 147 

which means that their distributions of values change with  in different ways  (Lockwood et 148 

al., 2019a; 2019b).  However, this is not often considered when compiling a coupling function 149 



and  is not even explicitly defined in several of the publications (in several cases in Table 1, 150 

 could only be defined from the data plots presented).   151 

One idea that has been proposed is that there is a “universal coupling function” that best 152 

predicts all terrestrial space weather indices and indicators (Newell et al., 2007, 2008). This 153 

idea runs counter to the method now routinely used to reconstruct interplanetary parameters 154 

from historic observations of geomagnetic activity.  These reconstructions exploit the finding 155 

that different geomagnetic indices have different responses to interplanetary parameters and 156 

so combinations of them can be used to infer the separate interplanetary parameters. This was 157 

inherent in the reconstruction of open solar flux from historic observations of geomagnetic 158 

activity by Lockwood et al (1999) but first explicitly pointed out and used to extract more than 159 

one parameter by Svalgaard et al. (2003), who noted that on annual timescales the IMF B and 160 

solar wind speed VSW could both be derived from any combination of geomagnetic indices 161 

that had different dependencies on these two parameters (i.e., different optimum coupling 162 

functions). This has been exploited by Svalgaard and Cliver (2007), Rouillard et al. (2007), 163 

Lockwood et al. (2009), Lockwood and Owens (2011), and Lockwood et al. (2014).  These 164 

methods and results have developed from simple single fits to large ensembles of fits allowing 165 

for uncertainties and been reviewed by Lockwood (2013).  If different indicators of 166 

geomagnetic activity have different optimum coupling functions, it means that other space 167 

weather activity indicators, such as transpolar voltage, cannot share the same optimum 168 

coupling as all, if any, of the geomagnetic activity indices.  We here investigate the 169 

differences between the optimum coupling functions for transpolar voltage PC, the global am 170 

geomagnetic index and the nightside northern hemisphere auroral oval index, AL. The am 171 

index has been shown to have the most uniform response to solar wind forcing with Universal 172 

Time and time of year by virtue of the relative uniformity of the observing network and its use 173 

of area-based weighting functions (Lockwood et al., 2019c). However, it has the disadvantage 174 

of a time resolution of 3 hours. 175 

Table 1 shows that many of the proposed coupling functions predict a role of solar wind 176 

number density NSW or mass density SW = mSWNSW (where mSW is the mean ion mass) as 177 

contributing to solar wind energy coupling and/or to the driving of magnetospheric 178 

convection.  For energy considerations, this is mainly because SW and NSW control the 179 

dominant (kinetic) energy flux in the solar wind (½SWVSW
3
) but it has been shown that solar 180 



wind dynamic pressure (PSW = SWVSW
2
) also has an independent effect (Lockwood et al., 181 

2020a; b; c). This is partly through altering the cross-sectional area that the magnetosphere 182 

presents to the solar wind flow (Vasyliunas et al, 1982) and also via the compression of the 183 

near-Earth tail, which enhances the magnetic energy density stored there for a given open 184 

magnetospheric flux, thereby enhancing the current in the auroral electrojet of the substorm 185 

current wedge when that stored energy is released during a substorm expansion phase  (see 186 

review by Lockwood, 2013).  Such a dependence of geomagnetic disturbance in the substorm 187 

current wedge region was isolated and identified by Finch et al. (2008).  This would be in 188 

addition to the dependence on SW and VSW due to the energy flux in the solar wind and/or 189 

any effect on the magnetic reconnection at the magnetopause which generates the open flux.  190 

In addition, the squeezing of the near-Earth tail by PSW would elevate the magnetic shear 191 

across the cross-tail current sheet, and hence the total current in that sheet. This could enhance 192 

the nightside reconnection voltage N that closes open field lines.  The expanding contracting 193 

polar cap (ECPC) model predicts that this would elevate the transpolar voltage PC which is 194 

influenced at any one instant by the reconnection voltages in both the dayside magnetopause 195 

D and the cross-tail current sheet N (Lockwood, 1991; Cowley and Lockwood, 1992, 196 

Lockwood and McWilliams, 2021).  However, we need to consider the averaging timescale 197 

used,  . If  is short compared to the substorm cycle duration we would expect PC to reflect 198 

the enhanced N, and so show some dependence on PSW from this effect of squeezing the tail. 199 

On the other hand, if  is long compared to the substorm cycle duration, the average N tends 200 

to D and we would therefore expect PC to show only any dependence that D has on PSW 201 

which appears to be considerably smaller (Lockwood and McWilliams, 2021).   However, we 202 

note that it has long been proposed that PSW has an effect on D through increasing the 203 

magnetic shear across the dayside magnetopause during southward IMF (e.g., Scurry and 204 

Russell, 1991).  205 

This discussion of the role of solar wind dynamic pressure is just one example of an important 206 

general point – namely that there are a great many processes simultaneously at play in driving 207 

the terrestrial space weather response.  To allow for these, solar wind coupling functions have 208 

evolved away from having theoretically-derived exponents a, b, c and d (which were often 209 

integers or ratios of integers) to empirically-fitted non-integer values.  Hence for the example  210 

of  PSW effects on the near-Earth tail we do not complicate the coupling function with an 211 



additional term or weighting branching ratio, rather we allow the exponents b and c (in the 212 

terms SW
b

 and VSW
c
 ) to vary to allow for such an effect and we would expect such an effect 213 

of PSW to raise the exponent b and raise c by twice as much.  Hence combinations of 214 

mechanisms can be allowed for as long as their effects are multiplicative. To bring theoretical 215 

and empirical approaches together, Borovsky (2013) used the approach of making a complex 216 

theoretical derivation and the reducing to a simple multiplicative form with approximations to 217 

derive exponents; however, the uncertainties introduced by any one approximation are not 218 

always apparent. 219 

There is one last important point to note about coupling functions that is discussed further in 220 

the final section of the present paper. None of the forms listed in Table 1 allow for the pre-221 

existing state of the magnetosphere. There are many reasons to expect non-linear 222 

magnetospheric responses. For example, the response to a given solar wind forcing quantified 223 

by a coupling function will depend on how much open magnetospheric flux already exists at 224 

the time but in addition is very likely to also depend on how enhanced the ring current is at 225 

the time and/or the state of the mid-tail plasma sheet and cross-tail current sheet.  These 226 

effects all depend upon the prior history of solar wind-magnetosphere coupling.  There are 227 

also regular diurnal and annual effects to consider such as dipole tilt effects and seasonal 228 

effects in the ionosphere.  If they are neglected, all these factors are a source of noise for 229 

correlation studies between interplanetary coupling functions and terrestrial disturbance 230 

indices.  231 

In this paper, we do not attempt to compare the performance of the large number of proposed 232 

coupling functions. Such test have been carried out in the past, often as part of an evaluation 233 

of a newly-proposed function.  Detailed tests against model output were carried out for three 234 

coupling functions by Spencer et al (2009) and the performance of seven coupling functions 235 

in predicting mid-latitude geomagnetic range indices was compared for a range of timescales 236 

 between 1 day and 1 year by Lockwood and Finch (2007).  Newell et al. (2007) compared 237 

20 coupling functions against 10 terrestrial indices at hourly resolution.   Rather, we here 238 

establish some general principles and apply a generalized common form of coupling function 239 

to an unprecedently large dataset containing two different indicators of terrestrial space 240 

weather disturbance (the transpolar voltage and two geomagnetic indices) to see if they are 241 

significantly different or can be predicted by a common “universal” coupling function.     242 



1-i. Coupling functions based on energy considerations 243 

Lockwood (2019a; b) have shown that the am, AL and SML geomagnetic indices, which all 244 

respond primarily to the substorm current wedge, are well predicted over a range of 245 

timescales by the estimated power input to the magnetosphere, P (Vasyliunas et al., 1982). 246 

This coupling function is given by the product of the dominant energy flux in the solar wind 247 

(due to the kinetic energy flux of the particles), the cross-sectional area of the magnetosphere 248 

it is incident upon, and a dimensionless transfer function (tr the fraction of the incident power 249 

that crosses the magnetopause into the magnetosphere). 250 

𝑃  =  (
𝑠𝑤

𝑉𝑠𝑤
2 )/2)𝑉𝑠𝑤  (𝐿𝑜

2)   𝑡𝑟    (1) 251 

where Lo is the radius of cross-section of the magnetosphere presented to the solar wind flow. 252 

The dayside magnetosphere is assumed to be constant in shape so that Lo = cLs where c = 253 

Lo/Ls is the dayside magnetopause shape factor (assumed constant) and Ls is the stand-off 254 

distance of the nose of the magnetosphere which is derived from pressure balance between the 255 

geomagnetic field and dynamic pressure of the solar wind, PSW (Farrugia et al., 1989):   256 

𝐿𝑜  =   𝑐𝐿𝑠  =   𝑐𝑘1(𝑀𝐸
2/ 𝑃𝑠𝑤𝑜

)1/6      (2)   257 

where k1 is the pressure factor for shocked supersonic flow around a blunt nose object, ME is 258 

the magnetic moment of the Earth and o is the permeability of free space (the magnetic 259 

constant) Vasyliunas et al. (1982) use a dimensionless transfer function of the form: 260 

𝑡𝑟  =  𝑘2  𝑀𝐴
2 𝑠𝑖𝑛𝑑(/2)      (3) 261 

where the solar wind Alfvén Mach number is MA = VSW (oSW)1/2/B, and k2 is a constant and 262 

 is called the “coupling exponent” that arises from the unknown dependence of tr on MA  and 263 

is the one free fit parameter.    is the IMF clock angle in the GSM frame of reference.  The 264 

dependence of tr on MA arises from the fact that the dominant energy flux in the undisturbed 265 

solar wind, the kinetic energy flux of the particles, is converted into the Poynting flux that 266 

enters the magnetosphere by the currents that flow in the bow shock and magnetosheath 267 

(Cowley, 1991, Lockwood, 2004; 2019; Ebihara et al., 2019).  From (1), (2) and (3)   268 

𝑃  =  𝑘 𝐵2 
𝑠𝑤
 (2/3−)𝑉𝑠𝑤

 (7/3−2)
𝑠𝑖𝑛𝑑(/2)     (4) 269 



Where {ME
2/3c2k1k2/(2o

(1/3-))} are rolled into the constant k. However, note that the secular 270 

variation in ME, and hance k,  can be allowed for from models of the intrinsic geomagnetic 271 

field in long-term reconstructions of space weather conditions (Lockwood et al., 2017).  272 

Despite allowing for B, SW, VSW and  , the coupling function P has only the one free fit 273 

parameter, the coupling exponent   that arises from an unknown dependence of the transfer 274 

function on the solar wind Mach number. This means that P is much less prone to overfitting 275 

than functions that have separate exponents for the parameters. (Essentially, the exponents of 276 

B, SW, VSW are related by the theory, and all are determined by just ).  277 

The IMF orientation factor sind( / 2) was not treated as an independent variable by 278 

Vasyliunas et al. (1982).  However, these authors did outline a test which was used to find 279 

that d = 2 was the required factor for the optimum (best-fit) . The same test for other 280 

applications of the formulation by Lockwood et al. (2019a; b) found a slightly different  (and 281 

that it varies with timescale) and this made d = 4 marginally better .  Table 1 shows that 282 

sind( / 2) is a commonly-used IMF orientation factor for low , particularly with d = 4.  283 

However, a range of d between 1 and 6 has been proposed in the literature. We here note that 284 

the test by Vasyliunas et al. (1982) has the very important implication that the optimum d is 285 

not independent of the other parameters in the coupling function.   286 

In their paper, Vasyliunas et al. (1982) are somewhat uncertain as to whether they should 287 

employ the transverse component of the IMF, B⊥ (the magnitude in the GSM YZ plane) or the 288 

full IMF magnitude B = (BX
2 + B⊥

2)1/2 .  They found it made only a minor difference in 289 

practice but opted to use B⊥ in their text and equations. Their argument was that BX is not 290 

relevant because the field was draped over the nose in the magnetosheath. However, this 291 

choice is somewhat inconsistent theoretically because the IMF enters into their coupling 292 

function only through the Alfvén Mach number MA in the interplanetary (unshocked) field 293 

and that depends on B and not on B⊥. On the other hand,  B⊥sind( / 2) is physically 294 

meaningful as a way of quantifying the southward component if the IMF in GSM coordinates.  295 

1-ii. Coupling functions based on voltage considerations 296 

In addition to planetary geomagnetic activity, we are aiming to predict transpolar voltage PC, 297 

we might expect a coupling function based on the interplanetary magnetic field to be more 298 



appropriate.  Many studies (e.g., Cowley, 1984; Reiff and Luhmann, 1986), suggest that the 299 

transpolar voltage PC is well predicted by the dawn-to-dusk interplanetary electric field 300 

𝐸𝑠𝑤  =  𝑉𝑠𝑤𝐵𝑆  𝐵⊥𝑉𝑠𝑤𝑠𝑖𝑛𝑑(/2)      (5) 301 

Because the voltage applied by the solar wind across the diameter of the magnetosphere is 302 

2LoESW, we can define the reconnection efficiency (the fraction of incident interplanetary field 303 

lines captured by magnetopause reconnection)  as   304 

 = 𝑃𝐶/(2𝐿𝑜𝐸𝑠𝑤)         (6) 305 

We can then make the same assumption about the dayside magnetopause as was used to 306 

generate P and again use pressure equilibrium with the solar wind dynamic pressure  (Siscoe 307 

et al., 2002) 308 

𝑃𝐶 =  2 𝑐𝐿𝑠𝐸𝑠𝑤  =  2 𝑐𝐸𝑠𝑤{2𝑘𝑀𝐸
2/(

𝑜


𝑠𝑤
𝑉𝑠𝑤

2 }1/6 =  𝐸𝑠𝑤 {𝑠𝑤
𝑉𝑠𝑤

2 }−1/6      (7) 309 

where  = 2𝑐{2𝑘𝑀𝐸
2/

𝑜
}1/6. From (5), (6) and (7) we have a theoretical prediction of PC, 310 

which we term SW (the predicted value of  PC from solar wind parameters) 311 

 𝑠𝑤  =    𝐵⊥ 𝑠𝑤
 −1/6𝑉𝑠𝑤

 2/3
𝑠𝑖𝑛𝑑(/2)                                       (8) 312 

Note that the reconnection efficiency  is very unlikely to be a constant. For example, 313 

increased solar wind dynamic pressure may increase the magnetic shear across the relevant 314 

current shear and various factors may vary the fraction of the dayside magnetopause covered 315 

by the magnetopause reconnection X-line (or X-lines) (Walsh, et al., 2017).  Hence, we 316 

should expect the optimum exponents for B, SW and VSW to differ somewhat from the 1, −1/6 317 

and 2/3, respectively, predicted by the simple Equation (8). 318 

Borovsky and Birn, (2014) argue that  is determined by the local Alfvén speeds on the two 319 

sides of the magnetopause to the extent that the interplanetary electric field is irrelevant.   320 

That being the case any similarity of an empirical coupling function to predict PC and 321 

Equation (8) would be a coincidence. From reconnection rate theory and by making 322 

approximations Borovsky and Birn, (2014) arrive at  two distinct coupling functions  for 323 

predicting dayside reconnection voltage here termed BB. The sharp transition point between  324 

the two regimes where these apply is solar wind Alfvén Mach number, MA  6. For MA < 6 325 



they find the approximate form B0.51Nsw
0.24Vsw

1.49 sin2( / 2) and for MA > 6 they find the 326 

approximate form B1.38Nsw
-0.19Vsw

0.62 sin2( / 2). 327 

1-iii. Coupling functions from empirical fits 328 

Like many of the papers listed in Table 1, we here make empirical fits using a general form of 329 

coupling function Cf , given by 330 

𝐶𝑓  =  𝐵⊥

𝑎 
𝑠𝑤
 𝑏 𝑉𝑠𝑤

 𝑐  𝑠𝑖𝑛𝑑(/2)         (9) 331 

This general form which can reproduce P (for a = 2, b = 2/3− , and c = 7/3− 2 ),  ESW 332 

(for a = 1, b = 0 and c = 1) ,SW (for  a = 1, b = −1/6 , and c = 2/3) as well as BB (for  MA < 6 333 

a = 0.51, b = 0.24 , and c = 1.49 and for MA > 6,  a = 1.38, b = −0.19, and c = 0.62).  As 334 

shown by Table 1, this form also encompasses a wide variety of the proposed empirical 335 

coupling functions.   Note that this form could also reproduce the often-used “epsilon” factor, 336 

ε, (for which a = 2, b = 0 and c = 1) but that is not considered further in this paper because ε is 337 

based on the incorrect assumption that the relevant energy flux in the solar wind is the 338 

Poynting flux (see Lockwood, 2013; 2019) and, although this can be made consistent with 339 

other energy coupling functions such as P (that is correctly based on the dominant solar wind 340 

kinetic energy flux) this is only achieved using an extreme value of unity for the coupling 341 

exponent α,  and this does not agree at all with experimental estimates.  This theoretical flaw 342 

is the reason why ε performs considerably less well than P on all averaging timescales (see 343 

Finch & Lockwood, 2007).  344 

It should be noted that not all proposed coupling functions, not even all the simple ones, fit 345 

the general formulation given in Equation (9), particularly those that employ additive terms. 346 

For example, Boyle et al (1977) propose the use of 10-4VSW
2 +11.7B sin3( / 2) to predict PC, 347 

which it does exceptionally well:  the reasons for its success will be analyzed later in this 348 

paper.   In general,  the problem with additive terms is that, unless each term is describing a 349 

distinct physical mechanism, they are purely numerical fits to the available data. Adding 350 

terms until a fit is achieved without a theoretical basis does makes the risk of overfitting 351 

considerably greater: essentially one can fit any time series with combinations of other time 352 

series if one is free to select enough of them until a fit is obtained.  Physics-based coupling 353 

functions are usually fundamentally multiplicative in form although some factors can be 354 



broken down into the sums of additive terms for theoretical reasons (e.g., Borovsky,  2013; 355 

Lockwood, 2019; Newell et al, 2008).   356 

The next section describes how there are a number of procedural issues to resolve for studies 357 

using even the relatively simple form of coupling function generalized by Equation (9). For 358 

this reason, in the present paper we do not extend the present study to formulations involving 359 

additive terms.   360 

1-iv. Frequently neglected factors in deriving coupling functions   361 

There are a number of factors that have often been neglected when deriving coupling 362 

functions, the most important being: (i) the effect of data gaps; (ii) the effects of data 363 

averaging; (iii) the effect of the number of datapoints available; (iv) the differences between 364 

the various terrestrial space weather indicators; (v) overfitting; (vi) non-linearity and pre-365 

conditioning of the magnetosphere; (vi) other sources of noise such as measurement errors, 366 

propagation lags, spatial structure in interplanetary space (which can mean that the solar wind 367 

hitting Earth differs from that measured at the upstream spacecraft), seasonal and other dipole 368 

tilt effects.  We address just some of these in this paper.  The effect of data gaps was studied 369 

by Lockwood et al. (2019a) who introduced synthetic gaps at random (but to give the same 370 

distribution of durations as has occurred for early interplanetary observations) into continuous 371 

and near-continuous data and studied the errors introduced.  These errors were not only in the 372 

greater uncertainty of one individual fit, but also in systematic deviations in the means and 373 

modes of the distributions of ensembles of many fits. It is often assumed that the effect of data 374 

gaps averages out, but this is not the case: data gaps introduce noise into the correlation 375 

studies and fitting procedures, facilitating overfitting which generates both random and 376 

systematic errors.  377 

Correlations of coupling functions with terrestrial space weather indicators naturally increase 378 

with increased averaging timescale   because the noise in both time series is increasingly 379 

averaged out (Finch and Lockwood, 2007).  However, there are problems associated with 380 

averaging high-resolution interplanetary field data in relation to the IMF orientation and these 381 

are often not addressed. McPherron et al (2015) correctly used hourly data which they 382 

obtained by passing 1-minute data through low-pass filter by taking a 61-point running 383 

average and resampled every hour to obtain centered hourly averages. They note that this 384 



improves the hourly-average coupling functions by eliminating nonlinearities resulting from 385 

the use of hourly averages of IMF components in calculating the transverse component B⊥ 386 

and the clock angle . This is certainly true and in the next section we investigate how good 387 

this procedure is and why it is needed.  We also point out there is a second issue to consider 388 

about the effects of data averaging.   389 

1-v. The effect of averaging procedure   390 

The magnetosphere responds to integrated forcing (Lockwood et al., 2016). For example, if 391 

we have a terrestrial indicator that responds to the energy input into the magnetosphere and a 392 

coupling function that quantifies that energy input, over a period  we require the total of that 393 

energy input.   Similarly, for any empirical coupling function Cf (equation 9) we want the 394 

integrated solar wind forcing over the time. By the definition of the arithmetic mean, this 395 

means we need a coupling function for the interval  given by  396 

 (1/) ∫ 𝐶𝑓


0
𝑑𝑡 = < 𝐶𝑓 >  = < 𝐵⊥

𝑎 
𝑠𝑤
 𝑏 𝑉𝑠𝑤

 𝑐  𝑠𝑖𝑛𝑑(/2)  >      (10) 397 

Where the values Cf , B⊥, SW, VSW  and  are all values from high-time resolution 398 

measurements. However, this has usually in the past been approximated using the seemingly 399 

similar value 400 

[𝐶𝑓]   = < 𝐵⊥

 >
  𝑎. < 

𝑠𝑤
  >

  𝑏. < 𝑉𝑠𝑤
   >

  𝑐. < 𝑠𝑖𝑛(/2) >
  𝑑       (11) 401 

And in many cases the average clock angle has been computed from the means of the IMF Y 402 

and Z components so [ ] is used for  and < B⊥>  is replaced by [ B⊥] , where 403 

[ ]  =  𝑡𝑎𝑛−1 (| < 𝐵𝑌 > | < 𝐵𝑧 >)⁄           (12) 404 

as is the transverse IMF component  405 

[𝐵⊥

 ]  =   (< 𝐵𝑍 >
2 + < 𝐵𝑌 >

2)1/2          (13) 406 

This generates a coupling function that we denote as[Cf*] that has two separate problems. 407 

The first of these problems was addressed by the averaging procedure for B⊥ and   that was 408 

adopted by McPherron et al. (2015) who evaluated both at high time resolution before 409 

averaging and avoided using wither [ ] and [B⊥] (this is hereafter referred to as the MEA15 410 

procedure and is what we will use in later sections).  In Figure 1 we highlight its importance 411 



but also deconvolve it from a second effect.  Note that same operations are used in generating 412 

< Cf > , [ Cf ] and [Cf*] - the difference between them is purely the order in which they are 413 

carried out:  < Cf > can be characterized as the parameters being “combined-then-averaged” , 414 

whereas for [ Cf ]  and [ Cf *]  they are “averaged-then-combined”. (The difference between 415 

[ Cf ]  and [ Cf *] is that for  the latter “averaged-then-combined” is even applied to the 416 

derivations of clock angle   and transverse magnetic field, B⊥). 417 

Figure 1a demonstrates that it is not a valid assumption to take < Cf > and [ Cf *] to be the 418 

same, using the example of the Vasyliunas et al. (1982) energy transfer coupling function P 419 

for a coupling exponent  = 1/3 (hence this P is an example of Cf with a = 2/3, b = 1/3, c = 420 

5/3 and we here have used d = 4).  The specific exponents do not change the general 421 

principles demonstrated by Figure 1.    The raw data in Figure 1 are all the 9,930,183 valid 1-422 

minute resolution values of P and all the 11,646,678 valid 1-minute resolution values of the 423 

IMF clock angle  and tangential field B⊥ available from the Omni2 dataset for 1995-2020, 424 

inclusive (King and Papitashvili, 2005).  This interval is used because data gaps are both 425 

much rarer and shorter than before 1995 because of the advent of the Wind, Advanced 426 

Composition Explorer (ACE) and Deep Space Climate Observatory (DSCOVR) spacecraft 427 

(Lockwood et al., 2019a).   The averaging time in this example is   =  1 hr.   Figure 1a 428 

compares < P > and [P*] and the linear correlation coefficient between the two is very 429 

poor indeed, being just 0.26.   Note in Figure 1a both < P > and [P*] have been 430 

normalized by dividing by Po, the overall mean of P: this has the advantage of cancelling out 431 

all the constants in the theoretical derivation of P.  Rather than presenting scatter plots with 432 

massively overplotted points, Figure 1 employs data density plots with the fraction of 433 

samples, n/n, color-coded with n being the number of sample pairs in small bins. In Figure 434 

1a there are 100  bins of width 0.08 for both axes.  Figure 1b identifies why the agreement in 435 

Figure 1a is so poor: it is for G, which is Cf  (in this case is P) without the IMF orientation 436 

term, i.e.  437 

𝐺 =  𝐶𝑓/𝐹( )  =  𝐶𝑓/𝑠𝑖𝑛
4(/2 )   =   𝐵⊥

𝑎 
𝑠𝑤
 𝑏  𝑉𝑠𝑤

𝑐                                    (14) 438 

This is a factor that we will use again later in deriving optimum values for the exponent d.   439 

Figure 1b compares the combine-then-average values and the average-the-combine values for 440 



G (for the same example as shown in Figure 1a and in the same format), < G > , with a 441 

corresponding average-then-combine value [G] = <B⊥>a <SW>b <VSW >
c: again, all values 442 

have been normalized by dividing by the overall mean, Go.  Note that we here use <B⊥>a and 443 

not [B⊥]a (where [B⊥] is defined by Equation 13) – in other words we have moved to the 444 

MEA15 procedure in order to remove the component-averaging effect on B⊥ (and  is not a 445 

factor in G).  The agreement is here is very good indeed, with values close to the diagonal 446 

line.   447 

However, the agreement in Figure 1b is still not quite perfect. Small differences remain 448 

because of the difference between “Hölder means” (or a “power means”) [<X
 p

 >]
1/p

  of a 449 

general variable X and the corresponding arithmetic means  <X
 
>  and hence between <X

 p
 >   450 

and <X
 
>

p
. Figure 1b shows these differences are very small indeed for the variables X, the 451 

exponents p and the timescales  involved in G in the example shown in Figure 1and can be 452 

neglected.  However, in general, arithmetic and Hölder means are related  by what is called 453 

the “Hölder path” which results in the Hölder mean increasing with p (the arithmetic mean 454 

being the Hölder mean for the special case of p = 1).   From comparison of Figures 1a and 1b,  455 

we know that the poor correlation in Figure 1a must be arising from the IMF orientation term, 456 

F( )= sin4( / 2) and/or not using the MEA15 procedure to averaging of B⊥.  Figure 1c 457 

compares the combine-then-average values of the clock angle , <  > with the average-then-458 

combine value, [ ] , given by equation (12), in the same format as Figure 1a (for bins of 459 

22) and although a great many points line up along the diagonal, there is considerable 460 

spread, especially at  near zero or 180 (strongly northward and strongly southward IMF, 461 

respectively).  Figure 1d makes the same comparison for the transverse field estimate,  B⊥.  462 

Note that if we use the IMF magnitude B instead of B⊥ in the coupling function, this effect 463 

does not arise; however, as found by Vasyliunas et al (1982),  tests show that using B⊥ usually 464 

results in somewhat higher correlations.  Figure 1e is for the same comparison for sin4( / 2) 465 

and the spread is greatest at the southward IMF end of the range.  466 

Figure 1f demonstrates that the MEA15 averaging essentially removes all problems associated 467 

with B⊥ by avoiding [B⊥].  However,  Figure 1g shows that a problem still remains with the 468 

clock angle term sin4( / 2).  This is because the arithmetic and Hölder means are appreciably 469 

different for this parameter. There is still a good correlation in Figure 1g and many of the 470 



points line up along the ideal diagonal: hence it is tempting to say this is just one more (small) 471 

source of noise and so it is valid to use <sin( / 2)>d instead of <sind( / 2)> .  However, there 472 

is a subtle point here: the spread shown in Figure 1g increases with d because the difference 473 

between arithmetic and power means increases with exponent. Hence using <sin( / 2)>d 474 

discriminates against higher d by introducing more noise and so such studies will tend to 475 

derive a value for d that is too low.  476 

We can understand why the IMF orientation term is so different to the other three by looking 477 

the variability of the various factors within the averaging period. Figure 1 of Lockwood et al. 478 

(2019a) showed that the autocorrelation time of the IMF orientation is considerably shorter 479 

than for the other parameters and so most of the variability of P on sub-hour timescales 480 

originates from the IMF orientation term.  This is true for all coupling functions. If a 481 

parameter X is constant over the averaging time, then both the Hölder mean [<X
 p

 >]
1/p

  and 482 

the arithmetic mean are equal to that constant value of X and <X
 p

 > = <X
 
>

p
.  On the other 483 

hand, if X varies a great deal during the averaging interval, then the Hölder mean is 484 

greater/smaller than the arithmetic mean for p greater/smaller than unity. Hence the much 485 

greater variability in the IMF orientation is the reason why it behaves so differently. 486 

(However, note that if we increase the averaging timescale  , the other parameters will also 487 

start to suffer from the same problem as the clock angle term).  488 

We can conclude, the often-used average-then-combine procedure generates large errors for 489 

the IMF orientation terms in deriving an empirical coupling function Cf , even for  = 1 hr. 490 

The MEA15 averaging procedure removes a great deal of the problem (at last for  = 1 hr), but 491 

a second error (due to the difference between Hölder means and arithmetic means) remains 492 

for the clock angle term.   This generates a problem when using an iterative procedure, such 493 

as the Nelder-Mead simplex search method used here (Nelder and Mead, 1965; Lagarias et 494 

al., 1998) to fit the exponents a, b, c or d. This is because of the need to compute the mean of 495 

the combination of the samples (and in the dataset used in Figure 1 there are 9,930,183 valid 496 

1-minute samples of P) at the start of every round of the iteration. We have achieved this in 497 

some cases, but it takes enormous amounts of computer time and sometimes fails to converge.  498 

Fortunately, Figure 1 points to a compromise. It suggests we can use a hybrid approach of 499 

using  <B⊥>a , <SW>b ,  and <VSW
 
>c, but must use < sind( / 2)> for the IMF orientation term. 500 

This yields a mean coupling function estimate for averaging time  of 501 



 [𝐶𝑓]   = < 𝐵⊥ >
  𝑎. < 

𝑠𝑤
  >

  𝑏 . < 𝑉𝑠𝑤
   >

  𝑐. < 𝑠𝑖𝑛𝑑( /2) >      (15) 502 

Figure 1h  compares < P > and [P]  and it shows that agreement is very good with all 503 

points lying close to the diagonal line and the correlation coefficient is 0.997. We have 504 

repeated this test for all permutations of the maximum and minimum estimates of the 505 

exponents a, b, c and d  derived here and it is always valid to this level for  = 1 hr.  Equation 506 

(15) is practical for use in an iterative fit procedure because for a given d we can compute 507 

<B⊥> , <SW> ,< VSW> , and < sind( / 2)>  just once before each iteration and then readily 508 

iterate a, b, and c  to the optimum fit using the Nelder-Mead simplex search.  This can then be 509 

repeated for different values of  d.  We have carried out some sample tests of our analysis that 510 

compared the results of fits using the ideal mean < Cf > and our pragmatic hybrid solution,    511 

[ Cf ]  and the results were almost identical. However, we were limited in the number of 512 

these tests that we could carry out by the extremely large compute time caused by the need to 513 

average the whole dataset at each iteration step to define the exponents when using < Cf > . 514 

We have repeated all calculations using the average-than-combine procedure, [ Cf ] (but 515 

using the MEA11 procedure for B⊥ and   to avoid [ ]  and [ B⊥] ) and, as described later, the 516 

fits obtained were always poorer because of the effect highlighted in Figure 1g.    517 

2. Data Employed 518 

We use the dataset of hourly mean transpolar voltage PC observed over the years 1995-2020 519 

(inclusive) by the northern-hemisphere SuperDARN array of coherent-scatter HF radars, as 520 

described by Lockwood and McWilliams (2021). These hourly data are means of 30, 2-minute 521 

integrations. We adopt the requirement that the hourly mean of the number of radar echoes 522 

available, ne, exceeds a minimum value nlim =  255. This threshold was derived by Lockwood 523 

and McWilliams (2021) as the optimum compromise between having enough echoes that the 524 

influence of the model used in the “map-potential” data-assimilation technique is small, but 525 

not so large that the distribution of PC values is greatly distorted by the loss of low-flow, 526 

low-ne samples.  Lockwood and McWilliams (2021) also found that this threshold gave peak 527 

correlation between the radar PC estimates and those from nearby passes of low altitude 528 

polar-orbiting spacecraft. The condition that ne > nlim =  255 yields a total of 65,133 PC 529 

samples in the dataset.   530 



We wish to compare the optimum coupling function for the global parameter PC with that 531 

for global geomagnetic activity.  We here use the am geomagnetic index (Mayaud, 1980) and 532 

the AL auroral electrojet index (Davis and Siguira, 1966). The am index has the most uniform 533 

network, in both hemispheres, of observing stations and uses weighting functions to yield the 534 

most uniform response possible to solar wind forcing with Universal Time and time of year 535 

(Lockwood et al., 2019c).  The am index is based on the range of variation of the horizontal 536 

field component in 3-hour windows. To get a data series that is simultaneous with the PC 537 

data, we here linearly interpolate the 3-hourly am values to the mid-points of the hours used to 538 

generate thePC data.  This is only done for the PC samples that meet the ne > nlim = 255 539 

criterion and so we end up with a dataset of 65,133 interpolated am samples that are 540 

simultaneous with the PC data.  The advantage of using am is that it is the geomagnetic index 541 

that is by far the most free of seasonal and hemispheric effects which introduce noise in 542 

correlation studies, and it is genuinely global. The disadvantage is that it is 3-hourly and the 543 

interpolated values will reflect this timescale. We also compare with simultaneous hourly 544 

means of the AL index, by averaging one-minute values over the same hour as used to average 545 

the radar data. Note that AL comes from northern hemisphere stations and so contains an 546 

annual variation caused by seasonal changes in ionospheric conductivities: this is an 547 

additional noise factor for correlative studies that could potentially be reduced using a model 548 

of the effect of the conductivities.   549 

Figure 2 compares these hourly datasets of PC , am and AL by presenting data density plots 550 

of the normalized geomagnetic indices (the am index in Figure 2a, am/<am> and the AL index 551 

in Figure 2b, AL/<AL> where the means are taken over the whole dataset) as a function of the 552 

simultaneous normalized transpolar voltage,  PC /<PC >.  In both cases, means of the 553 

normalized geomagnetic index (with error bars between the 1-sigma points of the distribution)  554 

are also plotted for coarser bins PC /<PC >.   Figure 2a shows that the am index is, on 555 

average, close to proportional to PC, but with considerable scatter. This proportionality of 556 

mid-latitude range indices and transpolar voltage, such as am and kp, has been discussed by 557 

Thomsen (2004).  The variation of AL with PC is a bit more complex with only a small 558 

increase at PC /<PC > below about 0.5 (i.e., PC below about 20 kV), above which AL 559 

increases in magnitude more rapidly with PC than does am. The scatter is higher for AL 560 

because it contains noise associated with the seasonal variation in ionospheric conductivities.  561 



In contrast, am has very little such noise, being compiled from matching rings of stations in 562 

both hemispheres (and using weighting functions to account for any inhomogeneity) and has 563 

been shown to have an extremely flat response (in both UT and time of year to solar wind 564 

forcing as a result (Lockwood et al., 2019c). 565 

To derive the coupling functions, we use 1-minute resolution averages of the Omni dataset of 566 

near-Earth measurements of interplanetary space (King and Papitashvili, 2005). From this we 567 

generate running means using one-hour (61-point) boxcar averages of  B⊥, SW, VSW, and  568 

sind( / 2) for the value of d we are investigating (the using the MEA15 averaging procedure).   569 

Mean values are only considered valid when the number of samples is large enough to make 570 

the error in the mean less than 5%, thresholds that were determined by Lockwood et al. 571 

(2019a) for each parameter by the random removal of 1-minute samples from hourly intervals 572 

for which all 60 samples were available: because of its very low acfs, the most stringent 573 

requirement is set by the IMF orientation factor which requires 82% of samples (i.e., 43 out of 574 

the 60). The averaging generates a sequence of hourly running means that are 1 min apart.  575 

We combine these into mean coupling function [Cf ]1hr using our hybrid averaging formula 576 

(Equation 15). For test purposes only we also generate [Cf]1hr using the average-then-combine 577 

procedure (equation 11, with MEA15 averaging to generate hourly means of   and B⊥). We 578 

then select the value at each time of the transpolar voltage and am dataset, allowing for the 579 

appropriate propagation lag, tp. 580 

To determine the required propagation lags we make the initial assumption that the IMF 581 

orientation factor is sin3( / 2) (i.e., d = 3), although this is refined in Section 3 of this paper. 582 

We have carried out a sensitivity test to show that this choice does not influence the optimum 583 

derived lags.  The Omni data have been propagated from the point of observation to the nose 584 

of the magnetosphere (King and Papitashvili, 2005): any variable error in that propagation 585 

will be a source of noise in our correlation studies.   We then add a lag t to allow for 586 

propagation across the magnetosheath to the dayside magnetopause and then to the relevant 587 

part of the ionosphere.  We then vary t between −60 min (unphysical) and +120 min and for 588 

each lag evaluate the linear correlation coefficients between PC and am and the optimum 589 

coupling function, Cf (for the assumed value for d of 3).  Note that here and hereafter we refer 590 

to the hourly coupling function generated by our hybrid averaging procedure, [Cf ]1hr as just 591 

Cf, unless we are making a comparison with the results of the often-used average-then-592 



combine procedure, in which case we distinguish between [Cf ]1hr ,  [Cf ]1hr and  [Cf *]1hr.  We 593 

want Cf  to be linearly related to the terrestrial activity indicator and so we maximise the linear 594 

correlation coefficient, r. The exponents a, b, and c at each t were determined using the 595 

Nelder-Mead simplex method to minimize (1-r) (Nelder and Mead, 1965; Lagarias et al., 596 

1998). From this the optimum exponents a, b, and c (for the assumed d = 3) and the 597 

correlation coefficient r were determined at each lag t. 598 

The lag correlograms, r(t) obtained this way are shown in the top panel of Figure 3: mauve is 599 

for PC, the blue is for  the interpolated am and the green is for AL.  The vertical dashed lines 600 

mark the lags tp giving peak correlation. The bottom panel shows the best-fit exponents a, b, 601 

and c as a function of lag t: it can be seen that they do vary somewhat with t but only to a 602 

small extent around the optimum lags. tp.  From Figure 3, we determine the optimum lags are 603 

tp = 18.5 min for PC, tp = 30.5 min for am and tp = 45.5 min for AL. Note that the much 604 

greater persistence in the plot for am, because of it is interpolated from 3-hourly data, and this 605 

makes the peak for am lower and broader.   The survey of the PC dataset by Lockwood and 606 

McWilliams (2021) demonstrates how PC responds to both the reconnection rate at the 607 

dayside magnetopause D and reconnection in the cross-tail current sheet tail N (a good  608 

proxy for which is the AL auroral electrojet index), as predicted by the ECPC model 609 

(Lockwood, 1991; Cowley and Lockwood, 1992).  Indeed, in the approximation that the polar 610 

cap remains circular at all times, PC is the average of D and N ( Lockwood, 1991). 611 

Lockwood and McWilliams (2021) show that for low −AL, the lag of PC after solar wind 612 

forcing is about 5 min, which is consistent with the expected response delay of D, but the lag 613 

of the AL response (and hence inferred N) is 35 min, similar to the lag for am that is derived 614 

here.  Hence we would expect the average lag for PC, which is generated by a combination 615 

of D and N, to be around 20 min., as is indeed found to be the case in Figure 3.  However, 616 

we note that there is considerable variability in the lags connected with N, partly because of 617 

the variability in substorm growth phase duration (Freeman and Morley, 2004; Li et al., 2013) 618 

but also because, depending on the onset location, the precipitation in the initial part of the 619 

expansion phase can suppress ionospheric flow by enhancing conductivity, giving an addition 620 

delay in the appearance of the full voltage due to N (Grocott et al., 2009).    621 



The optimum coupling exponents at these lags are a = 0.672, b = 0.017 and c = 0.561 for PC 622 

and a = 0.802, b = 0.360 and c = 2.566 for am (for this d of 3). The uncertainties in these 623 

values and their dependence on d will be evaluated later.  The gray areas in Figure 3 define 624 

the 1-,  2-  and 3-  uncertainties in the tp estimates.  These are evaluated by looking at 625 

the significance S of the difference between the correlation at a general lag r(t) and its peak 626 

value at the optimum lag tp (where r = rp) where S = 1-p, and p is the probability of the null 627 

hypothesis that r and rp are actually the same. S is computed using the Meng-Z test (Meng et 628 

al., 1992) for the significance of the difference between correlation rAB (between two 629 

variables A and B) and rAC (between A and C) allowing for the fact that B and C may be 630 

correlated (|rBC| > 0).  S is, by definition, zero at the optimum lag tp, and the 1-, 2- and 3-  631 

uncertainties are the lags at which S has risen to 0.68, 0.95 and 0.997, respectively.  For PC 632 

the 2-  uncertainty band is between 17.2 min. and 19.8 min.; for am it is between 26.5 min. 633 

and 34.5 min. and for AL it is between 38.5 and 52.5 min. Note that these uncertainties are 634 

smaller than in many studies because the number of samples is so large.  Because Figure 3 635 

was generated using an assumed value of d = 3, it was repeated for a range of selected values 636 

of d between 1 and 7 (which section 3-ii shows covers the range of interest), the differences 637 

between the derived optimum lags were always considerably smaller than the above 2-  638 

uncertainties.   639 

3. The IMF orientation factor 640 

As discussed by Vasyliunas et al. (1982), the optimum IMF orientation factor is not 641 

independent of the other fit exponents. In addition, Section 1-v has described how, because its 642 

much greater rapid variability, we have to deal with it differently when generating average 643 

coupling functions.  Section 3-i discusses  the distributions of IMF orientation factors  before 644 

in Section 3-ii we evaluate the optimum values of d for PC, am and AL.   645 

3-i. Occurrence distributions of IMF orientation factors and the effect of averaging 646 

timescale 647 

Figure 4 shows the distributions of various parameters relevant to the IMF orientation factor, 648 

all panels being for 1-minute integrations of data and in the Geocentric Solar Magnetospheric 649 



(GSM) frame of reference. This Figure is for 11,646,678 1-minute Omni data samples from 650 

1995-2020, inclusive. The vertical axis is the fraction of samples n/n in 100 bins of width 651 

that are 1% of the range of the horizontal axis. The sequence of Figures 4a-4e are from 652 

Lockwood et al. (2019b) and explain how strange, highly-asymmetric distributions of 1-653 

minute samples of the various coupling functions come about from a near-Gaussian 654 

distribution of the IMF BZ component, which is very close to symmetric around zero, and a 655 

double-peaked distribution of the IMF BY component, which is also very close to symmetric 656 

around zero.  As discussed above, the most commonly-adopted form of the IMF orientation 657 

factor has been sind( / 2) with d = 4 although a range of d from 1 to 6 has been proposed.  658 

Figure 4f shows that d = 2 yields a symmetric distribution around an average of 0.5 with 659 

dominant isolated peaks in the bins closest to 0 and 1.  On the other hand, Figure 4g shows 660 

that d = 4 yields a highly asymmetric distribution with an even-larger isolated peak in the bin 661 

nearest 0 and only a very small one in the bin nearest 1. The peak in the lowest bin is even 662 

larger for d = 6, shown in mauve in Figure 4h and larger again for two other commonly used 663 

“half-wave rectified” IMF orientation factors BS in green (where BS = −BZ for BZ < 0 and BS = 664 

0 for BZ  0) and U( )cos( ) in blue (where U( ) = 0 for  <90 and U( ) = −1 for  90).  665 

The distributions for BS and U( )cos( ) are very similar because U( )cos( ) = BS/B and the 666 

factor 4.5 is used to display BS on the same scale in Figure 4h because it makes the mean 667 

value the same as for U( )cos( ) and very similar to that for sin6( / 2). 668 

These strange distributions of IMF orientation factors have great significance for statistical 669 

studies of the performance of a proposed coupling function because they determine the 670 

weighting given to a given clock angle  in a correlation study.  This means that when we 671 

alter d, we are not just investigating the how the IMF orientation influences solar wind-672 

magnetosphere coupling, we are also changing the statistical weighting given to certain IMF 673 

orientations in our correlation studies.  For BS and U( )cos( ) the value is zero for 50% of 674 

the dataset (for BZ > 0) and so the coupling function is strongly weighted to accurate 675 

prediction of quiet times, which is probably not what is wanted in many applications. Figure 676 

4h shows the distribution is not quite so extreme for sin6( / 2), but it has the same basic form.  677 

As we reduce d , that weighting shifts until for d = 2 the distribution is dominated by two 678 

equal peaks close to due northward and close to due southward IMF.  For d = 1 (Figure 4e) it 679 

is dominated by close to purely southward IMF.  The key point is that the choice of the IMF 680 



orientation factor is also setting the weighting given to certain data in the statistical fit of the 681 

coupling function if we use a fit-quality metric such as correlation coefficient or root-mean-682 

square deviation. 683 

Figure 1 of Lockwood et al. (2019a) shows why the IMF orientation factor has a key role in 684 

setting the variability of a coupling function. It is because its autocorrelation function (acf)  685 

falls much more rapidly with time lag for any other solar wind parameter. For a lag of 1 hour, 686 

the acf for sin4( / 2) in near-Earth space is 0.45, whereas for the solar wind number density 687 

NSW it is 0.88, for the IMF B it is 0.93 and for the solar wind speed VSW is 0.99.  Hence short-688 

term variability of a coupling function is set by that in the IMF orientation factor whereas, as 689 

shown below, this factor essentially becomes constant at timescales of a year or more. This 690 

exemplifies the general fact that the IMF orientation factor distribution depends critically on 691 

averaging timescale which is here illustrated by Figure 5 for the commonly adopted sin4( / 2) 692 

factor.  We take running boxcar (running) means of the 1-minute data over intervals  and 693 

deal with data gaps by only retaining averages that are made up of a fraction of the potential 694 

maximum number samples that exceeds f( ), the minimum needed to keep errors due to data 695 

gaps below 5%. The minimum fractions f( ) needed were computed by introducing random 696 

synthetic data gaps into continuous IMF data, computing the error caused and repeating 10 697 

times for each hourly mean, as carried out for  = 1hr by Lockwood et al. (2019a).  For 698 

example, Figure 1b of Lockwood et al. (2019a) shows that we require f( ) > 0.82 to keep 699 

errors in the hourly mean IMF orientation factor to below 5%.  At very large   it becomes 700 

very hard to find intervals with no data gaps; however, f( ) falls with   and so for   > 1 day 701 

we use the f( ) value for 1 day.  702 

As  is increased, the central limit theorem (Fischer, 2010) applies and the distribution of any 703 

parameter narrows towards a delta function at the overall mean (i.e., the value derived for a  704 

equal to the duration of the whole dataset). However, because of the unusual form of the 705 

distribution at  = 1min., the distribution for sin4( / 2) evolves through a series of forms and 706 

how it does so is determined by the timescales of the variability in the IMF orientation.  For  707 

= 15 min. the distribution is quite similar to that for  = 1 min., but the peak at sin4( / 2) = 0 708 

has diminished and more samples occur at larger values. For  = 1 hr (the timescale used in 709 

this paper), this results in a near-linear distribution, but still with a pronounced peak at 0. By  710 



= 6 hr the distribution has evolved into very close to a lognormal form and by  = 1 day it is 711 

close to a Gaussian form that is symmetrical about the overall mean value (the mauve vertical 712 

dashed line). Further increases in   cause the width of the distribution about the overall mean 713 

to decrease. For  = 1 year, the distribution is narrow and hence the IMF orientation factor 714 

can, to within a reasonably small error, be taken to be constant.  This is why successful 715 

coupling functions at annual timescales usually do not contain a factor that allows for IMF 716 

orientation.  Note that all parameters in a coupling function, not just the IMF orientation, 717 

follow the central limit theorem, but the other factors tend to start (for 1-minute observations) 718 

from a log-normal form and then evolve into the narrowing Gaussian and do not start from the 719 

unusual distributions for the IMF orientation factors (Lockwood et al., 1999a; b). 720 

The averaging timescale   has significance on two levels. Here we study it purely in the 721 

context of averaging data and the changes of the distribution that are associated with the 722 

reduction in noise brought about by the averaging.  However, it should be noted that   also 723 

has significance on a physical level.  This is because the IMF orientation in the upstream solar 724 

wind will be influenced by the passage of the solar wind through the bow shock and 725 

magnetosheath and there will be timeconstants for changes in the coupling of energy, mass 726 

and momentum from the near-magnetopause sheath into the magnetosphere (e.g., changes in 727 

the reconnection rate and in the X-line latitude and orientation).  These will almost certainly 728 

act as a low-pass filter on the IMF orientation variations, but it is not yet clear what averaging 729 

timescale   will best mimic the effects of this low-pass filter and how it might vary with solar 730 

wind conditions.  The optimum   will depend on the terrestrial parameter considered. For 731 

example, studies using ground-based radars show rapid responses in ionospheric flows and 732 

the location of the inferred open/closed boundary in the cusp region (almost immediately after 733 

the arrival of the Alfvén wave down the field line from the magnetopause to the ionosphere). 734 

However,  flows over the polar cap (quantified by the transpolar voltage) evolve more slowly 735 

and do not fully respond until 15-20 minutes later (Lockwood and McWilliams, 2021), 736 

consistent with the Expanding-Contracting Polar Cap model (Morley and Lockwood, 2005) - 737 

although we note that quasi instantaneous responses are also possible if the magnetosphere 738 

has been pre-conditioned by prior magnetopause reconnection  (Morley and Lockwood, 2005). 739 

Hence determining the timescale that is relevant to a given response is a multi-faceted and 740 

complex problem. 741 



Figure 6 is the same as Figure 5, but for another value for d  that has been proposed in the 742 

literature, namely d = 2 (e.g., Kan and Lee, 1979; Borovsky, 2013. Lyatsky et al., 2007). This 743 

reveals the sin2( / 2) has very different behavior to sin4( / 2). At all  , the distribution is 744 

symmetric about 0.5 and the mean value (vertical dashed line) and the value for in-equatorial 745 

field (vertical green line) are both always at 0.5. For  up to about 15 min., this yields a 746 

uniform distribution with sin2( / 2) with just small peaks at zero and unity that decay as  is 747 

increased. This even distribution makes sin2( / 2) an attractive choice if studying timescales 748 

up to about 15 min. However, for  =1 hr and above the distribution takes on some 749 

undesirable characteristics, with most samples coming from near-in-equatorial field and fewer 750 

from the extremes near 0 and 1. As discussed below this has some consequences 751 

In the literature values for d  between 1 (Fedder et al., 1991, Borovsky 2008) and 6 (Temerin 752 

and Lee, 2006; Balikhin et al., 2010) have been proposed and used.  From the above, the 753 

choice of IMF orientation factor and of the averaging timescale both have a subtle effect on 754 

the coupling function fitting by changing the weighting given to the data samples.  The central 755 

limit theorem means that the same effect applies to other factors in the coupling function, but 756 

the effects are less marked because they do not start from as extreme a distribution for 1-min 757 

values as does the IMF orientation factor.  One key insight here is that we should not expect a 758 

coupling function that works well at one timescale to be equally effective at another. Hence 759 

some of the differences between the coupling functions proposed in Table 1 will have arisen 760 

from the different averaging timescales used.   761 

The behavior in Figures 5 and 6 is very different to that obtained by an average-then-combine 762 

procedure given by equation (12) (not shown).  In these cases, the distribution tends to 763 

maintain its high-resolution form up to  of about 1 day when it starts to narrow under the 764 

central limit theorem.  However, as   is further increased it gets noisy and the broadens again 765 

as the means of both the Y and Z components of the IMF tend to zero. The key point is that 766 

this behavior is purely an artefact of the average-then-combine procedure, and the combine-767 

then average is what mimics the physics of the magnetosphere.  The distributions of the other 768 

parameters in the coupling function are largely log-normal and also influence the net 769 

distribution of Cf, but it is the IMF orientation factor that has the most marked effect and the 770 

imprint of its strange distributions is clearly seen in Cf (Lockwood et al., 2019b; c). 771 



3-ii. Optimum exponent d of the IMF orientation factor 772 

In section 2 we defined the optimum lags for the interplanetary data, tp, and found that they 773 

were not significantly influenced by the choice of the exponent d in the sind( / 2) IMF 774 

orientation factor.  In this section, we define the optimum d  using those lags.  We vary d over 775 

the full proposed range (we used values from 1 to 7.5 in steps of 0.01) and using the optimum 776 

lags tp, we optimized a, b and c to maximize the correlation r at each d. The results are 777 

shown for Figure 7, using the same format as Figure 3.   778 

The top panel of Figure 7 shows that for P , am and AL , the correlation has a peak at quite 779 

low d, specifically d = 2.1 for PC (in mauve) and d = 1.3 for am (in blue) whereas for AL (in 780 

green)  the  peak correlation is at d = 3.7, very close to the value found by MEA17. The 781 

bottom panel shows how the other exponents (a, b and c) depend slightly on d.  Note that we 782 

have also used the MEA15 averaging methods to generate hourly coupling functions Cf,  783 

[Cf]1hr using Equation (11) (not shown):  as expected from Figure 1g, the correlations for 784 

[Cf]1hr were  systematically lower than for [Cf ]1hr by about 0.05.   For a few sample values of 785 

d (specifically 2, 3, 4 and 6) we also repeated the computation using  <Cf >1hr  (Equation 10): 786 

in each case, iteration took over a thousand times longer than the corresponding fit using  787 

[Cf]1hr, but the results for a, b, c and r were all the same for <Cf >1hr  and  [Cf ]1hr to within the 788 

estimated uncertainties.  From Figure 7a, it appears that the sin2( / 2) IMF orientation factor 789 

performs best for PC and that an even lower d is best for am because they yield higher 790 

correlation coefficients.   791 

However, as discussed in the previous section, some of this is the favorable distribution of 792 

samples that averaging brings about and the subsequent weighting of IMF orientations in 793 

deriving the correlation coefficient. This is demonstrated by Figure 8 for fits to the PC data. 794 

Figures 8a and 8b show that for a d value that is too low or too high the relationship between 795 

Cf  and PC is not linear (with curvature in the opposite sense in the two cases). Figure 8c is 796 

for the peak correlation (d = 2.2) and it can be seen that the variation is not linear, but d is 797 

slightly too small, giving the same curvature as seen in Figure 8a.  Figure 8d shows that it 798 

requires a slightly larger d (= 2.5) to give a linear variation, even though the correlation is 799 

slightly lower and the rms deviation is slightly larger than for d = 2.2 that yields peak 800 

correlation.  The reason lies in the effect of the distribution of Cf  values on the fits. The 801 



colour contours reflect the point made in relation to Figure 4, namely that higher d causes a 802 

greater density of points at low Cf  and so biases the fits to lower values of PC and hence 803 

northward IMF. This can be seen by comparing the colour contours in the various parts of 804 

Figure 8.  805 

An interesting point to note is that the variation in Figure 8c could be interpreted as a 806 

saturation effect at work, whereas it is in reality the application of a value of d that is too high.  807 

Saturation is identified when the observed PC is not as high as we would expect for a given 808 

coupling function for the prevailing interplanetary conditions  (Hairston et al., 2005; 809 

Shepherd, 2007).  Such an empirical identification and quantification of a saturation affect 810 

assumes that the coupling function had been made to have a linear variation with PC and 811 

Figure 8 demonstrates that deriving the coupling function using correlation coefficient can 812 

give a non-linear variation of Cf  with PC. It seems likely that saturation is a real 813 

phenomenon – for example it is generated by MHD simulations Kubota (2017) and we note 814 

that saturation the maximum PC/<PC> in Figure 8 is near 2.7 which corresponds to 100 kV 815 

(<PC> = 37 kV) and saturation has generally been reported at larger PC , typically 150-200 816 

kV and certainly at a level above 100 kV.  In addition, the curvature caused by excessively 817 

large d  extends throughout  all values of PC – unlike saturation effects.  But we conclude 818 

most of the data in Figure 8 are not influenced by saturation.   Furthermore, the variation that 819 

looks like saturation in Figure 8d is generated by an exceptionally large d ( = 6.5) whereas the 820 

effect of statistical weighting is to tend to underestimate d when using correlation.  However, 821 

we must remain aware that non-linearity introduced into the coupling function, caused by 822 

statistical biasing towards certain IMF clock angles, can cause us to underestimate or 823 

overestimate the true saturation effect. 824 

There is second way to derive d that avoids the possibility of statistical bias, and this is 825 

presented in the next section.  826 

3-ii. Test of the IMF orientation factor and linear regression coefficients 827 

Vasyliunas et al., (1982) provide a test for the optimum form of the IMF orientation factor 828 

F( ), such as sind( / 2).  This is based on the fact that we want the coupling function Cf to be 829 

linearly related to the terrestrial response at all activity levels and not be biased in the way 830 



illustrated by Figure 8. To evaluate this, we use the function G  (i.e., Cf without the F( ) 831 

factor, defined by Equation 14).  We want 𝐶𝑓 to vary linearly with the terrestrial index T 832 

(which is either 𝑃𝐶 or am in the current paper).  Hence we want 833 

𝑇 =  𝑠𝑇 
𝐶𝑓 + 𝑖𝑇 

 =  𝑠𝑇 
𝐺𝐹( )  + 𝑖𝑇                       (16) 834 

where sT and iT are the best-fit linear regression coefficients. This  yields a requirement that 835 

𝐹( )  =  (1/𝑠𝑇)  (𝑇− 𝑖𝑇 )/𝐺                                 (17) 836 

which we can test for.   Equation (17) stresses the point that d is not an independent fit 837 

variable from the other exponents because for a given a, b and c and set of interplanetary data, 838 

G is proscribed which means there is a unique exponent d in F( ) = sind( / 2) that ensures the 839 

linearity of 𝐶𝑓 =  G.F( ) with T.  The supplementary material to Lockwood et al (2019b) 840 

showed that this test yields F( ) = sin4( / 2) for a T of the SuperMAG SML index (equivalent 841 

to AL but from a wider array of northern hemisphere stations) and a coupling function Cf  of 842 

P. We here repeat that test for PC, am and AL using our generalized form for Cf . Our 843 

procedure takes each value of d in Figure 7 (which was varied between 1 and 7.5 in steps of 844 

0.01) and the best-fit a, b and c for that d (which are given in Figure 7b) and compute G, 845 

F( ), and Cf  and the linear regression coefficients between Cf  and T, sT and iT.  To test if the 846 

linear equation (17) applies, we can divide the data up into equal-width averaging bins of 847 

F( ) for which we evaluate the means of both F( ) and (T-iT)/G.  If the means for the bins of 848 

<(T-iT)/G>  are proportional to the means <F( )>,  then Equation (16) applies, and we know 849 

that F( ) is of the correct form for the proposed G to give a linear coupling function.  Note 850 

that averaging into bins of F( ) removes the bias of the sample numbers towards low   as the 851 

means are not weighted by the number of samples that are in the bin. This is a particular 852 

problem for higher values of d.   853 

Figures 9, 10, and 11 give the results of this test of F( ) for 𝑃𝐶, am, and AL, respectively.  854 

Parts (a), (b) and (c) of Figure 9 are examples of plots of  < (PC − i)/G>  against < F( )> 855 



for F( ) = sind( / 2) for three different values of d.  Parts (a), (b) and (c) of Figures 10 and 11 856 

are the corresponding plots of < (am -iam)/G> and < (AL -iAL)/G> , respectively, as a function  857 

of <F( ) >. In all cases we use the derived optimum 𝐺 for the value of d in question (i.e., 858 

using the coefficients a, b and c given in Figure 7b). Averaging is carried out over 25 bins of  859 

F( ) of width 0.04, covering the full range of 0 to 1. Parts (a), (b) and (c) are, in all three 860 

Figures, for d  below, equal to and above the optimum value which is derived below: they 861 

show that the best fit quadratic polynomial (the red line) and this is not linear in parts (a) or 862 

(c) of the figures (the green line gives the best linear regression which will be the same as the 863 

red line for a linear dependence). For the parts (a) of  Figures 9, 10 and 11, the coefficient of 864 

the power-2 term in the best fit quadratic polynomial is positive, whereas for the parts (c) it is 865 

negative - i.e., the curvature of the best fit of the polynomial is in the opposite sense to in the 866 

corresponding part (a).  For the Parts (b) of all three figures, the fit is linear, and this is what 867 

makes the d used in these cases the optimum value as it means the coupling function is 868 

linearly related to the terrestrial index.  869 

The derivation of the optimum value of d is shown in the Parts (d) of Figures 9-11 which plot 870 

the power-2 term coefficient in the best fit-quadratic (a for PC, aam for am and aAL for AL ) 871 

as a function of the exponent d over the full range of values proposed in the literature.  The 872 

uncertainty band of this coefficient, at the 1-, 2- and 3- levels, are shown in shades of 873 

gray in all three figures (but only easily discerned in Figure 10). The optimum d for PC , am 874 

and AL are the values that make, a, aam  and aAL (respectively) equal to zero – i.e., for which 875 

the variation is linear. The 1-, 2- and 3- uncertainties in d are where the edges of the 876 

uncertainty bands in a, aam and aAL fall to zero and this yields the vertical uncertainty bands 877 

around the optimum d that are shown. 878 

Figure 9 shows that the required d is 2.500.07 (at the 2- uncertainty level) for PC,  Figure 879 

10 shows that it is 3.000.22 for am and Figure 11 shows that it is  5.230.48.  Hence the 880 

optimum IMF orientation factors for PC, am and AL are not the same within 2- 881 

uncertainties and in all three cases are larger than the value derived by correlation. Essentially 882 

AL requires a function that is most like a half-wave rectified function and PC requires a 883 

function that is least like one. The optimum d and their uncertainty bands for PC, am and AL 884 

are also shown in Figure 7 which reveals that the uncertainties do not overlap even at the 3- 885 



uncertainty level.  Note that the commonly-used value of d = 4 is too large for PC and am but 886 

too small for AL. Some agreement between the behavior of am and AL to be expected because 887 

both are dominated, at high activity at least, by the effect of the substorm current wedge and 888 

so do show considerable agreement (Adebesin, 2016; supplementary information to Lockwood 889 

et al., 2019a,).  However, they are different indices and, as indicated by Figure 2, they have a 890 

different relationship to the transpolar voltage.  The values of sT and iT for the optimum d are 891 

given in the Parts (b) of Figures 9-11. 892 

The question then arises as to why the correlations r at these optimum d are slightly lower 893 

than the peak correlations that are always found at slightly lower d, as can be seen in Figure 894 

7a. The answer can be found by referring back to the analysis of the d = 2 case and the F( ) = 895 

sin2( / 2) factor presented in Figure 5. This series of distributions shows that the dataset 896 

becomes weighted towards the middle of the range of sin2( / 2) values as the timescale is 897 

increased and there are fewer data constraining the large and low values. This is clearly 898 

demonstrated by the distribution for these data with  = 1hr in Figure 5c. Hence although 899 

sin2( / 2) gives very slightly higher rp, it is only because the dataset becomes weighted 900 

towards the center of the distribution with weaker weighting given to the extremes of low and 901 

high F( ).  To test this conclusion, we carried out correlations where the data were divided 902 

into 25 bins of F( ) and for each bin, samples were selected at random such that all the F( ) 903 

bins contained the same number of samples (the number that were in the least-populated bin), 904 

thereby removing the sampling bias at the expense of losing data.   The peak correlations were 905 

indeed shifted to larger d and closely matched the values derived in Figure 7. These 906 

correlation tests are still not bias-free because reducing the samples to the minimum number 907 

is any one bin means that fits for some d have systematically higher sample numbers than 908 

others. Nevertheless, this test is enough to confirm that the choice of d does influence the 909 

correlation coefficients by preferentially weighting certain clock angles.  910 

In contrast, in fitting the quadratic polynomial to the bins in parts (a), (b) and (c) of  Figures 911 

9-11, equal weight is given to the data points for the different F( ) bins, despite the fact that 912 

there are different numbers of samples in those bins. Hence, unlike the correlation coefficient 913 

r, these fits are not influenced by the distribution of samples.  Hence they provide a better test 914 

of the optimum form of F( ) that best describes the physics of solar-wind magnetosphere 915 

coupling than do the correlation coefficients. 916 



 It can be seen from the bottom panel of Figure 7 that, in general, the uncertainty in d 917 

introduces only small changes in the best-fit exponents a, b and c. However, the changes 918 

across the uncertainty bands are not zero. Hence when we compute the uncertainties in a, b 919 

and c we need to fold in both the fit uncertainties at the optimum d and effect of the 920 

uncertainty in that optimum d. 921 

With all 4 exponents and the linear regression coefficients now defined, the predicted 922 

terrestrial index can then be determined from: 923 

𝑇𝑝𝑟𝑒𝑑  =  𝑠𝑇 
𝐶𝑓 + 𝑖𝑇 

= 𝑠𝑇 
{< 𝐵 >𝑎 < 

𝑠𝑤
  >𝑏<  𝑉𝑠𝑤

 >𝑐 < 𝑠𝑖𝑛𝑑(/2) >} + 𝑖𝑇 
    (18) 924 

4.  First-order check for overfitting 925 

We here fit with three free fit parameters (a, b and c), we are pre-determining two others (d 926 

and the optimum lag, tp) which can influence the results and hence, even for such a large 927 

dataset, overfitting could be a problem.  An initial test is to check that correlations are not 928 

unrealistically high. We carried out tests for the effect of the noise introduced into our 929 

correlations by the use of interplanetary data from spacecraft in a halo orbit around the L1 930 

Lagrange point: the point being that the solar wind that is sampled by the spacecraft is not, in 931 

general, the same as hits Earth because of spatial structure in the interplanetary medium.  We 932 

computed our generalized coupling function, covering the full range of a, b, c and d indicated 933 

by Figure 7b,  using data from both ACE, and THEMIS B for 2010-2019 (inclusive) when the 934 

latter  spacecraft was outside the bow shock in the near-Earth solar wind.  For both craft 935 

coupling several sample functions for d = [2:1:6] were computed at one minute resolution and 936 

then averaged with a 60-point running mean into hourly values with one minute cadence. The 937 

optimum lag was determined as a function of time and the peak correlation evaluated from the 938 

lag correlograms. The results did vary a little with the exponents used and, in particular, 939 

correlations were lower for higher d, indicating IMF orientation structure was one of the 940 

larger causes of noise. The 1- points of the overall  distribution of correlation coefficients 941 

were 0.83 and 0.91.  Hence correlations above 0.9 are an immediate indication of potential 942 

overfitting. Note also we have only considered one potential course of noise and we should 943 



regard 0.9 as about the best correlation that we can achieve using upstream data from near the 944 

L1 Lagrange point. 945 

We here also test for overfitting in a straightforward way by dividing the data into just two 946 

“folds” (whilst noting that machine-learning techniques often use several more folds for 947 

different tasks) of roughly equal numbers of samples and then fitting to the one half and the 948 

testing against the independent second half.  Note also that testing also raises another set of 949 

complications with a variety of performance metrics available for consideration (Liemohn et 950 

al., 2018), and the most appropriate one (or ones) for the application in question should be 951 

deployed, especially in the context of forecasting (Owens, 2018).  952 

We here use the optimum lags tp and d exponents derived above and consider only linear 953 

correlation coefficient and root mean square (rms) error as test metrics.    The results are 954 

demonstrated in Figures 12 and 13. The fit dataset used to define exponents a, b, c (for the 955 

predetermined d for the parameter in question) was for 2012-2019, inclusive and the resulting 956 

values are given in the legend to Figure 12. The same exponents and regression coefficients 957 

were then applied to generate the predicted values for both the fit and the test subsets (1995-958 

2011) using Equation (18).  Because there are so many datapoints, information is lost in a 959 

scatter plot because so many points are overplotted: Figures 12 and 13 are therefore presented 960 

as datapoint density plots. Comparing Figures 12 and 13 there are no obvious differences in 961 

behavior, which is quantified by the correlation coefficients r and the rms deviations  962 

between observed and predicted values. For the predicted and observed PC, r is 0.853 and 963 

0.886 for the fit and test sets, respectively, and  is 12.9 kV and 10.4 kV.  Hence, by both 964 

metrics, the test set is actually performing slightly better than the fit set.   For  the predicted 965 

and observed am, r is 0.813 and 0.822 for the fit and test sets, respectively, and  is 10.1 nT 966 

and 10.7 nT.  Hence in this case the correlation is very slightly better for the test set, but the 967 

rms deviation is slightly better for the fit set.  For the predicted and observed AL, r is 0.808 968 

and 0.764 for the fit and test sets, respectively, and  is 84.4 nT and 83.8 nT.  Hence in this 969 

case the situation is the opposite to that for am, but differences are again very small.   In all 970 

cases, the performance of the fits on the test set is essentially the same as for the fitting set 971 

and there is no doubt that the coupling functions have predictive power.  972 

Note from the plots presented in Figures 12 and 13 the influence that the d value has on where 973 

data are in parameter space. For PC (which requires d = 2.5) there is a high density of 974 



samples over a large segment of the best-fit diagonal line. For am (which requires a higher d = 975 

3.0) the highest density of data is more closely confined to near the origin and this effect is 976 

even more marked for AL (which requires a  yet higher d = 5.23). The key point is that the 977 

influence of northward IMF conditions on the derived general coupling function is greater for 978 

AL than it is for am and PC which needs to be remembered when we evaluate its 979 

performance. 980 

5.  Estimation of uncertainties and the influence of the number of samples 981 

Figure 14 presents distributions of fitted values of  the exponents a, b and c for three subsets of 982 

the transpolar voltage data and compares them to the value for the full set of N = 65133 samples 983 

(given by the vertical dashed line in each case). The distributions are generated by taking 984 

1000 random selections of 𝑁 samples (from the total of NT = 65133 samples with ne > nmin = 985 

255 available): the values of N used were  NT/25 = 2606 (on average, corresponding to 1 yr of 986 

data);  NT/10 = 6513 (on average, corresponding to 2.5 yr of data) and NT/2.5 = 26503 (on 987 

average, corresponding to 10 yr of data).  The fraction of samples n/n are plotted in bins of 988 

width (1/30) of the maximum range of each exponent shown.  In each case, three histograms 989 

are shown:  the light grey histogram bounded by the mauve line is for NT/25 samples, the 990 

darker grey bounded by the blue line is for NT/10 and the darkest grey bounded by the black 991 

line is for NT/2.5.  The distributions are generally symmetric about the optimum value for the 992 

whole dataset, but not always so for the smallest N and, as expected, they narrow down 993 

toward the value for the full dataset as N is increased. The standard deviations of the 994 

distributions are given in each case on the plot.  This analysis was repeated for the 995 

geomagnetic indices and the results were very similar (not shown). Distributions are broader 996 

and peaks lower for am and AL than for PC, which is expected because all plots presented 997 

thus far have had greater noise and larger uncertainties for the fits to the geomagnetic  data. 998 

Figure 14 stresses how much in error an individual fitted value can be if smaller datasets are 999 

used.   However, that both the mean and the mode of some of the distributions are shifted 1000 

from the value for the whole dataset when N is low, meaning that there are systematic errors 1001 

as well as random errors when sample numbers are low. 1002 

To determine the uncertainties in exponents a, b and c from our full dataset we assigned one 1003 

of the three exponents a fixed value that was then varied round its optimum value and the 1004 



other two were fitted using the same Nelder-Mead simplex search procedure that was used to 1005 

fit all three exponents in previous plots (again, we are using the optimum d and lag tp defined 1006 

previously).   The significances S of the difference between the correlation at a general value 1007 

of the exponent and its peak value for the optimum exponent was then evaluated.  As before, 1008 

we evaluate S = 1-p (where p is the probability of the null hypothesis that the correlations are 1009 

the same) using the Meng-Z test and the 1-, 2- and 3-  uncertainty level.  This yields the 1010 

uncertainty associated with the fit at the optimum d, which was added in quadrature with the 1011 

uncertainty caused by the uncertainty range in that optimum d. The resulting 2- uncertainties 1012 

are given with the optimum values in Table 2.  1013 

6.  Significance of the differences between fits for transpolar voltage and geomagnetic 1014 

activity 1015 

A notable feature established earlier is that the optimum d for PC, am and AL are not the 1016 

same: the shaded areas of Figure 7 show that the uncertainties do not overlap for even the 3- 1017 

level. Form Table 2 we can see that the exponents a, b, and c (of B , SW, and VSW 1018 

respectively) are also, in general, different. We conclude that there is no such thing as a 1019 

universal coupling function and optimum coupling functions must be tailored to the index or 1020 

indicator that they aim to predict.  We have carried out a number of experiments of the kind 1021 

illustrated in Figure 14 using randomly-sampled subsets of the data and found that some 1022 

exponents that appeared to be the same, within predicted uncertainties, are found to be 1023 

different, to very high significance, when we use the full dataset.  1024 

7.   Discussion and Conclusions. 1025 

We have analyzed the optimum coupling functions for a dataset of 65133 hourly mean 1026 

transpolar voltage estimates PC observed between 1995 and 2020 by the northern-1027 

hemisphere SuperDARN radar network and matching sets of fully-simultaneous am and AL 1028 

index values, in the case of am these were linearly interpolated to the center times of the radar 1029 

data hours from the 3-hourly index.  We have fitted using a generalized mathematical function 1030 

that encompasses many proposed coupling functions and have carried out only a 2-fold test 1031 

for overfitting (i.e., dividing the data into a fitting and a test data set  roughly equal sample 1032 

sizes).  1033 



Our aim in this paper has been to establish some important principles concerning how the data 1034 

can be averaged and fitted to ensure the IMF orientation term used does not bias the data in a 1035 

way that does not match the physics of solar wind-magnetosphere coupling and also to ensure 1036 

that the coupling functions derived are linear predictors of PC, am and AL.  1037 

Table 2 gives optimum values and  the 2- uncertainties derived here. Also given is the 1038 

correlation coefficient r obtained  and the fraction of the variance explained, r2.  Note that 1039 

correlations for AL and am here are for all the available data from 1995-2020 (but using the 1040 

exponents derived here from the data subsets that are simultaneous with the radar data that 1041 

meet the ne .> 255 criterion (roughly a third of the full data). In addition, for am the raw 3-1042 

hourly data are used to evaluate r and r2 rather than the interpolated hourly values.  The 1043 

correlations for PC are for only the ne > 255 data.  It should be remembered that the noise 1044 

introduced by spatial structure in the solar wind, on its own, limits r to about 0.9 (r2 to about 1045 

0.81) and there are other noise sources (propagation lag uncertainty, instrumental errors in 1046 

both the interplanetary data and the terrestrial disturbance indicator, seasonal and/or UT 1047 

effects on terrestrial data,  data gaps, effects of averaging, nonlinearity of response, dipole tilt 1048 

effects).  The values in Table 2 are slightly higher than previously proposed coupling 1049 

functions, but the gains in r2  are marginal. It appears that coupling functions are achieving 1050 

correlations almost as high as is possible for interplanetary observations made at L1 and the 1051 

terrestrial disturbance data that we have available.    1052 

Table 2 also gives the performance of some theoretical coupling functions.  For PC these are 1053 

simple prediction based on interplanetary electric field given by Equation (8) and the 1054 

Borovsky and Birn (2014) formulae for interplanetary Mach number MA < 6 and MA > 6.  For 1055 

am we use the best-fit version of the Vasyluinas et al. (1982) energy input formulation, P 1056 

(with d = 2 and coupling exponent  = 0.34) and for AL we shown the P formulation with 1057 

best fit values of d = 4 and  = 0.26.  1058 

Our empirical fits exceed all these theoretical values, as indeed they should as they have three 1059 

free fit variables. The results are quite similar in r2 achieved to other empirical studies: for 1060 

example McPherron et al. (2016) explained 43.7%, 61.2%, 65.6%, and 68.3% of the variance 1061 

in the hourly AL index using, respectively, epsilon  (Perrault and Akasofu, 1978), VSWBs, the 1062 

universal coupling function (Newell et al., 2007) and the optimum coupling function that they 1063 



had derived which was B⊥
0.79 NSW

0.10 VSW
1.92 sin3.67( /2) (i.e., a = 0.79, b = 0.10, c = 1.92 and 1064 

d = 3.67).  Unfortunately, Newell et al. (2007) did not test the 20 coupling functions they 1065 

considered against the am index. The closest they used to am was the kp index for which the 1066 

main coupling functions correlation gave 100r2 that ranged from 30% for  to 58% for their 1067 

universal coupling function. However,  we note that there is a 20% peak-to-peak “McIntosh”  1068 

pattern in am caused by dipole tilt effects (Lockwood et al., 2020a) which our optimum 1069 

coupling function does not attempt to allow for with a dipole tilt term. This makes predicting 1070 

66.3% of the variation in am without it very encouraging.  1071 

The correlation for our transpolar voltage coupling function is r = 0.865 which means we are 1072 

predicting 100r2 = 75% of the variation in PC.  This is as high as has any that has been 1073 

reported previously and is for a much larger dataset.  An early study by Wygant et al. (1983) 1074 

from a limited number of  satellite passes explained 55% of the variation in PC with the 1075 

coupling function BVSW sin4( /2) (i.e., a = 1, b = 0, c =1, d = 4).  Applying this to our 25-year 1076 

SuperDARN dataset of  65133 samples with ne > 255, and using all best practice (i.e., 1077 

computing the coupling function at one-minute resolution, averaging and the determining 1078 

optimum lag) we find the Wygant et al. (1983) formulation explains 66% on the variance.  1079 

Mori and Koustov (2014) surveyed the effectiveness of different coupling functions in 1080 

predicting a PC values from 1 year of SuperDARN radar data. They found percentages of the 1081 

variance explained ranging from 13% for  in equinox up to 61% (for B⊥
1/2VSW

1/2 sin2( /2);  1082 

i.e., a = 0.5, b = 0, c = 0.5 and d = 2), the latter is close to the optimum found here and testing 1083 

against our data set we find it explains 73.5% of the variance in PC, only very slightly lower 1084 

than the value for our fit.    1085 

However, the benchmark test in transpolar voltage prediction is set by the coupling function 1086 

of Boyle et al. (1977) who reported correlations of up to 0.87, explaining 75% of the variance 1087 

of PC, from observations from a number of Low-Earth Orbit satellites over a three-year 1088 

interval. The coupling function they derived was the addition of two terms: 10-4VSW
2 + 1089 

11.7Bsin3( /2)  (where VSW is in kms-1 and B is in nT).  A concern of any additive fit of this 1090 

kind is that it may be open to overfitting and may not apply on all timescales. However, we 1091 

can now check for overfitting by testing it against the fully-independent SuperDARN PC 1092 

data used here. The correlation we obtain is r = 0.830, and so 68.8% of the variance in our 1093 

PC data is explained.  This is not quite as high as Boyle et al. (1977) reported for their fit 1094 



dataset, nor quite as high as the correlation we have found here; however, neither is it that 1095 

much lower.  However, if we take the two terms in the Boyle function separately, we find the 1096 

correlation with VSW
2 is very low with r  = 0.2 (100r2 = 4%) but that with Bsin3( /2) is 0.831 1097 

(100r2 = 69.0%), and actually very slightly better than for the combination of terms. Hence, 1098 

the key part of the Boyle et al. function has exponent a = 1, b =0, c = 0 and d = 3.   1099 

We have studied the effect of different procedures in deriving the hourly means. In addition to 1100 

the best practice combine-the average, <Cf>1hr, we computed all proposed coupling function 1101 

[Cf]1hr using the procedure of MEA15 (with averaging of 1-minute values of   and B⊥) and 1102 

also [Cf*]1hr for which   and B⊥ are both computed using hourly means of the BY and BZ IMF 1103 

components. Using [Cf]1hr  instead of  <Cf>1hr typically lowers the variance explained by 1104 

between 5% and 3%, whereas using [Cf*]1hr  instead of  <Cf>1hr typically lowers it by about 1105 

20%-40%.   For the Boyle et al. (1977) parameter the behavior is strange in that for [Cf]1hr  the 1106 

value is reduced from 68.8% to 68.0% but using [Cf*]1hr  it plummets to  4%. The reason is 1107 

the first term has become the larger of the two because the coefficients of the two additive 1108 

terms are no longer appropriate. Hence the first term of the Boyle equation has actually 1109 

lowered the variance explained slightly but also made it unstable to the precise 1110 

implementation.  This is a general risk with additive terms.   1111 

7-i. The IMF orientation factor 1112 

As shown in Table 1, exponents d of an IMF orientation factor sind( / 2) of between 2 and 6 1113 

have been suggested from empirical studies and simulations with numerical global MHD 1114 

models have suggested d as low as 1.5 (Hu et al., 2009) or even 1 (Fedder et al., 1991; 1115 

Borovsky, 2008).  For both the transpolar voltage PC and the am geomagnetic index, we find 1116 

that the IMF orientation factors in the coupling function for all suggested d between 1 and 6 1117 

all perform reasonably well in terms of the correlation coefficient.  We find that marginally 1118 

higher correlations for hourly averages for the low d exponents, the best correlations being for 1119 

PC at d = 2.1, for am at d = 1.3. However, we have shown that the distributions mean that 1120 

these low d values are favoured mainly because they weight the statistics towards near  = 1121 

90 and against data for strongly northward IMF ( approaching 0) and strongly southward (  1122 

approaching 180).   The latter bias is, of course, particularly undesirable because periods of 1123 



large   drive the strong space weather which is often what we want the coupling function to 1124 

predict and quantify.   1125 

As shown by Table 1 a great many studies have used sind( / 2) with d = 4 and this exponent 1126 

has also been found for energy transfer across the magnetopause in MHD simulations of 1127 

global energy transfer across the magnetopause (e.g., Laitinen et al., 2007). From the 1128 

requirement of linearity across all clock angles we find the optimum exponents d are 1129 

2.500.07 for PC,  3.000.22  for am and 5.230.48 for AL. 1130 

7-ii. Other coupling function exponents  1131 

The values of the other exponents a, b and c (of B , SW, and VSW respectively) do, in general, 1132 

depend on the exponent d used in sind( / 2). Some empirical fit studies have derived values 1133 

for d that are not within the optimum range derived here, and the concern is that the 1134 

associated a, b or c have also been shifted from optimum values to compensate.  1135 

Table 2 shows  our best fit exponents for PC  are somewhat different to the values of a = 1, b 1136 

= −0.167, and c = 0.667 expected for the theoretical coupling function SW based on the 1137 

interplanetary electric field (Equation 8) and the differences imply that the reconnection 1138 

efficiency  has quite considerable dependencies on all three parameters. Specifically, from 1139 

our results and Equation (8)   appears to vary as B−0.358, SW
0.185 and VSW

−0.117.  Work is 1140 

needed to see if these inferred external influences are consistent with the analysis of Borovsky 1141 

and Birn (2014) who concluded that the reconnection voltage is not a function of the 1142 

interplanetary electric field at all.   1143 

One surprising value is the relatively large c (the exponent of VSW) for the am geomagnetic 1144 

index. Table 2 shows that the estimated power input into the magnetosphere P fitted to the 1145 

am index (for the 3-hr timescale) gives d = 2 and a coupling exponent  = 0.340.04 . From 1146 

equation (4) this predicts a = 0.680.08, b = 0.320.04 and c = 1.650.08.  Table 2 shows that 1147 

although the values of a and b close to those expected for P,  c is much larger than predicted 1148 

by P.   1149 

From energy coupling into the magnetosphere from numerical MHD simulations Wang et al. 1150 

(2014) derive a = 0.86, b = 0.24 and c = 1.47 (with a d of 2.7, similar to the 3.0 found here) 1151 



which is extremely close to the above exponents for P with  = 0.44 found by Lockwood et 1152 

al. (2019a).  Together with our results, this strongly suggest the am index has an additional 1153 

dependence on SW
0.13 

and VSW
1.03 

for a given power input into the magnetosphere.  Lockwood 1154 

et al. (2020b) find that 75% of the variation in am is explained by the estimated power input 1155 

and that some of the remaining variance is associated with the solar wind dynamic pressure 1156 

Psw = SWVSW
2 

combined with the dipole tilt. They argue this is the effect of squeezing the 1157 

near-Earth tail, an effect Lockwood et al. (2020b) show is found in both global MHD 1158 

simulations and in the inference of an empirical model of the magnetopause location.     1159 

On the other hand, our results for PC and AL show almost no dependence on SW. The AL 1160 

result is particularly surprising as AL depends on the substorm current wedge which should 1161 

also be influenced by the squeezing of the tail. Figure 11 of Lockwood and MacWilliams 1162 

(2021) shows influence of  Psw (and hence SW) on PC , am and AL; it is complex and 1163 

behavior depends on the IMF BZ component, but it is stronger at all BZ for am. 1164 

Figure 15 is aimed at understanding the difference between the dependences of am and AL on 1165 

the solar wind dynamic pressure Psw.  It shows the (normalized) ratios of the geomagnetic 1166 

indices per transpolar voltage for (top panels) am and (bottom panels) AL, as a function of the 1167 

normalized  dynamic pressure Psw.  Figure 15 divides the data up into subsets for  PC  20 1168 

kV and PC > 20 kV which roughly corresponds to northward and southward IMF, but more 1169 

importantly is above and below the change of gradient in Figure 2b. For am there is an 1170 

addition dependence of am, compared to PC  that varies as Psw
e  where e = 1 for PC  20 kV 1171 

and e = 0.61 for PC > 20 kV (as shown by the dashed mauve lines). This is consistent with 1172 

Figure 11 of Lockwood and MacWilliams (2021).  On the other hand, for AL there is no 1173 

additional dependence beyond that of PC (e  0) for PC  20 kV and e = 0.61 for PC > 20.  1174 

Hence it is clear that am has a dependence on Psw that is not present in PC and this is 1175 

reflected in the coupling function we have derived for am.  The reasons why the AL coupling 1176 

function does not show the same Psw  effect are twofold. Firstly comparisons of Figures 15b 1177 

and 15d, show that, for larger PC, the effect of Psw on AL is weaker than that on am,  1178 

However, more importantly, the coupling function for AL, with its larger d value, is weighted 1179 

toward the behavior at PC  20 kV because of the weighting effect of large d  and Figure 15c 1180 

shows that AL has almost no dependence on Psw at low PC. This strongly points to a major 1181 



limitation of the standard coupling function formalism, namely they do not account for the 1182 

interdependence of one factor on another.  1183 

Comparing Figures 15b and 15d we can see that the effect of Psw on am during southward 1184 

IMF, and consequently enhanced PC, is greater than for AL.  This implies range geomagnetic 1185 

indices from mid-latitude stations, such as am, are responding to a factor that does not greatly 1186 

influence AL in addition to the substorm current wedge (which dominates AL).  Matzka et al. 1187 

(2021) note that the k-index (range) variation at mid-latitude stations (and hence increases in 1188 

am and kp) arises from large-scale ionosphere-magnetosphere current systems and they are 1189 

sensitive to a much broader longitudinal sector of the auroral oval than is detected by auroral 1190 

stations. Hence mid-latitude positive bays reflect larger scale currents as well as the more 1191 

localized substorm current wedge (McPherron and Chu, 2017). Note that Thomsen (2004) 1192 

attributes the proportionality of mid-latitude range indices and transpolar voltage to the effect 1193 

of polar cap expansion and that is indeed a factor; however our results indicate that a parallel 1194 

factor is that they are responding to the ionosphere-magnetosphere current circuits facilitated 1195 

by the region 1 and region 2 field aligned currents and not just the substorm current wedge.  It 1196 

seems likely that this is the cause of the greater dependence of am of Psw than AL. 1197 

7-iii. Universality of coupling functions  1198 

We have found that that although the coupling functions for PC and am could appear to have 1199 

the same exponents if we use small datasets, when we use a very large one, as in this paper, 1200 

the differences are shown to be highly significant and real.  This implies that there is no such 1201 

thing as a universal coupling function that can optimally predict both voltage disturbances in 1202 

the magnetosphere and all geomagnetic disturbances and the coupling function needs to be 1203 

tailored to the terrestrial disturbance indicator of interest in each case.  This opens up new 1204 

areas of systems analysis of the magnetosphere, namely combining the different responses of 1205 

the various magnetospheric state indicators to different solar wind driving coupling functions 1206 

(Borovsky and Osmane, 2019). It also has implications for how we might allow for 1207 

“preconditioning” of the magnetosphere which is discussed in the next section. 1208 



7-iv. Preconditioning  1209 

One major limitation of all the coupling functions discussed in this paper is that they assume 1210 

that the terrestrial space weather index predicted is determined by the prevailing near-Earth 1211 

interplanetary conditions only (allowing for the required propagation lag).  This means that 1212 

any preconditioning of the magnetosphere-ionosphere system is neglected and will contribute 1213 

to the noise in the fits.  To start to make allowance for preconditioning we have to make a 1214 

distinction between two types: (i) preconditioning caused by the Earth’s dipole tilt; and (ii) 1215 

preconditioning that depends on the prior history of the solar wind.  1216 

7-iv-i. Preconditioning by dipole tilt  1217 

Preconditioning by the dipole tilt can change the response of the magnetosphere, giving a 1218 

larger or smaller response to a given solar wind forcing. This is an external factor depending 1219 

on Earth’s orbital characteristics which means it should be highly predictable.  Studies show 1220 

that genuinely global geomagnetic activity indices show a pronounced “equinoctial” (a.k.a. 1221 

“Mcintosh”) pattern with time-of-year and Universal Time, associated with the tilt of Earth’s 1222 

magnetic dipole axis (see reviews by Lockwood et al., 2020a; 2021).  Attempts to expand the 1223 

coupling function with a factor to allow for the effect of the dipole tilt  were made by 1224 

Svalgaard (1977), Murayama et al. (1980),  and Luo et al. (2013) and dipole tilt effects have 1225 

been included in the filters used in the linear prediction filter technique (McPherron et al., 1226 

2013).   1227 

However, the detail of how this should best be done does depends on the mechanism that is 1228 

responsible and there are a large number of postulated mechanisms aimed at explaining the 1229 

Mcintosh (a.k.a. equinoctial) pattern.  One invokes the dipole tilt influence on ionospheric 1230 

conductivities within the nightside auroral oval and postulates that the electrojet currents are 1231 

weaker when conductivities caused by solar EUV radiation are low in midnight-sector auroral 1232 

ovals of both hemispheres (Lyatsky et al., 2001; Newell et al., 2002). Other proposals invoke 1233 

tilt influences on the dayside magnetopause reconnection voltage (Crooker & Siscoe, 1986; 1234 

Russell et al., 2003) or the effect of tilt on the proximity of the ring current and auroral 1235 

electrojet (Alexeev et al., 1996) or tilt effects on the stability of the cross-tail current sheet 1236 

through its curvature (Kivelson & Hughes, 1990; Danilov et al., 2013; Kubyshkina et al., 1237 

2015). All of these effects have the potential to reproduce the McIntosh dipole tilt pattern, but 1238 



which if any, are effective remains a matter of debate.  Recently, strong observational 1239 

(Lockwood et al., 2020b) and modelling (Lockwood et al., 2020c) evidence argues that the 1240 

amplitude of the McIntosh  pattern increases with solar wind dynamic pressure, suggesting 1241 

that the dipole tilt influences  the degree of squeezing of the near-Earth tail by solar wind 1242 

dynamic pressure.  Given that dynamic pressure effects are included in most coupling 1243 

functions via the SW, and VSW terms, and that the effect is reasonably simultaneous with other 1244 

solar wind effects, we might expect this effect to influence best-fit coupling exponents by 1245 

raising b and c for geomagnetic activity but not for transpolar voltage. Thus, this mechanism 1246 

has some relevance to understanding why the coupling function for transpolar voltage may be 1247 

so different from that for the am index, as discussed in the previous section. 1248 

7-iv-ii. Preconditioning related to prior solar wind history  1249 

The storage-release system manifest in substorms shows that the response of the 1250 

magnetosphere is inherently non-linear: the effect of a given burst of southward-pointing 1251 

IMF, for example, is different at the start of the growth phase (when the open magnetospheric 1252 

flux is flow) compared to at the end of the growth phase (when it is high). Hence the response 1253 

that depends on the state of the magnetosphere is in at the time, and that is set by the prior 1254 

history of solar wind magnetosphere voltage coupling.  One technique to allow for the non-1255 

linearity of response caused by this type of preconditioning is local linear prediction 1256 

[Vassiliadis et al., 1995; Vassiliadis, 2006].  In this technique, moving average filters are 1257 

continually calculated as the system evolves and these are used to compute the output of the 1258 

system for this filter. The filter used is derived or selected according to the state of the system.  1259 

Another way of dealing with this non-linearity is by using neural networks (e.g., Gleisner and 1260 

Lundstedt, 1997).  Our finding that the coupling function is significantly different for 1261 

transpolar voltage and geomagnetic activity is significant in this respect. It means that if, for 1262 

example, we wanted at allow for preconditioning due to the open flux in the magnetosphere,  1263 

we would want to look at the prior history of an optimum coupling function for dayside 1264 

reconnection voltage but would need to use a different coupling function to best predict, for 1265 

example, the geomagnetic disturbance. 1266 

A number of other physical mechanisms have been proposed as ways of further  1267 

preconditioning the magnetosphere.  They include: mass loading of the near-Earth tail with 1268 



ionospheric O+ ions from the cleft ion fountain (Yu and Ridley, 2013); the formation of thin 1269 

tail current sheets (Pulkkinen and Wiltberger, 2000); the development of a cold dense plasma 1270 

sheet (Lavraud et al., 2006).   Another proposed preconditioning effect is the effect on the 1271 

reconnection rate in the cross-tail current sheet of enhanced ring current, as has been proposed 1272 

by Milan et al. (2008; 2009) and Milan (2009).   The magnetosphere sometimes responds to 1273 

continued solar wind forcing (over a period of tens of minutes) by generating a substorm, or a 1274 

string of substorms and sometimes with a steady convection event (e.g., Kissinger et al, 1275 

2012).  Studies (e.g., Gleisner and Lundstedt, 1999) have demonstrated that the response of 1276 

the auroral electrojet indices depends on the current Dst value. O'Brien et al. (2002) studied 1277 

two intervals in which the solar wind coupling function was similar, one of which resulted in 1278 

an isolated substorm and the other in a steady convection event. They noted the main 1279 

difference was the pre-existing state of the magnetosphere in that prior to the substorm, the 1280 

magnetosphere was quiet but whereas before the steady convection event the magnetosphere 1281 

was already undergoing enhanced activity. McPherron et al. (2005) estimate that about 80% 1282 

of steady convection events are associated with a substorm onset but thereafter the 1283 

magnetospheric behavior diverges. The work of Juusola et al. (2013) strongly suggests that 1284 

enhanced ring current is the reason that a steady convection event forms as opposed to a 1285 

substorm, quite possibly through the mechanism proposed by Milan and co-workers.  1286 

Hence preconditioning of the magnetosphere undoubtedly occurs through at least one 1287 

mechanism, and this will be an inherent noise factor in the derivation of a simple correlative 1288 

coupling function and hence a major limitation on the performance of that coupling function.  1289 

The problem is that not only are the effects of the various mechanisms on the response 1290 

different, the time constants of the prior activity that is influencing the response will be 1291 

different in each case.   This means that the time profiling of any preconditioning 1292 

quantification factor in a coupling function using the prior history of the interplanetary 1293 

parameters will depend on the mechanism.   1294 

To underline this point about the importance of the mechanism that is causing pre-1295 

conditioning, note that some mechanisms, such as the cold dense plasma sheet, would 1296 

emphasize prior periods of quiet, northward IMF conditions as giving higher activity for a 1297 

given input (Borovsky & Denton, 2006; 2010; Lavraud et al.,  2006), whereas others, such as 1298 



the ring current enhancement mechanism would emphasize prior periods of enhanced solar 1299 

wind magnetosphere coupling.  The time constants for forcing in the build-up to ring current 1300 

enhancements (Lockwood et al., 2016) are different to those for the development of a cold, 1301 

dense plasma sheet (Fuselier et al., 2015).  Yet another proposed preconditioning mechanism 1302 

involves the effect of solar wind dynamic pressure and thus would introduce yet another 1303 

different precursor time profile (Xie et al., (2008).  Some of these preconditioning effects have 1304 

been predicted by numerical modelling (e.g.. Lyon et al., 1998; Wiltberger et al., 2000) and it 1305 

is quite possible that we may need numerical simulations to isolate the preconditioning effects 1306 

and determine how best to allow for them. 1307 

However, if we are to make these improvements to coupling functions to allow for 1308 

preconditioning, we will need to  remember that they will, inevitably, introduce more free fit 1309 

parameters, making tests to guard against overfitting ever more important.  1310 
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Basis 
coupling function 

B
a 
SW

b 
VSW

c 
F(GSM)

d
 

A b c d F( )  Reference 

IMF (empirical fit to inter-

diurnal geomagnetic data) 
B 1 0 0 0 - 1 yr Svalgaard & Cliver  (2005) 

solar wind speed VSW 0 0 1 0 - 1 yr Feynmann & Crooker (1978) 

(benchmark test) VSW
2 0 0 2 0 - 

1day-

1yr 
Finch & Lockwood  (2007) 

empirical fit to inter-diurnal 
geomagnetic data 

BVSW
−0.1

 1 0 −0.1 0 - 1 yr Lockwood et al. (2014) 

empirical fit to range 

geomagnetic data 
BVSW

1.7
 1 0 1.7 0 - 1 yr Lockwood et al. (2014) 

southward IMF in GSM 

(benchmark test) 
[BS]GSM 1 0 0 1 h.w.r. 

1day-

1yr 
Finch & Lockwood  (2007) 

h.w.r. interplanetary electric 
field applied to Dst 

ESW= [BS]GSMVSW 1 0 0 1 h.w.r. 2.5 min Burton et al. (1975) 

h.w.r. interplanetary electric 

field applied to PC 
ESW= [BS]GSMVSW 1 0 1 1 h.w.r. 

~ 10 

min 
Cowley (1984) 

dawn-dusk interplanetary 

electric field applied to PC 
BVSWsin4(GSM/2) 1 0 1 4 sind( /2) 1 hr Wygant et al. (1983) 

(benchmark test) [BS]GSMVSW
2 1 0 2 1 h.w.r. 

1day-
1yr 

Finch & Lockwood  (2007) 

solar wind Poynting flux 

(basis of ) 
B⊥

2VSW 2 0 1 0 - - - 

solar wind kinetic energy 

flux (basis of P) 
SWVSW

3 0 1 3 0 - - - 

solar wind Poynting flux 

with GSM control 
B⊥

2VSWsin4(GSM/2) 2 0 1 4 sind( /2) - - 

epsilon factor  = B2VSWsin4(GSM/2) 2 0 1 4 sind( /2) - Perreault & Akasofu (1978) 

solar wind dynamic 

pressure (benchmark test) 
pSW =  SWVSW

2 0 1 2 0 - 
1day-

1yr 
Finch & Lockwood (2007) 

empirical fit to am B⊥SW
1/2VSW

2sin4(GSM/2) 1 0.5 2 4 sind( /2) 3 hr Scurry and Russell (1991) 

empirical fit to D B⊥VSW
4/3

 sin9/2(GSM/2) 1 0 1.33 4.5 sind( /2) 5 min Milan et al (2012) 

empirical fit to Dst BVSW
2NSW

1/2 sin6(GSM/2) 1 0.5 2 6 sind( /2) 1hr Temerin & Lee (2006) 

near-universal coupling 

function 1: based on D 
B2/3VSW

4/3sin8/3(GSM/2) 0.67 0 1.33 2.67 sind( /2) 1 hr Newell et al. (2007) 

near-universal coupling 
function 2: fit to Dst 

B2/3SW
1/2Vs

7/3sin8/3(GSM/2) 0.67 0.5 2.33 2.67 sind( /2) 1hr Newell et al. (2007) 

theory of PC BsSW
-1/6VSW

2/3 1 −0.17 0.67 4 h.w.r. - Siscoe et al (2002) 

empirical fit to Dst B⊥SW
1/3VSW

5/3sin4(GSM/2) 1 0.33 1.67 4 sind( /2) 1 hr Murayama (1986) 

empirical fit to Dst B⊥SW
1/2Vs

7/3sin6(GSM/2) 1 0.5 2.33 6 sind( /2) 1 hr Balikhin et al. (2010) 

theoretical estimate of D B⊥VSW sin2(GSM/2) 1 0 1 2 sind( /2) - Kan and Lee (1979) 

power input to the 

magnetosphere 
P= B⊥

2VSW
(7/3-2)SW

(2/3-) sin2(GSM/2) 2 2/3− 7/3−2 2 sind( /2) All Vasyliunas et al (1982) 

P fitted to AL P for = 0.50 1 0.27 1.33 4 sind( /2) 1 min Bargatze et al (1986) 

P fitted to AL data, allow 

for data gaps 
P for = 0.42 0.84 0.25 1.49 4 sind( /2) 1 hr Lockwood et al (2019a) 

P fitted to AL data allow 

for data gaps 
P for = 0.44 0.88 0.23 1.45 4 sind( /2) 1 yr Lockwood et al (2019a) 

P fitted to range 

geomagnetic data 
P for = 0.36 0.72 0.31 1.61 4 sind( /2) 1 day Lockwood (2019) 

Theory and fits to various 

geomagnetic data 
 B0.93NSW

0.04VSW
1.07sin2(GSM/2) 0.93 0.04 1.07 2 sind( /2) 1 hr Borovsky (2013) 

Theory and fits to various 
geomagnetic data 

 B1.26NSW
-0.13VSW

0.74sin2(GSM/2) 1.26 −0.13 0.74 2 sind( /2) 1 hr Borovsky (2013) 

empirical fit to AL B⊥
0.7VSW

1.92NSW
0.1sin3.67(GSM/2) 0.9 0.05 2.14 4.85 sind( /2) 1 min Luo et al. (2013) 

numerical simulation B⊥
0.86VSW

1.47NSW
0.24{sin2.70(GSM/2)+0.25} 0.86 0.24 1.47 2.70 sind( /2) - Wang et al. (2014) 

empirical fit to AL B⊥
0.7VSW

1.92NSW
0.1sin3.67(GSM/2) 

0.70 

0.01 

0.096 

0.009 

1.92 

0.04 

3.67 

0.04 
sind( /2) 1 hr McPherron et al. (2015) 

empirical fit to am B⊥
0.81SW

0.36VSW
2.58sin3(GSM/2) 

0.81 

0.02 

0.36 

0.02 

2.58 

0.05 

3.00 

0.22 
sind( /2) 1 hr this paper 

empirical fit to  PC B⊥
0.64SW

0.02VSW
0.55sin2.5(GSM/2) 

0.64 

0.05 

0.02 

0.01 

0.55 

0.03 

2.50 

0.07 
sind( /2) 1 hr this paper 



Table 1. A list of proposed coupling functions that share the general functional form B
a SW

b 
1690 

VSW
c 
F( )

d
 used here.  The first column gives the basis of the formulation in each case, which 1691 

is given in the second column. Columns 3-6 give the exponents a, b, c and d and column 7 the 1692 

F( ) function used (h.w.r. stands for “half-wave rectified”).  Column 8 gives the time 1693 

resolution of the data on which the function was mainly developed and used. The last column 1694 
is a reference to a paper using or proposing the formulation. Note that in some cases the 1695 
formulation is not proposed as a viable coupling function and has only used to make 1696 
comparisons with proposed coupling functions, some are physical properties of the 1697 
interplanetary medium and given here only to record the exponents a, b and c that they yield.  1698 

T 
lag, t 

(min) 
Cf 

optimum values 

d rp rp
2 a b c 

PC 

18.5 

1.3 

best 

fit 
2.500.07 0.865 0.748 0.6420.019 0.0180.008 0.5500.047 

18 
SW  for 

constant  
4 0.823 0.677 1 −0.167 0.667 

18 
BB  for  

MA< 6 
2 0.816 0.667 0.51 0.24 1.49 

19 
BB  for  

MA > 6 
2 0.770 0.592 1.38 −0.19 0.62 

am 

31.0 

4.0** 

best 

fit 
3.000.22 0.858* 0.736* 0.8020.022 0.3600.012 2.5600.072 

47* 
P for  = 

0.34 
2 0.742* 0.550* 0.680 0.327 1.652 

-AL 

45.5 

7.0•• 

best 

fit 
5.230.48 0.792• 0.627• 0.6300.014 0.0400.013 1.7120.043 

45• 
P for  = 

0.26 
4 0.640• 0.409• 0.520 0.407 1.813 

* for all 3-hourly data  ** for interpolated 1 hourly data   • for all 1-hourly data   •• for simultaneous 1-hourly data    

Table 2. The best fit exponents a, b, c and d and the resulting peak correlation coefficient rp 1699 

for the terrestrial parameters PC, am and AL from fits using the data from the range of dates 1700 

given. Uncertainties in a, b and c allow for both the fit uncertainties at a given d and the 1701 

uncertainty caused by the uncertainty in d. The correlation coefficients are for all available 1702 

data for 1995-2020: for PC this means the hourly 65,133 samples with the mean number of 1703 

radar echoes exceeding 255; for am this means the 69,028 3-hourly means with simultaneous 1704 

interplanetary data yielding a valid hourly coupling function; and for AL this means the 1705 

241,848 hourly means with simultaneous interplanetary data yielding a valid hourly coupling 1706 

function. The best-fit exponents are derived always from the 65,133 samples (using the 1707 

optimum lag), using interpolated values in the case of am and simultaneous means for AL.    1708 



 1709 

Figure 1.  Comparison of combine-then-average, average-then-combine and our compromise 1710 

hybrid procedure for averaging 1-minute data into 1-hour data ( = 1hr). In all panels, the 1711 

horizontal axis gives the result of the combine-then-average approach which is what we 1712 

ideally would wish to use to mimic solar wind forcing of the magnetosphere.  The vertical 1713 



axes in (a)-(e) give the result of an average-then-combine procedure. In each case the fraction 1714 

of samples n/n is color-coded, where n is the number of samples small bins. The raw data 1715 

used are 9,930,183 valid 1-minute integrations of estimated power input to the 1716 

magnetosphere, P , and 11,646,678 valid 1-minute values of the IMF clock angle  and 1717 

tangential component B⊥ observed between 1995-2020 (inclusive).  (a) is for the coupling 1718 

function P for  = 1/3 and d = 4 (the normalizing factor Po is the arithmetic mean of P for 1719 

all datapoints) in bins of P/Po of size 0.08. The x axis shows the means of one-minute values 1720 

of  P , < P >1hr  and the y axis the values [P *]1hr computed from 1-hour averages (including 1721 

computation of the clock angle [ ]1hr  and the transverse magnetic field  [B⊥]1hr from hourly 1722 

means of the IMF components <BZ >1hr  and <BY>1hr  ). (b) is the corresponding plot for G, 1723 

which is P without the IMF orientation factor; (c) is for the IMF clock angle (in the GSM 1724 

frame of reference)   in bins that are 2  2; (d) is for the tangential IMF component B⊥ = 1725 

(By
2+Bx

2)1/2 in bins of 0.5nT  0.5nT and (e) is for sind( / 2) in bins 0.01  0.01.  Part (f) 1726 

compares <B⊥>
a
 with <B⊥

a
> (where a  = 2 for the P coupling function) and part (g) 1727 

compares <sin ( / 2)>d  with <sind( / 2)>.  In part (h) the y-axis is the result of our hybrid 1728 

averaging procedure for P, [P]1hr, defined by Equation (15).  1729 



 1730 

 1731 

Figure 2.  Data density plots of normalized geomagnetic indices as a function of normalized 1732 

transpolar voltage, PC/<PC> (a) the am index and (b) the AL index. The fraction of samples 1733 

(on a logarithmic scale) in bins that are 0.03 wide in the x dimension and 0.06 in the y 1734 

dimension. The black points are means in bins of PC/<PC> that are  0.1 wide and the black 1735 

error bars are between the 1- points of the distribution of normalized geomagnetic index in 1736 

the bin. The mauve line is a 3rd-order polynomial fit to the means.  1737 



 1738 

Figure 3. (Top) Lag correlograms (linear correlation coefficient, r, as a function lag, t) of 1739 
predicted variations using 61-point boxcar (running) means of the coupling function Cf  from 1740 

1-minute interplanetary parameters with hourly observations of the transpolar voltage PC (in 1741 

mauve), the interpolated am geomagnetic index (in blue) and hourly means of the AL index 1742 
(in green).  Note that unless otherwise stated, Cf in this and later figures refers to hourly 1743 

means [Cf ]1hr , derived from our hybrid formulation, Equation (15).  The PC, am and AL 1744 

data are all for the full 25-year dataset, but only for hours when the number of SuperDARN 1745 

radar echoes ne exceeds the threshold nmin. This yields N = 65,133 data points.  The hourly am 1746 

data are derived from the observed 3-hourly am values using PCHIP interpolation to the mid-1747 

points of the hourly integration periods for the radar data. The lag t = 0 means that the radar 1748 
data and the Omni interplanetary data are averaged over the same one-hour interval and 1749 

positive t corresponds to the interplanetary data leading the terrestrial data.  The exponent d 1750 

is assumed to be 3 but tests of values between 1 and 6 made negligible differences to the 1751 

optimum values of t , tp, derived.    The dark gray, lighter gray, and lightest gray areas 1752 

define, respectively, the 1-, 2- and 3-  uncertainty bands in the lag tp and are defined 1753 

using the Meng-Z test (see text for details). The vertical dashed lines give the lag tp that 1754 

yields the peak r, rp, which is 0.862 at tp = 18.5  1.3 min for PC, 0.818 at tp = 31.5  4.0 1755 

min for am, and 45.37.0 min for AL, the quoted uncertainties being at the 2-  level.  1756 

(Bottom) The best-fit exponents a, b and c as a function of t (lines marked by squares, 1757 

triangles and circles, respectively), derived using the Nelder-Mead search algorithm to 1758 
maximise r.  1759 



 1760 

Figure 4. Distributions of 1-minute interplanetary parameters relating to IMF orientation in 1761 

the GSM frame of reference: (a) the IMF BZ component; (b) the IMF BY component; (c). the 1762 

ratio |BY|/BZ; (d). the clock angle  = tan-1(|BY|/BZ); (e). sin( / 2); (f). sin2( / 2); (g). 1763 

sin4( / 2); and (h) sin6( / 2) in mauve, U( )cos( ) in blue (where U( ) = 0 for  <90 and 1764 

U( ) = −1 for  90) and BS/4.5 in green (where BS is the half-wave rectified southward 1765 

component of the IMF, BS = −BZ for BZ < 0 and BS = 0 for BZ  0: the factor 4.5 is used 1766 

because it makes the mean value on the axis used the same as for sin6( / 2) and U( )cos( ) 1767 

for the scale used). The data are 116,466,78 1-minute samples from the Omni database for 1768 

1995-2020 (inclusive), and the vertical axis is the fraction of samples in each bin, n/n, where 1769 

n is the number of samples in bins that are 1% in width of the range shown on the horizontal 1770 

axis in each case. Vertical dashed lines give the mean value for the whole interval.  1771 



 1772 

Figure 5. Distributions of the IMF orientation factor F( ) = sind( / 2) for d = 4, where  is 1773 

the IMF clock angle in GSM coordinates, for data averaging timescales  of: (a) 1 minute; (b) 1774 

15 minutes; (c) 1 hour (used in this paper); (d) 2 hours; (e) 6 hours; (f) 1 day; (g) a solar 1775 
rotation period of 27 days and (h). one year. The numbers of samples, n, as a fraction of the 1776 

total number n, in bins 0.01 wide are shown in each case and the dataset used is the same as 1777 

in Figure 4. The vertical mauve dashed lines are for the overall average of all samples.  The 1778 

vertical green line is at  = 90 for which the IMF lies the GSM equatorial plane. Note that 1779 

the lowest bin in sin4( / 2), which is 0-0.01, corresponds to a range in  of 0-36.9 whereas 1780 

the highest bin (0.99-1) corresponds to 171.9-180.  1781 



 1782 

Figure 6. Distributions of the IMF orientation factor F( ) = sind( / 2) for d = 2, in the same 1783 

format as Figure 5 and for the same dataset. Here the lowest bin in sin2( / 2), which is 0-0.01, 1784 

corresponds to a range in  of 0-11.5, whereas the highest bin (0.99-1) corresponds to 168.5-1785 

180.  1786 



 1787 

Figure 7. Analysis of the effect of the exponent of the d of the F( ) = sind( / 2) IMF 1788 

orientation factor for all N = 65133 samples which meet the criterion of the hourly mean 1789 

number of radar echoes ne > nmin = 255. For each value of d, the value of the other three 1790 

exponents a, b, and c are derived by the Nelder-Mead simplex search method to maximise the 1791 

correlation coefficient r between the hourly lagged coupling function Cf . The results for 1792 

observed PC are in mauve, interpolated hourly values of am are in blue and hourly means of 1793 

AL in green.  The vertical dashed lines mark the peak correlation in each case, the vertical 1794 

solid lines the optimum d (that gives linearity and determined from Figures 9, 10 and 11) and 1795 

the gray areas the 1-, 2- and 3- uncertainty bands of the optimum d. (a). The correlation 1796 

coefficients, r, as a function of d. (b). The best fit values of the exponents a (identified by 1797 

squares), b (triangles) and c (circles) as a function of d. 1798 



 1799 

Figure 8. Data density plots of normalised coupling function Cf / <Cf> as a function of 1800 

normalised transpolar voltage in the same format as Figure 2 (except mean values and the 1- 1801 

ranges are shown in red and the colour scale is linear in fraction of samples, rather than 1802 

logarithmic). The black dashed line in each panel is the best linear regression to the individual 1803 

data pairs and the green dashed line is the best second-order polynomial fit. The panels are for 1804 

(a)  d = 1.1; (b) d = 2.2; ; (c) d = 6.5 and (d)  d = 2.5. In each panel, the best-fit exponents a, b 1805 

and c are given for the d used (as in Figure 7), as is the correlation coefficient, r and the root 1806 

mean square (rms) deviation of the normalised Cf and PC value pairs, rms.  1807 



1808 
Figure 9. Tests of the IMF orientation term, F( ) = sind( / 2) for the transpolar voltage PC.  1809 

Parts (a), (b) and (c) show plots of the means of  R  =  (PC−i)/G  as a function of mean 1810 

F( ), both averaged for 25 bins of F( ) that are 0.04 wide.  G is given by Equation (14), 1811 

where 𝐶𝑓 is the optimum coupling function for the optimum exponents a, b and c for the d  in 1812 

question, as shown in Figure 7.  (a) is for d = 1.5, (b) for the derived best d of 2.50 and (c) is 1813 
for d = 5. The green and red lines are linear and quadratic fits, respectively, to the mean 1814 

values. The values of the linear regression coefficients s and i (see equations 16 and 17) are 1815 

given in (b), where the s values are for B⊥ in nT, NSW in 106 m-3, VSW in km s-1 and mSW in 1816 

kg.   (d). The mauve line is coefficient of the quadratic term of the second-order polynomial 1817 
fit to the means, a, as a function of d: the optimum d gives a proportional relationship 1818 

between <R > and <F( )> , i.e., when a = 0, marked by the vertical dashed line.  Under the 1819 

mauve line in three shades of gray area are the 1-, 2- and 3- uncertainty band in a, the 1820 

limits to which define the corresponding uncertainty bands in the optimum d, giving a 2- 1821 

uncertainty in the optimum d of 0.07. Note that in this case for PC the differences between 1822 
the uncertainty bands are often so small that they cannot be discerned; they are more clearly 1823 
seen in Figure 10 for am.  Part (b) confirms this proportional relation at this optimum d = 2.50 1824 
for which the exponents are given in Table 2.  1825 



 1826 

Figure 10.  The same as Figure 9 for the am index. The blue line in part (d) is the best-fit aam 1827 

under which the three gray areas define the 1-, 2- and 3- uncertainty bands in aam , the 1828 

limits to which define the vertical uncertainty bands in the optimum d shown. The optimum d 1829 

giving the proportional relationship is d = 3.000.22 for which the exponents a, b and c are 1830 

given in Table 2.   1831 



 1832 

Figure 11. The same as Figures 9 and 10 for the am index. The green line in part (d) is the 1833 

best-fit aAL under which the three gray areas define the 1-, 2- and 3- uncertainty bands in 1834 

aAL , the limits to which define the vertical uncertainty bands in the optimum d shown. The 1835 

optimum d giving the proportional relationship is d = 5.230.38 for which the exponents a, b 1836 

and c are given in Table 2.   1837 



 1838 

Figure 12. Datapoint density plots of predicted against observed values of (a) the transpolar 1839 

voltage PC, (b) the am geomagnetic index, and (c) the AL index – each for their optimum d 1840 

value defined in section 3.  These data are for the fit dataset which is for 2012-2020.  . In both 1841 

cases, the optimum fit of Cf has been scaled to the data by ordinary least-squares linear 1842 

regression.  The numbers samples n (as a faction of the total number n) in bins, which are 1843 

1kV  1kV wide in (a), 1nT  1nT wide in (b), and 5nT  5nT wide in (c), are colour-coded 1844 

on the logarithmic scales given. The diagonal mauve lines mark perfect agreement of 1845 

observed and predicted values. The correlation coefficient r and the root mean square 1846 

deviation  of observed and predicted values are given in each panel, along with the total 1847 

number of valid data-point pairs, N .  The best fit exponents for PC are a =  0.655,  b =  1848 

0.052, and c = 0.668 and the regression coefficients are s = 8.408 and i = 13.45 kV; for am 1849 

they are a = 0.847 ,  b =  0.305, and c =  2.420,  with sam =  249.52  and iam =  6.75nT,  for AL 1850 

they are a =  0.712,  b = 0.052, and c =  1.709 with sAL = 0.0759 and iAL = 15.67 nT. The 1851 

regression slopes are for units of kV for PC and nT for am and AL and for the coupling 1852 

function Cf computed using B⊥ in nT, NSW in 106m-3, VSW in km s-1 , and mSW in kg.   1853 



 1854 

Figure 13. Same as Figure 12 but for the independent test dataset from 1995-2011, computed 1855 
using the best-fit exponents, regression coefficients and optimum lags derived as used for the 1856 

fit dataset (2012-2020). The correlation coefficients r and the root mean square deviations  1857 
are very similar to the corresponding values for the fit dataset shown in Figure 12. For these 1858 

plots the data had no role at all in deriving the fit exponents and coefficients.  1859 



 1860 

Figure 14. Distributions of fitted values of exponents a (left panel), b (middle panel) and c 1861 

(right panel) for fits to the transpolar voltage, PC, drawn from the entire 25-year dataset of 1862 

65133 values with ne > nmin = 255.  The fraction of samples n/n in bins of width (1/30) of the 1863 

maximum range of each exponent are plotted.  In each case, three histograms are shown: (1) 1864 

the light grey histogram bounded by the mauve line is for (1/25) of the whole dataset (𝑁 = 1865 

2606 samples, on average corresponding to 1 yr of data); (2) the darker grey bounded by the 1866 

blue line is for (1/10) of the whole dataset (𝑁 = 6513 samples, on average corresponding to 1867 
2.5 yr of data); the darkest grey bounded by the black line is for (1/2.5) of the whole dataset 1868 

(𝑁 =  26503 samples, on average corresponding to 10 yr of data). The standard deviation of 1869 

the distribution is given in each case with the generic name xi where x is the exponent in 1870 

question and i is the number of the dataset number.  The distributions are generated by taking 1871 

1000 random selections of 𝑁 samples from the total of 65130 samples with ne > nmin = 255 1872 

available.  The vertical dashed lines give the values for the full set of 65130 samples.     1873 



 1874 

Figure 15.  Data density plots for (top) the normalized am index per unit transpolar voltage, 1875 

(am/<am>) / (PC/<PC>)  and (bottom) the normalized AL index per unit transpolar voltage, 1876 

(AL/<AL>) / (PC/<PC>) both as a function of normalized solar wind dynamic pressure 1877 

(PSW/<PSW>)  and in the same format as Figure 2. The data are divided into two subsets by 1878 

transpolar voltage with PC  20 kV in the the left-hand panels and PC > 20 kV in the right-1879 

hand panels.  The mauve lines are the variations of  PSW
e/<PSW

e>)  for best-fit exponents e of 1880 

1, 0.61, 0.01 and 0.25 in parts (a)-(d). 1881 


