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Abstract

Deformation characteristics of sedimentary rocks significantly changed with the water content during drying. In tunnel construc-

tion, extremely small displacements such as geological disposal, are allowed. Therefore, the proper evaluation of such drying

deformation phenomena is critical. In such scenarios, it is also essential to accurately assess water content changes in the rock

masses. Furthermore, the excavation disturbed zone (EDZ) spreads around the tunnel owing to the excavation process. EDZ

has a higher hydraulic conductivity than an intact rock mass. Therefore, it is essential to predict water content changes in EDZ

within the scope of the drying deformation phenomena. In this study, we derived the exact solution to the Richards’ equation

at the Neumann boundary, which can be used to describe the drying phenomena in sedimentary rocks. Using Japanese tuff,

we conducted a permeability test and a mercury intrusion porosimetry test to obtain the water diffusion coefficient and verify

whether their drying behavior can be described using the exact solution. Using the verified exact solution, we proposed a new

stochastic differential equation that could be used to explain the local decrease in permeability and the increase in variations

in EDZ, and applied the stochastic differential equation to 2D tunnel problem.
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Abstract :22

Deformation characteristics of sedimentary rocks significantly changed with the water content23

during drying. In tunnel construction, extremely small displacements such as geological disposal,24
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are allowed. Therefore, the proper evaluation of such drying deformation phenomena is critical. In25

such scenarios, it is also essential to accurately assess water content changes in the rock masses.26

Furthermore, the excavation disturbed zone (EDZ) spreads around the tunnel owing to the exca-27

vation process. EDZ has a higher hydraulic conductivity than an intact rock mass. Therefore, it28

is essential to predict water content changes in EDZ within the scope of the drying deformation29

phenomena. In this study, we derived the exact solution to the Richards’ equation at the Neu-30

mann boundary, which can be used to describe the drying phenomena in sedimentary rocks. Using31

japanese tuff, we conducted a permeability test and a mercury intrusion porosimetry test to obtain32

the water diffusion coefficient and verify whether their drying behavior can be described using the33

exact solution. Using the verified exact solution, we proposed a new stochastic differential equation34

that could be used to explain the local decrease in permeability and the increase in variations in35

EDZ, and applied the stochastic differential equation to 2D tunnel problem.36

Keywords:37

Richards’ equation, excavation disturbed zone, moisture content, drying deformation38

39

1. Introduction40

Determining the deformation characteristics of sedimentary rocks during tunnel construction,41

considering small allowable displacements such as geological disposal, is essential. Specifically,42

the deformation characteristics of sedimentary rocks change significantly depending on their water43

content. Examining the drying deformation phenomena associated with the inflow of air during44

tunnel excavation is imperative (Osada, 2014). In a recent study, using tuff with deformation45

anisotropy, the authors established that the principal strain orientation rotated with changes in46

saturation, and the relatively stiff and soft directions reversed completely (Togashi et al., 2021a;47

Togashi et al., 2021b).Therefore, assessing the distribution of saturation to accurately predict the48
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deformation of rock masses in tunnels is critical. Changes in the water content in a porous medium,49

including sedimentary rocks, follow the Richards’ equation (Richards, 1931). Various analytical50

studies have been conducted based on the Richards’ equation (Farthing and Ogden, 2017) to obtain51

exact solutions (Fleming et al., 1984; Ross and Parlange, 1994). Recently, various researchers52

have conducted studies in which they propose exact solutions by incorporating various nonlinear53

functions, such as the water diffusion coefficient, D (Abdoul et al., 2011; Hooshyar and Wang, 2016;54

Broadbridge et al., 2017). In some cases, the Boltzmann transformation was performed to convert55

the Richards’ equation into a simple ordinary differential equation, after which it was solved (Zhou56

et al., 2013).57

Although boundary conditions, such as Dirichlet boundary conditions, are often used to obtain58

the exact solution, Neumann boundary conditions are rarely utilized (e.g., Barry et al., 1993). With59

regards to drying deformation phenomena, sudden changes in the water content of rock masses60

that are in contact with the atmosphere do not occur. Therefore, it is vital to define a Neumann61

boundary. During tunnel excavation, the surrounding rock mass becomes loose, and the excavation62

disturbed zone (EDZ) expands. Therefore, it is crucial to evaluate the EDZ while examining the63

drying deformation phenomena. Previous studies have shown that the permeability of the EDZ64

increases as the distance to the well wall decreases (Hou, 2003; Marschall et al., 2016; Lisjak et al.,65

2016). Other researchers have compared and modeled the water diffusion coefficients of the EDZ66

and intact rocks (Autio et al., 1998). Similarly, the permeability of the EDZ has been analyzed.67

However, there is no unified view because its properties differ with the location characteristics, such68

as the geological conditions and the surface stress fields. Specifically, the obtained permeability69

varies widely because the excavation disturbance is contiguous with the tunnel wall (Kurikami et70

al., 2008).71

Therefore, we derived the exact solution to the Richards’ equation using the Neumann boundary72

in this study, which can be used to describe the drying phenomena in sedimentary rocks. Using tuff73

samples collected in Japan, we conducted a hydraulic conductivity test and a mercury intrusion test74
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via the flow pump method to obtain the water diffusion coefficients and verify whether the drying75

behavior can be described using the exact solution. Using the verified exact solution, we proposed a76

new stochastic differential equation that can be used to express the local variations in permeability77

as well as the increase in variations.78

2. Numerical method for determining the distribution of79

the degree of saturation in the EDZ owing to drying80

2.1 Exact solution to Richards’ equation considering Neumann boundary81

conditions for drying phenomena82

We proposed the following nonlinear partial differential equation to predict changes in the water83

content of unsaturated ground (Richards, 1931):84

∂θ

∂t
=
∂K

∂r

(
∂ψ

∂r
+ 1

)
, (1)

where θ, t, K, r, and ψ represent the volumetric water content, time, unsaturated hydraulic con-85

ductivity, coordinate, and pressure head, respectively. The exact solution to this nonlinear partial86

differential equation remains unknown. However, in this study, we obtained the exact solution to87

this equation using a method that is similar to that employed in a previous study conducted by88

Barry et al. (1993). Because this method was significantly simplified, its derivation is described in89

detail below. The Richards’ equation was transformed into the following:90

∂θ

∂t
=

∂

∂r

(
K
∂ψ

∂θ

∂θ

∂r

)
+
∂K

∂r
, (2)

where the heat equation can be obtained by considering that the water diffusion coefficient, D,91

which is the slope of the water retention curve, is always a constant (D = K∂ψ/(∂θ) = const.)92

(Gardner, 1958). Furthermore, we also considered that the unsaturated hydraulic conductivity does93
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not depend on the coordinates (∂K/(∂r) = 0).94

∂θ

∂t
= D

∂2θ

∂r2
. (3)

The water retention curve is predominantly nonlinear in the region adjacent to saturation and95

dryness. However, the assumption that the value of D is constant in the region where S is neither96

too small nor too large holds. It is also rational to assume that K does not depend on coordinates,97

if the stratum is uniform. The following can be obtained by substituting the effective saturation98

S = (θ − θr)/(θs − θr) into the equation presented above using the volume moisture content, θs, at99

saturation and the residual volume moisture content, θr (Tracy, 2011):100

∂S

∂t
= D

∂2S

∂r2
. (4)

Further, we set the initial and boundary conditions. First, the following equation was assumed101

as the initial condition:102

S(r, 0) = Si. (5)

We considered a closed interval, where r is [0, L], and Si is a constant value. Here, the following103

Neumann boundary conditions were introduced to manage the various boundary conditions (Farlow,104

1993):105

∂S(0, t)

∂r
= 0, − ∂S(±L, t)

∂r
= h(S − St), (6)

where St represents the constant terminal saturation value. Although 0 to L for the interval of r was106

used in this study, the exact solution was derived from −L to L to obtain the requisite boundary107

conditions. The result is shown using 0 ≤ r ≤ L. Because the exact solution cannot be obtained108

as is, we introduced the dimensionless saturation degree, sd(r, t) = (S(r, t)− St)/(Si − St), and we109

modified the equation as follows:110

∂sd
∂t

= D
∂2sd
∂r2

, (7)

111

sd(r, 0) =
S(r, t)− St
Si − St

= 1, (8)
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and112

∂sd(0, t)

∂r
= 0, − ∂sd(±L, t)

∂r
= hsd. (9)

First, the general solution to Eq. (7) can be expressed as follows:113

sd = (A cos pr +B sin pr)Ce−Dp
2t, (10)

where A, B, and C represent undetermined coefficients, and p represents a nonzero positive real114

number. By differentiating this equation with r and substituting r = 0, the following equation was115

obtained using the boundary conditions used in Eq. (9):116

(−Ap sin pr +Bp cos pr)Ce−Dp
2t |r=0 = BpCe−Dp

2t = 0. (11)

When the value of C is zero, the value of sd is always zero, and thus, B = 0. Similarly, by117

substituting the boundary condition of r = L in Eq. (9), we obtained the following:118

− (−Ap sin pr)Ce−Dp
2t |r=L = Ap(sin pL)Ce−Dp

2t = hA(cos pL)Ce−Dp
2t. (12)

Therefore, we obtained the following relational expression for p:119

p tan pL = h. (13)

If the solutions that satisfy Eq. (13) are p1, p2, p3 · · · , then their linear sum is also a solution.120

Therefore, sd can be expressed as follows:121

sd =
∞∑
n=1

(Cn cos pnr) e
−Dp2nt. (14)

Substituting the initial condition used in Eq. (8) into this equation yielded the following:122

sd(r, 0) = 1 =

∞∑
n=1

(Cn cos pnr) . (15)

To determine the Fourier coefficient, Cn, the right-hand sides of the equations mentioned above for123

n and cos pm, (m = 1, 2, · · · ) were multiplied and integrated. This integral has a value only when124

6



m = n owing to the orthogonality of the trigonometric function, as shown below:125

∫ L

0

Cn cos pnr · cos pmrdz = Cn

(
sin(2pnL)

4pn
+
L

2

)
. (16)

Therefore, this equation is equal to the following equation:126

∫ L

0

1 · cos pmrdz =
sin(pmL)

pm
. (17)

From the equations presented above, Cn can be obtained as follows:127

Cn =
4 sin(pnL)

sin(2pnL) + 2pnL
. (18)

Therefore, the exact solution to sd is expressed as follows:128

sd =

∞∑
n=1

4 sin(pnL)

sin(2pnL) + 2pnL
(cos pnr)e

−Dp2nt. (19)

When the change in the variables used in Eq. (8) is taken back, an exact solution for the degree of129

saturation, S, can be obtained by setting βn = pnL, as follows:130

S(r, t) = St + (Si − St)

∞∑
n=1

4 sin(βn)

sin(2βn) + 2βn
(cosβnr/L)e

−Dβ2
nt/L

2

. (20)

As shown in Eq. 13, βn is the solution to the following transcendental function, which was solved131

using the Newton–Raphson method:132

βn
Lh

= cotβn (21)

2.2 Stochastic differential equation for describing the distribution of the133

degree of saturation in the EDZ owing to drying134

Unpredictable random behavior is known as Brownian motion, which is named after Dr. R.135

Brown who discovered that pollen particles floating on the surface of water move irregularly. The136

total derivative first-order differential equation that includes Brownian motion is referred to as a137

7



stochastic differential equation in the field of financial engineering. It is used to predict and set138

stock prices for financial products. Because ordinary Brownian motion is used to describe future139

uncertainties, it is a random motion that accumulates one variance of time per unit of time. In a140

homogeneous stratum, the nature of the EDZ is such that the vicinity of the excavated tunnel wall141

gets disturbed and develops cracks, resulting in heterogeneous and random properties. However,142

areas farther from the tunnel wall have more homogeneous properties. This can be explained by143

the Brownian motion of the variable, r, because the larger the value of r (Fig. 1), the more the144

variance accumulates and demonstrates random properties. In this study, we proposed a stochastic
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Fig.1 Concept of the excavation disturbed zone (EDZ). r represents the coordinates towards

the center of the tunnel, and L represents the width of the EDZ. Random characteristics

increase as the values of the coordinate r increase.

145

differential equation that estimates the distribution of the saturation degree in the EDZ by utilizing146

the following characteristics:147

dS∗(r, t) = dS(r, t) (1 + σdW (r)) , (22)
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where S∗, S, σ, and W represent the distribution of saturation based on the properties of the EDZ,148

exact solution to Eq. (20), volatility that controls the magnitude of Brownian motion, and Wiener149

process indicating Brownian motion, respectively. Because the infinitesimal increment in the exact150

solution (Eq. (20)) is the coefficient of the term that includes Brownian motion, S∗ always converges151

to St by t→ ∞, regardless of the magnitude of σ. Figure 2 shows an example of Brownian motion,152

W , generated under this condition. Thus, the random property increases with an increase in the153

variable, i.e., r. The increase in permeability variation in the EDZ (Kurikami et al., 2008) has been154

investigate. However, the properties of the EDZ have not been expressed using Brownian motion.155
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Fig.2 Relationship between random EDZ characteristics using Brownian motion and distance

r. It can be determined that the closer r is to L, the more random the property is, as shown

in Fig. 1.

3. Detection of hydraulic conductivity and water retention156

characteristics157

In this study, the moisture diffusion coefficient, D, was assumed to be constant. S = (θ−θr)/(θs−158

θr). If θ is differentiated using S, then dS
dθ = 1

θs−θr can be obtained. Therefore, the expansion of159

9



the formula for D is expressed as follows:160

D = K
∂ψ

∂θ
= K

∂ψ

∂S

∂S

∂θ

= K · ∂ψ
∂S

· 1

θs − θr
, (23)

where K represents the unsaturated hydraulic conductivity. If the saturated hydraulic conductiv-161

ity, ks, is proportional to the degree of saturation, the unsaturated hydraulic conductivity can be162

described as K = ksS. Therefore, K can be determined from the saturated hydraulic conductivity163

test. In the equation presented above, the values of θs and θr were determined using a mercury164

intrusion porosimetry test because the void volume in the sample can be determined using this165

test. ∂ψ
∂S represents the slope of the water retention curve, which can be obtained by performing a166

mercury intrusion porosimetry test for rocks. The following sections detail the three tests conducted167

in this study to obtain D.168

3.1 Rock sample169

A Neogene tuff collected from a depth of 100 m in Utsunomiya City, Japan, was used as the170

rock test sample. This marine-origin tuff was formed by the consolidation of eruptive deposits that171

originated from submarine volcanoes dated to 10 Mya. This green tuff is known as a Tage tuff, as172

shown in Fig. 3. It is widely used in Japan as a research sample and building material (e.g., the old173

Imperial Hotel in Japan designed by Frank Lloyd Wright). This tuff has uniform and homogeneous174

properties. The minerals contained in the Tage tuff are tuffy glass, plagioclase, quartz, and biotite175

amphibole pyroxene (Seiki, 2017). The physical properties of the Tage tuff are listed in Table 1.176

Tage tuff is characterized by a large porosity and a slightly soft deformation property (Togashi et

Table 1 Physical properties of the Tage tuff

Density in natural state Dry density Wet density Porosity Natural moisture

ρt(Mg/m
3
) ρd(Mg/m

3
) ρt(Mg/m

3
) % content ratio w (%)

1.81 1.76 2.04 26.7 3.8

177
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Fig.3 Cuboidal block sample of Tage tuff.

al., 2018; Togashi et al., 2019; Togashi et al., 2021c). The porosity of the sample was determined178

using the soil particle density test, which yielded a density of 2.56 Mg/m3.179

3.2 Permeability test180

The hydraulic conductivity was obtained using the flow pump method (Esaki et al., 1996), where181

the saturated hydraulic conductivity is obtained by controlling the flow rate using a syringe pump,182

as shown in Fig. 4, and measuring the pressure head difference. Saturated hydraulic conductivity183

can be expressed as follows:184

ks =
Q

At

H

ψ
, (24)

where Q, A, t, and H represent controlled flow rate, cross-sectional area of the specimen, time, and185

length of the specimen, respectively. The room temperature was maintained at 22 ◦C.186

3.3 Mercury intrusion porosimetry test187

In the mercury intrusion porosimetry test, mercury is press-fitted while pressurizing a dry sample,188

and the distribution of the gap diameter in the sample is inferred based on the pressure and the189

11
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Fig.4 Permeability test based on the flow pump method

amount of press-fitted mercury (Thomas et al., 1968; ASTM, 2004). This test is used to determine190

the void diameter distribution of a sample. However, in this study, it was used to determine the191

water retention curve, as proposed in previous studies (Sun and Cui, 2020). From the results of this192

test, the degree of saturation, S, was calculated as follows:193

S =
CI(P )

CI(Pmax)
, (25)

where CI represents the amount of press-fitted mercury, P represents the arbitrary press-fitting194

pressure, and Pmax represents the maximum pressure. By investigating S using P as the capillary195

pressure, a water retention curve could be obtained.196

3.4 Detection of continuous moisture content variation using the drying197

deformation test198

Figure 5 shows the drying deformation experiment (Togashi et al., 2021a). In this experiment,199

a strain gauge was installed on a wet rock specimen, which was air dried. The change in the200

water content was measured using an electronic balance. We estimated the change in saturation by201

12



considering the change in the void structure estimated from the deformation of the specimen. The202

cylindrical Tage tuff specimen, with a diameter of 50 mm and a height of 100 mm, had a volumetric203

strain of approximately 2,000 μ with changes in its void diameter. The degree of saturation was204

estimated considering the change in void diameter owing to drying (Togashi et al., 2021a). Using205

the time-series changes in the saturation of the Tage tuff measured using this method, the validity206

of the exact solution to the Richards’ equation, as derived previously, was verified.207

����������������� ����� �����

! ����������"� ����

�# ������� 
$%���&��

'%���&���$������

Fig.5 Drying deformation experiment (Togashi et al., 2021a).

4. Verification of the exact solution to the Richards’208

equation209

4.1 Identifying parameters that compose D210

The results obtained from the permeability and mercury intrusion porosimetry tests are listed211

in Table 2. The obtained saturated permeability coefficient, ks, was the average value obtained212

from nine specimens. However, the permeability coefficient was rather small for its correspondingly213

large porosity. Similar findings have also been reported in previous studies (Watanabe and Sato,214

1979). Therefore, the value obtained for hydraulic conductivity was considered appropriate. The215

void volume could be obtained from the volume of the press-fitted mercury in the mercury intrusion216

porosimetry test. The void volume obtained was the average value of three mercury intrusion217

tests. Volume moisture content can be defined as θ and θ = Vw

V , where Vw and V represent the218

13



water volume and total volume, respectively. Because the volume of the void is equal to the water219

volume, Vw, at saturation, the total volume, V , was calculated using the mass and dry density, ρs,220

of the sample in the mercury intrusion test. Finally, the saturated volume moisture content was221

determined. Thus, the value of 1
θs−θr was 3.8, assuming that θr = 0.222

Table 2 Results of the permeability test and the mercury intrusion porosimetry test

Saturated hydraulic Void Volume Saturated volume moisture content

conductivity ks (m/s) (cm3/g) Moisture content θs

5.7 × 10−11 0.15 0.26

Figure 6 shows the water retention curve obtained using Eq. (25) in the mercury intrusion test.223

A value of P = 5 MPa, which is equivalent to the suction specified at S = 0.13, was confirmed224

in the dry deformation experiment conducted in a previous study (Togashi et al., 2021a), thereby225

validating this result. As shown in Fig. 6, the inclination of the curve was relatively constant226

from S = 0.2 − 0.9. Therefore, the value of ∂ψ∂S corresponds to 341.4 m as the suction is converted227

to a pressure head of ψ = P/(ρwg), where ρw (= 1.0(g/cm3)) and g (= 9.81m/s2) represent the228

water density and gravitational acceleration, respectively. The unsaturated hydraulic conductivity,
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Fig.6 Water retention curve (relationship between suction P and degree of saturation S) for

the Tage tuff.

229

K = Sks = 0.55×5.7×10−11 = 3.1×10−11 when calculated in the middle of S = 0.9−0.2. Therefore,230

the desired value of D can be calculated as follows: D = K · ∂ψ∂S · 1
θs−θr = 3.1× 10−11 · 341.4 · 3.8 =231

14



4.02 × 10−8 (m2/s). Corresponding to calculation of the drying process of S = 0.9 to 0.2, ∂ψ∂S was232

set as positive in the direction of increasing suction, which is opposite to that illustrated in Fig. 6.233

4.2 Nature of the exact solution234

Using the value of D specified in the previous section, we assessed the nature of the exact solution235

(Eq.20). Figure 7 shows the effect of the difference in the value of h on the exact solution. The236

input parameters of the exact solution are listed in Table 3. Here, L = 0.1 m was set to accelerate

Table 3 Input parameters of the exact solution.

Initial saturation Terminal saturation D (m2/s) L (m) Number of Fourier

degree Si degree St series terms n

0.9 0 4.02 ×10−8 0.1 100

237

the convergence of the degree of saturation, and Si and St were set to 0.9 and 0, respectively. To238

observe the nature of the solution over a wide area, we performed calculations in which the value of239

S ranged from 0.2–0.9 by assuming linearity based on the previous section. The results are presented240

as the distribution of the daily values of r for 20 d. The number of terms, n, in the Fourier series for241

the exact solution was set to 100. Larger values of h yielded an enhanced convergence of the degree242

of saturation based on its closeness to the Dirichlet boundary condition. Additionally, the smaller243

the value of h, the closer the degree of saturation is to a constant inside the region. Introducing the244

Neumann boundary condition allowed various geological situations to be expressed.245

4.3 Comparison between the exact solution and test results for verifica-246

tion247

Figure 8 shows a comparison of the exact solution proposed and the results obtained through248

the dry deformation experiment. In the experiment, the cylindrical specimen was soaked in water249

for ≥ 10 d to increase the degree of saturation to approximately 0.8, after which air drying was250

performed. The input parameters of the exact solution are listed in Table 4. Here, the exact solution251

15
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Fig.7 Characteristics of the exact solution (degree of saturation S and its relationship to

distance r) based on D = 4.02×10−8 (m2/s): (a) h = 1 m−1, (b) h = 10 m−1, and (c) h = 100

m−1.

Table 4 Input parameters of the exact solution.

Initial saturation Terminal saturation D h L Number of Fourier

degree Si degree St (m2/s) (m−1) (m) Series terms n

0.81 0 4.02 ×10−8 12.2 0.0375 100

was calculated using the value of D obtained in Section 4.1. The values of Si and St were set to252

0.9 and 0, respectively. The exact solution exceeded the linearity range of the water retention curve253

assumed in the range of S = 0.2− 0.9 when the value of D was calculated in the previous section.254

However, we rectified the error. The data for the exact solution showed a change in the degree of255

saturation at x = 0, where the value of h was set to 12.2 m−1. In the experiment, the length of256

the region was L = 0.0375m, average value of the half diameter was 25 mm, and half height was257

50 mm for the cylindrical specimen. Here, the value of L was set by assuming an element test to258

examine uniform behavior. However, if the value of L was on the same level, it could be adjusted259
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by changing the value of h. The results were in good agreement, even in the region where the value260

of S was small. Because the experimental values and the exact solution were nearly identical, we261

confirmed the validity of our proposed exact solution.262
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Fig.8 Comparison of the degree of saturation S and time t relationships between the exact

solution and the results of the drying deformation test.

5. Random distribution of the degree of saturation in the263

EDZ264

In this section, we discuss the properties of the stochastic differential equation presented in265

Eq. (22) using the exact solution. Equation (22) was solved using the Euler–Maruyama method266

(Higham, 2001). This is a type of backward finite differential method, which can be derived as fol-267

lows: For the region of [0, L], let ∆r = r/N be an infinitesimal increment in the coordinate direction268

r. Here, N represents the number of divisions in the area. Using the positive integer j, rj can be269

expressed as follows: rj = j∆r. Therefore, Eq. (22) can be further modified as follows:270

dS∗ = dS (1 + σdW )

=
∂S

∂r
dr (1 + σdW ) . (26)
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When the Euler-Maruyama method was applied with dr as ∆r, the following backward differential271

equation was obtained:272

S∗(rj , t) = S∗(rj−1, t) +
∂S

∂r
(rj−1, t)∆r [1 + σ (W (rj)−W (rj−1))] . (27)

The relationship between Wj and Wj−1 can be expressed as follows (Higham, 2001):273

Wj =Wj−1 + dWj

=Wj−1 +
√
∆rN(0, r), (28)

where N(m,Σ) represents a normal random number with a mean of m and a variance of Σ. The274

properties and applications of Eq. (22), as obtained through this method, are discussed in the275

following section.276

5.1 Nature of the proposed stochastic differential equation277

Figure 9 shows the solution of the proposed stochastic differential equation when σ = 0 and 100.278

When σ = 0, the random term W is not included in the equation, and thus, it is identical to the279

solution for Eq. (20). The input parameters of the exact solution are listed in Table 5. To set

Table 5 Input parameters of the proposed stochastic differential equation.

Initial Saturation Terminal saturation D h L Number of Fourier N

degree Si degree St (m2/s) (m−1) (m) Series terms n

0.81 0 4.02 ×10−8 12.2 1.0 100 300

280

the values of D, h, Si, and St, we used the parameters of the Tage tuff determined in the previous281

section. The values of L and N were set to 1 m and 300, respectively. Figure 9 shows the results282

at different times, i.e., t = 0, 50, 100, and 1000 d. Even when the value of the random term σ was283

large, the exact solution reached a constant value, St, as t elapsed. To determine the difference284

in σ, solutions containing random terms with σ = 20 were distributed along the exact solution for285

Eq. (20) with σ = 0. As the value of z increased, there was an increase in the uncertainty of the286

Brownian motion, and as such, there was an increase in the influence of the random term. The287
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Brownian motion according to coordinate r was generated using the same normal random number288

with a mean of 0 and a variance of r because the nature of the EDZ was assumed to be invariant289

with respect to time. Therefore, relatively similar noise was generated in the results pertaining290

similar values of r, and this saturation distribution reflects the properties of the EDZ.291
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Fig.9 Distributions of the degree of saturation at distance r owing to the volatility of σ and

time t for the EDZ and its characteristics.

As shown in Figure 10, t = 100 d and σ = 100. The effect of N was investigated using parameter292

settings similar to those presented in Fig. 9. When the value of N is insignificant, the difference293

step is large, and as a result, the effect of the random term is significant. As shown in the example294

presented in Fig. 10 (N = 50), the value of S is ≥ 1, which is unrealistic. Additionally, when the295

value of N is insignificant, the effect of the random term is negligible. Because the value of N also296

affects the level of uncertainty, a realistic value must be set. Considering this parameter setting,297

N > 100 would be preferable.298

As described above, our proposed stochastic differential equation can be used to express the299

properties of the EDZ, and the influence of the random terms can be determined using σ and N .300
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Fig.10 Effect of N on random terms for the distribution of the degree of saturation at distance r

5.2 Method verification301

Differences in the saturated hydraulic conductivity at approximately 1–10 m behind the tunnel302

wall have been investigated by conducting laboratory tests using a boring core or through in situ303

hydraulic conductivity tests (Hou, 2003; Marschall et al., 2006; Kurikami et al., 2008). In these304

studies, the hydraulic conductivity varied from 104 to 1010 m/s at the maximum as it approached the305

well wall. Specifically, the sedimentary rock sites targeted in this study have a maximum variation306

of 104 m/s (Kurikami et al., 2008).307

In this study, we considered a case in which the saturated hydraulic conductivity, ks, of the intact308

Tage tuff was disturbed by tunnel excavation, and it increased by 104 m/s. Meanwhile, if the309

hydraulic conductivity of the intact part (r = 0) and that of the disturbed part (r = L) are linearly310

interpolated in the rock mass, the intermediate average hydraulic conductivity, ks, is 5.7 × 10−11
311

m/s.312

As shown in Fig. 11, the validity of the proposed method was evaluated by solving the stochastic313

differential equation presented in Eq. (22) using the average hydraulic conductivity, with σ = 20,314
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and comparing it with the results of the hydraulic conductivity of the intact and disturbed parts,315

with σ = 0. This comparative analysis approach relied on the data listed in Table 5, except for D.316

Each value of D was calculated using ks = 5.7× 10−11 m/s for the intact part and ks = 5.7× 10−7
317

for the disturbed part. ks = 5.7× 10−9 m/s was employed in the average case using the stochastic318

differential equation [Eq. (22)]. Equation (22) was solved 100 times using different Brownian319

motions,W . Figure 11 shows the results 10 d after the experiment, at which point the disturbed rock
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Fig.11 Comparison between the proposed stochastic differential equations using the average

hydraulic conductivity and the distribution of the saturation degree in the intact and disturbed

parts.

320

mass had already converged, where S = 0.42 at r = L. For the stochastic differential equations, the321

average hydraulic conductivity lies between the results of the intact case and those of the disturbed322

case. Although the hydraulic conductivity was distributed across the actual rock mass, the hydraulic323

conductivity was insignificant in the disturbed part near the tunnel wall. Therefore, the behavior324

near the tunnel wall was similar to that of the disturbed case.325

As the degree of saturation in the part with high hydraulic conductivity near the mine wall326

decreases, there is a corresponding decrease in the degree of saturation in the intact part. Therefore,327

the degree of saturation near r = 0 was considered smaller than that in the case involving hydraulic328
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conductivity in the intact part. Furthermore, presuming that the hydraulic conductivity in the EDZ329

has a large variation, we can conclude that the results of the stochastic differential equation [Eq.330

(22)] are generally rational.331

5.3 Random distribution of the degree of saturation around a circular332

tunnel owing to drying333

Assuming that the drying phenomena occurs uniformly around the tunnel owing to tunnel exca-334

vation without considering groundwater advection, we can estimate the distribution of the degree of335

saturation around the tunnel using the 1D stochastic differential equations proposed in this study.336

For example, this condition is applicable when constructing a deep tunnel, such as in geological337

disposal, because it can be assumed that the head difference between the tunnel crown and the338

invert is small from a macroscopic perspective. Considering the analysis area presented in Fig.339

12, we assumed that the 1D equation [Eq. (22)] can be applied in the r axis orientation in each340

circumferential direction, Θ.341

Figure 13 presents a comparison of this analysis approach when σ = 0 and σ = 30. Here, using342

the Igor Pro graphing software, the 3D coordinate points were contoured under the same conditions.343

The set analysis conditions were similar to those listed in Table 5, differing by only N = 300 after 100344

d of excavation. As drying progressed from the wall surface of the tunnel, this part had the lowest345

saturation. The result of σ = 0 assumes that cracks do not occur during excavation. Furthermore,346

a smooth curved surface with a distributed degree of saturation can be confirmed. In contrast, for347

σ = 30, the variation in saturation increased as it approached the surface of the tunnel wall.348

Moreover, for σ = 30, which considers the formation of the EDZ owing to excavation, the variation349

in saturation increased as it approached the surface of the tunnel wall, unlike in the EDZ shown in350

Fig. 1.351

Furthermore, utilizing this analysis method, we can consider the anisotropy of the spatial variation352
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Fig.12 Analytical area of the EDZ. r represents a coordinate system that radiates towards

the center of the tunnel. (x, y) represents a two-dimensional Cartesian coordinate system. Θ

represents the angle between the x and r axes.

in the saturation. The following function distributes σ in the circumferential direction, Θ:353

σ = p| sinΘ|+ q, (29)

where p and q represent appropriate real numbers. Figure 14 shows the results of the same analysis354

performed at p = 150 and q = 30. This indicates that the variation in the saturation on the y axis355

is five-fold larger than that on the x axis. Sharp irregularities accumulate on the y axis (x axis),356

which is possible if the crustal pressure is anisotropic.357

6. Conclusions358

Evaluations of the water content in EDZs are indispensable for proper assessments of the de-359

formation characteristics of the rock mass around a tunnel. In this study, we derived a simple360

exact solution to the Richards’ equation considering the Neumann boundary for drying deforma-361

tion phenomena. We performed permeability and mercury intrusion porosimetry tests on Neogene362

tuff obtained from Japan, and the water diffusion coefficient was specified based on the obtained363
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Fig.13 Comparison of the distribution of the degree of saturation around the tunnel owing

to drying: (a) σ = 0 and (b) σ = 30.

Fig.14 Analysis results for an anisotropic distribution of the degree of saturation.
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parameters. The validity of the exact solution was confirmed using the specified water diffusion364

coefficient, which was compared with the change in the water content in the drying deformation365

test. Furthermore, using the verified exact solution, we proposed a new stochastic differential equa-366

tion that can be used to express the change in the water content in an EDZ. In this equation, the367

hydraulic conductivity of the EDZ is expressed using nondifferentiable Brownian motion. We con-368

firmed the validity of our proposed stochastic differential equation using calculations that assume369

a sedimentary rock tunnel, thus verifying the properties of the water content in an EDZ can be370

appropriately expressed. Using the proposed 1D stochastic differential equation, we demonstrated371

that the water content distribution in the EDZ around a 2D tunnel can also be evaluated.372
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