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Abstract

Shortwave radiative feedbacks from Southern Ocean clouds are a major source of uncertainty in climate projections. Much of this

uncertainty arises from changes in cloud scattering properties and lifetimes that are caused by changes in cloud thermodynamic

phase. Here we use satellite observations to infer the scattering component of the cloud-phase feedback mechanism and determine

its relative importance by comparing it with an estimate of the overall temperature-driven cloud feedback. The overall feedback

is dominated by an optical thinning of low-level clouds. In contrast, the scattering component of cloud-phase feedback is an order

of magnitude smaller and is primarily confined to free-tropospheric clouds. The small magnitude of this feedback component is

a consequence of counteracting changes in albedo from cloud optical thickening and shifts in the scattering direction of cloud

particles. These results indicate that shortwave cloud feedback is likely positive over the Southern Ocean and that changes

in cloud scattering properties arising from phase changes make a small contribution to the overall feedback. The feedback

constraints shift the projected 66% confidence range for the global equilibrium temperature response to doubling atmospheric

CO2 by about +0.1 K relative to a recent consensus estimate of cloud feedback.
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Key Points 23 

1. Observations suggest that shortwave cloud-climate feedback is positive 24 

over the Southern Ocean 25 

2. Changes in cloud scattering properties arising from ice-to-liquid 26 

conversions make a small contribution to the feedback 27 

3. The observational constraints imply a higher climate sensitivity than a 28 

recent consensus estimate of cloud feedback  29 
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Abstract 30 

Shortwave radiative feedbacks from Southern Ocean clouds are a major 31 

source of uncertainty in climate projections. Much of this uncertainty arises from 32 

changes in cloud scattering properties and lifetimes that are caused by changes 33 

in cloud thermodynamic phase. Here we use satellite observations to infer the 34 

scattering component of the cloud-phase feedback mechanism and determine its 35 

relative importance by comparing it with an estimate of the overall temperature-36 

driven cloud feedback. The overall feedback is dominated by an optical thinning 37 

of low-level clouds. In contrast, the scattering component of cloud-phase 38 

feedback is an order of magnitude smaller and is primarily confined to free-39 

tropospheric clouds. The small magnitude of this feedback component is a 40 

consequence of counteracting changes in albedo from cloud optical thickening 41 

and shifts in the scattering direction of cloud particles. These results indicate that 42 

shortwave cloud feedback is likely positive over the Southern Ocean and that 43 

changes in cloud scattering properties arising from phase changes make a small 44 

contribution to the overall feedback. The feedback constraints shift the projected 45 

66% confidence range for the global equilibrium temperature response to 46 

doubling atmospheric CO2 by about +0.1 K relative to a recent consensus 47 

estimate of cloud feedback. 48 

 49 

Plain Language Summary 50 

Understanding how clouds respond to global warming is a key challenge 51 

of climate science. One particularly uncertain aspect of the cloud response 52 

involves a conversion of ice particles to liquid droplets in extratropical clouds. 53 

Here we use satellite data to infer how ice-to-liquid conversions affect climate by 54 

changing the reflection of incoming solar radiation back to space. We find that 55 

the changes in cloud particle size and shape that arise from phase changes 56 

make a relatively small contribution to the overall cloud-albedo response to 57 

warming. This finding provides new insight about how changes in cloud phase 58 

affect climate change.  59 
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1. Introduction 60 

The Southern Ocean is one of the cloudiest places on Earth. Vast 61 

blankets of low clouds cover the region, and streaks of high clouds form from the 62 

continuous churning of weather systems. Collectively these clouds have large 63 

radiative effects that shape global climate (Hwang and Frierson, 2013; Kay et al., 64 

2016; Hawcroft et al., 2017). 65 

 Southern Ocean clouds are also susceptible to producing cloud-climate 66 

feedbacks that have global consequences. For instance, projections from the 67 

Coupled Model Intercomparison Project Phase 6 (CMIP6) predict more positive 68 

Southern Ocean cloud feedback and higher climate sensitivity than previous 69 

assessments (Zelinka et al., 2020). The CMIP6 projections show that Southern 70 

Ocean cloud feedback affects climate sensitivity, but the models have large 71 

parametric uncertainties that prevent them from precisely predicting this 72 

feedback. Previous observational studies have attempted to constrain the 73 

feedback, but they have yet to reach a consensus on sign (Ceppi, McCoy, and 74 

Hartmann, 2016; Terai et al., 2016; Lutsko et al., 2021). These results indicate 75 

that Southern Ocean clouds exert a potentially powerful but highly uncertain 76 

feedback on global climate change. 77 

 One major component of the feedback uncertainty arises from changes in 78 

cloud phase (Storelvmo et al., 2015). As the atmosphere warms, some cloud 79 

particles that would have previously been ice will form as liquid instead. These 80 

phase conversions change the size and shape of cloud particles, which changes 81 

the scattering properties of clouds. Ice-to-liquid conversions also reduce 82 

precipitation efficiency, thereby increasing cloud lifetimes. We call these effects 83 

the scattering and lifetime components of cloud-phase feedback, respectively. 84 

Both are the product of complex interactions among microphysical processes, 85 

and thus they are highly uncertain. 86 

 In this study we use satellite observations to constrain the scattering 87 

component of Southern Ocean cloud-phase feedback. Despite the importance of 88 

this mechanism in many climate projections (Ceppi, Hartmann, and Webb, 2016; 89 

Tan et al., 2016; Frey and Kay, 2018), observational support for the mechanism 90 
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has been limited to estimates that do not quantify confidence intervals and do not 91 

compare the mechanism to the overall cloud feedback to place it into context 92 

(McCoy et al., 2014a; Tan et al., 2019). Here we introduce a method to estimate 93 

cloud feedback as a function of cloud-top phase, which facilitates stronger 94 

constraints. We first estimate the cloud-phase scattering feedback and the 95 

overall temperature-mediated cloud feedback, and then we investigate the 96 

implications of these feedbacks for climate sensitivity. 97 

 98 

2. Data and Methods 99 

2.1 Observations and Model Output 100 

We extend a method of cloud-feedback analysis developed by Zelinka et 101 

al. (2012) to decompose shortwave (SW) feedbacks based on cloud 102 

thermodynamic phase. The method is applied to monthly gridded observations 103 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument 104 

onboard the Aqua satellite (Platnick et al., 2017). MODIS cloud-phase data 105 

represent phase at cloud top, and they have a ~90% frequency of agreement 106 

with lidar data, which are the most accurate phase retrievals from space (Huang 107 

et al., 2016; Marchant et al., 2016). We analyze cloud-fraction histograms 108 

partitioned by cloud-top pressure (CTP), optical depth (𝜏), and phase (Fig. 1a-b). 109 

The standard liquid- and ice-cloud histograms have different CTP-𝜏 bins, so 110 

some adjacent bins are merged to make the intervals similar. In this step, clouds 111 

with CTP > 1000 hPa are reassigned to the 800-1000 hPa bin, and it is assumed 112 

that no liquid clouds exist between 50-150 hPa. The standard and modified bin 113 

boundaries are listed in Table S1. 114 

We also analyze monthly meteorological data and sea-ice area fraction 115 

from ERA5 reanalysis (Hersbach et al., 2020). Three-dimensional temperature, 116 

horizontal wind, and vertical wind fields are linearly interpolated to the MODIS 117 

grid and to pressure intervals corresponding to the MODIS CTP bins. We also 118 

calculate estimated inversion strength, which represents the inversion at the top 119 

of the boundary layer (Wood and Bretherton, 2006). The observations and 120 

reanalysis data are analyzed between 40°-60°S and from 2003-2019, unless 121 
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stated otherwise, and the analysis is restricted to ocean gridboxes with monthly 122 

sea-ice cover below 1%. 123 

We also use output from 34 CMIP6 global climate models to represent 124 

CO2-forced warming (Table S2). Model simulations are run for 150 years 125 

following an abrupt quadrupling of atmospheric CO2 concentrations relative to 126 

preindustrial values (“abrupt4xCO2” experiment). Atmospheric temperatures are 127 

linearly interpolated to the MODIS grid and CTP intervals, and then they are 128 

averaged over the final 30 years of the simulations. Averages are calculated 129 

separately for each latitude, calendar month, and CTP interval. To remove model 130 

drift, the temperature response to increasing CO2 is calculated by subtracting the 131 

preindustrial integration (“piControl”) from the corresponding parallel 132 

abrupt4xCO2 integration. The response of global-mean near-surface air 133 

temperature is calculated similarly. Only the first ensemble member from each 134 

model is used. 135 

 136 

2.2 Radiative Kernels 137 

Cloud-fraction anomalies from each MODIS histogram bin are converted 138 

into top-of-atmosphere SW flux anomalies using radiative kernels. The kernels 139 

represent how much a unit cloud-fraction change modifies top-of-atmosphere SW 140 

flux with all non-cloud factors fixed at climatological values. We calculate the 141 

kernels as a function of latitude, longitude, and calendar month following the 142 

method of Zelinka et al. (2012), except that we generalize their framework by 143 

calculating separate kernels for liquid and ice clouds. The calculations are 144 

performed using the Rapid Radiative Transfer Model for GCMs (Clough et al., 145 

2005) with climatological seasonal cycles of humidity from ERA5 and surface 146 

albedo from Clouds and the Earth’s Radiant Energy System satellite 147 

observations (Loeb et al., 2018). We also change the mean cloud-droplet 148 

effective radius and ice-crystal effective radius to 14 𝜇m and 35 𝜇m, respectively, 149 

to match observed values over the Southern Ocean (McCoy et al., 2014a). 150 

Together the cloud histograms and kernels reproduce observed variations of SW 151 

cloud radiative effects with an error of ~5% (Appendix A). 152 
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 Fig. 1c-d shows the spatial and temporal average of the radiative kernels. 153 

The kernels have negative values because a larger cloud fraction increases SW 154 

reflection to space. They depend relatively strongly on 𝜏, and they depend 155 

weakly on CTP because of SW absorption by water vapor. For a given CTP-𝜏 156 

combination, the kernels also depend on cloud phase because ice particles 157 

typically backscatter more radiation than liquid droplets (Stackhouse and 158 

Stephens, 1991). Changes in any of these cloud properties can therefore 159 

contribute to cloud feedback. 160 

 161 

2.3 Feedback Analysis 162 

The MODIS histograms and kernels are leveraged to estimate the SW 163 

cloud feedback that is directly caused by atmospheric warming. We do not 164 

consider SW feedbacks caused by shifts in large-scale circulation because they 165 

are thought to be relatively small (Ceppi and Hartmann, 2015). Let 𝑖 represent 166 

any bin in the liquid- or ice-cloud histogram. For a given location and calendar 167 

month, the SW feedback from clouds in bin 𝑖 is 168 

	 𝐹!",$ =
𝜕𝑐$
𝜕𝑇$

𝐾$
𝑑𝑇$
𝑑𝑇%&

	 (1)	

where 𝑐$ is cloud fraction, 𝑇$ is temperature at the location and vertical level of bin 169 

𝑖, 𝐾$ is the corresponding element of the kernel, and 𝑇%& is global-mean surface 170 

air temperature. On the right side of equation 1, the first term is the cloud 171 

response to local warming, the second term converts the cloud response into 172 

top-of-atmosphere SW flux, and the third term relates local warming to global-173 

mean surface warming. All temperature-dependent terms represent the response 174 

to an external climate forcing. The task of quantifying cloud feedback thus 175 

reduces to estimating these terms. 176 

We first calculate 𝑑𝑇$/𝑑𝑇%&, which represents the magnitude and vertical 177 

structure of atmospheric warming over the Southern Ocean relative to global-178 

mean surface warming. This term is calculated from the CMIP6 projections 179 

forced by increasing atmospheric CO2. The projections of 𝑑𝑇$/𝑑𝑇%& consistently 180 

have maximum values in the free troposphere and smaller values in the lower 181 
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stratosphere and near the surface (Fig. 2). Small stratospheric values are a 182 

consequence of larger emissivity from enhanced CO2 concentrations (Hartmann, 183 

2016), and small near-surface values are a consequence of upwelling ocean 184 

currents (Armour et al., 2016). These physical explanations and the consistency 185 

among models suggest that the projections of 𝑑𝑇$/𝑑𝑇%& are robust. 186 

The feedback analysis also requires estimates of 𝜕𝑐$/𝜕𝑇$. This term 187 

represents the temperature-driven cloud response to a climate forcing, but it can 188 

be estimated from natural variability assuming that cloud-temperature 189 

relationships will not substantially change as the climate evolves. This 190 

assumption neglects the potential dependence of extratropical cloud feedbacks 191 

on the climate state (Bjordal et al., 2020). However, many climate projections 192 

suggest that monthly cloud-temperature relationships from natural variability 193 

accurately predict extratropical cloud feedbacks (Tselioudis et al., 1998; Gordon 194 

and Klein, 2014; Terai et al., 2016; Ceppi, McCoy, and Hartmann, 2016), and 195 

observed cloud-temperature relationships are similar in different epochs within 196 

the MODIS record (Appendix C). We therefore estimate 𝜕𝑐$/𝜕𝑇$ from natural 197 

variability. 198 

 We first estimate 𝜕𝑐$/𝜕𝑇$ associated with the temperature-mediated 199 

feedback. This term represents the overall cloud response to warming, and it is 200 

calculated using multilinear regression. Because of the zonal symmetry of the 201 

Southern Ocean, regression is performed on data from all longitude points 202 

simultaneously. The climatological seasonal cycle is removed from each latitude-203 

longitude gridbox, and data are composited by latitude and calendar month. For 204 

each latitude, month, and histogram bin, we calculate a regression model of the 205 

form 206 

	
𝑐 = -

𝜕𝑐
𝜕𝑥'

𝑥'

(

')*

+ 𝜖	 (2)	

where 𝑥' are meteorological predictors, 𝜕𝑐/𝜕𝑥' are regression coefficients, 𝑁 is 207 

the number of meteorological predictors, and 𝜖 is the residual. The 208 

meteorological predictors include temperature and the three-dimensional wind 209 

field at the level of the CTP interval. Estimated inversion strength is also used as 210 
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a predictor for CTP > 450 hPa. The term 𝜕𝑐/𝜕𝑇 therefore represents the cloud 211 

response to warming while controlling for wind and inversion strength. On 212 

average, the regression model explains 38% of the variance of cloud-induced 213 

SW flux anomalies for boundary layer clouds (CTP > 800 hPa) and 18% of the 214 

variance for tropopause-level clouds (250 hPa < CTP ≤ 350 hPa). The explained 215 

variance for boundary layer clouds is similar to that of other observational work 216 

that uses different meteorological predictors (Scott et al., 2020). This suggests 217 

that the regression model represents cloud-meteorology relationships with skill 218 

that is similar to other available methods. Ultimately the cloud-temperature 219 

regression coefficients are used to estimate the temperature-mediated feedback 220 

following equation 1. 221 

We also estimate the component of the temperature-mediated feedback 222 

that arises from changes in low-cloud optical depth. We define low clouds by 223 

CTP > 600 hPa, and we apply the method of Scott et al. (2020) to decompose 224 

low-cloud fraction anomalies into a component from anomalous cloud amount 225 

and a component from anomalous cloud optical properties and CTP. The latter 226 

component is regressed on the meteorological predictors to estimate the 227 

associated SW feedback. This feedback component is dominated by shifts in 228 

optical depth, so we henceforth call it the low-cloud optical depth feedback. 229 

 The values of 𝜕𝑐$/𝜕𝑇$ associated with the scattering component of cloud-230 

phase feedback are estimated from a different procedure. We calculate these 231 

terms separately for each CTP bin so that phase conversions happen between 232 

clouds at the same vertical level. For a given CTP bin, the proportion of clouds 233 

that are liquid is 234 

𝑃+$, =
𝐶+$,

𝐶+$, + 𝐶$-.
 235 

where 𝐶+$, and 𝐶$-. are the total liquid- and ice-cloud fractions in the CTP bin. 𝑃+$, 236 

is regressed on the meteorological predictors as in equation 2 to calculate 237 

𝜕𝑃+$,/𝜕𝑇, where 𝑇 is temperature in the CTP interval. Changes in 𝐶+$, and 𝐶$-. 238 

with warming are determined by 239 
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𝜕𝐶+$,
𝜕𝑇 =

𝜕𝑃+$,
𝜕𝑇 (𝐶+$, + 𝐶$-.) 240 

𝜕𝐶$-.
𝜕𝑇 = −

𝜕𝑃+$,
𝜕𝑇 (𝐶+$, + 𝐶$-.) 241 

where overbars indicate values from the climatological seasonal cycle. 𝜕𝐶+$,/𝜕𝑇 242 

and 𝜕𝐶$-./𝜕𝑇 are equal and opposite, so they represent a phase change with 243 

fixed overall cloud fraction. The values of 𝜕𝐶+$,/𝜕𝑇 and 𝜕𝐶$-./𝜕𝑇 are then 244 

distributed among the 𝜏 bins in proportion to the climatological distributions: 245 

𝜕𝑐+$,,/
𝜕𝑇 =

𝜕𝐶+$,
𝜕𝑇

𝑐+$,,/
𝐶+$,

 246 

𝜕𝑐$-.,+
𝜕𝑇 =

𝜕𝐶$-.
𝜕𝑇

𝑐$-.,+
𝐶$-.

 247 

where 𝑐+$,,/ and 𝑐$-.,+ are the liquid- and ice-cloud fractions in 𝜏 bins 𝑘 and 𝑙, 248 

respectively. By distributing cloud fraction this way we are assuming that for any 249 

latitude-month-CTP bin, all ice clouds in the bin have the same probability of 250 

undergoing a phase change. Ultimately 𝜕𝑐+$,,//𝜕𝑇 and 𝜕𝑐$-.,+/𝜕𝑇 are used to 251 

calculate the cloud-phase scattering feedback following equation 1. An example 252 

of this procedure is presented in the Supporting Information. 253 

 The cloud-phase scattering feedback is also decomposed into 254 

contributions from changes in different optical properties. The total cloud-phase 255 

scattering feedback for a given latitude, month, and CTP bin is 256 

𝐹;!",0123. =
𝑑𝑇
𝑑𝑇%&

<-
𝜕𝑐$-.,+
𝜕𝑇 𝐾$-.,+

4

+)*

+-
𝜕𝑐+$,,/
𝜕𝑇 𝐾+$,,/

4

/)*

= 257 

where 𝐾$-. and 𝐾+$, are the ice- and liquid-cloud kernels and the sums are 258 

performed over the 𝜏 dimension. Let 𝐾+$,∗  represent the liquid-cloud kernel 259 

evaluated on the ice-cloud 𝜏 bins. The feedback can then be expressed as 260 

𝐹;!",0123. = >
𝑑𝑇
𝑑𝑇%&

-
𝜕𝑐$-.,+
𝜕𝑇 ?𝐾$-.,+ − 𝐾+$,,+∗ @

4

+)*

A261 

+ >
𝑑𝑇
𝑑𝑇%&

<-
𝜕𝑐$-.,+
𝜕𝑇 𝐾+$,,+∗

4

+)*

+-
𝜕𝑐+$,,/
𝜕𝑇 𝐾+$,,/

4

/)*

=A. 262 
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The first term in square brackets is determined by the difference between the 263 

liquid- and ice-cloud kernels, so it represents the feedback component from 264 

changes in scattering direction and the relative importance of scattering and 265 

absorption. These properties are represented by the cloud-particle asymmetry 266 

parameter 𝑔 and single-scattering albedo 𝜔E, respectively. The second term in 267 

square brackets is determined by the difference between 𝜕𝑐$-./𝜕𝑇 and 𝜕𝑐+$,/𝜕𝑇. 268 

Since 𝜕𝑐$-./𝜕𝑇 and 𝜕𝑐+$,/𝜕𝑇 have opposite sign and sum to zero when adding 269 

over all 𝜏 bins, this feedback component represents changes in the overall optical 270 

depth distribution that are caused by phase changes. 271 

 All feedbacks are calculated for every latitude-month combination, except 272 

when high solar zenith angle limits the number of observations. To ensure that 273 

the cloud histograms are adequately sampled, we require that each gridbox has 274 

at least 500 valid MODIS pixels, which is 6-7% of spring and summer values. 275 

This condition is not satisfied poleward of 56°S in June and poleward of 59°S in 276 

July. In these cases, regression slopes are taken from the same latitude and the 277 

closest calendar month with sufficient data. If two months are equally close, then 278 

the average of their regression slopes is used. The feedbacks are averaged over 279 

the seasonal cycle and latitude, weighting by ocean area. Feedback uncertainty 280 

is represented by 95% confidence intervals that account for uncertainty in 281 

observed cloud-temperature relationships, uncertainty in cloud microphysical 282 

properties assumed when calculating the kernels, and inter-model spread in 283 

projections of 𝑑𝑇$/𝑑𝑇%& (Appendix B). 284 

 285 

3. Southern Ocean Cloud Feedback 286 

We next compare the cloud-phase scattering feedback to the overall 287 

temperature-mediated feedback over the Southern Ocean. Fig. 3 shows the 288 

feedback components as a function of CTP, 𝜏, and phase. The temperature-289 

mediated feedback includes a vertical dipole pattern from rising upper-290 

tropospheric ice clouds (Fig. 3a). This is qualitatively consistent with established 291 

energetic constraints: The average depth of the troposphere is limited to levels 292 

with appreciable clear-sky radiative cooling, which is constrained to temperatures 293 
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warmer than ~220 K by the nature of the water-vapor rotation bands (Thompson 294 

et al., 2017; Jeevanjee and Fueglistaler, 2020). Thus, as the atmosphere warms 295 

and isotherms rise, the highest ice clouds rise as well. A second dipole pattern 296 

shows that the top of low-level liquid clouds sinks as the atmosphere warms (Fig. 297 

3b). This cloud response has been reported in other satellite and field 298 

observations, but the physical cause is not fully understood (Huang et al., 2016; 299 

Mace et al., 2021). One possibility is that a warmer, more emissive free 300 

troposphere reduces cloud-top radiative cooling. This weakens turbulence and 301 

reduces the vertical development of boundary layer clouds (Eastman and Wood, 302 

2018). 303 

 In contrast to the temperature-mediated feedback, the cloud-phase 304 

scattering feedback has a strikingly different pattern (Fig. 3c-d). Throughout the 305 

troposphere the ice-cloud feedback is positive and the liquid-cloud feedback is 306 

negative, indicating an ice-to-liquid conversion. The feedback magnitude 307 

maximizes in the middle troposphere, where ice and liquid clouds both occur 308 

(Fig. 1a-b). It is not obvious from Fig. 3 how much the cloud-phase scattering 309 

feedback contributes to the total temperature-mediated feedback, but it is clear 310 

that other feedback mechanisms contribute as well. 311 

 The temperature-mediated and cloud-phase feedbacks can be compared 312 

more clearly by summing the components over the CTP dimension to remove 313 

dipole signals from vertical shifts in clouds. The prevailing signal of the 314 

temperature-mediated feedback for low-level clouds (CTP > 600 hPa) is an 315 

optical thinning of liquid cloud (Fig. 4a-b). Previous work suggests that this 316 

positive low-cloud optical depth feedback could be a consequence of reduced 317 

cloud-top radiative cooling, more frequent decoupling of clouds from the surface 318 

mixed layer, or more efficient drying from cloud-top entrainment (Terai et al., 319 

2019; Mace et al., 2021). Our results do not speak to the physical cause, but they 320 

do show that the cumulative effect of positive feedback mechanisms outweighs 321 

that of negative feedback mechanisms, including enhanced condensation in 322 

saturated updrafts and cloud-phase changes (Betts and Harshvardhan, 1987; 323 

Lutsko and Cronin, 2018). Indeed, the scattering component of cloud-phase 324 



Confidential manuscript submitted to AGU Advances 
 

 12 

feedback is negligible for low clouds because ice clouds rarely occur at this level 325 

(Fig. 4d-e; Fig. 1). 326 

 In contrast, the feedback from non-low clouds (CTP ≤ 600 hPa) has 327 

different characteristics. The temperature-mediated feedback includes an ice-to-328 

liquid conversion, and the cloud-phase scattering feedback has the same sign 329 

but larger magnitude (Fig. 4). This difference in magnitude may be associated 330 

with non-low clouds shifting upward as the atmosphere warms (Fig. 3a). As 331 

clouds shift upward they experience less warming and therefore a reduced ice-332 

to-liquid conversion compared to what would occur if they were to remain at fixed 333 

altitudes. The estimate of cloud-phase scattering feedback represents phase 334 

conversions with fixed cloud altitudes, while the estimate of temperature-335 

mediated feedback includes the effect of upward shifts in clouds. Despite this 336 

difference, the results consistently show that the cloud-phase scattering feedback 337 

is primarily confined to free-tropospheric clouds. 338 

 We next sum the feedback components over the optical depth dimension 339 

to determine the total feedback. Low clouds exert a significant positive 340 

temperature-mediated feedback that mostly arises from liquid clouds, and non-341 

low clouds exert counteracting ice and liquid feedbacks that sum to a near-zero 342 

value (Fig. 4c). The low-cloud component is largest, and thus the total feedback 343 

is positive (Fig. 5a). Low clouds dominate the mean cloud albedo over the 344 

Southern Ocean, so it is perhaps not surprising that they dominate the 345 

temperature-mediated feedback as well (Haynes et al., 2011). In contrast, the 346 

cloud-phase scattering feedback is mostly limited to non-low clouds, and it 347 

consists of ice and liquid components that cancel very closely (Fig. 4f, Fig. 5a). 348 

The total temperature-mediated feedback summed over all CTP-𝜏-phase 349 

components is significantly positive (0.65 ± 0.32 Wm-2K-1) and is an order of 350 

magnitude larger than the total cloud-phase scattering feedback (−0.02 ± 0.05 351 

Wm-2K-1). Thus, changes in cloud scattering properties arising from phase 352 

changes make a small contribution to the overall temperature-driven cloud 353 

feedback. 354 
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 The smallness of the cloud-phase scattering feedback is surprising given 355 

that it can be much larger in model simulations (Ceppi, Hartmann, and Webb, 356 

2016; Tan et al., 2016; Frey and Kay, 2018). To interpret this result, we 357 

decompose the feedback into contributions from changes in (1) optical depth; (2) 358 

single-scattering albedo 𝜔E, which is the probability that a photon-particle 359 

interaction results in scattering; and (3) asymmetry parameter 𝑔, which embodies 360 

scattering direction. The decomposition reveals that phase changes cause a 361 

negative optical depth feedback (Fig. 5b). This is consistent with the expectation 362 

that ice-to-liquid conversions reduce the average size of cloud particles, thereby 363 

increasing particle surface-area-to-volume ratio and hence the bulk optical depth. 364 

The decomposition also reveals an offsetting positive feedback from changes in 365 

𝑔 and 𝜔E. This component is mostly caused by changes in scattering direction: Ice 366 

particles typically backscatter more radiation than liquid droplets, so ice-to-liquid 367 

conversions enhance forward scattering and thereby reduce cloud albedo. The 368 

magnitude of this feedback component may be somewhat sensitive to the 369 

microscopic properties of cloud particles that are assumed when calculating the 370 

kernels, but the confidence intervals account for much of this uncertainty by 371 

incorporating particle-size uncertainty and using two radiative transfer schemes 372 

(Appendix B). The main interpretation is therefore robust: Ice-to-liquid 373 

conversions increase cloud optical depth and shift the scattering angles of cloud 374 

particles toward the forward direction. These counteracting feedback 375 

components make the overall cloud-phase scattering feedback small. 376 

All of these feedback values are inferred from observed natural variability, 377 

so they are contingent on the assumptions of the methodology and the limitations 378 

of the observations. However, we tested the sensitivity of the results to the most 379 

salient of these assumptions and limitations. For instance, the radiative kernel 380 

method assumes that clouds are either entirely liquid or entirely ice (Zelinka et 381 

al., 2012) based on observed cloud-top phase. Sensitivity to this assumption is 382 

tested by matching MODIS pixels with coincident radar-lidar measurements to 383 

distinguish ice, pure liquid, and mixed-phase clouds, then estimating the cloud-384 

phase scattering feedback while allowing for transitions between the three phase 385 
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categories. We also checked sensitivity to satellite retrieval bias from high solar 386 

zenith angle and multilayer clouds, and we checked sensitivity to observing 387 

platform and time period. The envelope of feedback uncertainty from the 388 

sensitivity tests is close to that of the main estimates (Appendix C). Thus, these 389 

assumptions and limitations do not affect the main results. 390 

 391 

4. Implications for Climate Sensitivity 392 

We next frame the results in the context of the existing literature to show 393 

their implications for climate sensitivity. A recent survey by Sherwood et al. 394 

(2020) identified high-latitude (40°-70°) low-cloud optical depth feedback as one 395 

of six primary components of global cloud feedback. Observational studies have 396 

argued that this feedback component could be positive (Tselioudis et al., 1992; 397 

Norris and Iacobellis, 2005; Huang et al., 2016; Terai et al., 2016; Tan et al., 398 

2019; Mace et al., 2021; Myers et al., 2021) or negative (McCoy et al., 2014b; 399 

Ceppi, McCoy, and Hartmann, 2016). Sherwood et al. (2020) therefore 400 

established a consensus estimate with a central value of 0 Wm-2K-1 and a 401 

confidence interval wide enough to include positive and negative feedback 402 

values estimated by Terai et al. (2016) and Ceppi, McCoy, and Hartmann (2016). 403 

The consensus feedback was then combined with other evidence to estimate 404 

global cloud feedback and the equilibrium response of global-mean surface 405 

temperature to doubling atmospheric CO2. The temperature response was 406 

represented by effective climate sensitivity (Gregory et al., 2004). 407 

 Our findings support a different interpretation of high-latitude low-cloud 408 

optical depth feedback. First, we find that the feedback is positive over the 409 

Southern Ocean (0.52 ± 0.23 Wm-2K-1 over ice-free ocean between 40°-70°S). 410 

Second, we find that the negative feedback estimate on which the consensus 411 

value is based is probably biased because it does not control for the confounding 412 

influence of wind and boundary layer inversion strength (Appendix C). Third, our 413 

results rule out the possibility of a substantial negative optical depth feedback 414 

from phase changes in Southern Ocean low clouds (Fig. 4). Collectively these 415 
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findings indicate that high-latitude low-cloud optical depth feedback is likely 416 

positive. 417 

 We investigate the global implications of this result using the framework of 418 

Sherwood et al. (2020). Following their analysis, we assume that the high-latitude 419 

low-cloud optical depth feedback in the Southern Hemisphere is dominated by 420 

ocean regions and is 3.8 times larger than the corresponding feedback in the 421 

Northern Hemisphere. These assumptions are based on the analysis of Terai et 422 

al. (2016). We then estimate effective climate sensitivity by performing the 423 

“Baseline” calculation of Sherwood et al. (2020) with our estimate of high-latitude 424 

low-cloud optical depth feedback in place of their consensus value. Our feedback 425 

constraint slightly narrows the probability distribution of global cloud feedback, 426 

and it increases the modal value from 0.45 Wm-2K-1 to 0.55 Wm-2K-1 (Fig. 6a). 427 

Consequently, the 66% confidence range for climate sensitivity increases from 428 

2.55-3.88 K to 2.63-4.02 K (Fig. 6b). Our observational constraint thus shifts the 429 

bounds of the “likely” range of climate sensitivity by about +0.1 K. 430 

 431 

5. Conclusion 432 

Southern Ocean clouds have large radiative effects that shape global 433 

(Hwang and Frierson, 2013; Kay et al., 2016; Hawcroft et al., 2017). They are 434 

also especially difficult to simulate, so observations offer a valuable alternative 435 

path toward understanding their radiative feedbacks (Trenberth and Fasullo, 436 

2010). Here we use MODIS observations to infer Southern Ocean SW cloud 437 

feedback as a function of cloud-top phase. The temperature-mediated feedback 438 

includes contributions from an optical thinning of low clouds and an ice-to-liquid 439 

conversion in free-tropospheric clouds (Fig. 3, Fig. 4). The low-cloud feedback 440 

dominates, causing the overall temperature-mediated feedback to be positive 441 

(Fig. 5). These constraints imply a higher climate sensitivity than a recent 442 

consensus estimate of cloud feedback (Fig. 6). 443 

 In addition to constraining SW cloud feedback, another key goal is to 444 

decompose the feedback into contributions from particular physical mechanisms. 445 

Such a decomposition is essential for understanding the climate response to 446 
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external forcing. Here we leverage the new feedback methodology to isolate one 447 

mechanism: the cloud-phase scattering feedback. This mechanism increases 448 

cloud optical depth and shifts the scattering angles of cloud particles toward the 449 

forward direction. The resulting feedback components closely cancel, and thus 450 

the cloud-phase scattering feedback is an order of magnitude smaller than the 451 

overall temperature-mediated feedback (Fig. 5). These results do not preclude 452 

the possibility of a substantial cloud-phase feedback from cloud-lifetime changes 453 

(Mülmenstädt et al., 2021), nor do they reveal which mechanisms dominate the 454 

temperature-mediated feedback. However, the results do reveal a robust 455 

constraint on Southern Ocean cloud feedback: Although the dominant feedback 456 

mechanisms remain elusive, it is very unlikely that the cloud-phase scattering 457 

feedback is one of them. 458 

 459 

Appendix A: Validation of Radiative Kernels 460 

SW cloud radiative effect (CRE) is defined as the difference between all-461 

sky and clear-sky SW flux at the top of the atmosphere. We validate the radiative 462 

kernels by using them to predict monthly anomalies of SW CRE:  463 

	 SW	CRE67897: =-𝑐$𝐾$
$

	 (3)	

where 𝑖 runs over all MODIS histogram bins, 𝑐$ is the monthly cloud-fraction 464 

anomaly reported by MODIS, and 𝐾$ is the kernel. SW CREkernel is compared with 465 

observed values from Clouds and the Earth’s Radiant Energy System satellite 466 

data (SW CRECERES; Loeb et al. 2018). Monthly SW CRE anomalies are 467 

averaged over one-year intervals for consistency with the annual-mean SW 468 

cloud-feedback estimates, and SW CREkernel is regressed on SW CRECERES 469 

using all data from the study domain. The regression agrees very well with 470 

conditional means of SW CREkernel as a function of SW CRECERES, indicating that 471 

linear regression accurately represents bias of the kernel method (Fig. A1). If 𝑚 472 

is the regression slope, then 𝑚 − 1 is the bias of the magnitude of SW CREkernel. 473 

We find that 𝑚 = 1.05 ± 0.04 (95% confidence interval). This indicates that the 474 

kernels will overestimate the magnitude of SW cloud feedback by 5 ± 4%. 475 
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 476 

Appendix B: Uncertainty 477 

Cloud feedback is inferred from observed cloud-temperature relationships, 478 

radiative kernels, and model projections of CO2-forced warming, so all three 479 

terms contribute to feedback uncertainty. These uncertainty components are 480 

independent, so they are calculated separately and then combined. We illustrate 481 

the uncertainty analysis by describing the calculation of the 95% confidence 482 

interval for the mean temperature-mediated feedback for both phases. 483 

 The first source of feedback uncertainty arises from uncertainty in cloud-484 

temperature regression slopes. For a given latitude and month, the standard 485 

error of the feedback summed over all MODIS histogram bins is estimated by 486 

δ = W--X𝜎$𝐾$
𝑑𝑇$
𝑑𝑇%&

Z	[𝜎;𝐾;
𝑑𝑇;
𝑑𝑇%&

\ 𝑟$,; 	
;$

 487 

where 𝑖 and 𝑗 run over all histogram bins; 𝜎$ is the standard error of regression 488 

slope 𝜕𝑐$/𝜕𝑇$; 𝑟$,; is the correlation between cloud fraction in bins 𝑖 and 𝑗; and 489 

𝑑𝑇/𝑑𝑇%& is the CMIP6 multi-model mean value. The δ terms are combined to 490 

account for averaging over the seasonal cycle: 491 

〈δ〉 =
1
12W-δ&%

&

 492 

where 𝑚 runs over all calendar months. The 〈δ〉 terms are then combined further 493 

to account for averaging over latitude: 494 

𝛅 = W-〈δ〉+%𝑤+%
+

-𝑤+
+

c  495 

where 𝑙 runs over all latitude bins and 𝑤+ is a weighting factor that is proportional 496 

to ocean area in bin 𝑙. Finally, the confidence interval is scaled to account for the 497 

effective degrees of freedom. Serial correlation is diagnosed from SW CRE as 498 

defined by equation (3). The ratio of nominal to effective spatial degrees of 499 

freedom, 𝑁3/𝑁3∗, is calculated from equation 5 of Bretherton et al. (1999), and the 500 

ratio of nominal to effective temporal degrees of freedom is estimated by 501 
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𝑁</𝑁<∗ =
1 + 𝑟
1 − 𝑟 502 

where 𝑟 is the lag-1 autocorrelation of SW CRE. 𝑁</𝑁<∗ is calculated for every 503 

spatial gridpoint and then averaged. The 95% confidence interval for the mean 504 

feedback due to regression-slope uncertainty is 505 

Δ* = 𝛽𝛅W
𝑁3
𝑁3∗

𝑁<
𝑁<∗

 506 

where 𝛽 is the critical value of a Student’s t test at the 95% confidence level 507 

using 𝑁3∗𝑁<∗ − 6 degrees of freedom. 508 

 The second source of uncertainty arises from cloud microphysical 509 

properties assumed when calculating the radiative kernels. We assume a mean 510 

and 95% confidence interval for cloud-droplet effective radius of 14 ± 3	𝜇m, 511 

which spans the range of values throughout the climatological seasonal cycle 512 

from three MODIS-derived products (McCoy et al., 2014a). We also assume a 513 

mean and 95% confidence interval for ice-crystal effective radius of 35 ± 10	𝜇m 514 

based on satellite radar-lidar observations (McCoy et al., 2014a). Finally, we use 515 

two ice optical property schemes that are based on different observed particle-516 

size distributions (Fu, 1996; Ebert and Curry, 1992). Radiative kernels are 517 

calculated with the upper and lower bounds of particle size and with both ice 518 

optical property schemes, and feedbacks are recalculated with the modified 519 

kernels. Variations in feedback values from the kernel modifications are added in 520 

quadrature to determine their cumulative contribution to cloud-feedback 521 

uncertainty, Δ%. 522 

 The final source of uncertainty arises from the spread in model projections 523 

of CO2-forced warming. To estimate this uncertainty we calculate feedbacks with 524 

𝑑𝑇/𝑑𝑇%& from each of the 34 CMIP6 models. The second-largest and second-525 

smallest feedback values are used as bounds for the 95% confidence interval, 526 

Δ=. 527 

 After computing the three uncertainty terms, the 95% confidence interval 528 

for the mean temperature-mediated feedback Δ'.< is calculated by adding the 529 

terms in quadrature: 530 
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Δ'.< = fΔ*% + Δ%% + Δ=%. 531 

Confidence intervals for other feedback components are calculated similarly. 532 

 533 

Appendix C: Bias 534 

Here we investigate sensitivity of the results to several assumptions of the 535 

methodology and limitations of the observations. We consider the meteorological 536 

predictors used in the regression model, the time period of analysis, and the 537 

observing platform. We also investigate satellite retrieval bias from high solar 538 

zenith angle, multilayer clouds, liquid-topped mixed-phase clouds, and partly 539 

cloudy pixels. The sensitivity tests are described below and summarized in Fig. 540 

A2. 541 

 542 

Meteorological Predictors 543 

 Three studies including ours have reported estimates and confidence 544 

intervals for Southern Ocean SW cloud feedback inferred from MODIS data. 545 

Terai et al. (2016, hereafter T16) estimated that the mean SW low-cloud optical 546 

depth feedback between 40°-70°S is 0.38 ± 0.25 Wm-2K-1; Ceppi, McCoy, and 547 

Hartmann (2016, hereafter CMH16) estimated that the mean temperature-548 

mediated feedback between 45°-60°S is −0.76 ± 0.82 Wm-2K-1 relative to local 549 

warming between 500-850 hPa; and we estimate that the mean temperature-550 

mediated feedback between 40°-60°S is 0.65 ± 0.32 Wm-2K-1. The results of our 551 

study and of T16 are consistent with one another, and both are inconsistent with 552 

the results of CMH16. Here we attempt to reconcile this discrepancy. 553 

One difference among the studies is that each one treats confounding 554 

meteorological factors differently. Our study controls for the monthly three-555 

dimensional wind field and boundary-layer inversion strength. T16 include 556 

changes in inversion strength in their feedback estimate and screen the data for 557 

low clouds, which controls for most of the confounding influence of large-scale 558 

vertical motion. CMH16 do not control for potential confounding factors. To check 559 

if this matters, we align our analysis with that of CMH16 by estimating feedbacks 560 

using only temperature as a predictor. The temperature-only model predicts a 561 
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SW temperature-mediated feedback that is significantly more negative (Fig. 562 

A2a). Furthermore, we also check the results by applying the method of CMH16 563 

to our cloud histograms and kernels. This yields a mean temperature-mediated 564 

feedback of −0.49 ± 0.82 Wm-2K-1 between 45°-60°S relative to local warming 565 

between 500-850 hPa, which is consistent with the value of −0.76 ± 0.82 Wm-2K-566 
1 reported by CMH16. This result shows that the treatment of confounding 567 

meteorological factors is likely the main reason for the discrepancy among the 568 

studies. 569 

The relative importance of different confounding meteorological factors 570 

can be estimated based on their correlation with temperature. For a given 571 

MODIS histogram bin 𝑖, a confounding meteorological variable 𝑥$ will bias the 572 

estimate of the temperature-mediated cloud-feedback from the temperature-only 573 

regression model by an amount 𝐹!",>! given by 574 

𝐹!",>! =
𝜕𝑐$
𝜕𝑥$

𝑑𝑥$
𝑑𝑇$

𝐾$
𝑑𝑇$
𝑑𝑇%&

. 575 

Based on this relationship, we find that estimated inversion strength and 576 

meridional wind are the two most important confounding factors. Failure to 577 

control for these variables will significantly bias the estimate of the overall 578 

temperature-mediated cloud feedback and potentially introduce a sign error. 579 

Thus, in our view, the feedback estimates of CMH16 are not reliable. 580 

 581 

Time Period 582 

 Our analysis assumes that extratropical cloud-temperature relationships 583 

will not substantially change as the climate responds to anthropogenic radiative 584 

forcing. This assumption has been verified in many model projections of 585 

anthropogenic climate change (Gordon and Klein, 2014; Terai et al., 2016; 586 

Ceppi, McCoy, and Hartmann, 2016), though it does not hold in every model 587 

(Bjordal et al., 2020). To check the assumption further, we compare temperature-588 

mediated feedbacks inferred from the first eight years (2003-2010) and the final 589 

eight years (2012-2019) of the 17-year MODIS record. The feedbacks inferred 590 

from the two periods are similar to one another and to the main estimate (Fig. 591 
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A2b). This provides some additional support for the assumption of time-invariant 592 

cloud-temperature relationships, at least for decadal climate changes. 593 

 594 

Observing Platform 595 

 Our main analysis infers feedbacks using MODIS data from the Aqua 596 

satellite. We also check the results using MODIS data from the Terra satellite 597 

because MODIS-Terra is calibrated differently and acquires data in the morning 598 

rather than the afternoon. The temperature-mediated feedbacks inferred from 599 

MODIS-Aqua and MODIS-Terra are similar, so the results are not sensitive to the 600 

observing platform (Fig. A2c). 601 

 602 

Solar Zenith Angle Bias 603 

 In addition to temporal sampling limitations, MODIS data have systematic 604 

biases that occur during certain conditions. The first bias we consider is 605 

associated with solar zenith angle (SZA). MODIS cloud retrievals assume that 606 

radiative transfer is plane parallel and that each pixel is unaffected by the 607 

radiative transfer in its surroundings. These assumptions break down when SZA 608 

> 65°, which biases the cloud data (Grosvenor and Wood, 2014). We investigate 609 

this bias by screening the data based on SZA. Latitude-month combinations are 610 

considered to have “good” data if SZA < 65° at the data acquisition time for all 611 

pixel-level measurements, and latitude-month combinations are considered to 612 

have “mixed” data otherwise. Sensitivity to SZA bias is checked by recalculating 613 

the temperature-mediated feedback using only “good” data. Regression slopes 614 

from latitude-month combinations with “mixed” data are replaced with regression 615 

slopes from the same latitude and the closest calendar month with “good” data. 616 

When two months are equally close, then their regression slopes are averaged. 617 

The resulting feedback estimate is similar to the main estimate, indicating that 618 

SZA bias does not influence the results (Fig. A2d). This is probably because the 619 

bias does not affect data during spring and summer, when insolation is largest. 620 

 621 

Multilayer Clouds 622 
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Other MODIS biases are especially relevant to the cloud-phase scattering 623 

feedback. For instance, the presence of multilayer clouds can cause errors in the 624 

retrievals of CTP and phase. We investigate this bias using the MODIS multilayer 625 

quality assurance flag, which identifies pixels that are suspected to be adversely 626 

affected by multilayer clouds. The proportion of cloudy scenes affected by 627 

multilayer clouds is  628 

𝑀 = 𝑁?@/𝑁-+ABC 629 

where 𝑁?@ is the number of pixels with potentially problematic multilayer clouds 630 

and 𝑁-+ABC is the total number of cloudy pixels. For each latitude-calendar month 631 

pairing, high-𝑀 and low-𝑀 composites are created from data with above-median 632 

and below-median values of 𝑀, respectively. The cloud-phase scattering 633 

feedback is then estimated separately for the two composites. The 𝑀 difference 634 

between the high and low composites is 2.4 times smaller than the mean value of 635 

𝑀 for the whole dataset, so the high-𝑀-minus-low-𝑀 feedback difference is 636 

scaled by a factor of 2.4 to estimate the feedback bias from multilayer clouds. 637 

Even after applying the scaling factor, the high-𝑀-minus-low-𝑀 difference is very 638 

small (Fig. A2e). Thus, multilayer clouds do not bias the estimate of cloud-phase 639 

scattering feedback.  640 

 641 

Liquid-topped Mixed-phase Clouds 642 

Another data limitation that is relevant to cloud-phase feedback is the fact 643 

that MODIS retrieves phase at cloud top, so it cannot distinguish liquid-topped 644 

mixed-phase (LTMP) clouds from pure liquid clouds. Our analysis therefore 645 

treats these clouds as a single phase category. If some LTMP clouds convert to 646 

pure-liquid clouds as they warm, then the associated feedback component would 647 

not be included in our estimate of cloud-phase scattering feedback. We therefore 648 

need to estimate this component using other methods. 649 

LTMP clouds are investigated using MODIS data and radar-lidar data from 650 

the CloudSat and CALIPSO satellites. Footprint data are analyzed from the 651 

CloudSat MOD06-1KM-AUX and 2B-CLDCLASS-LIDAR datasets from June 652 

2006 through April 2011 (Sassen et al., 2008; Zhang et al., 2010). The radar-lidar 653 



Confidential manuscript submitted to AGU Advances 
 

 23 

profiles detect phase below cloud top and label clouds as either “liquid”, “ice”, or 654 

“mixed” phase. Each profile is matched with the collocated MODIS pixel and the 655 

adjacent pixel on either side in the across-track direction. MODIS pixels are then 656 

gridded by latitude, longitude, and month, and monthly cloud-fraction histograms 657 

are calculated as a function of CTP, 𝜏, and phase. 658 

 Although radar and lidar provide valuable information, they also have 659 

sampling limitations that motivate minor methodological changes. Specifically, 660 

the radar and lidar are nadir-staring instruments, so all of the collocated MODIS 661 

pixels are viewed at nadir. These data differ from the full MODIS dataset 662 

because of viewing angle dependencies (Maddux et al., 2010). Furthermore, 663 

nadir sampling causes the number of MODIS pixels to vary by several orders of 664 

magnitude between gridboxes, which is problematic for linear regression. We 665 

accommodate this issue by calculating 𝜕𝑃+$,/𝜕𝑇 by compositing. For each CTP-666 

latitude-calendar month combination, warm and cold composites are created 667 

from the data with above-median and below-median temperature anomalies. 668 

𝜕𝑃+$,/𝜕𝑇 is then calculated from the warm-minus-cold composite difference of the 669 

mean values of 𝑃+$, and 𝑇 weighted by the number of pixels in each gridbox. 670 

Sampling uncertainty is then estimated by bootstrapping. Data are separated into 671 

blocks with dimensions of 10° latitude, 10° longitude, and 1 month so that each 672 

block has approximately one degree of freedom. Data blocks are randomly 673 

selected with replacement to create 1000 bootstrap samples of the observations, 674 

and cloud-phase scattering feedback is estimated from each sample. The 2.5 675 

and 97.5 percentiles of the feedback values are used as bounds for the 95% 676 

confidence interval associated with sampling uncertainty (Δ*). All other aspects of 677 

the cloud-phase feedback methodology are carried out as before. 678 

 Fig. A2f shows cloud-phase scattering feedback estimated by this method. 679 

The first two cases show the effects of the methodological and viewing geometry 680 

differences one at a time. The “Full FOV” case is the feedback estimated using 681 

the full MODIS dataset and calculating 𝜕𝑃+$,/𝜕𝑇	by compositing, and the “Nadir” 682 

case is similar except that it uses near-nadir MODIS data that are collocated with 683 

radar-lidar measurements. Feedbacks from these cases are statistically 684 



Confidential manuscript submitted to AGU Advances 
 

 24 

indistinguishable from one another and from the main estimate. Thus, the 685 

differences in methodology and viewing geometry do not significantly affect the 686 

results.  687 

 Having established the “Nadir” feedback, we now leverage the radar-lidar 688 

data to distinguish pure-liquid clouds from LTMP clouds. MODIS pixels that 689 

coincide with radar-lidar data are assigned to one of three phase categories: (1) 690 

“ice” when MODIS reports ice, (2) “pure liquid” when MODIS reports liquid and 691 

radar-lidar reports that the highest liquid-containing cloud is pure liquid, and (3) 692 

“LTMP” when MODIS reports liquid and radar-lidar reports that the highest liquid-693 

containing cloud is mixed phase or that all clouds are ice. The climatology of the 694 

cloud-fraction histograms for the three phases is shown in Fig. A3. As expected 695 

from previous work, pure-liquid clouds occur most often in the boundary layer, 696 

and LTMP clouds occur most often in the middle troposphere (Zhang et al., 2010; 697 

Mace et al., 2021). 698 

 The ability to distinguish pure-liquid and LTMP clouds facilitates a revised 699 

estimate of cloud-phase scattering feedback with three phase categories. For a 700 

given CTP bin, the proportion of total cloud fraction in each phase is: 701 

𝑃$-. =
𝐶$-.

𝐶$-. + 𝐶0+ + 𝐶@D?E
	702 

𝑃0+ =
𝐶0+

𝐶$-. + 𝐶0+ + 𝐶@D?E
 703 

𝑃@D?E =
𝐶@D?E

𝐶$-. + 𝐶0+ + 𝐶@D?E
 704 

where the subscripts “ice”, “pl”, and “LTMP” represent ice, pure liquid, and LTMP 705 

phases, respectively. We calculate 𝜕𝐶$-./𝜕𝑇, 𝜕𝐶0+/𝜕𝑇, and 𝜕𝐶@D?E/𝜕𝑇 and 706 

partition the values among the 𝜏 bins similarly to the main methodology. Finally, 707 

liquid condensate in LTMP clouds is assumed to be radiatively dominant over ice 708 

(Shupe et al., 2008), so the liquid-cloud kernel is used to calculate feedbacks for 709 

LTMP clouds. This method accounts for feedbacks that arise from phase 710 

transitions between any of the three categories, so it includes the component 711 

from LTMP-to-pure-liquid transitions that is missing from the main analysis. 712 
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The resulting feedback estimate is shown by the “Nadir w/ LTMP” case in 713 

Fig. A2f. The estimate is consistent with the first two cases and with the main 714 

estimate. Thus, the fact the MODIS is unable to distinguish LTMP clouds from 715 

pure liquid clouds does not affect the main conclusions. The vertical separation 716 

between LTMP and pure-liquid clouds is probably a key reason why the results 717 

are not sensitive to the treatment of LTMP clouds (Fig. A3). 718 

 719 

Partly Cloudy Pixels 720 

 The final data limitation we consider is the fact that MODIS excludes partly 721 

cloudy pixels when compiling monthly histograms. This could introduce a 722 

sampling bias if cloud elements that entirely cover pixels respond to warming 723 

differently than cloud elements that partially cover pixels. Fully and partly cloudy 724 

pixels make up 70.2% and 5.9% of the observations, respectively, and the partly 725 

cloudy cases include 5.7% liquid clouds and 0.2% ice clouds. The partly cloudy 726 

pixels are probably mostly associated with the edges of liquid clouds in the 727 

boundary layer, where the estimated cloud-phase scattering feedback is small. 728 

Thus, it is unlikely that excluding partly cloudy pixels affects the estimate of 729 

cloud-phase scattering feedback. 730 

 731 

Acknowledgements 732 

We thank Tim Carlsen and Nick Lutsko for helpful discussions and Peter 733 

Blossey for sharing the radiative transfer code. C.J.W. was supported by the 734 

NOAA Climate and Global Change Postdoctoral Fellowship Program, 735 

administered by UCAR's Cooperative Programs for the Advancement of Earth 736 

System Science (CPAESS) under award #NA18NWS4620043B. C.J.W. and 737 

J.R.N. were also supported by NASA under grant #80NSSC18K1020. 738 

 739 

Data and Code Availability 740 

The datasets used in this study include (1) MODIS Collection 6 versions 741 

MYD08_M3 and MOD08_M3; (2) ERA5 reanalysis; (3) Clouds and the Earth’s 742 

Radiant Energy System (CERES) Energy Balanced and Filled Edition 4.1; (4) 743 



Confidential manuscript submitted to AGU Advances 
 

 26 

CloudSat data products 2B-CLDCLASS-LIDAR and MOD06-1KM-AUX version 744 

P1_R05; and (5) CMIP6 model output. These data are publicly available at 745 

https://earthdata.nasa.gov/, https://cds.climate.copernicus.eu/, 746 

https://ceres.larc.nasa.gov/data/, http://www.cloudsat.cira.colostate.edu/, and 747 

https://esgf-node.llnl.gov/projects/cmip6/, respectively. The radiative transfer 748 

model used in this study is available at http://rtweb.aer.com/rrtm_frame.html, and 749 

the code for the climate-sensitivity analysis is available at 750 

https://doi.org/10.5281/zenodo.3945276. MATLAB code used to process data is 751 

available from the corresponding author upon request. The feedback estimates 752 

are listed in Table S3 for reproducibility.  753 



Confidential manuscript submitted to AGU Advances 
 

 27 

References 754 

Armour, K., Marshall, J., Scott, J., Donohoe, A., & Newsom, E. R. (2016). 755 

Southern Ocean warming delayed by circumpolar upwelling and 756 

equatorward transport. Nature Geoscience, 9, 549–554. 757 

https://doi.org/10.1038/ngeo2731 758 

Betts, A. K., and Harshvardhan (1987). Thermodynamic constraint on the cloud 759 

liquid water feedback in climate models, Journal of Geophysical Research: 760 

Atmospheres, 92( D7), 8483– 8485, doi:10.1029/JD092iD07p08483 761 

Bjordal, J., Storelvmo, T., Alterskjær, K., & Carlsen, T. (2020). Equilibrium 762 

climate sensitivity above 5 °C plausible due to state-dependent cloud 763 

feedback. Nature Geoscience, 13, 718–721. 764 

https://doi.org/10.1038/s41561-020-00649-1 765 

Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., & Bladé, I. 766 

(1999). The Effective Number of Spatial Degrees of Freedom of a Time-767 

Varying Field. Journal of Climate, 12(7), 1990-2009. 768 

https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2 769 

Ceppi, P., & Hartmann, D. L. (2015). Connections Between Clouds, Radiation, 770 

and Midlatitude Dynamics: a Review. Current Climate Change 771 

Reports, 1, 94–102. https://doi.org/10.1007/s40641-015-0010-x 772 

Ceppi, P., Hartmann, D. L., & Webb, M. J. (2016). Mechanisms of the Negative 773 

Shortwave Cloud Feedback in Middle to High Latitudes. Journal of 774 

Climate, 29(1), 139-157. https://doi.org/10.1175/JCLI-D-15-0327.1 775 

Ceppi, P., McCoy, D. T., & Hartmann, D. L. (2016). Observational evidence for a 776 

negative shortwave cloud feedback in middle to high latitudes. Geophysical 777 

Research Letters, 43, 1331–1339, doi:10.1002/2015GL067499 778 

Clough, S. A., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., 779 

Boukabara, S., & Brown, P. D. (2004). Atmospheric radiative transfer 780 

modeling: a summary of the AER codes. Journal of Quantitative 781 

Spectroscopy and Radiative Transfer, 91, 233-244. 782 

https://doi.org/10.1016/j.jqsrt.2004.05.058 783 



Confidential manuscript submitted to AGU Advances 
 

 28 

Eastman, R., & Wood, R. (2018). The Competing Effects of Stability and 784 

Humidity on Subtropical Stratocumulus Entrainment and Cloud Evolution 785 

from a Lagrangian Perspective, Journal of the Atmospheric Sciences, 75(8), 786 

2563-2578. https://doi.org/10.1175/JAS-D-18-0030.1 787 

Ebert, E. E., & Curry, J. A. (1992). A parameterization of ice cloud optical 788 

properties for climate models. Journal of Geophysical Research: 789 

Atmospheres, 97(D4), 3831–3836, doi:10.1029/91JD02472 790 

Frey, W. R., & Kay, J. E. (2018). The influence of extratropical cloud phase and 791 

amount feedbacks on climate sensitivity. Climate Dynamics, 50, 3097–3116 792 

https://doi.org/10.1007/s00382-017-3796-5 793 

Fu, Q. (1996). An Accurate Parameterization of the Solar Radiative Properties of 794 

Cirrus Clouds for Climate Models. Journal of Climate, 9(9), 2058-2082. 795 

https://doi.org/10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2 796 

Gordon, N. D., & Klein, S. A. (2014). Low-cloud optical depth feedback in climate 797 

models. Journal of Geophysical Research: Atmospheres, 119, 6052– 6065, 798 

doi:10.1002/2013JD021052 799 

Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe, 800 

R. B., et al. (2004). A new method for diagnosing radiative forcing and 801 

climate sensitivity. Geophysical Research Letters, 31, L03205, 802 

doi:10.1029/2003GL018747 803 

Grosvenor, D. P. & Wood, R. (2014). The effect of solar zenith angle on MODIS 804 

cloud optical and microphysical retrievals within marine liquid water clouds. 805 

Atmospheric Chemistry and Physics, 14, 7291–7321, 806 

https://doi.org/10.5194/acp-14-7291-2014 807 

Hartmann, D. L. (2016). Global Physical Climatology Second Edition. Academic 808 

Press. 809 

Hawcroft, M., Haywood, J. M., Collins, M., Jones, A., Jones, A. C., & Stephens, 810 

G. (2017). Southern Ocean albedo, inter-hemispheric energy transports and 811 

the double ITCZ: global impacts of biases in a coupled model. Climate 812 

Dynamics 48, 2279–2295. https://doi.org/10.1007/s00382-016-3205-5 813 



Confidential manuscript submitted to AGU Advances 
 

 29 

Haynes, J. M., Jakob, C., Rossow, W. B., Tselioudis, G., & Brown, J. (2011). 814 

Major Characteristics of Southern Ocean Cloud Regimes and Their Effects 815 

on the Energy Budget. Journal of Climate, 24(19), 5061-5080. 816 

https://doi.org/10.1175/2011JCLI4052.1 817 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, 818 

J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal 819 

Meteorological Society, 146, 1999– 2049. https://doi.org/10.1002/qj.3803 820 

Huang, Y., Siems, S. T., Manton, M. J., Rosenfeld, D., Marchand, R., 821 

McFarquhar, G. M., & Protat, A. (2016). What is the Role of Sea Surface 822 

Temperature in Modulating Cloud and Precipitation Properties over the 823 

Southern Ocean? Journal of Climate, 29(20), 7453-7476. 824 

https://doi.org/10.1175/JCLI-D-15-0768.1 825 

Hwang, Y. T., & Frierson, D. M. W. (2013). Link between the double-Intertropical 826 

Convergence Zone problem and cloud biases over the Southern Ocean. 827 

Proceedings of the National Academy of Sciences of the U.S.A. 110(13), 828 

4935–4940. https://doi.org/10.1073/pnas.1213302110 829 

Jeevanjee, N., & Fueglistaler, S. (2020). Simple Spectral Models for Atmospheric 830 

Radiative Cooling. Journal of the Atmospheric Sciences, 77(2), 479-831 

497. https://doi.org/10.1175/JAS-D-18-0347.1 832 

Kay, J. E., Wall, C. J., Yettella, V., Medeiros, B., Hannay, C., Caldwell, P., & Bitz, 833 

C. (2016). Global Climate Impacts of Fixing the Southern Ocean Shortwave 834 

Radiation Bias in the Community Earth System Model (CESM). Journal of 835 

Climate, 29(12), 4617-4636. https://doi.org/10.1175/JCLI-D-15-0358.1 836 

Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G., et al. 837 

(2018). Clouds and the Earth’s Radiant Energy System (CERES) Energy 838 

Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data 839 

Product. Journal of Climate, 31(2), 895-918. https://doi.org/10.1175/JCLI-D-840 

17-0208.1 841 

Lutsko, N. J. & Cronin, T. W. (2018). Increase in precipitation efficiency with 842 

surface warming in radiative-convective equilibrium. Journal of Advances in 843 



Confidential manuscript submitted to AGU Advances 
 

 30 

Modeling Earth Systems, 10, 2992– 3010. 844 

https://doi.org/10.1029/2018MS001482  845 

Lutsko, N. J., Popp, M., Nazarian, R. H., & Albright, A. L. (2021). Emergent 846 

constraints on regional cloud feedbacks. Geophysical Research Letters, 48, 847 

e2021GL092934. https://doi.org/10.1029/2021GL092934 848 

Mace, G. G., Protat, A., Humphries, R. S., Alexander, S. P., McRobert, I. 849 

M., Ward, J., et al. (2021). Southern Ocean cloud properties derived from 850 

CAPRICORN and MARCUS data. Journal of Geophysical Research: 851 

Atmospheres, 126, e2020JD033368. https://doi.org/10.1029/2020JD033368 852 

Maddux, B. C., Ackerman, S. A., & Platnick, S. (2010). Viewing Geometry 853 

Dependencies in MODIS Cloud Products. Journal of Atmospheric and 854 

Oceanic Technology, 27(9), 1519-1528. 855 

https://doi.org/10.1175/2010JTECHA1432.1 856 

Marchant, B., Platnick, S., Meyer, K., Arnold, G. T., & Riedi, J. (2016). MODIS 857 

Collection 6 shortwave-derived cloud phase classification algorithm and 858 

comparisons with CALIOP. Atmospheric Measurement Techniques, 9, 859 

1587–1599, https://doi.org/10.5194/amt-9-1587-2016 860 

McCoy, D. T., Field, P., Bodas-Salcedo, A., Elsaesser, G. S., & Zelinka, M. D. 861 

(2020). A Regime-Oriented Approach to Observationally Constraining 862 

Extratropical Shortwave Cloud Feedbacks. Journal of Climate, 33(23), 863 

9967-9983. https://doi.org/10.1175/JCLI-D-19-0987.1 864 

McCoy, D. T., Hartmann, D. L., & Grosvenor, D. P. (2014a). Observed Southern 865 

Ocean Cloud Properties and Shortwave Reflection. Part I: Calculation of 866 

SW Flux from Observed Cloud Properties, Journal of Climate, 27(23), 8836-867 

8857. https://doi.org/10.1175/JCLI-D-14-00287.1 868 

McCoy, D. T., Hartmann, D. L., & Grosvenor, D. P. (2014b). Observed Southern 869 

Ocean Cloud Properties and Shortwave Reflection. Part II: Phase Changes 870 

and Low Cloud Feedback. Journal of Climate, 27(23), 8858-8868. 871 

https://doi.org/10.1175/JCLI-D-14-00288.1 872 

Mülmenstädt, J., Salzmann, M., Kay, J. E., Zelinka, M. D., Ma, P., Nam, C., et al. 873 

(2021). An underestimated negative cloud feedback from cloud lifetime 874 



Confidential manuscript submitted to AGU Advances 
 

 31 

changes. Nature Climate Change, 11, 508–513. 875 

https://doi.org/10.1038/s41558-021-01038-1 876 

Myers, T. A., Scott, R. C., Zelinka, M. D., Klein, S. A., Norris, J. R., & Caldwell, P. 877 

M. (2021). Observational constraints on low cloud feedback reduce 878 

uncertainty of climate sensitivity. Nature Climate Change, 11, 501–507. 879 

https://doi.org/10.1038/s41558-021-01039-0 880 

Norris, J. R., & Iacobellis, S. F. (2005). North Pacific Cloud Feedbacks Inferred 881 

from Synoptic-Scale Dynamic and Thermodynamic Relationships. Journal 882 

of Climate, 18(22), 4862-4878. https://doi.org/10.1175/JCLI3558.1 883 

Platnick, S., Meyer, K., King, M. D., Wind, G., Amarasinghe, N., Marchant, B., et 884 

al. (2017). The MODIS Cloud Optical and Microphysical Products: 885 

Collection 6 Updates and Examples From Terra and Aqua. IEEE 886 

Transactions on Geoscience and Remote Sensing, 55(1), 502-525, 887 

doi:10.1109/TGRS.2016.2610522 888 

Sassen, K., Wang, Z., & Liu, D. (2008). Global distribution of cirrus clouds from 889 

CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 890 

Observations (CALIPSO) measurements. Journal of Geophysical Research: 891 

Atmospheres, 113, D00A12, doi:10.1029/2008JD009972 892 

Scott, R. C., Myers, T. A., Norris, J. R., Zelinka, M. D., Klein, S. A., Sun, M., & 893 

Doelling, D. R. (2020). Observed Sensitivity of Low-Cloud Radiative Effects 894 

to Meteorological Perturbations over the Global Oceans. Journal of 895 

Climate, 33(18), 7717-7734. https://doi.org/10.1175/JCLI-D-19-1028.1 896 

Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. 897 

M., Hargreaves, J. C., et al. (2020). An assessment of Earth's climate 898 

sensitivity using multiple lines of evidence. Reviews of Geophysics. 58, 899 

e2019RG000678. https://doi.org/10.1029/2019RG000678 900 

Shupe, M. D., Daniel, J. S., de Boer, G., Eloranta, E. W., Kollias, P., Long, C. N., 901 

et al. (2008). A Focus On Mixed-Phase Clouds, Bulletin of the American 902 

Meteorological Society, 89(10), 1549-1562. 903 

https://doi.org/10.1175/2008BAMS2378.1 904 



Confidential manuscript submitted to AGU Advances 
 

 32 

Stackhouse, P. W., Jr., & Stephens, G. L. (1991). A Theoretical and 905 

Observational Study of the Radiative Properties of Cirrus: Results from 906 

FIRE 1986. Journal of Atmospheric Sciences, 48(18), 2044-2059. 907 

https://doi.org/10.1175/1520-0469(1991)048<2044:ATAOSO>2.0.CO;2 908 

Storelvmo, T., Tan, I., & Korolev, A. V. (2015). Cloud Phase Changes Induced by 909 

CO2 Warming—a Powerful yet Poorly Constrained Cloud-Climate 910 

Feedback. Current Climate Change Reports, 1, 288–296. 911 

https://doi.org/10.1007/s40641-015-0026-2 912 

Tan, I., Oreopoulos, L., & Cho, N. (2019). The role of thermodynamic phase 913 

shifts in cloud optical depth variations with temperature. Geophysical 914 

Research Letters, 46, 4502– 4511. https://doi.org/10.1029/2018GL081590 915 

Tan, I., Storelvmo, T., & Zelinka, M. D. (2016). Observational constraints on 916 

mixed-phase clouds imply higher climate sensitivity. Science, 352, 224-227. 917 

doi:10.1126/science.aad5300 918 

Terai, C. R., Zelinka, M., & Klein, S. A. (2016). Constraining the low-cloud optical 919 

depth feedback at middle and high latitudes using satellite observations. 920 

Journal of Geophysical Research: Atmospheres, 121, 9696–9716, 921 

doi:10.1002/2016JD025233 922 

Terai, C. R., Zhang, Y., Klein, S. A., Zelinka, M. D., Chiu, J. C., & Min, 923 

Q. (2019). Mechanisms behind the extratropical stratiform low-cloud optical 924 

depth response to temperature in ARM site observations, Journal of 925 

Geophysical Research: Atmospheres, 124, 2127–926 

 2147. https://doi.org/10.1029/2018JD029359 927 

Thompson, D. W. J., Bony, S., & Li, W. (2017). Thermodynamic constraint on the 928 

depth of the global tropospheric circulation. Proceedings of the National 929 

Academy of Sciences of the USA, 114, 8181-8186. 930 

https://doi.org/10.1073/pnas.1620493114 931 

Trenberth, K. E., & Fasullo, J. T. (2010). Simulation of Present-Day and Twenty-932 

First-Century Energy Budgets of the Southern Oceans. Journal of 933 

Climate, 23(2), 440-454. https://doi.org/10.1175/2009JCLI3152.1 934 



Confidential manuscript submitted to AGU Advances 
 

 33 

Tselioudis, G., DelGenio, A. D., Kovari, W., Jr., & Yao, M. (1998). Temperature 935 

Dependence of Low Cloud Optical Thickness in the GISS GCM: 936 

Contributing Mechanisms and Climate Implications. Journal of 937 

Climate, 11(12), 3268-3281. https://doi.org/10.1175/1520-938 

0442(1998)011<3268:TDOLCO>2.0.CO;2 939 

Tselioudis, G., Rossow, W. B., & Rind, D. (1992). Global Patterns of Cloud 940 

Optical Thickness Variation with Temperature, Journal of Climate. 5(12), 941 

1484-1495. https://doi.org/10.1175/1520-942 

0442(1992)005<1484:GPOCOT>2.0.CO;2 943 

Wood, R., & Bretherton, C. S. (2006). On the Relationship between Stratiform 944 

Low Cloud Cover and Lower-Tropospheric Stability. Journal of 945 

Climate, 19(24), 6425-6432. https://doi.org/10.1175/JCLI3988.1 946 

Zelinka, M. D., Klein, S. A., & Hartmann, D. L. (2012). Computing and 947 

Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: 948 

Cloud Radiative Kernels. Journal of Climate, 25(11), 3715-3735. 949 

https://doi.org/10.1175/JCLI-D-11-00248.1 950 

Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. 951 

M., Ceppi, P., et al. (2020). Causes of higher climate sensitivity in CMIP6 952 

models. Geophysical Research Letters, 47, e2019GL085782. 953 

https://doi.org/10.1029/2019GL085782 954 

Zhang, D., Wang, Z., & Liu, D. (2010). A global view of midlevel liquid-layer 955 

topped stratiform cloud distribution and phase partition from CALIPSO and 956 

CloudSat measurements. Journal of Geophysical Research: 957 

Atmospheres, 115, D00H13, doi:10.1029/2009JD012143  958 



Confidential manuscript submitted to AGU Advances 
 

 34 

Figures 959 

 960 

 961 
 962 

Figure 1. Climatology of cloud fraction and SW cloud radiative kernels over the 963 

Southern Ocean. Ice- and liquid-cloud fraction are shown in (a-b), and the ice- 964 

and liquid-cloud kernels are shown in (c-d).  965 

ice cloud frac.

0  1  2.5 5  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

cl
ou

d 
fra

ct
io

n 
(%

)

liquid cloud frac.

0  2  4  6  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

cl
ou

d 
fra

ct
io

n 
(%

)

ice clouds - SW

0  1  2.5 5  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

W
 m

-2
 %

-1

liquid clouds - SW

0  2  4  6  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

W
 m

-2
 %

-1

ice cloud frac.

0  1  2.5 5  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

cl
ou

d 
fra

ct
io

n 
(%

)

liquid cloud frac.

0  2  4  6  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

cl
ou

d 
fra

ct
io

n 
(%

)

ice clouds - SW

0  1  2.5 5  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0
W

 m
-2

 %
-1

liquid clouds - SW

0  2  4  6  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

W
 m

-2
 %

-1

ice cloud frac.

0  1  2.5 5  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

cl
ou

d 
fra

ct
io

n 
(%

)

liquid cloud frac.

0  2  4  6  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

cl
ou

d 
fra

ct
io

n 
(%

)

ice clouds - SW

0  1  2.5 5  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

W
 m

-2
 %

-1

liquid clouds - SW

0  2  4  6  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

W
 m

-2
 %

-1

ice cloud frac.

0  1  2.5 5  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

cl
ou

d 
fra

ct
io

n 
(%

)

liquid cloud frac.

0  2  4  6  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

cl
ou

d 
fra

ct
io

n 
(%

)

ice clouds - SW

0  1  2.5 5  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0
W

 m
-2

 %
-1

liquid clouds - SW

0  2  4  6  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

W
 m

-2
 %

-1

(a) Ice-Cloud Fraction

1000

800

450

350

250

50

CT
P 

(h
Pa

)

600

150

0 1 2.5 5 10 15 20 30 50 150

(c) Ice-Cloud SW Kernel

1000

800

450

350

250

50

CT
P 

(h
Pa

)

600

150

0 1 2.5 5 10 15 20 30 50 150

τ

τ

%

0

3

4

5

2

1

W
 m

-2
 %

-1

-2

-1

-0.5

0

-1.5

0
τ

2 4 6 10 15 20 30 50 150

(b) Liquid-Cloud Fraction

1000

800

450

350

250

50

CT
P 

(h
Pa

)

600

150

0 2 4 6 10 15 20 30 50 150

(d) Liquid-Cloud SW Kernel

1000

800

450

350

250

50
CT

P 
(h

Pa
)

600

150

τ

ice cloud frac.

0  1  2.5 5  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

cl
ou

d 
fra

ct
io

n 
(%

)

liquid cloud frac.

0  2  4  6  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

cl
ou

d 
fra

ct
io

n 
(%

)

ice clouds - SW

0  1  2.5 5  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0
W

 m
-2

 %
-1

liquid clouds - SW

0  2  4  6  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

W
 m

-2
 %

-1

ice cloud frac.

0  1  2.5 5  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

cl
ou

d 
fra

ct
io

n 
(%

)

liquid cloud frac.

0  2  4  6  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

cl
ou

d 
fra

ct
io

n 
(%

)

ice clouds - SW

0  1  2.5 5  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0
W

 m
-2

 %
-1

liquid clouds - SW

0  2  4  6  10 15 20 30 50 150
optical depth

50  

150 

250 

350 

450 

600 

800 

1000

C
TP

 (h
Pa

)

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

W
 m

-2
 %

-1



Confidential manuscript submitted to AGU Advances 
 

 35 

 966 
Figure 2. Ratio of atmospheric warming over the Southern Ocean to global-967 

mean surface warming from CMIP6 projections forced by increasing atmospheric 968 

CO2 (𝑑𝑇/𝑑𝑇%&). The plotted values are spatial and temporal averages. Black 969 

dots show the multi-model mean, and gray bars show the inter-model range.  970 
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 971 
 972 

Figure 3. Southern Ocean SW cloud feedback as a function of cloud-top 973 

pressure (CTP), optical depth (𝜏), and phase. The temperature-mediated 974 

feedback is shown in (a-b), and the cloud-phase scattering feedback is shown in 975 

(c-d).  976 
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 977 
 978 

Figure 4. SW feedbacks from low clouds (CTP > 600 hPa) and non-low clouds 979 

(CTP ≤ 600 hPa). (a-b) Ice- and liquid-cloud components of the temperature-980 

mediated feedback as a function of optical depth (𝜏). (c) Feedback components 981 

summed over the 𝜏 dimension. The sum of the liquid- and ice-cloud components 982 

is labeled “Both”. Squares and lines show the mean and 95% confidence interval. 983 

(d-f) As in (a-c), but for the cloud-phase scattering feedback.  984 
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 986 

Figure 5. Mean SW cloud feedback over the Southern Ocean. (a) Temperature-987 

mediated feedback and cloud-phase scattering feedback for ice clouds, liquid 988 

clouds, and both phases combined. Lines and colored bars show the mean and 989 

95% confidence interval. (b) Cloud-phase scattering feedback decomposed into 990 

contributions from changes in cloud asymmetry parameter and single-scattering 991 

albedo (𝑔 + 𝜔E) and optical depth (𝜏).  992 
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 993 
 994 

Figure 6. Implications of the feedback constraints for climate sensitivity. The 995 

“Baseline” case shows values from a survey by Sherwood et al. (2020), and the 996 

“Update” case is similar except that it uses our estimate of high-latitude low-cloud 997 

optical depth feedback. Probability density functions (PDF) are shown for (a) 998 

global cloud feedback and (b) effective climate sensitivity. Horizontal lines in (b) 999 

show the 66% confidence range.  1000 
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 1001 
 1002 

Figure A1. Validation of the radiative kernels. Kernel-predicted SW cloud 1003 

radiative effect (SW CREkernel) is plotted as function of observed SW cloud 1004 

radiative effect (SW CRECERES). Grey dots are individual data points, and black 1005 

dots are conditional means of SW CREkernel as a function of SW CRECERES. The 1006 

red line and shading show the regression line and its 95% confidence interval. 1007 

The regression slope is in the top left corner.  1008 

-7.5 -5 -2.5 0 2.5 5 7.5
-7.5

-5

-2.5

0

2.5

5

7.5

SW CRECERES (W m-2)

SW
 C

RE
ke

rn
el 

 (W
 m

-2
)

m = 1.05  0.04±



Confidential manuscript submitted to AGU Advances 
 

 41 

 1009 
 1010 

Figure A2. Summary of the sensitivity tests. Panels (a-d) show the temperature-1011 

mediated cloud feedback, and panels (e-f) show the cloud-phase scattering 1012 

feedback. The values represent feedbacks from all cloud phases combined. Gray 1013 

lines and shading show the mean and 95% confidence interval for the main 1014 

estimate, and black squares and lines show the mean and 95% confidence 1015 

interval for the sensitivity tests. (a) Sensitivity to excluding meteorological 1016 

predictors. The “𝑇 only” case estimates the feedback using only temperature as a 1017 

predictor. (b) Sensitivity to time period. The “2003-2010” and “2012-2019” cases 1018 

estimate feedbacks using the earliest and latest eight-year periods of the record. 1019 

(c) Sensitivity to observing platform. The “Terra” case estimates the feedback 1020 

using data from the Terra satellite. (d) Sensitivity to bias from high solar zenith 1021 

angle (SZA). The “SZA < 65°” case estimates the feedback using MODIS data 1022 

that are not affected by bias from high SZA. (e) Sensitivity to multilayer clouds. 1023 

The “Low M” and “High M” cases estimate feedbacks using subsets that have 1024 

relatively low and high proportions of data with suspected multilayer-cloud bias. 1025 

(f) Sensitivity to the treatment of liquid-topped mixed-phase clouds (LTMP). The 1026 

“Full FOV” case estimates the feedback using the full MODIS dataset and 1027 

applying the compositing technique that is introduced to accommodate radar-1028 

lidar data (see text). The “Nadir” case is similar but uses the near-nadir subset of 1029 

MODIS pixels that are collocated with radar-lidar measurements. The “Nadir w/ 1030 

LTMP” case is similar to the “Nadir” case except that the feedback is estimated 1031 

using three phase categories: “ice”, “pure liquid”, and “LTMP”.  1032 
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 1033 
 1034 

Figure A3. Climatology of cloud fraction over the Southern Ocean from MODIS 1035 

data that are collocated with radar-lidar measurements from the CloudSat and 1036 

CALIPSO satellites. Panels (a-c) show ice, pure liquid, and liquid-topped mixed-1037 

phase (LTMP) clouds, respectively.  1038 
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1. Text S1 12 
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 14 

Introduction 15 

 This file includes an example of the procedure for estimating the scattering 16 

component of cloud-phase feedback (Text S1). It also contains tables that list the 17 

MODIS histogram bin boundaries (Table S1), the names of CMIP6 models 18 

analyzed in this study (Table S2), and the cloud-feedback estimates (Table S3). 19 

 20 

Text S1 21 

Here we show an example to illustrate the method for estimating the 22 

scattering component of cloud-phase feedback. The calculations are performed 23 

separately for each latitude, calendar month, and cloud-top pressure (CTP) bin, 24 

so we consider a single latitude-month-CTP combination from a hypothetical 25 

MODIS-like histogram. In this example the histogram has four optical depth (𝜏) 26 

bins for both liquid and ice clouds. Suppose that the climatological cloud fraction 27 

for the CTP-latitude-month combination is 28 

𝑐!"# = [2 2 4 1] 29 

𝑐"$% = [1 2 1 1] 30 

in units of %. The climatological total liquid- and ice-cloud fractions are 31 

𝐶!"# =*𝑐!"#,' = 9%;
(

')*

 32 

𝐶"$% =*𝑐"$%,! = 5%
(

!)*

. 33 

The proportion of liquid cloud in the CTP bin, 𝑃!"#, is then regressed on the 34 

meteorological predictors. Suppose that the regression analysis finds that 35 

𝜕𝑃!"#/𝜕𝑇 = 0.04	°C+*, where 𝑇 is temperature in the CTP interval. The total liquid- 36 

and ice-cloud fraction changes arising from the cloud-phase scattering feedback 37 

are 38 
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𝜕𝐶!"#
𝜕𝑇 =

𝜕𝑃!"#
𝜕𝑇 8𝐶!"# + 𝐶"$%: = (0.04	°C+*)(9% + 5%) = 0.56%	°C+* 39 

𝜕𝐶"$%
𝜕𝑇 = −

𝜕𝑃!"#
𝜕𝑇 8𝐶!"# + 𝐶"$%: = −(0.04	°C+*)(9% + 5%) = −0.56%	°C+* 40 

The values of 𝜕𝐶!"#/𝜕𝑇 and 𝜕𝐶"$%/𝜕𝑇 are then partitioned among the 𝜏 bins in 41 

proportion to the climatological 𝜏 distributions: 42 

𝜕𝑐!"#
𝜕𝑇 =

𝜕𝐶!"#
𝜕𝑇

𝑐!"#
𝐶!"#

= 0.56 × @2
9

2
9

4
9

1
9
A = [0.12 0.12 0.25 0.06] 43 

𝜕𝑐"$%
𝜕𝑇 =

𝜕𝐶"$%
𝜕𝑇

𝑐"$%
𝐶"$%

= −0.56 × @1
5

2
5

1
5

1
5
A = [−0.11 −0.22 −0.11 −0.11] 44 

where the units are % °C-1. This procedure is repeated for every latitude-month-45 

CTP combination, and the results are multiplied by the radiative kernels and ratio 46 

of local warming to global-mean surface warming (𝑑𝑇/𝑑𝑇,-) to infer the cloud-47 

phase scattering feedback.  48 
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Histogram CTP Bin Boundaries 

(hPa) 
𝜏 Bin Boundaries 

Liquid Clouds - 

Original 

50*, 250*, 300, 350, 400, 

450, 500, 550, 600, 700, 

800, 900, 1000**, 1100** 

0, 2, 4, 6, 8, 10, 15, 20, 30, 

40, 50, 100, 150 

Liquid Clouds - 

Merged 

50*, 150*, 250*, 350, 450, 

600, 800**, 1000** 

0, 2, 4, 6, 10, 15, 20, 30, 

50, 150 

Ice Clouds - Original 50, 100, 150, 200, 250, 

300, 350, 400, 450, 500, 

550, 600, 700, 800, 900, 

1000**, 1100** 

0, 0.5, 1, 2.5, 5, 7.5, 10, 

15, 20, 30, 50, 100, 150 

Ice Clouds - Merged 50, 150, 250, 350, 450, 

600, 800**, 1000** 

0, 1, 2.5, 5, 10, 15, 20, 30, 

50, 150 

 49 

Table S1. MODIS histogram bin boundaries. “Original” values are the standard 50 

bin boundaries, and “Merged” values are the bin boundaries used in the analysis. 51 

*It is assumed that no liquid clouds exist in the 50-150 hPa CTP interval, so the 52 

50-250 hPa bin in the Original liquid-cloud histogram is assigned to the 150-250 53 

hPa bin in the Merged histogram. **Clouds in the 1000-1100 hPa CTP bin of the 54 

Original histogram are assigned to the 800-1000 hPa bin in the Merged 55 

histogram.   56 
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ACCESS-CM2 CESM2-WACCM-

FV2 

GISS-E2-2-G MRI-ESM2-0 

ACCESS-ESM1-5 CIESM IITM-ESM NESM3 

AWI-CM-1-1-MR CMCC-CM2-SR5 INM-CM4-8 NorCPM1 

CAMS-CSM1-0 EC-Earth3-

AerChem 

INM-CM5-0 NorESM2-LM 

CanESM5 FGOALS-f3-L IPSL-CM6A-LR NorESM2-MM 

CAS-ESM2-0 FGOALS-g3 MCM-UA-1-0 TaiESM1 

CESM2 FIO-ESM-2-0 MIROC6  

CESM2-FV2 GISS-E2-1-G MPI-ESM1-2-HR  

CESM2-WACCM GISS-E2-1-H MPI-ESM-1-2-

HAM 

 

 57 

Table S2. CMIP6 models used in the analysis. Models are listed by their source 58 

ID on the World Climate Research Programme CMIP6 archive (https://esgf-59 

node.llnl.gov/projects/cmip6/).  60 
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Feedback Ice-cloud 

Component 

(Wm-2K-1) 

Liquid-cloud 

Component 

(Wm-2K-1) 

Both (Wm-

2K-1) 

Figure 

Temp.-mediated 

Feedback - Low Clouds 
0.12 ± 0.02 0.38 ± 0.33 0.50 ± 0.30 Fig. 3c 

Temp.-mediated 

Feedback - Non-low 

Clouds 

0.39 ± 0.17 −0.23

± 0.14 

0.16 ± 0.22 Fig. 3c 

Temp.-mediated 

Feedback - Total 

0.51 ± 0.19 0.14 ± 0.36 0.65 ± 0.32 Fig. 4a 

Cloud-phase Scattering 

Feedback - Low Clouds 
0.01 ± 0.01 −0.02

± 0.02 

−0.007

± 0.004 

Fig. 3f 

Cloud-phase Scattering 

Feedback - Non-low 

Clouds 

0.77 ± 0.13 −0.78

± 0.13 

−0.01

± 0.05 

Fig. 3f 

Cloud-phase Scattering 

Feedback - Total 
0.78 ± 0.13 −0.80

± 0.14 

−0.02

± 0.05 

Fig. 4a 

     

Feedback  𝑔 + 𝜔I 

Component 

(Wm-2K-1) 

𝜏 

Component 

(Wm-2K-1) 

Both (Wm-

2K-1) 

Figure 

Cloud-phase Scattering 

Feedback - Total 

0.14 ± 0.05 −0.16

± 0.03 

−0.02

± 0.05 

Fig. 4b 

 61 

Table S3. Components of Southern Ocean SW cloud feedback. Feedbacks are 62 

spatially and temporally averaged over ice-free ocean between 40°-60°S. “Total” 63 

indicates the sum of the low and non-low cloud components. The stated 64 

uncertainty is the 95% confidence interval. 65 


