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Abstract

Surface-wave seismograms are widely used by researchers to study Earth’s interior and earthquakes. Reliable results require

effective waveform quality control to reduce artifacts from signal complexity and noise, a task typically completed by human

analysts. We explore automated approaches to improve the efficiency of waveform quality control processing by investigating

logistic regression, support vector machines, k-nearest neighbors, random forests (RF), and artificial neural networks (ANN)

algorithms. Trained using nearly 400,000 waveforms with human-assigned quality labels, the ANN and RF models outperformed

other algorithms with a test accuracy of 92%. We evaluated the trained models using seismic events from geographic regions

not used for training. The results show the trained models agree with labels from human analysts, but required only 0.5% time.

Although the quality assignments assessed general waveform signal-to-noise, the ANN or RF labels can help facilitate detailed

waveform analysis, reducing surface-wave measurement outliers without human intervention.
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Key Points:  

• We applied five machine learning algorithms to a waveform quality control problem 
using a labeled dataset of 400,000 surface-wave samples 

• Neural networks and random forests outperformed other algorithms with a higher 
accuracy, a faster execution speed, and a smaller storage 

• The trained neural network and random forest performed equally to human analysts but 
used only 0.5% of time of human analysts 
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Abstract 
Surface-wave seismograms are widely used by researchers to study Earth’s interior and 
earthquakes. Reliable results require effective waveform quality control to reduce artifacts from 
signal complexity and noise, a task typically completed by human analysts. We explore 
automated approaches to improve the efficiency of waveform quality control processing by 
investigating logistic regression, support vector machines, k-nearest neighbors, random forests 
(RF), and artificial neural networks (ANN) algorithms. Trained using nearly 400,000 waveforms 
with human-assigned quality labels, the ANN and RF models outperformed other algorithms 
with a test accuracy of 92%. We evaluated the trained models using seismic events from 
geographic regions not used for training. The results show the trained models agree with labels 
from human analysts, but required only 0.5% time. Although the quality assignments assessed 
general waveform signal-to-noise, the ANN or RF labels can help facilitate detailed waveform 
analysis, reducing surface-wave measurement outliers without human intervention. 
Plain Language Summary 

Surface waves generated by earthquakes carry valuable information about Earth’s subsurface and 
the sources that generate them. To reliably and robustly extract information from a suite of 
surface waveforms, the signals require quality control screening. This process has typically been 
done by experts labeling each data sample visually, which is time-consuming and tedious for 
large datasets. To speed up signal quality assessment, we trained machine learning methods 
using a large set of human-labeled waveforms. We compared five techniques: logistic regression, 
support vector machines, k-nearest neighbors, random forests, and artificial neural networks. The 
artificial neural networks performed the best and achieved an accuracy of 92%. Once trained, the 
neural network model matched human performance but reduced the time cost by 99.5% when 
applied to data it had never seen. Our analyses demonstrate the capability of automated 
processing to improve quality in surface-wave-related measurements without human quality 
control screening. 

1 Introduction 
Surface waves have long been used for subsurface imaging (e.g., Ekström, 2011) and 

earthquake source studies (e.g., Ammon, 2005). Recently, double-difference seismic source 
location derived using surface wave cross-correlations at globally-distributed stations has proven 
successful in various geological settings (Chai et al., 2019; Cleveland et al., 2015, 2018; 
Cleveland & Ammon, 2013; Howe et al., 2019; Kintner et al., 2018, 2019, 2020, 2021). These 
techniques require reliable surface-wave measurements, which is usually assured through the 
careful visual inspection of seismograms. With seismic network deployments increasing in 
frequency and size, the amount of available surface-waveforms is also increasing. More data is 
unequivocally a good thing, but quality control of the ever-growing data volumes requires 
substantial time and effort. The complexity of surface-wave signals and the spatially and 
temporally varying character of seismic background noise makes reliable automation of the 
quality control process a challenge. In some cases, data quality control becomes the most time-
consuming part of a seismological analysis. 

Machine learning (ML) has shown promise when applied to a variety of seismological 
research problems. This includes body-wave detection and arrival-time picking (e.g., Chai et al., 
2020; Mousavi et al., 2020; Perol et al., 2018; Ross et al., 2018; Yoon et al., 2015; L. Zhu et al., 
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2019; W. Zhu & Beroza, 2018) and signal association (e.g., McBrearty et al., 2019; Ross et al., 
2019). ML has also been used for seismic source studies that include earthquake location (e.g., 
X. Zhang et al., 2020), earthquake magnitude estimation (e.g., Mousavi & Beroza, 2020),  
earthquake focal mechanism determination (e.g., Kuang et al., 2021), and seismic signal 
discrimination (e.g., Li et al., 2018; Meier et al., 2019; Seydoux et al., 2020). ML algorithms 
have also been developed for seismic tomography (e.g., Bianco & Gerstoft, 2018; Z. Zhang & 
Lin, 2020), and laboratory earthquake prediction (e.g., Rouet-Leduc et al., 2017). Most existing 
work has focused on body-wave analysis, few studies have focused on applying ML to the 
quality control of regional and teleseismic intermediate-period surface-waveforms.  

An important application of ML in geophysics is to reduce the burden of seismic 
processing to a level that allows more observations (more earthquakes, more seismograms, etc.) 
to be included in seismic analyses. We develop automated quality control processes that decrease 
the data quality assessment burden and increase overall data quality applicable to research efforts 
into earth structure (Herrmann et al., 2021) and seismic source analysis (e.g., Lay et al., 2018), 
while also being a source of data for long standing projects that quantify earthquake sources 
from regional to global scales (e.g., Ekström et al., 2012). No automated process is perfect, but 
application of ML approaches can effectively and efficiently identify the best and worst data and 
allow human attention to focus on marginal-quality and unexpected observations that require 
more understanding and experience to assess. 

In this work, we explore the opportunities of ML to aid in the analysis of intermediate-
period regional and teleseismic seismic surface waves. We compiled roughly 400,000 surface-
wave signals and associated quality labels from stations around the globe. The quality labels are 
from past studies that focused on events in various tectonic settings. We trained five ML models 
including logistic regression (LR, Hosmer Jr et al., 2013), support vector machine (SVM, 
Suykens & Vandewalle, 1999), K-nearest neighbors (KNN, Keller et al., 1985), random forests 
(RF, Breiman, 2001), and artificial neural networks (ANN, Jain et al., 1996) to perform 
automated quality control processing of intermediate-period surface-wave seismograms. We 
compared the performance, speed, and disk usage of these ML techniques. We also tested the 
general applicability of the best-performing model to events from other geographic regions. 

2 Data 
The data consist of seismic waveforms (along with metadata) and quality labels. The 

seismograms were downloaded from the Incorporated Research Institutions for Seismology 
(IRIS) Data Management Center (DMC) archive. Each waveform is associated with a particular 
seismic event that has known location and origin time information.  The seismograms start six 
minutes before the origin time and end 200 minutes after the origin time. We removed the 
instrument response from the seismograms and rotated the horizontal components to the radial 
and transverse coordinate system from the original north-south east-west coordinates. To isolate 
intermediate-period Love and Rayleigh waves, seismograms were bandpass filtered to isolate 
signals with periods between 30 and 60 s.  

2.1 Seismic data 
During the model construction stage, we used observations from 759 seismic events and 

4,502 seismic stations (Figure 1). The seismograms were analyzed for previous earthquake 
relocation efforts (Cleveland et al., 2018; Cleveland & Ammon, 2013, 2015; Kintner et al., 2018, 
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2019). The origin times of these seismic events range from May 1989 to October 2016 (Figure 
S1a). The magnitudes of the events range from roughly 4.5 to 7.8 (Figure S1b). The event-station 
distance spans a wide range from 10- to 180-degree (Figure S1c). Using a group velocity range 
from 5.0 to 2.5 km/s, the expected surface-wave window length ranges from 222 s to 3979 s 
(Figure S1d). We refer to these seismograms as dataset DA.  

 

Figure 1. Maps of the (a) earthquakes and (b) seismic stations used. The size of each circle in (a) 
is proportional to an event’s earthquake magnitude. The gray circles and triangles are used for 
training (dataset DA), whereas red symbols are used to evaluate the ML model after training is 
completed (dataset DB). Thick lines are tectonic plate boundaries (Bird, 2003). (For 
interpretation of the references to color in this figure, the reader is referred to the web version of 
this article.) 

During the model construction stage, we selected 40 seismic events from the United 
States Geological Survey (USGS) ComCat catalog (between January 1990 and January 2019) 
with the following criteria. (a) The events were located at least one arc degree away from any 
seismic events of dataset DA. (b) The events were randomly selected from four magnitude bins 
(between magnitudes 5 and 6; 6 and 7; 7 and 8; 8 and 9) with 10 events in each bin. Seismic 
stations including long period high gain seismometers (LH channels, 1 Hz sampling rate) and 
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located between 10- and 180-degree distance were selected. Data from temporary network 
deployments were excluded. These seismograms will be referred to as dataset DB. After the ML 
models were trained, we also downloaded seismograms from 184 seismic events (Figure S2) 
with magnitude 6.0 and larger between January 2018 and May 2020 recorded at the station SSPA 
located near Standing Stone, Pennsylvania, USA. These seismograms comprise dataset DC. 

2.2 Waveform quality labels  
We compiled the quality labels for dataset DA from several earthquake relocation studies 

(Cleveland et al., 2018; Cleveland & Ammon, 2013, 2015; Kintner et al., 2018, 2019). Due to 
personal preferences, the original quality labels have either five or four categories. When using 
five categories, the three highest categories were considered acceptable (Figure S3a). For four 
categories, the two highest were considered acceptable (Figure S3b). To combine the datasets 
and maximize the number of labels, we mapped the quality labels into two categories, either 
accepted or rejected (see Figure S4 for waveform examples). The spatial distributions of quality 
labels show significant variations for different seismic events (Figure S5) due to earthquake 
source differences and background noise variations.  

In addition, after the ML models were trained, three human analysts re-labeled 1,000 
seismograms randomly selected from dataset DA. Half of them were assigned the same quality 
label by both a human analyst and the ANN model and referred to as Dataset 1. The other half 
were assigned different quality labels by a human analyst and the ANN model and referred to as 
Dataset 2. The human analysts also labeled 2,000 seismograms from dataset DB after we applied 
the ANN model to all the seismograms in dataset DB. These seismograms were randomly 
selected such that (1) each of the 40 distributed-magnitude earthquakes has 50 waveforms and 
(2) 1,000 seismograms were accepted by the ANN model whereas the other 1,000 seismograms 
were rejected. We consider the majority vote of the three analysts as ground truth, which is more 
reliable (but costly) than the labels used in the model construction stage. 

3 Methods 
Our analyses consisted of two stages (Figure S6), model construction and deployment. 

During the model construction stage, we compute statistical features from the surface-waveforms 
and link them with manually-assigned quality labels. These features and labels are then used to 
train an ML model. During the deployment stage, we obtain and compare ML-derived quality 
labels by applying the ML model directly to a test set of surface-waveforms not used in model 
construction.  

3.1 Feature engineering  
Surface waveforms are one of the most recognizable part of a seismic event’s wavefield, 

but also one of the most variable. The character of the signal changes with source-to-station 
distance, geology along the wave’s path, as well as the earthquake rupture characteristics and 
faulting geometry. To capture these complexities in a reasonable number of parameters, we 
employed a total of 301 features for each waveform (data sample). The features were computed 
from waveform segments that include: (1) the expected surface-wave arrival window (defined 
using a group velocity window from 5.0 to 2.5 km/s); (2) a time window with common duration 
before the surface waves; (3) ten evenly divided time windows spanning the entire data sample. 
For each time window, we calculated absolute energy (sum of all time samples squared), the sum 
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of absolute derivatives, kurtosis, skewness, maximum, minimum, mean, standard deviation, nine 
quantiles (10%-90%), and number of time samples. In additional to absolute values, we also 
included ratios of these statistical features (excluding the number of samples and absolute sum of 
changes) for two time-window pairs. The first pair includes the surface-wave window and the 
time window ahead of the surface wave. The second pair includes the two windows from the ten 
evenly sized windows that have the maximum and minimum absolute energy. We also included 
the magnitude of the earthquake, event depth, azimuth, and distance between the station and 
seismic event as signal-related features. As with all signal classification studies, we explored 
these features guided by our experience with surface wave analysis as well as numerical 
experiments using the training and validation sets. 

3.2 Machine learning  
In the model construction stage, we used data from dataset DA and randomly split it into 

three sets. We used 277,213 samples (waveforms) for training (70% of total), 39,601 samples for 
validation (10% of total), and 79,205 samples for testing (20% of total). The validation set was 
used to choose training parameters and features, the test set was used to evaluate the performance 
of the ML models. We used scikit-learn’s implementation of the LR, SVM, KNN, and RF. The 
ANN was implemented with Keras. For the SVM algorithm, we used both a linear kernel (SVM-
Linear) and a nonlinear kernel (SVM-Gaussian). The KNN model used five closest neighbors. 
The RF model contains 100 trees. The ANN model has six fully connected hidden layers (256 
neurons), which used the rectified linear units (ReLU) activation function and followed by a 
dropout layer (10% dropout rate) to reduce overfitting. We set the batch size as 20 and the 
learning rate as 0.00001. 

3.3 ML model generality 
We tested the generality of the ANN model using a collection of seismic events located 

in different regions than the events used in the model construction stage. The qualities of a subset 
of seismograms were visually assessed by three analysts and compared against the ANN model 
results. The original research objective for assigning a signal’s quality label was to decide 
whether it had the bandwidth and signal-to-noise ratio to perform well in a cross-correlation 
analysis, as well as to recognize interference with other arrivals, instrument issues, nodal signals, 
etc.. We tested the ANN’s generality using it as a screening procedure for an automated 
measurement of surface-wave group velocities. The model was applied to surface-wave 
seismograms in Dataset DB (see next section). Surface-wave group velocities were automatically 
estimated from seismograms in Dataset DC. Many of the group velocities estimated from 
seismograms rejected by the ANN model were clear outliers. 

4 Results 

4.1 ML model construction and assessment 
The performance of a classifier can be measured in a number of different ways, but most 

essential metrics are constructed using the numbers of positive and negative success and failure 
rates of the classifier. When trained using all the training samples, RF and ANN model out-
performed LR, SVM-Linear, KNN, SVM-Gaussian when applied to the test dataset in terms of 
accuracy score, F1 score (see Text S1 for detailed definition), and area under the receiver 
operating characteristic curve (AUC, see Text S1 for detailed definition) as shown in Figure 2a. 
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The receiver operating characteristic curves show the same pattern as AUC (Figure S7). The 
accuracy score, F1 score, and AUC for the ANN model are 0.92, 0.89, and 0.97, respectively. 
The performance of LR and SVM-Linear was the poorest. The confusion matrices also show that 
the RF and ANN models performed better than others (Figure S8).  

We visually checked waveforms that the ANN model assigned different labels than a 
human analyst using interactive visualization tools similar to Chai et al. (2018). We observed 
both human quality assignment errors as well as errors by the ANN model (see Figure S9 and 
S10 for examples). The results indicate that the ANN was working at least as accurately as 
human analysts. Mislabeling by human analysts is not surprising given the tediousness of the 
task and the natural inclination for humans to tire during the process. Mislabeling by the ANN 
represents the appearance of a signal with characteristics that are not in the training set, or 
combinations of features that contradict the general patterns in the training data. 

The runtime (which includes loading the trained model and computing quality labels) of 
the LR, RF, and ANN model are among the fastest for 100,000 seismograms (using six 2.9 GHz 
CPU cores) (Figure 2b). SVM models are the slowest since the algorithm used was not 
parallelized. The trained KNN model uses the most disk space (1.4 GB), the LR model required 
the least disk space (3 KB) (Figure 3d). SVM-Linear, RF, and SVM-Gaussian require 
comparable storage. The ANN model requires 5 MB of storage. Considering performance, 
runtime, and disk space, we prefer the ANN model and the RF model for assigning a quality 
control value to surface-wave seismograms.  

 

Figure 2. A comparison of (a) performance and (b) runtime for the test set from dataset DA. The 
performance analysis include all training samples in the dataset.  The runtime is calculated by 
recording the time it takes for different ML algorithms to load the trained model and compute 
quality labels for 100,000 seismograms.  

We also constructed ML models using subsets of the complete training set to investigate 
the model performance as a function of the number of training samples. This analysis consisted 
of training sets built using 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, and 100000 
waveforms. As expected, the F1-score for all the algorithms improved with an increasing number 
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of training samples (Figure 3a and 3b). However, as model performance increases, more training 
samples are needed to improve the model performance by the same percentage. That is, initial 
improvement occurs rapidly, but as the dataset grows and accuracy increases, significantly more 
data are needed to make a substantial performance improvement. The RF algorithm has the best 
accuracy and F1 score when the number of training samples is less than or equal to 20,000. The 
ANN algorithm surpassed the RF method when the training samples exceed 20,000. As shown in 
Figure 3c, the training time (using thirty-two 2.1-GHz Intel Xeon cores) for LR, KNN, and RF 
algorithms is less than the other ML techniques. The training time for the SVM models increases 
rapidly with the number of training samples. The ANN model took longer to train, but the 
training time increases more slowly with the number of training samples. 

 

Figure 3. A comparison of performance (a) and (b), training time (c), and disk space usage (d) 
for different algorithms. The legends of (b) and (c) are the same as (a). 

4.2 Model Applications 
We compared the performance of the ANN and RF models against three human analysts 

using datasets 1, 2, and 3. The results shown in Figure 4 indicate that the ANN and RF models 
performed similarly to human analysts for all three datasets. Of course the ANN and RF models 
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only used 0.5% of the average human processing time (Figure 4b). In some cases, the ANN and 
RF models identified useable data that were rejected by one of human analysts (see Figure 4e for 
an example). The direct outputs of the ANN and RF models are probability scores (range from 0 
to 1), which are then converted into two categories using a default threshold of 0.5, accepted 
(larger than or equal to 0.5) or rejected (smaller than 0.5). The probability threshold can be 
adjusted for a stricter screening. Increasing the threshold can improve the performance as shown 
in Figure 4c and 4d. When the threshold is larger than 0.5, three categories can be assigned to a 
seismogram instead of two. For example, a signal can be rejected if its probability score is 
smaller than 0.4, accepted if the probability is larger than or equal to 0.6, or considered marginal 
if its probability is between 0.4 and 0.6. The marginal seismograms can be further inspected by 
human analysts. As expected, a higher threshold leads to a smaller number of nonmarginal 
(accepted or rejected) labels (Figure 4c and 4d) or in other words more waveforms for human 
analysts to inspect. Similar to human analysts, the ANN and RF models sometimes agree and 
other times disagree. For dataset 3, the ANN or RF models combined mislabeled 540 
seismograms out of a total of 2000. Both methods incorrectly labeled a subset of 186 
seismograms (9% of the total); the ANN model mislabeled an additional 207 seismograms (393 
total, overall 80% correct); the RF model mislabeled another 147 seismograms (333 total, overall 
83% correct).  

Though not directly trained for the quality control of group velocity estimation, we tested 
the ANN model to determine whether it would reduce outliers in automated group velocity 
measurements. The ANN model performed reasonably well for dataset DC reducing the number 
of unrealistic group velocity values using the ANN-based quality control (Figure S11). The result 
is not perfect but the operational burden of inspecting the outlier observations is substantially 
reduced. Transfer learning (e.g., Chai et al., 2020) may further improve the performance of the 
ANN model for the quality control of group velocities. 

5 Conclusions and Discussion 
Using nearly 400,000 waveforms and corresponding quality labels, we applied and 

compared five ML algorithms (LR, SVM, KNN, RF, and ANN) intended to improve the 
efficiency of the quality control of surface-wave seismograms. Considering performance, 
processing speed, and storage requirements, the ANN achieved an accuracy of 0.92, an F1 score 
of 0.89, and an AUC of 0.97. The RF model follows the ANN closely with slightly lower 
performance and higher storage requirements, but faster processing times. We prefer the ANN 
and RF models over the other algorithms tested. The performances of both the ANN and RF 
model match human analysts for data they have never seen while also reducing the time invested 
in surface-wave quality control by 99.5%. We also show that quality labels from the ANN model 
helps reduce outliers in group velocity measurements, despite the training labels originally being 
generated for the purposes of signal cross-correlation analysis. The improved processing speed 
of the ANN model compared to human analysts and a demonstration of this method to 
independent surface-wave measurements shows that this technique can be used to reduce the 
burden of quality control screening for large volumes of seismic data. 

The trained ANN and RF models can be incorporated into an existing workflow that uses 
intermediate-period surface wave seismograms for earthquake and/or earth-structure studies. For 
fast-response applications, these two trained ML models can be applied automatically to identify 
good-quality data rapidly without human intervention. The execution speed of the two ML 
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models can be easily increased with more computing resources. For more comprehensive studies, 
the trained models can be used to pre-screen a large amount of data and allow researchers to 
focus on a subset of data ranked by ML labels. The numeric quality scores from the RF and 
ANN ML models could also be used as initial quality weights in seismological analysis. 

 

Figure 4. Additional evaluation of the ANN model after training. Panels (a) and (b) compare the 
ANN model against three analysts A, B, and C using a subset of 3000 seismograms from Dataset 
DA and DB. Note the time spent by the ANN model in (b) includes the entire processing 
workflow from raw seismograms to quality labels. Panels (c) and (d) show F1 and number of 
ML model labeled seismograms as a function of probability threshold using dataset 3. The 
sample seismogram in (e) was rejected by Analyst B and accepted by Analyst A, Analyst C, and 
the ANN model. The vertical line indicates the origin time of the seismic event. The gray box 
represents the expected arrival time window of surface waves defined by a minimum group 
velocity of 2.5 km/s and a maximum of 5 km/s. 
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Introduction  

The supporting information includes two paragraphs (Text S1) that explain the 
performance metrics used to compare the different ML algorithms: the F1 score, the 
Receiver Operating Characteristic (ROC) Curve, and area under the ROC curve (AUC). 
Also included is a figure (Figure S1) summarizing characteristics of the surface-
waveform dataset DA, a map (Figure S2) of seismic event and station locations for 
dataset DC, a figure (Figure S3) showing the distribution of original quality labels, plots 
of example waveforms (Figure S4) that were accepted and rejected by a human analyst, a 
figure (Figure S5) showing the spatial distribution of quality labels, a diagram (Figure 
S6) summarizing the two stages of our workflow, a comparison (Figure S7) of ROC 
curves, a comparison (Figure S8) of confusion matrices, two figures with additional 
waveform examples (Figure S9 and S10) that were assigned different quality labels by a 
human analyst and the ANN model, quality control results for group velocity 
measurements (Figure S11), and a table (Table S1, uploaded separately) listing all the 
seismic networks used by this study. 
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Text S1. 
Assessing the performance of a classification scheme is typically approached using 
several metrics of algorithm performance. The metrics are defined in terms of the positive 
and negative success and failure rates of the classifier when applied to a set of 
observations independent of the ML training procedure. True positive means that both the 
predicted label (from the ANN model) and the true label (from a human analyst) are 
positive (in our case, the waveform is accepted for analysis). False positive means that 
the predicted label is positive, but the true label is negative (rejected). False negative 
means that the predicted label is negative, but the true label is positive. True negative 
means both the predicted label and the true label are negative.  
 
An F1 score can be computed by counting the number of samples in each of these four 
categories and computing 
 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

 
 

𝐹1 = 	 !	×	$%&'()(*+	×	,&'-..
$%&'()(*+/,&'-..

= 0%1&	$*)(2(3&
0%1&	$*)(2(3&/4.6	×	(8-.)&	$*)(2(3&/8-.)&	9&:-2(3&)

  
 

 
The F1 value ranges from 0 (worst performance, no true labels) to 1 (best performance, 
no false labels). An F1 value of 0.9 corresponds to about 2 false negatives or false 
positives (combined) for every 9 true positives; an F1 value of 0.95 corresponds to about 
10 false negatives or false positives (combined) for every 95 true positives. Machine 
learning models can provide probabilities associated with each label (accepted or rejected 
in our case) and a probability threshold can be used to translate the probabilities to labels. 
For each candidate threshold, we can compute true positive and false positive rates. A 
ROC curve is a plot of the true positive rate versus the false positive rate for a set of 
thresholds. The area between the ROC curve and the horizontal axis (the false-positive 
rate) is called the area-under-the-curve (AUC) score. A machine learning model is 
usually considered better with a higher AUC score. 
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Figure S2. Histograms characterizing the properties of the training dataset DA: (a) origin year of 
earthquakes; (b) magnitude of earthquakes; (c) the distance between each earthquake and 
observing seismic station; and (d) the length of surface-wave window defined by a group 
velocity range from 5.0 to 2.5 km/s. The variable duration of the signals is one of the unusual 
aspects of this classification problem. 
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Figure S2. A map of seismic events (gray circles) and the location of seismic station SSPA (red 
triangle) that were used in the dataset DC. 
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Figure S3. Distributions of original quality labels in dataset DA for (a) five categories and (b) four 
categories.  
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Figure S4. Example displacement waveforms in dataset DA that were (a) accepted and (b) 
rejected by a human analyst. The red vertical line indicates the origin time of a seismic event. 
The gray box represents the expected arrival time window of surface waves defined by a 
minimum group velocity of 2.5 km/s and a maximum of 5 km/s. 
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Figure S5. Spatial distributions of quality labels (triangles) for two sample earthquakes (circles) 
in dataset DA. The event in (a) occurred on 2018/06/12T16:53:34 UTC with a magnitude of 5. 
The event in (b) occurred on 2018/09/13T15:45:26 UTC with a magnitude of 5.2.  
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Figure S6. A flowchart illustrating the major steps of the (top) model construction and (bottom) 
model deployment stages. ML represents machine learning. 
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Figure S7. A comparison of the Receiver Operating Characteristic (ROC) Curves for the examined 
machine learning algorithms constructed using the test set of dataset DA. LR stands for logistic 
regression. SVM means support vector machine, KNN represents K-nearest neighbors, RF is in 
short for random forests, ANN represents artificial neural networks.  
  



 
 

10 
 

 

Figure S8. A comparison of confusion matrices for different machine learning algorithms using 
the test set of dataset DA. 
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Figure S9. Waveform examples from the test set of dataset DA that were rejected by a human 
analyst but accepted by the ANN model. The vertical line indicates the origin time of a seismic 
event. The gray box represents the expected arrival time window of surface waves defined by a 
minimum group velocity of 2.5 km/s and a maximum of 5 km/s. Most of these misclassifications 
are likely the result of analyst fatigue. The fifth waveform from the bottom shows enough 
complexity outside the surface wave window to raise suspicion of the signal. A total of 2861 
(6%) seismograms out of 51474 human-rejected waveforms were accepted by the ANN model. 
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Figure S10. Waveform examples from the test set of dataset DA that were accepted by a human 
analyst but rejected by the ANN model. The vertical line indicates the origin time of a seismic 
event. The gray box represents the expected arrival time window of surface waves defined by a 
minimum group velocity of 2.5 km/s and a maximum of 5 km/s. A total of 3368 seismograms 
(12%) out of 27731 human-accepted waveforms were rejected by the ANN model. 
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Figure S11. Automatic group velocity measurements (a) before and (b) after using the ANN 
model for quality control. Automated group velocities are estimated using a simple multiple 
filter analysis and automated identification of the time of the maximum in a Gaussian-filtered 
surface waveform. An unrealistic automated group velocity estimate is likely a result of surface-
waveform with low signal-to-noise such that the maximum is not associated with the surface 
wave. 
 

Table S1. A list of seismic networks used.   
 


