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Abstract

Surface-wave seismograms are widely used by researchers to study Earth’s interior and earthquakes. Reliable results require

effective waveform quality control to reduce artifacts from signal complexity and noise, a task typically completed by human

analysts. We explore automated approaches to improve the efficiency of waveform quality control processing by investigating

logistic regression, support vector machines, k-nearest neighbors, random forests (RF), and artificial neural networks (ANN)

algorithms. Trained using nearly 400,000 waveforms with human-assigned quality labels, the ANN and RF models outperformed

other algorithms with a test accuracy of 92%. We evaluated the trained models using seismic events from geographic regions

not used for training. The results show the trained models agree with labels from human analysts, but required only 0.5% time.

Although the quality assignments assessed general waveform signal-to-noise, the ANN or RF labels can help facilitate detailed

waveform analysis, reducing surface-wave measurement outliers without human intervention.
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ABSTRACT 1	

Surface-wave seismograms are widely used by researchers to study Earth’s interior and 2	

earthquakes. To extract information reliably and robustly from a suite of surface 3	

waveforms, the signals require quality control screening to reduce artifacts from signal 4	

complexity and noise, a task typically completed by human analysts. This process has 5	

usually been done by experts labeling each waveform visually, which is time-consuming 6	

and tedious for large datasets. We explore automated approaches to improve the 7	

efficiency of waveform quality control processing by investigating logistic regression, 8	
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support vector machines, k-nearest neighbors, random forests (RF), and artificial neural 9	

networks (ANN) algorithms. To speed up signal quality assessment, we trained these five 10	

machine learning methods using nearly 400,000 human-labeled waveforms. The ANN 11	

and RF models outperformed other algorithms and achieved a test accuracy of 92%. We 12	

evaluated these two best-performing models using seismic events from geographic 13	

regions not used for training. The results show the two trained models agree with labels 14	

from human analysts but required only 0.4% time. Although the quality assignments 15	

assessed general waveform signal-to-noise, the ANN or RF labels can help facilitate 16	

detailed waveform analysis. Our analyses demonstrate the capability of the automated 17	

processing using these two machine learning models to reduce outliers in surface-wave-18	

related measurements without human quality control screening. 19	

Declaration of Competing Interests 20	

The authors acknowledge there are no conflicts of interest recorded. 21	

INTRODUCTION 22	

Surface waves have long been used for subsurface imaging (e.g., Ekström, 2011) and 23	

earthquake source studies (e.g., Ammon, 2005). Recently, double-difference seismic 24	

source location derived using surface wave cross-correlations at globally-distributed 25	

stations has proven successful in various geological settings (Cleveland and Ammon, 26	

2013; Cleveland et al., 2015, 2018; Kintner et al., 2018, 2019, 2020, 2021; Chai et al., 27	

2019; Howe et al., 2019). These techniques require reliable surface-wave measurements, 28	

which is usually assured through the careful visual inspection of seismograms. With 29	

seismic network deployments increasing in frequency and size, the amount of available 30	

surface-waveforms is also increasing. More data is unequivocally a good thing, but 31	
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quality control of the ever-growing data volumes requires substantial time and effort. The 32	

complexity of surface-wave signals and the spatially and temporally varying character of 33	

seismic background noise makes reliable automation of the quality control process a 34	

challenge. In some cases, data quality control becomes the most time-consuming part of a 35	

seismological analysis. 36	

Machine learning (ML) has shown promise when applied to a variety of seismological 37	

research problems. This includes body-wave detection and arrival-time picking (e.g., 38	

Chai et al., 2020; Mousavi et al., 2020; Perol et al., 2018; Ross et al., 2018; Yoon et al., 39	

2015; L. Zhu et al., 2019; W. Zhu & Beroza, 2018) and signal association (e.g., 40	

McBrearty et al., 2019; Ross et al., 2019). ML has also been used for seismic source 41	

studies that include earthquake location (e.g., X. Zhang et al., 2020), earthquake 42	

magnitude estimation (e.g., Mousavi & Beroza, 2020), earthquake focal mechanism 43	

determination (e.g., Kuang et al., 2021), and seismic signal discrimination (e.g., Li et al., 44	

2018; Meier et al., 2019; Seydoux et al., 2020). ML algorithms have also been developed 45	

for seismic tomography (e.g., Bianco & Gerstoft, 2018; Z. Zhang & Lin, 2020), 46	

laboratory earthquake prediction (e.g., Rouet-Leduc et al., 2017), signal denoising (e.g., 47	

W. Zhu et al., 2019), and facility monitoring (e.g., Chai et al., 2021). Most existing work 48	

has focused on body-wave analysis, few studies have focused on applying ML to the 49	

quality control of regional and teleseismic intermediate-period surface-waveforms.  50	

An important application of ML in geophysics is to reduce the burden of seismic 51	

processing to a level that allows more observations (more earthquakes, more 52	

seismograms, etc.) to be included in seismic analyses. We develop automated quality 53	

control processes that decrease the data quality assessment burden and increase overall 54	
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data quality applicable to research efforts into earth structure (Herrmann et al., 2021) and 55	

seismic source analysis (e.g., Lay et al., 2018), while also being a source of data for long 56	

standing projects that quantify earthquake sources from regional to global scales (e.g., 57	

Ekström et al., 2012). No automated process is perfect, but application of ML approaches 58	

can effectively and efficiently identify the best and worst data and allow human attention 59	

to focus on marginal-quality and unexpected observations that require more 60	

understanding and experience to assess. 61	

In this work, we explore the opportunities of ML to aid in the analysis of intermediate-62	

period regional and teleseismic seismic surface waves. We compiled roughly 400,000 63	

surface-wave signals and associated quality labels from stations around the globe. The 64	

quality labels are from past studies that focused on events in various tectonic settings. We 65	

trained five ML models including logistic regression (LR, Hosmer Jr et al., 2013), 66	

support vector machine (SVM, Suykens & Vandewalle, 1999), K-nearest neighbors 67	

(KNN, Keller et al., 1985), random forests (RF, Breiman, 2001), and artificial neural 68	

networks (ANN, Jain et al., 1996) to perform automated quality control processing of 69	

intermediate-period surface-wave seismograms. We compared the performance, speed, 70	

and disk usage of these ML techniques. We also tested the general applicability of the 71	

best-performing model to events from other geographic regions. 72	

DATA 73	

The data consist of seismic waveforms (along with metadata) and quality labels. The 74	

seismograms were downloaded from the Incorporated Research Institutions for 75	

Seismology (IRIS) Data Management Center (DMC) archive. Each waveform is 76	

associated with a particular seismic event that has known location and origin time 77	
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information.  The seismograms start six minutes before the origin time and end 200 78	

minutes after the origin time. We removed the instrument response from the seismograms 79	

and rotated the horizontal components to the radial and transverse coordinate system 80	

from the original north-south and east-west coordinates. To isolate intermediate-period 81	

Love and Rayleigh waves, seismograms were bandpass filtered to isolate signals with 82	

periods between 30 and 60 s. 83	

Seismic Data 84	

During the model construction stage, we used observations from 759 seismic events and 85	

4,502 seismic stations (Figure 1). The seismograms were analyzed for previous 86	

earthquake relocation efforts (Cleveland and Ammon, 2013, 2015; Cleveland et al., 2018; 87	

Kintner et al., 2018, 2019). The origin times of these seismic events range from May 88	

1989 to October 2016 (Figure S1a). The magnitudes of the events range from roughly 4.5 89	

to 7.8 (Figure S1b). The event-station distance spans a wide range from 10- to 180-degree 90	

(Figure S1c). Using a group velocity range from 5.0 to 2.5 km/s, the expected surface-91	

wave window length ranges from 222 s to 3979 s (Figure S1d). We refer to these 92	

seismograms as dataset DA. 93	

During the model construction stage, we selected 40 seismic events from the United 94	

States Geological Survey (USGS) ComCat catalog (between January 1990 and January 95	

2019) with the following criteria. (a) The events were located at least one arc degree 96	

away from any seismic events of dataset DA. (b) The events were randomly selected 97	

from four magnitude bins (between magnitudes 5 and 6; 6 and 7; 7 and 8; 8 and 9) with 98	

10 events in each bin. Seismic stations including long period high gain seismometers (LH 99	

channels, 1 Hz sampling rate) and located between 10- and 180-degree distance were 100	
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selected. Data from temporary network deployments were excluded. These seismograms 101	

will be referred to as dataset DB. After the ML models were trained, we also downloaded 102	

seismograms from 184 seismic events (Figure S2) with magnitude 6.0 and larger between 103	

January 2018 and May 2020 recorded at the station SSPA located near Standing Stone, 104	

Pennsylvania, USA. These seismograms comprise dataset DC. 105	

Waveform quality labels 106	

We compiled the quality labels for dataset DA from several earthquake relocation studies 107	

(Cleveland and Ammon, 2013, 2015; Cleveland et al., 2018; Kintner et al., 2018, 2019). 108	

Due to personal preferences, the original quality labels have either five or four categories. 109	

When using five categories, the three highest categories were considered acceptable 110	

(Figure S3a). For four categories, the two highest were considered acceptable (Figure 111	

S3b). To combine the datasets and maximize the number of labels, we mapped the quality 112	

labels into two categories, either accepted or rejected (see Figure 2 for waveform 113	

examples). The spatial distributions of quality labels show significant variations for 114	

different seismic events (Figure S4) due to earthquake source differences and background 115	

noise variations. 116	

In addition, after the ML models were trained, three human analysts re-labeled 1,000 117	

seismograms randomly selected from dataset DA. Half of them were assigned the same 118	

quality label by both a human analyst and the ANN model and referred to as Dataset 1. 119	

The other half were assigned different quality labels by a human analyst and the ANN 120	

model and referred to as Dataset 2. The human analysts also labeled 2,000 seismograms 121	

from dataset DB after we applied the ANN model to all the seismograms in dataset DB. 122	

These seismograms were randomly selected such that (1) each of the 40 distributed-123	
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magnitude earthquakes has 50 waveforms and (2) 1,000 seismograms were accepted by 124	

the ANN model whereas the other 1,000 seismograms were rejected. These seismograms 125	

are referred to as Dataset 3. We consider the majority vote of the three analysts as ground 126	

truth, which is more reliable (but costly) than the labels used in the model construction 127	

stage. 128	

METHODOLOGY 129	

Our analyses consisted of two stages (Figure 3), model construction and deployment. 130	

During the model construction stage, we compute statistical features from the surface-131	

waveforms and link them with manually assigned quality labels. These features and 132	

labels are then used to train an ML model. During the deployment stage, we obtain and 133	

compare ML-derived quality labels by applying the ML model directly to a test set of 134	

surface-waveforms not used in model construction. 135	

Feature engineering 136	

Surface waveforms are one of the most recognizable part of a seismic event’s wavefield, 137	

but also one of the most variable. The character of the signal changes with source-to-138	

station distance, geology along the wave’s path, as well as the earthquake rupture 139	

characteristics and faulting geometry. To capture these complexities in a reasonable 140	

number of parameters, we employed a total of 301 features for each waveform (data 141	

sample). The features were computed from waveform segments (Figure S5) that include: 142	

(1) the expected surface-wave arrival window (defined using a group velocity window 143	

from 5.0 to 2.5 km/s); (2) a time window with common duration before the surface 144	

waves; (3) ten evenly divided time windows spanning the entire surface-wave arrival 145	

window. For each time window, we calculated absolute energy (sum of all time samples 146	
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squared), the sum of absolute derivatives, kurtosis, skewness, maximum, minimum, 147	

mean, standard deviation, nine quantiles (10%-90%), and number of time samples. In 148	

additional to absolute values, we also included ratios of these statistical features 149	

(excluding the number of samples and absolute sum of changes) for two time-window 150	

pairs. The first pair includes the surface-wave window and the time window ahead of the 151	

surface wave. The second pair includes the two windows from the ten evenly sized 152	

windows that have the maximum and minimum absolute energy. We also included the 153	

magnitude of the earthquake, event depth, azimuth, and distance between the station and 154	

seismic event as signal-related features. All the features were standardized to have a unit 155	

standard deviation. As with all signal classification studies, we explored these features 156	

guided by our experience with surface wave analysis as well as numerical experiments 157	

using the training and validation sets. 158	

Machine learning 159	

In the model construction stage, we used data from dataset DA and randomly split it into 160	

three sets. We used 277,213 samples (waveforms) for training (70% of total), 39,601 161	

samples for validation (10% of total), and 79,205 samples for testing (20% of total). The 162	

validation set was used to choose training parameters and features, the test set was used 163	

to evaluate the performance of the ML models. We used scikit-learn’s implementation of 164	

the LR, SVM, KNN, and RF. The ANN was implemented with Keras. For the SVM 165	

algorithm, we used both a linear kernel (SVM-Linear) and a nonlinear kernel (SVM-166	

Gaussian). The KNN model used five closest neighbors. The RF model contains 200 167	

trees. The ANN model has three fully connected hidden layers (256 neurons), which used 168	

the rectified linear units (ReLU) activation function and followed by a dropout layer 169	
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(10% dropout rate) to reduce overfitting. We set the batch size as 20 and the learning rate 170	

as 0.00001. There parameters were selected based on numerical experiments using the 171	

validation set (see Figure S6 for examples). 172	

Assessing the performance of a classification scheme is typically approached using 173	

several metrics of algorithm performance. The metrics are defined in terms of the positive 174	

and negative success and failure rates of the classifier when applied to a set of 175	

observations independent of the ML training procedure. True positive means that both the 176	

predicted label (from the ANN model) and the true label (from a human analyst) are 177	

positive (in our case, the waveform is accepted for analysis). False positive means that 178	

the predicted label is positive, but the true label is negative (rejected). False negative 179	

means that the predicted label is negative, but the true label is positive. True negative 180	

means both the predicted label and the true label are negative. 181	

An F1 score can be computed by counting the number of samples in each of these four 182	

categories and computing 183	

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 184	

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 185	

𝐹1 = 	 !	×	$%&'()(*+	×	,&'-..
$%&'()(*+/,&'-..

= 0%1&	$*)(2(3&
0%1&	$*)(2(3&/4.6	×	(8-.)&	$*)(2(3&/8-.)&	9&:-2(3&)

  186	

The F1 value ranges from 0 (worst performance, no true labels) to 1 (best performance, 187	

no false labels). An F1 value of 0.9 corresponds to about 2 false negatives or false 188	

positives (combined) for every 9 true positives; an F1 value of 0.95 corresponds to about 189	

10 false negatives or false positives (combined) for every 95 true positives. Machine 190	
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learning models can provide probabilities associated with each label (accepted or rejected 191	

in our case) and a probability threshold can be used to translate the probabilities to labels. 192	

For each candidate threshold, we can compute true positive and false positive rates. A 193	

ROC curve is a plot of the true positive rate versus the false positive rate for a set of 194	

thresholds. The area between the ROC curve and the horizontal axis (the false-positive 195	

rate) is called the area-under-the-curve (AUC) score. A machine learning model is 196	

usually considered better with a higher AUC score. 197	

ML model generality 198	

We tested the generality of the ANN model using a collection of seismic events located 199	

in different regions than the events used in the model construction stage. The qualities of 200	

a subset of seismograms were visually assessed by three analysts and compared against 201	

the ANN model results. The original research objective for assigning a signal’s quality 202	

label was to decide whether it had the bandwidth and signal-to-noise ratio to perform well 203	

in a cross-correlation analysis, as well as to recognize interference with other arrivals, 204	

instrument issues, nodal signals, etc. We tested the ANN’s generality using it as a 205	

screening procedure for an automated measurement of surface-wave group velocities. 206	

The model was applied to surface-wave seismograms in Dataset DB (see next section). 207	

Surface-wave group velocities were automatically estimated from seismograms in 208	

Dataset DC. Many of the group velocities estimated from seismograms rejected by the 209	

ANN model were clear outliers. 210	

RESULTS 211	

ML model construction and assessment 212	
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The performance of a classifier can be measured in a number of different ways, but most 213	

essential metrics are constructed using the numbers of positive and negative success and 214	

failure rates of the classifier. When trained using all the training samples, RF and ANN 215	

model out-performed LR, SVM-Linear, KNN, SVM-Gaussian when applied to the test 216	

dataset in terms of accuracy score, F1 score, and AUC as shown in Figure 4a. The 217	

receiver operating characteristic curves show the same pattern as AUC (Figure S7). The 218	

accuracy score, F1 score, and AUC for the ANN model are 0.92, 0.89, and 0.97, 219	

respectively. The performance of LR and SVM-Linear was the poorest. The confusion 220	

matrices also show that the RF and ANN models performed better than others (Figure 5).  221	

We visually checked waveforms that the ANN model assigned different labels than a 222	

human analyst using interactive visualization tools similar to Chai et al. (2018). We 223	

observed both human quality assignment errors as well as errors by the ANN model (see 224	

Figure 6 and Figure 7 for examples). The results indicate that the ANN was working at 225	

least as accurately as human analysts. Mislabeling by human analysts is not surprising 226	

given the tediousness of the task and the natural inclination for humans to tire during the 227	

process. Mislabeling by the ANN represents the appearance of a signal with 228	

characteristics that are not in the training set, or combinations of features that contradict 229	

the general patterns in the training data. 230	

The runtime (which includes loading the trained model and computing quality labels) of 231	

the LR, RF, and ANN model are among the fastest for 100,000 seismograms (using six 232	

2.9 GHz CPU cores) (Figure 4b). SVM models are the slowest since the algorithm used 233	

was not parallelized. The trained KNN model uses the most disk space (1.4 GB), the LR 234	

model required the least disk space (3 KB) (Figure 8d). SVM-Linear, RF, and SVM-235	
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Gaussian require comparable storage. The ANN model requires 3 MB of storage. 236	

Considering performance, runtime, and disk space, we prefer the ANN model and the RF 237	

model for assigning a quality control value to surface-wave seismograms. 238	

We also constructed ML models using subsets of the complete training set to investigate 239	

the model performance as a function of the number of training samples. This analysis 240	

consisted of training sets built using 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 241	

50000, and 100000 waveforms. As expected, the F1-score for all the algorithms 242	

improved with an increasing number of training samples (Figure 8a and Figure 8b). 243	

However, as model performance increases, more training samples are needed to improve 244	

the model performance by the same percentage. That is, initial improvement occurs 245	

rapidly, but as the dataset grows and accuracy increases, significantly more data are 246	

needed to make a substantial performance improvement. The RF algorithm has the best 247	

accuracy and F1 score when the number of training samples is less than or equal to 248	

20,000. The ANN algorithm surpassed the RF method when the training samples exceed 249	

20,000. As shown in Figure 8c, the training time (using thirty-two 2.1-GHz Intel Xeon 250	

cores) for LR, KNN, and RF algorithms is less than the other ML techniques. The 251	

training time for the SVM models increases rapidly with the number of training samples. 252	

The ANN model took longer to train, but the training time increases more slowly with the 253	

number of training samples. The disk space usage of the trained model increases with the 254	

number of training samples for KNN, RF, and SVM algorithms (Figure 8d). The size of 255	

the trained ANN and LR models does not change with the number of training samples 256	

(Figure 8d). 257	

Model Applications 258	
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We compared the performance of the ANN and RF models against three human analysts 259	

using datasets 1, 2, and 3. The results shown in Figure 9 indicate that the ANN and RF 260	

models performed similarly to human analysts for all three datasets. Of course, the ANN 261	

and RF models only used 0.4% of the average human processing time (Figure 9b). In 262	

some cases, the ANN and RF models identified useable data that were rejected by one of 263	

human analysts (see Figure 9e for an example). The direct outputs of the ANN and RF 264	

models are probability scores (range from 0 to 1), which are then converted into two 265	

categories using a default threshold of 0.5, accepted (larger than or equal to 0.5) or 266	

rejected (smaller than 0.5). The probability threshold can be adjusted for a stricter 267	

screening. Increasing the threshold can improve the performance as shown in Figure 9c 268	

and Figure 9d. When the threshold is larger than 0.5, three categories can be assigned to a 269	

seismogram instead of two. For example, a signal can be rejected if its probability score 270	

is smaller than 0.4, accepted if the probability is larger than or equal to 0.6, or considered 271	

marginal if its probability is between 0.4 and 0.6. The marginal seismograms can be 272	

further inspected by human analysts. As expected, a higher threshold leads to a smaller 273	

number of nonmarginal (accepted or rejected) labels (Figure 9c and Figure 9d) or in other 274	

words more waveforms for human analysts to inspect. Similar to human analysts, the 275	

ANN and RF models sometimes agree and other times disagree. For Dataset 3, the ANN 276	

or RF models combined mislabeled 523 seismograms out of a total of 2000. Both 277	

methods incorrectly labeled a subset of 224 seismograms (11% of the total); the ANN 278	

model mislabeled an additional 200 seismograms (424 total, overall 78% correct); the RF 279	

model mislabeled another 99 seismograms (323 total, overall 84% correct).  280	
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Though not directly trained for the quality control of group velocity estimation, we tested 281	

the ANN model to determine whether it would reduce outliers in automated group 282	

velocity measurements. The ANN model performed reasonably well for dataset DC 283	

reducing the number of unrealistic group velocity values using the ANN-based quality 284	

control (Figure 10). The result is not perfect but the operational burden of inspecting the 285	

outlier observations is substantially reduced. Transfer learning (e.g., Chai et al., 2020) 286	

may further improve the performance of the ANN model for the quality control of group 287	

velocities. 288	

CONCLUSIONS AND DISCUSSION 289	

Using nearly 400,000 waveforms and corresponding quality labels, we applied and 290	

compared five ML algorithms (LR, SVM, KNN, RF, and ANN) intended to improve the 291	

efficiency of the quality control of surface-wave seismograms. Considering performance, 292	

processing speed, and storage requirements, the ANN achieved an accuracy of 0.92, an 293	

F1 score of 0.89, and an AUC of 0.97. The RF model follows the ANN closely with 294	

slightly lower performance and higher storage requirements, but faster processing times. 295	

We prefer the ANN and RF models over the other algorithms tested. The performances of 296	

both the ANN and RF model match human analysts for data they have never seen while 297	

also reducing the time invested in surface-wave quality control by 99.6% after the models 298	

are trained. We also show that quality labels from the ANN model helps reduce outliers 299	

in group velocity measurements, despite the training labels originally being generated for 300	

the purposes of signal cross-correlation analysis. The improved processing speed of the 301	

ANN model compared to human analysts and a demonstration of this method to 302	
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independent surface-wave measurements shows that this technique can be used to reduce 303	

the burden of quality control screening for large volumes of seismic data. 304	

The trained ANN and RF models can be incorporated into an existing workflow that uses 305	

intermediate-period surface wave seismograms for earthquake and/or earth-structure 306	

studies. For fast-response applications, these two trained ML models can be applied 307	

automatically to identify good-quality data rapidly without human intervention. The 308	

execution speed of the two ML models can be easily increased with more computing 309	

resources. For more comprehensive studies, the trained models can be used to pre-screen 310	

a large amount of data and allow researchers to focus on a subset of data ranked by ML 311	

labels. The numeric quality scores from the RF and ANN models could also be used as 312	

initial quality weights in seismological analysis. 313	

DATA AND RESOURCES 314	

The facilities of the Incorporated Research Institutions for Seismology (IRIS) Data 315	

Services, and specifically the IRIS Data Management Center 316	

(https://ds.iris.edu/ds/nodes/dmc/, last accessed in January 2021), were used for access to 317	

waveforms and related metadata required for waveform data. See Table S1 for a full list 318	

of seismic networks used in this study. The Comcat catalog can be accessed through 319	

United States Geological Survey (https://earthquake.usgs.gov/earthquakes/search/, last 320	

accessed in January 2021). Figures were prepared with the Generic Mapping Tools 321	

(GMT) version 5.4.4 (Wessel et al., 2013), GMT version 6.1.1 (Wessel et al., 2019), and 322	

Matplotlib version 3.4.2 (Hunter, 2007). Obspy version 1.2.2 (Beyreuther et al., 2010; 323	

Megies et al., 2011; Krischer et al., 2015), Numpy (Van Der Walt et al., 2011), Scikit-324	

learn version 0.23.2 (Pedregosa et al., 2011), Keras version 2.4.3 (https://keras.io/, last 325	
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accessed in January 2021) were used to process the seismic data. The source code along 326	

with the trained ANN model can be accessed by request to the corresponding author and 327	

will be released after institutional and sponsor approvals. 328	
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Figure 1. Maps of the (a) earthquakes and (b) seismic stations used. The size of each 511	

circle in (a) is proportional to an event’s earthquake magnitude. The gray circles and 512	

triangles are used for training (dataset DA), whereas red symbols are used to evaluate the 513	

ML model after training is completed (dataset DB). Thick lines are tectonic plate 514	

boundaries (Bird, 2003). (For interpretation of the references to color in this figure, the 515	

reader is referred to the web version of this article.) 516	
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Figure 2. Example displacement waveforms in dataset DA that were (a) accepted and (b) 517	

rejected by a human analyst. The red vertical line indicates the origin time of a seismic 518	

event. The gray box represents the expected arrival time window of surface waves 519	

defined by a minimum group velocity of 2.5 km/s and a maximum of 5 km/s. 520	

Figure 3. A flowchart illustrating the major steps of the (top) model construction and 521	

(bottom) model deployment stages. ML represents machine learning. 522	

Figure 4. A comparison of (a) performance and (b) runtime for the test set from dataset 523	

DA. The performance analysis includes all training samples in the dataset. The runtime is 524	

calculated by recording the time it takes for different ML algorithms to load the trained 525	

model and compute quality labels for 100,000 seismograms. 526	

Figure 5. A comparison of confusion matrices for different machine learning algorithms 527	

using the test set of dataset DA. 528	

Figure 6. Waveform examples from the test set of dataset DA that were rejected by a 529	

human analyst but accepted by the ANN model. The vertical line indicates the origin time 530	

of a seismic event. The gray box represents the expected arrival time window of surface 531	

waves defined by a minimum group velocity of 2.5 km/s and a maximum of 5 km/s. Most 532	

of these misclassifications are likely the result of analyst fatigue. The fifth waveform 533	

from the bottom shows enough complexity outside the surface wave window to raise 534	

suspicion of the signal. A total of 2861 (6%) seismograms out of 51474 human-rejected 535	

waveforms were accepted by the ANN model. 536	

Figure 7. Waveform examples from the test set of dataset DA that were accepted by a 537	

human analyst but rejected by the ANN model. The vertical line indicates the origin time 538	

of a seismic event. The gray box represents the expected arrival time window of surface 539	
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waves defined by a minimum group velocity of 2.5 km/s and a maximum of 5 km/s. A 540	

total of 3368 seismograms (12%) out of 27731 human-accepted waveforms were rejected 541	

by the ANN model. 542	

Figure 8. A comparison of performance (a) and (b), training time (c), and disk space 543	

usage (d) for different algorithms. The legends of (b), (c) and (d) are the same as (a). 544	

Figure 9. Additional evaluation of the ANN and RF models after training. Panels (a) and 545	

(b) compare the ANN model and RF model against three analysts A, B, and C using a 546	

subset of 3000 seismograms from Dataset DA and DB. Note the time spent by the ANN 547	

and RF model in (b) includes the entire processing workflow from raw seismograms to 548	

quality labels. Panels (c) and (d) show F1 and number of ML model labeled seismograms 549	

as a function of probability threshold using Dataset 3. The sample seismogram in (e) was 550	

rejected by Analyst B and accepted by Analyst A, Analyst C, the ANN model, and the 551	

RF model. The vertical line indicates the origin time of the seismic event. The gray box 552	

represents the expected arrival time window of surface waves defined by a minimum 553	

group velocity of 2.5 km/s and a maximum of 5 km/s. 554	

Figure 10. Automatic group velocity measurements (a) before and (b) after using the 555	

ANN model for quality control. Automated group velocities are estimated using a simple 556	

multiple filter analysis and automated identification of the time of the maximum in a 557	

Gaussian-filtered surface waveform. An unrealistic automated group velocity estimate is 558	

likely a result of surface-waveform with low signal-to-noise such that the maximum is 559	

not associated with the surface wave. 560	

561	
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	562	

FIGURES 563	

 564	
Figure 1. Maps of the (a) earthquakes and (b) seismic stations used. The size of each 565	
circle in (a) is proportional to an event’s earthquake magnitude. The gray circles and 566	
triangles are used for training (dataset DA), whereas red symbols are used to evaluate the 567	
ML model after training is completed (dataset DB). Thick lines are tectonic plate 568	
boundaries (Bird, 2003). (For interpretation of the references to color in this figure, the 569	
reader is referred to the web version of this article.) 570	

571	
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	572	
Figure 2. Example displacement waveforms in dataset DA that were (a) accepted and (b) 573	
rejected by a human analyst. The red vertical line indicates the origin time of a seismic 574	
event. The gray box represents the expected arrival time window of surface waves 575	
defined by a minimum group velocity of 2.5 km/s and a maximum of 5 km/s. 576	

577	
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	578	
Figure 3. A flowchart illustrating the major steps of the (top) model construction and 579	
(bottom) model deployment stages. ML represents machine learning. 580	

581	



	 26 

	582	
Figure 4. A comparison of (a) performance and (b) runtime for the test set from dataset 583	
DA. The performance analysis includes all training samples in the dataset. The runtime is 584	
calculated by recording the time it takes for different ML algorithms to load the trained 585	
model and compute quality labels for 100,000 seismograms. 586	

587	
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 588	

Figure 5. A comparison of confusion matrices for different machine learning algorithms 589	
using the test set of dataset DA. 590	

591	
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 592	

Figure 6. Waveform examples from the test set of dataset DA that were rejected by a 593	
human analyst but accepted by the ANN model. The vertical line indicates the origin time 594	
of a seismic event. The gray box represents the expected arrival time window of surface 595	
waves defined by a minimum group velocity of 2.5 km/s and a maximum of 5 km/s. Most 596	
of these misclassifications are likely the result of analyst fatigue. The fifth waveform 597	
from the bottom shows enough complexity outside the surface wave window to raise 598	
suspicion of the signal. A total of 2861 (6%) seismograms out of 51474 human-rejected 599	
waveforms were accepted by the ANN model. 600	

601	
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 602	

Figure 7. Waveform examples from the test set of dataset DA that were accepted by a 603	
human analyst but rejected by the ANN model. The vertical line indicates the origin time 604	
of a seismic event. The gray box represents the expected arrival time window of surface 605	
waves defined by a minimum group velocity of 2.5 km/s and a maximum of 5 km/s. A 606	
total of 3368 seismograms (12%) out of 27731 human-accepted waveforms were rejected 607	
by the ANN model. 608	

609	
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 610	

Figure 8. A comparison of performance (a) and (b), training time (c), and disk space 611	
usage (d) for different algorithms. The legends of (b), (c) and (d) are the same as (a). 612	

613	
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 614	

Figure 9. Additional evaluation of the ANN and RF models after training. Panels (a) and 615	
(b) compare the ANN model and RF model against three analysts A, B, and C using a 616	
subset of 3000 seismograms from Dataset DA and DB. Note the time spent by the ANN 617	
and RF model in (b) includes the entire processing workflow from raw seismograms to 618	
quality labels. Panels (c) and (d) show F1 and number of ML model labeled seismograms 619	
as a function of probability threshold using Dataset 3. The sample seismogram in (e) was 620	
rejected by Analyst B and accepted by Analyst A, Analyst C, the ANN model, and the 621	
RF model. The vertical line indicates the origin time of the seismic event. The gray box 622	
represents the expected arrival time window of surface waves defined by a minimum 623	
group velocity of 2.5 km/s and a maximum of 5 km/s. 624	

 625	
626	
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	627	
Figure 10. Automatic group velocity measurements (a) before and (b) after using the 628	
ANN model for quality control. Automated group velocities are estimated using a simple 629	
multiple filter analysis and automated identification of the time of the maximum in a 630	
Gaussian-filtered surface waveform. An unrealistic automated group velocity estimate is 631	
likely a result of surface-waveform with low signal-to-noise such that the maximum is 632	
not associated with the surface wave. 633	

 634	
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Description of the Supplemental Material 7	
The supporting information includes a figure (Figure S1) summarizing characteristics of 8	
the surface-waveform dataset DA, a map (Figure S2) of seismic event and station 9	
locations for dataset DC, a figure (Figure S3) showing the distribution of original quality 10	
labels, a figure (Figure S4) showing the spatial distribution of quality labels for two 11	
earthquakes, a figure (Figure S5) showing the time windows used to compute statistical 12	
features, two examples of hyperparameter tunning (Figure S6), a comparison (Figure S7) 13	
of ROC curves, a feature importance plot for random forest (Figure S8), and a table 14	
(Table S1, uploaded separately) listing all the seismic networks used by this study. 15	
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 18	

Figure S1. Histograms characterizing the properties of the training dataset DA: (a) origin year of 19	
earthquakes; (b) magnitude of earthquakes; (c) the distance between each earthquake and 20	
observing seismic station; and (d) the length of surface-wave window defined by a group 21	
velocity range from 5.0 to 2.5 km/s. The variable duration of the signals is one of the unusual 22	
aspects of this classification problem. 23	

24	
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 26	

Figure S2. A map of seismic events (gray circles) and the location of seismic station SSPA (red 27	
triangle) that were used in the dataset DC. 28	

29	
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 30	

 31	

Figure S3. Distributions of original quality labels in dataset DA for (a) five categories and (b) four 32	
categories.  33	

34	
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	36	

Figure S4. Spatial distributions of quality labels (triangles) for two sample earthquakes (circles) 37	
in dataset DA. The event in (a) occurred on 2018/06/12T16:53:34 UTC with a magnitude of 5. 38	
The event in (b) occurred on 2018/09/13T15:45:26 UTC with a magnitude of 5.2.  39	

40	
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 41	

Figure S5. An example surface-wave seismogram with the time windows used for feature 42	
engineering illustrated. The dash boxes represent the ten evenly divided time windows. The red 43	
box indicates the time window with the maximum absolute energy. The blue box represents the 44	
time window with the minimum absolute energy. 45	
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 47	

Figure S6. Two examples showing how we select (a) the number of hidden layers for artificial 48	
neural networks and (b) the number of trees for the random forest algorithm. Three hidden 49	
layers was selected. The RF model contains 200 trees. 50	

 51	
52	
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 54	

Figure S7. A comparison of the Receiver Operating Characteristic (ROC) Curves for the examined 55	
machine learning algorithms constructed using the test set of dataset DA. LR stands for logistic 56	
regression. SVM means support vector machine, KNN represents K-nearest neighbors, RF is in 57	
short for random forests, ANN represents artificial neural networks.  58	

59	
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Figure S8. The relative importance of features for the random forest algorithm. The top three 61	
features are standard derivation ratio, maximum amplitude ratio, and minimum amplitude ratio 62	
between the surface wave and background time windows.  63	
 64	

Table S1. A list of seismic networks used. 65	
	66	


