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Abstract

In the northern hemisphere, terrestrial ecosystems transition from net sources of CO2 to the atmosphere in winter to net

ecosystem carbon sinks during spring. The timing (or phase) of this transition, determined by the balance between ecosystem

respiration (RECO) and primary production, is key to estimating the amplitude of the terrestrial carbon sink. We diagnose

an apparent phase bias in the RECO and net ecosystem exchange (NEE) seasonal cycles estimated by the Terrestrial Carbon

Flux (TCF) model framework and investigate its link to soil respiration mechanisms. Satellite observations of vegetation

canopy conditions, surface meteorology, and soil moisture from the NASA SMAP Level 4 Soil Moisture product are used to

model a daily carbon budget for a global network of eddy covariance flux towers. Proposed modifications to TCF include:

the inhibition of foliar respiration in the light (the Kok effect); a seasonally varying litterfall phenology; an O2 diffusion

limitation on heterotrophic respiration (RH); and a vertically resolved soil decomposition model. We find that RECO phase

bias can result from bias in RECO magnitude and that mechanisms which reduce northern spring RECO, like substrate and

O2 diffusion limitations, can mitigate the phase bias. A vertically resolved soil decomposition model mitigates this bias by

temporally segmenting and lagging RH throughout the growing season. Applying these model enhancements at Continuous

Soil Respiration (COSORE) sites verifies their improvement of RECO and NEE skill compared to in situ observations (up to

\(\Delta\)RMSE \(=-0.76\,g\,C\,mˆ{-2}\,dˆ{-1}\)). Ultimately, these mechanisms can improve prior estimates of NEE for

atmospheric inversion studies.
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Key Points:9
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Abstract16

In the northern hemisphere, terrestrial ecosystems transition from net sources of CO217

to the atmosphere in winter to net ecosystem carbon sinks during spring. The timing18

(or phase) of this transition, determined by the balance between ecosystem respiration19

(RECO) and primary production, is key to estimating the amplitude of the terrestrial20

carbon sink. We diagnose an apparent phase bias in the RECO and net ecosystem ex-21

change (NEE) seasonal cycles estimated by the Terrestrial Carbon Flux (TCF) model22

framework and investigate its link to soil respiration mechanisms. Satellite observations23

of vegetation canopy conditions, surface meteorology, and soil moisture from the NASA24

SMAP Level 4 Soil Moisture product are used to model a daily carbon budget for a global25

network of eddy covariance flux towers. Proposed modifications to TCF include: the in-26

hibition of foliar respiration in the light (the Kok effect); a seasonally varying litterfall27

phenology; an O2 diffusion limitation on heterotrophic respiration (RH); and a vertically28

resolved soil decomposition model. We find that RECO phase bias can result from bias29

in RECO magnitude and that mechanisms which reduce northern spring RECO, like sub-30

strate and O2 diffusion limitations, can mitigate the phase bias. A vertically resolved31

soil decomposition model mitigates this bias by temporally segmenting and lagging RH32

throughout the growing season. Applying these model enhancements at Continuous Soil33

Respiration (COSORE) sites verifies their improvement of RECO and NEE skill com-34

pared to in situ observations (up to ∆RMSE = −0.76 g C m−2 d−1). Ultimately, these35

mechanisms can improve prior estimates of NEE for atmospheric inversion studies.36

Plain Language Summary37

In the northern hemisphere, the plants and the soil respond to warming temper-38

atures and increasing day lengths in spring and begin to store more carbon than they39

release to the atmosphere, on average. The timing of this change is very important for40

accurately modeling how much carbon is stored or released to the atmosphere. We found41

that a commonly used model of plants and soil has delayed predictions of the timing of42

this seasonal cycle of carbon. We studied different potential changes to the model, in-43

cluding changes to: how carbon inputs to the soil from plant roots, dead leaves, and down44

wood are added over time; how soil microbes respond to high levels of soil moisture; whether45

the soil is represented by a single layer or by multiple layers at different depths; and how46

the release of carbon by plants varies with solar radiation. We found that multiple dif-47

ferent changes resulted in similar corrections to the seasonal cycle of carbon so long as48

they reduced or delayed the amount of carbon released during the spring season. We dis-49

cuss why that is and how it impacts the model’s performance and its importance for other50

modeling studies.51

1 Introduction52

In northern hemisphere temperate, boreal, and tundra regions, the spring season53

is marked by an increase in temperature and day length, stimulating vegetation photo-54

synthesis and growth. A result of this increased primary production is that northern ecosys-55

tems transition from net sources of CO2 to the atmosphere during the winter to net ecosys-56

tem carbon sinks during spring. The timing of this transition is determined by the bal-57

ance between ecosystem respiration (RECO) and primary production (Chapin et al., 2006;58

Noormets et al., 2009). The northern land sink dominates the global, terrestrial carbon59

sink and its seasonal amplitude has been increasing for decades (Graven et al., 2013; Forkel60

et al., 2016; Ciais et al., 2019).61

At high northern latitudes (≥ 40N) where there is strong seasonal variation in con-62

ditions that support soil decomposition and plant growth, the timing of soil respiration63

phenology is key to accurately estimating the amplitude of the terrestrial carbon sink64

(Zhao & Zeng, 2014; Migliavacca et al., 2015; Parazoo et al., 2018). Changes in the on-65
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set of the growing season, such as an earlier start of spring or delayed start of autumn,66

may lead to a longer carbon uptake period (Wu et al., 2013; Keenan et al., 2014) pro-67

vided that concurrent increases in RECO are smaller (Richardson et al., 2010); i.e., that68

the carbon flux to plants and the soil is larger than the respired CO2 flux to the atmo-69

sphere. Thus, the northern hemisphere (NH) seasonal cycle of carbon uptake is an emer-70

gent property (Birch et al., 2021) that depends upon the timing and relative magnitudes71

of multiple component ecosystem sources and sinks. Shifts in the modeled seasonal car-72

bon uptake period, relative to atmospheric inversion data or multi-model means, can be73

substantial and generally point to significant model biases (Forkel et al., 2014; Ito et al.,74

2016; Zhao et al., 2016).75

Models are, necessarily, simplified representations of complex ecosystem processes76

and direct observation of some CO2 fluxes is infeasible at large scales (Bond-Lamberty77

et al., 2016). However, satellite observations of vegetation provide a strong constraint78

on canopy phenology and on net (NPP) and gross primary productivity (GPP). In north-79

ern ecosystems, they are also a strong constraint on net ecosystem CO2 exchange (NEE)80

due to the tight link between plant productivity and the seasonal increase in CO2 up-81

take (Järveoja et al., 2018). Models without direct observations of canopy conditions tend82

to have biases in simulated GPP that propagate to other modeled fluxes (e.g., Thum et83

al., 2020). The ability to directly observe canopy changes has previously been used to84

diagnose model biases in northern ecosystem GPP (Peng et al., 2015; Shi et al., 2020;85

Birch et al., 2021).86

Here, we diagnose an apparent bias in the NH seasonal cycle of RECO in the Ter-87

restrial Carbon Flux (TCF) model framework (Kimball et al., 2009), which combines a88

satellite data-driven light-use efficiency (LUE) model with a first-order soil decomposi-89

tion model to estimate a daily carbon budget. The TCF framework has been used to in-90

fer climate impacts on northern ecosystems’ productivity and soil carbon (Yi et al., 2013;91

Watts et al., 2014) and is part of the NASA Soil Moisture Active Passive (SMAP) mis-92

sion Level 4 Carbon (L4C) operational product (Entekhabi et al., 2010; Jones et al., 2017;93

Endsley et al., 2020). A bias in the timing of the RECO seasonal cycle or its components,94

heterotrophic respiration (RH) and autotrophic respiration (RA), can result in a bias in95

the seasonal cycle of NEE (Noormets et al., 2009; Alexandrov, 2014) and limits the use96

of data-driven terrestrial carbon flux estimates as priors in atmospheric inversion stud-97

ies (Byrne et al., 2018). Identifying and mitigating such biases can generate insight into98

the biotic and abiotic factors that influence CO2 exchange between the land and atmo-99

sphere, informing future model developments. Whereas previous studies of potential bi-100

ases in carbon flux estimates have tended to focus on GPP (e.g., Zhao & Zeng, 2014; Migli-101

avacca et al., 2015; Parazoo et al., 2018), here, we examine the role of model processes102

for estimating RECO.103

Compared to eddy covariance (EC) flux tower and atmospheric inversion datasets,104

the timing of the seasonal change in NEE as modeled by TCF is delayed (Figure 1), likely105

as a result of an advanced RECO cycle. The temporal advance in the modeled RECO106

seasonal cycle suggests that canopy respiration or soil respiration are high-biased early107

in the growing season (NH spring). We also note that the NH summer NEE amplitude108

is under-estimated in TCF. This bias is common among terrestrial biosphere models (Peng109

et al., 2014). A similar NEE phase difference can be seen between the Carnegie-Ames110

Stanford Approach (CASA) and Simple Biosphere 3 (SiB3) models (Byrne et al., 2018).111

Our study aims to diagnose this issue and answer the broader questions:112

1. Does a seasonally varying adjustment of RECO or its components, RH and RA,113

improve the fit in modeled NEE phase compared to observed NH ecosystem CO2114

fluxes from a global network of EC flux towers? This adjustment might take the115

form of either an explicit phenology model or a seasonally varying climatic response.116
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Figure 1. NEE and RECO mean seasonal cycles, as measured by EC flux towers (“Towers”)

or modeled by TCF, for tower sites north of 40 degrees N latitude. Shaded area represents one

spatial standard deviation. TCF data are from the L4C Nature Run v8.3 simulation.

2. What is the impact of alternative RH or RA models on the mean RECO phase117

and estimation skill, validated against flux data measured at towers and in situ118

chamber sites?119

We identified potential improvements to the TCF model based on mechanisms hy-120

pothesized to affect the timing of RECO components that are missing or inadequately121

represented in the current framework. Potential improvements should be consistent with122

an operational, data-driven, and low-latency daily model such as SMAP L4C. We did123

not consider refinements to the LUE model or GPP parameters in this study because124

GPP in TCF is constrained by satellite-observed vegetation phenology.125

Specifically, we hypothesized that one or a combination of processes might be crit-126

ical to the correct timing of the RECO seasonal cycle in the NH: seasonally varying lit-127

terfall inputs to SOC, which would enhance an RH phenology; an upper limit on the re-128

sponse of RH to soil moisture (SM) due to limited O2 diffusion at near-saturating SM129

conditions, which may occur seasonally; and the slow diffusion of heat and moisture across130

vertically stratified soil layers, which can result in temporally lagged RH flux. The RECO131

seasonal cycle could also be adjusted by changes to the RA component; for example, through132

modeling of the inhibition of leaf RA in the light (Wehr et al., 2016; Keenan et al., 2019),133

also known as the Kok effect, which could reduce the high RECO bias during the NH134

spring (Heskel et al., 2013; Byrne et al., 2018), as the TCF framework lumps above- and135

below-ground RA together. Other potential modifications to the RA model not inves-136

tigated here include increased construction respiration during spring leaf-out (Papale &137
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Valentini, 2003) or increased respiration associated with the maintenance of photosyn-138

thetic rates (Migliavacca et al., 2015)139

These hypotheses have support in the literature. The Kok effect is well-known, de-140

spite uncertainty regarding the cellular mechanism(s) responsible (Heskel et al., 2013).141

A seasonally varying litterfall scheme is intuitive and consistent with observations of soil142

respiration in the NH fall season (Davidson et al., 2006) and experimental manipulations143

of litter inputs (Leitner et al., 2016; Nielsen et al., 2019). A looser coupling of litterfall144

and GPP is also consistent with the finding that peak below- and above-ground respi-145

ration are temporally separated (Davidson et al., 2006; Giasson et al., 2013). An O2 dif-146

fusion limitation has been implemented in other terrestrial carbon flux models (David-147

son et al., 2012; Sihi et al., 2018) and has some experimental support. For instance, Järveoja148

et al. found that the temperature sensitivity of RH in northern peatlands is enhanced149

in dry periods, possibly due to increased O2 supply to heterotrophs. It has also been found150

to improve RECO estimation at wetland sites (Sulman et al., 2012) and where snowmelt151

also leads to an increase in soil water content in spring (Oikawa et al., 2014; Winnick et152

al., 2020). A vertically stratified soil column has been adopted in land models (Tao et153

al., 2017; dos Santos et al., 2021). The mechanics of heat diffusion suggest that surface154

layers of the soil will warm before deeper layers, inducing lagged respiration through-155

out the soil column. This time lag, most evident in the spring and fall, has been asso-156

ciated with changes in the share of ecosystem respiration from the soil (Davidson et al.,157

2006). Vertical variation in soil temperature, in particular, has been shown to substan-158

tially improve soil carbon stock estimates at high latitudes (Koven et al., 2017; Yi et al.,159

2020).160

2 Data and Methods161

We modified the open-source TCF source code (Endsley, 2021a) to support the res-162

piration processes hypothesized to affect the timing of the NEE and RECO seasonal cy-163

cles. In TCF, soil decomposition proceeds according to first-order kinetics as a function164

of litterfall inputs and the total SOC substrate (Jones et al., 2017; Endsley et al., 2020).165

The base rates of decomposition, or (inverse) turnover times, are modified by environ-166

mental constraint functions. Surface SM is used to model the response of RH to substrate167

availability; i.e., liquid water in the soil pore spaces allows microbes to access organic168

carbon substrates, the decomposition of which produces a CO2 flux (RH). Soil temper-169

ature in the top 5 cm also promotes soil decomposition, modeled by an Arrhenius tem-170

perature function. Daily litterfall is computed as a constant daily fraction of annual NPP.171

The response of RH to surface SM and temperature is calibrated against a repre-172

sentative, global set of EC flux towers, separately, for towers representing different Plant173

Functional Types (PFTs), using constrained non-linear least squares optimization. The174

global distribution of up to eight PFT classes are defined from the MODIS MOD12Q1175

(Type 5) land-cover classification (Friedl et al., 2010): Evergreen Needleleaf Forest (ENF),176

Evergreen Broadleaf Forest (EBF), Deciduous Needleleaf Forest (DNF), Deciduous Broadleaf177

Forest (DBF), Shrubland (SHB), Grassland (GRS), Cereal Crop (CCR), and Broadleaf178

Crop (BCR).179

In this study, the L4C Nature Run version 8.3 (NRv8.3), a model-only version of180

L4C uninformed by SMAP satellite brightness temperatures, is used as the baseline ver-181

sion of TCF against which potential model enhancements are evaluated. L4C NRv8.3182

is, in turn, based on soil moisture and temperature data from the SMAP Level 4 Soil Mois-183

ture (L4SM) Nature Run version 8.3, a model-only version of the operational SMAP L4SM184

product (Reichle et al., 2019, 2017). Both the operational SMAP L4C Version 5 and L4C185

NRv8.3 have the same model logic, with NEE computed as the residual difference be-186

tween GPP and RECO. L4C NRv8.3 and the modified versions of TCF use the same daily187

surface meteorological driver data for the period January 1, 2000 through December 31,188
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2017. For each modification to TCF, a full, daily carbon budget was calculated at 356189

EC flux tower sites from the FLUXNET La Thuille Collection (Baldocchi, 2008). The190

modeled fluxes are site-scale, representing a 9-km area centered on each EC tower site;191

model processing occurs at 1-km spatial resolution within that footprint.192

The GPP model of L4C NRv8.3 is unchanged throughout this study; each exper-193

iment uses the same minimum air temperature, vapor pressure deficit (VPD), and pho-194

tosynthetically active radiation (PAR) data from the Modern Era Retrospective Re-analysis195

(MERRA-2, Gelaro et al., 2017). Similarly, the fraction of PAR absorbed by the canopy196

(fPAR) is derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)197

MCD15A2H product (Myneni et al., 2015) and is used as a model input to compute iden-198

tical GPP estimates in each experiment. The environmental responses for each PFT in199

L4C NRv8.3 and subsequent experiments were calibrated against observed GPP and RECO200

fluxes partitioned from daily NEE using the night-time method at representative tower201

sites (Keenan et al., 2019). In every experiment, the three SOC pools (stratified by base202

decomposition rates) were brought to steady-state conditions through an analytical spin-203

up followed by a numerical spin-up, consisting of repeated cycling of annual climatolo-204

gies until the annual NEE balance is within ±1 g C m−2 d−1.205

2.1 Litterfall Phenology206

The timing of litterfall allocation to SOC pools could have a profound effect on the
seasonal cycle of RH . Randerson et al. tested litterfall allocation schemes based on re-
motely sensed leaf-area index (LAI) and selected the best-performing scheme for the CASA
model. The CASA litterfall scheme, as implemented in the modified TCF framework,
changes litterfall input, L, from a constant daily fraction of NPP to a moving-window
function of LAI:

L(t) = NPP× (fE δt+ fL(t)) where fE =
min(LAI)

mean(LAI)
, t ∈ [1, 365] (1)

Where t is the day-of-year; δt is the time step in years (1/365); fE is the evergreen
fraction, an estimate of the proportion of the canopy that is evergreen; and fL is the lit-
terfall fraction in excess of a constant daily fraction (1/365):

fL(t) =
Lloss(t)∑
Lloss(t)

(1− fE) (2)

fL is normalized by the annual sum of Lloss, the leaf-loss function. Lloss is a tri-207

angular moving window centered on the current time step, amounting to the difference208

between lagged and leading LAI. Here, satellite-observed LAI inputs to the TCF model209

are obtained from the MODIS MCD15A2H product (Myneni et al., 2015). Unlike Ran-210

derson et al., we re-calculate fE each year, allowing for potential changes in the canopy211

species composition. We also used the full MODIS MCD15A2H record, down-scaled to212

daily time steps by forward-filling values, over the 2000-2017 period. The approach re-213

quires two leading values from MCD15A2H (two 8-day MCD15A2H composites), which214

would introduce a ca. 16-day latency. For an operational algorithm aiming for low la-215

tency, like SMAP L4C, a static 365-day LAI climatology could be used instead.216

2.2 O2 Diffusion Limitation217

If O2 diffusion becomes limiting at high SM, this could explain the apparent RECO218

high bias in TCF during the spring season. We verified that high SM conditions exist219

in the NH spring at multiple U.S. Surface Climate Observing Reference Networks (USCRN)220

(Diamond et al., 2013) and Soil Climate Analysis Network (SCAN) (Schaefer et al., 2007)221

in situ monitoring sites in the contiguous United States (CONUS) north of 40 degrees222
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latitude. An annual SM climatology, compiled for each sensor depth, based on these sites223

suggests that shallow soil layers, in particular, experience an increase in SM anomaly dur-224

ing the NH spring (Figure S1).225

To model an O2 diffusion limit at high SM conditions, we adopted a Michaelis-Menten
(MM) function of soil volumetric water content (Davidson et al., 2012) as an additional
constraint on RH . Currently in TCF (NRv8.3), RH from pool i is a function of the base
decomposition, ki, the amount of SOC, Ci, an Arrhenius function of soil temperature,
f(T ), and a linear ramp function of soil wetness (volumetric percent of pore space oc-
cupied by liquid water), g(θ%), representing substrate diffusion. In the modified TCF
RH function, g(θ%) is replaced by the minimum of itself and the O2 diffusion limit term,
a function of the volumetric O2 concentration, [O2], and the MM or half-saturation con-
stant, kMO2

:

RH =

3∑
i=1

ki × Ci × f(T )×min

(
g(θ%),

[O2]

kMO2
+ [O2]

)
(3)

In taking the minimum of these two constraints, we assume they are equally lim-
iting for soil heterotrophs. We calculate the O2 concentration based on the diffusion co-
efficient of O2 in the air, dgas, the air fraction of O2 (0.209 LL−1), the porosity of the
soil, φ, and the volumetric soil moisture, θ. In our approach, no new fit parameters are
required, as the constants kMO2

and dgas can be identified based on the soil moisture dis-
tribution observed among sites with the same PFT. First, following Davidson et al., we
assume that when soil moisture is very low (below 5th percentile), the O2 concentration
in the soil pore spaces is the same as in the air, leading to:

[O2] = 0.209 dgas(φ− θ)4/3 −→ dgas = lim
θ→ 0

(φ− θ)−4/3 (4)

Second, we set kMO2
≡ [O2], calculated using this inferred value of dgas and the226

median soil moisture. As in NRv8.3, soil moisture and porosity are derived from the SMAP227

L4SM (Reichle et al., 2019) and GEOS-5 Catchment Land Model (Koster et al., 2000;228

Tao et al., 2017), respectively.229

2.3 Vertically Resolved Soil Decomposition Model230

The original TCF framework is not vertically stratified: soil decomposition and RH231

flux are considered to occur near the surface in a single soil layer of arbitrary thickness.232

The SMAP L4SM product estimates soil temperatures in seven layers with interfaces at233

5, 15, 35, 75, 150, and 300 cm depth, accounting for bedrock. However, because of the234

particular structure of the Catchment model, L4SM only reports SM in three nested lay-235

ers: the surface layer (0-5 cm), the root-zone (approximately 0-100 cm), and the soil pro-236

file (0 cm to bedrock depth). In order to obtain vertically resolved estimates of soil wa-237

ter content, we developed a simple physical model of soil water infiltration, diffusion, and238

lateral drainage (Endsley, 2021b) based on the modified Richards’ equation and which239

is fully described in Appendix A. The corresponding, vertically stratified soil decompo-240

sition model is driven with these estimates of the soil water profile, which depend on sur-241

face infiltration estimates from L4SM, while L4C NRv8.3 is driven using L4SM surface242

soil moisture.243

The multi-layer soil profile modification to TCF includes modifications of the SOC
and RH sub-models. The new, vertically resolved SOC model is similar to that of Yi et
al.:

∂

∂t
Ci(z) = Ri(z)− kiCi(z) +

∂

∂z

(
D(z)

∂Ci
∂z

)
(5)

Where Ri(z) represents inputs (and transfers) to SOC pool i at depth z and D(z)
is the vertical diffusivity of SOC. Diffusivity is taken to be 2×10−4m2 yr−1, after Yi
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et al. for non-permafrost soils. Each soil layer or depth, z, contains the same three SOC
pools, which are the same pools in the baseline NRv8.3 and the other experiments. Lit-
terfall input is now a function of depth:

Ri(z) = Li(z) + fji where Li(z) = Li × exp

(
− z

ze

)
(6)

Where Li(z) is the litterfall input to SOC pool i at depth z, an exponentially de-244

clining function of depth, after Koven et al., which estimated the e-folding depth, ze, to245

be equal to 10 cm. Li, the total daily litterfall input across the soil profile, is estimated246

as in NRv8.3 as a constant daily fraction of NPP. fji is the transfer function defining247

carbon (C) transfers from pool j to pool i.248

Finally, RH is calculated similar to the baseline TCF model, NRv8.3, with envi-
ronmental modifiers soil moisture and temperature, but as a composite sum of the RH
in each soil layer and with an additional rate modifier, h(z), which accounts for the ex-
tinction of RH with depth due to factors other than soil moisture or temperature (Koven
et al., 2013):

RH =

Z∑
z=1

3∑
i=1

ki Ci,z f(Tz) g(θz)h(z) where h(z) = exp

(
− z

zk

)
(7)

zk, the depth at which environmentally-constrained RH declines by a factor of e249

(due to, e.g., mineral protection, aggregation, etc.), is a free parameter that is fit in cal-250

ibration against the observed RECO flux.251

2.4 The Kok Effect252

To simulate the inhibition of RA by light (the Kok effect), prior modeling studies
have modulated maximum light-use efficiency (LUE) according to irradiance (Turner et
al., 2006) or adjusted RA directly as a function of irradiance, solar elevation, and the leaf
angle distribution (Wohlfahrt et al., 2005). In TCF, however, a potential inhibition of
RA implicates both the calibration and forward modeling through plant carbon use ef-
ficiency (CUE), or the fraction of GPP that is not respired. During calibration, CUE is
used to compute RH for fitting against EC flux tower observations. In this experiment,
CUE now varies with PAR:

RH = RECO−RA (8)

= RECO− (1− CUE × g(PAR))×GPP (9)

Where g(PAR) is a linear ramp function that monotonically increases with increas-
ing PAR:

g(x) =


1 if x ≥ xmax
0 if x ≤ xmin

x−xmin

xmax−xmin
otherwise

(10)

Where xmin and xmax are the lower and upper bounds of the ramp function. In253

the experiment NRv8.3 + Kok Effect, xmin and xmax are fit parameters. In the base-254

line TCF NRv8.3, CUE does not vary with PAR (i.e., g(PAR) ≡ 1).255

During forward modeling, CUE is key to computing NEE as the residual between
RECO and GPP or, equivalently, between RH and NPP:

NEE = RH −NPP (11)

= RH − [CUE × g(PAR)×GPP] (12)
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2.5 Verification and Validation against Flux Tower Observations256

The mean seasonal cycle at the 356 EC tower sites was used as a within-sample257

check on the experimental results, as it is observed that the mean seasonal cycle of the258

calibrated model does not match that of the underlying calibration data for high north-259

ern latitudes (Figure 1); i.e., does the modified TCF model display better fidelity to NH260

seasonal cycles in the calibration dataset? In addition to this model verification, we val-261

idated RECO and NEE modeling skill, in carbon terms, against the L4C Core Valida-262

tion Sites (CVS) (Jones et al., 2017).263

We also validated the TCF mean seasonal cycles against that of the FLUXCOM264

up-scaled tower fluxes dataset (Jung et al., 2020), which is based on the random forest265

method with combined remote sensing and meteorology drivers (RS+METEO). Like FLUX-266

COM, TCF-based models (e.g., SMAP L4C) extrapolate to the global land domain the267

site-level relationships between environmental drivers and carbon fluxes, based on a rep-268

resentative set of EC flux towers. Though not entirely independent of the FLUXNET269

towers used to calibrate TCF, the additional driver datasets and larger spatial extent270

of FLUXCOM motivate our comparison of the aggregate, mean NEE and RECO sea-271

sonal cycles. Unlike the EC tower data, FLUXCOM provides gridded data over land; we272

subset the data to all pixels ≥ 40 N latitude. As the global network of 356 EC towers273

used to calibrate TCF are assumed to be sufficiently representative for inferring relation-274

ships at global scale, we compared the aggregated mean seasonal cycle from FLUXCOM’s275

larger spatial extent to that of our site-level modeled results.276

Two techniques were used to quantify the effect of each TCF modification on the277

modeled NEE and RECO seasonal cycles. First, we applied a low-pass filter (smoother)278

to the mean seasonal cycle, aggregated across all towers matching each PFT or across279

the FLUXCOM time series. We chose a 7-day moving window for the filter based on vi-280

sual inspection of the filtered results. Second, we used Fourier regression to quantify the281

phase shift, in days, of a harmonic function fit to the FLUXCOM time series or the com-282

plete time series of all tower sites within each PFT group. Specifically, with smoothing,283

we aggregated the mean seasonal cycle prior to applying the filter; with Fourier regres-284

sion, the raw time series data were used to estimate model parameters. Fourier regres-285

sion provides a standard error for the phase offset across PFTs; the low-pass filter pro-286

vides an estimate of the location of minimum NEE or maximum RECO.287

2.6 Validation against Chamber Data288

We used data from the Community Soil Respiration (COSORE) database (Bond-289

Lamberty et al., 2020), a collection of in situ chamber studies, to investigate the rela-290

tive advantage of each TCF modification and validate the modeled RECO fluxes. As TCF291

does not distinguish between above-ground and below-ground respiration and calculates292

RA as a constant fraction of GPP, we assume that TCF RECO is roughly proportional293

to soil respiration (RS) at daily time scales. RS should be the largest component of RECO294

and they generally show similar dynamics (Bond-Lamberty et al., 2018; Barba et al., 2018).295

Using the Soil Respiration Database (SRDB) version 5 (Jian et al., 2021), we extracted296

RH :RS ratios averaged by PFT and used these to calculate the RH fraction of COSORE-297

reported RS , based on matching PFT classes. Those ratios are consistent with the anal-298

ysis of Bond-Lamberty et al. (Table S6). COSORE datasets that reported negative SM299

or SM < 0.02m3m−3 were excluded from the analysis. Few COSORE sites report the300

depth of collar insertion; all have recorded depths ≤ 10 cm. We computed the median301

RS flux, converted from µmol CO2m
−2 s−1 to g C m−2 s−1 using the molar mass of car-302

bon, across ports.303

After filtering COSORE datasets on these criteria, we split them into two groups.304

In the first group, 13 COSORE datasets (Chang et al., 2008; Carbone et al., 2011, 2013;305

Ataka et al., 2014; Sánchez-Cañete et al., 2016; Vargas et al., 2018) reported concurrent,306
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daily SM, temperature, and RS flux values (Table S1). These in situ SM and temper-307

ature data are most appropriate for modeling at COSORE sites given the relatively coarse308

scale of TCF input datasets. Soil texture and porosity data were obtained for these sites309

from the Catchment model. We computed a 365-day GPP climatology from SMAP L4C310

Version 5 dataset (2015-2019) at each COSORE location. Use of a GPP climatology elim-311

inates canopy changes, real or spurious, that may not be reflected in the respiration mea-312

surements from COSORE chamber studies due to the scale mismatch. For experiments313

that included a CASA litterfall phenology, the daily litterfall fraction was computed as314

the average across EC tower sites for each PFT class.315

A key issue arises with using COSORE-reported driver data in TCF models cal-316

ibrated on L4SM, as SM values generated by one model (or measured in the field) are317

generally not comparable with those derived from another (Koster et al., 2009). The small318

number of relevant COSORE datasets precludes re-calibration of TCF using COSORE319

observations. Instead, we applied a bias correction, using an affine statistical transfor-320

mation to re-scale COSORE moisture and temperature values to match the L4SM data321

based on within-PFT means. The coefficients from a linear regression of rank-ordered322

L4SM values on rank-ordered COSORE values were applied to transform the COSORE323

values of sites based on their PFT (i.e., slope parameter varying with PFT). We mapped324

the COSORE-reported biome to MOD12Q1 PFTs, which were often identical. To ob-325

tain a continuous record of soil moisture and temperature (required for TCF model op-326

eration), a daily COSORE climatology, by PFT, was used to fill-in missing values.327

The second group of COSORE datasets consists of 12 other sites (Curtis et al., 2005;328

Baldocchi et al., 2006; Jassal et al., 2008; Noormets et al., 2010; Detto et al., 2013; Gaumont-329

Guay et al., 2014; Zhang et al., 2018; Ueyama et al., 2018) located within 9 km of a FLUXNET330

tower. Although these 12 datasets did not include driver data, we compared the mod-331

eled RH flux (based on L4SM and MERRA-2 driver data) from those nearby FLUXNET332

sites, for each experiment, to the (partitioned) RH flux from COSORE.333

3 Results334

Each modification to the RH and/or SOC sub-models produced a meaningful im-335

provement in the estimated RECO and NEE seasonal cycles relative to the TCF NRv8.3336

model baseline with no modifications (Figure 2). The modification to the RA model, via337

the Kok effect, produced no discernible improvement in the seasonal cycles (Tables 1,338

2). The mean day-of-year (DOY) of the NEE minimum (RECO maximum) for the high339

northern latitudes (≥ 40 degrees N latitude), based on filtering of tower data (Table S2),340

is estimated to be 181 (197). Depending on the method used to quantify the phase dif-341

ference (Tables S2, S3), in NRv8.3 the NEE minimum (RECO maximum) is delayed (ad-342

vanced) by 15-26 days (12-14 days). This aggregate seasonal cycle obscures underlying343

heterogeneity but is useful as a high-level diagnostic. Some PFTs show a stronger phase344

correction than others (Figure 3). Spatial variation in the timing of the NEE minimum345

due to PFT and climate can be observed if we apply the TCF model at global extent346

(Figure 4).347

The Fourier regression (Table S3) and low-pass filter results (Table S2) agree broadly348

as to the effect of each modification on the overall fit to the seasonal cycle of the EC flux349

towers; i.e., each intervention, other than the Kok effect, produces a meaningful model350

improvement. However, they disagree substantially as to the length of the time lag for351

all PFTs except ENF (Tables 2 and S3). Some of this difference can be attributed to the352

lack of strong periodicity in NEE for some PFTs (e.g., SHB, GRS) which can confound353

the Fourier regression results; conversely, PFTs with broad seasonal peaks/ troughs (e.g.,354

CCR, BCR) may confound the low-pass filter. Differences in the TCF model fit param-355

eters (if re-calibrated) and other observations unique to each experiment are reported356

below.357
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Table 1: Difference (experiment minus Tower observations) in
day-of-year (DOY) of NEE minimum (maximum net ecosystem
carbon uptake), in days, for each experiment, based on the mean
NEE seasonal cycle, smoothed with a low-pass filter using a 7-
day moving window, for all sites above 40 degrees N latitude.

Product ENF DNF DBF SHB GRS CCR BCR

NRv8.3 +26 +19 +16 +5 +4 +12 +15
NRv8.3 + Kok Effect +26 +19 +16 +4 +4 +12 +15
NRv8.3 + O2 Limit +14 +18 +3 -5 +4 +11 +1
NRv8.3 + Litterfall Phenology +13 +18 +1 +3 +3 +10 -1
NRv8.3 + Soil Profile +26 +17 +4 +3 +4 +10 +1
NRv8.3 + O2 Limit + Litterfall +12 +18 +1 -6 -5 +10 +0
NRv8.3 + Soil Profile + O2 Limit +28 +17 +4 +4 +6 +10 -1
NRv8.3 + Soil Profile + Litterfall +13 +17 +2 +3 +4 +10 +0
NRv8.3 + Soil Profile + O2 Limit + Litterfall +26 +17 +2 +4 +6 +10 -2

Table 2: Difference (experiment minus Tower observations) in
day-of-year (DOY) of RECO maximum, in days, for each exper-
iment, based on the mean RECO seasonal cycle, smoothed with
a low-pass filter using a 7-day moving window, for all sites above
40 degrees N latitude.

Product ENF DNF DBF SHB GRS CCR BCR

NRv8.3 -13 -34 -17 -2 -10 -13 -36
NRv8.3 + Kok Effect -12 -34 -17 -2 -10 -13 -18
NRv8.3 + O2 Limit -6 -34 -13 +0 +1 -9 -17
NRv8.3 + Litterfall Phenology -5 -34 +3 +0 +19 +3 +32
NRv8.3 + Soil Profile -12 -9 -17 +0 -9 -9 -17
NRv8.3 + O2 Limit + Litterfall -4 -10 +0 +1 +4 -4 +9
NRv8.3 + Soil Profile + O2 Limit -13 -9 -14 -2 +0 -8 -2
NRv8.3 + Soil Profile + Litterfall -5 -9 -13 +0 +6 +3 +2
NRv8.3 + Soil Profile + O2 Limit + Litterfall -12 -9 -13 -1 +0 +3 -1

3.1 Single-Factor Experiments358

3.1.1 NRv8.3 + Litterfall Phenology359

A seasonally varying litterfall scheme produced the best joint improvement in the360

NEE and RECO seasonal cycles (Table S2), relative to NRv8.3, particularly for DBF361

(Tables 1, 2). The NEE seasonal cycle of DBF, with the new litterfall scheme, is almost362

a perfect match to the tower record (despite a bias difference), including the autumn in-363

crease in CO2 flux to the atmosphere. This autumnal increase is also shown in the mod-364

eled NEE results for the BCR PFT, but it is not apparent in the corresponding tower365

data. Conversely, NRv8.3 shows a spurious high NEE anomaly for BCR in spring that366

is eliminated by this experiment’s considerable shift in the BCR RECO seasonal cycle367

(Figure S3).368
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Figure 2. Mean seasonal RECO and NEE cycles for each experiment and for the EC flux

towers (“Towers”), shown with smoothing b-splines, for all sites north of 40 degrees N latitude.

The NRv8.3 + Kok Effect experiment is not shown because it overplots the NRv8.3 baseline

almost exactly.
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Figure 3. Mean seasonal RECO and NEE cycles for each experiment and for the EC flux

towers (“Towers”) at tower sites north of 40 degrees N latitude for the ENF and DBF PFTs. The

shaded area shows one spatial standard deviation for the Towers and is clipped for DBF NEE.

Plots of the mean seasonal cycles for each PFT, separately, are available in the Supplement.
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Figure 4. Map of the day-of-year on which the minimum net ecosystem exchange (NEE)

occurs, based on the average 2015-2019 seasonal cycle of NEE from SMAP L4C Version 5 prod-

uct, which incorporates the TCF model. Areas outside the model domain are shown in gray and

white.
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3.1.2 NRv8.3 + O2 Limit369

With the O2 diffusion limit, all PFTs show reduced NEE magnitude and most show370

less RECO throughout most of the year, though increased RECO is observed in the fall371

for some PFTs, particularly DBF (Figure 3). The RECO seasonal cycle is improved for372

ENF, DBF, SHB, and cropland PFTs. As with the new litterfall scheme, the addition373

of an O2 diffusion limit eliminated a spurious spring NEE anomaly for BCR in NRv8.3374

(Figure S4). But unlike the new litterfall scheme, the O2 diffusion limit did not intro-375

duce a spurious autumnal NEE anomaly for BCR (Figures S3 and S4). In general, the376

resulting phase correction in RECO is not as strong as in the NRv8.3 + Litterfall Phe-377

nology experiment (Figure S3). Looking at the residuals (compared to tower observa-378

tions), NRv8.3 over-estimates RECO at high SM in ENF, GRS, and croplands. Adding379

an O2 diffusion limit reduces that high bias; however, in the NRv8.3 + O2 Limit exper-380

iment, GRS and DBF show a slight under-estimation of RECO at high SM.381

3.1.3 NRv8.3 + Soil Profile382

The NRv8.3 + Soil Profile experiment produced only a moderate correction to the383

NEE and RECO seasonal cycles. We experimented with different functional forms for384

the litterfall input distribution and RH extinction function, h(z) (Equation 7). For the385

litterfall inputs, as Koven et al. also suggested, we evaluated profiles based on the root386

profiles of Jackson et al., a root density profile based on the Community Land Model (Lawrence387

et al., 2019), and the normalized, median SOC profile from SoilGrids 250m (Hengl et al.,388

2017) (Figure S16). The negative exponential h(z) better matched the shape of the me-389

dian SoilGrids 250m profile and, in anticipation of a high RECO bias due to high SOC390

storage, we reduced the SOC storage magnitude by using a 9-cm e-folding depth (Fig-391

ure S18), instead of 10-cm as suggested by Koven et al.. As expected, SOC storage in-392

creases with a multi-layer soil model (Figure S19).393

3.1.4 NRv8.3 + Kok Effect394

Plant CUE was much lower in the re-calibrated BPLUT when the Kok effect was395

applied, with values in the range [0.38, 0.70] across PFTs compared to [0.53, 0.78] in NRv8.3.396

Accordingly, RECO in the Kok effect experiment is partitioned very differently from NRv8.3,397

with a general decline in RH but an increase in RA. Despite this change, the overall RECO398

level is very similar to that of NRv8.3 and the seasonal cycles of NEE and RECO are399

unchanged. The apparent improvement for the BCR PFT (Table 2) is likely spurious400

due to a broad, flat minimum NEE for that PFT’s seasonal cycle.401

3.2 Factorial Combinations402

In addition to single-factor experiments, we ran experiments in which multiple fac-403

tors were combined, with the exception of the Kok effect implementation, as that exper-404

iment did not show improvement in the timing of the mean seasonal cycles. For the NRv8.3405

+ O2 Limit + Litterfall multi-factor experiment, no re-calibration was necessary, as the406

NRv8.3 + O2 Limit parameters were re-used. The NRv8.3 + Soil Profile + O2 Limit407

experiment did require re-calibration. The experiment combining both an O2 limit and408

litterfall phenology generally resembles an average of those single-factor experiments (Fig-409

ure S8). Interestingly, the NRv8.3 + O2 Limit + Litterfall experiment yields the most410

substantial correction of all multi-factor experiments and a substantial improvement in411

the RECO and NEE seasonal cycles for ENF compared to the single-factor experiments.412

Where an O2 limit and vertical soil profile were combined, the steady-state SOC413

storage was unreasonably high, with total-column SOC content exceeding 870 kg m−2414

and surface-layer (0-5 cm) SOC density of around 120 kg m−3. Non-exponential litter-415

fall input functions combined with the power-law RH extinction function yielded smaller,416
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Figure 5. Root mean-squared error (RMSE) of modeled NEE, RECO fluxes versus observed

fluxes at the 26 L4C Core Validation EC tower Sites (CVS) for the single-factor experiments.

Error bars show one standard deviation across EC tower sites.

more realistic steady-state SOC pools, but failed to improve the RECO and NEE skill.417

The NRv8.3 + Soil Profile + Litterfall experiment, however, improved upon the base-418

line and the respective single-factor experiments; notably, an autumn high bias in the419

NEE cycles of DBF and BCR in the NRv8.3 + Litterfall experiment was much reduced420

(Figures S3, S7).421

3.3 Validation against Tower and Chamber Datasets422

Modeled fluxes from each single-factor experiment compared well to the observed423

NEE, RECO fluxes at the L4C CVS (Figure 5). Some of these sites are located below424

40 degrees N latitude, including the southern hemisphere, and therefore indicate that425

none of the new respiration mechanisms, as single factors, results in degraded NEE or426

RECO skill relative to the baseline NRv8.3. Conversely, in the combined experiments,427

the combination of an O2 diffusion limit with other changes to the RH model led to de-428

graded NEE and RECO skill (Figure 6).429

Compared to FLUXCOM, the NRv8.3 + O2 Limit showed the best agreement in430

the RECO and NEE seasonal cycles, though the NRv8.3 + Soil Profile and NRv8.3 +431

Soil Profile + Litterfall experiments also compare well (Tables 3, S5). Both phase esti-432

mation approaches agree that the single-factor experiments (other than NRv8.3 + Kok433

Effect) match the FLUXCOM seasonal cycles of RECO and NEE better than the base-434
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Figure 6. Root mean-squared error (RMSE) of modeled NEE, RECO fluxes versus observed

fluxes at the 26 L4C Core Validation EC tower Sites (CVS) for the experiments with combina-

tions of factors. Error bars show one standard deviation across EC tower sites.
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line NRv8.3 product; however, they disagree considerably about the multi-factor exper-435

iments and the apparent residual lead in the RECO seasonal cycle (Table 3).436

The modeled results at COSORE sites, combining those with independent driver437

data and those that are within an EC tower footprint, indicate that every experiment,438

other than NRv8.3 + Kok Effect, improved upon the NRv8.3 baseline in terms of RH439

modeling skill (Table 4). The experiment with a vertical soil profile, with or without a440

litterfall phenology, produced an improvement in the RH anomaly correlation and the441

greatest improvement in all skill metrics. The O2 diffusion limitation, in particular, pro-442

duced a substantial improvement in RH RMSE and biased-adjusted RMSE (ubRMSE)443

that can be attributed primarily to the substantial reduction in high-RH residuals at high444

SM (Figure S10). The improvement in the NRv8.3 + O2 Limit experiment is notable445

at one moist, high-elevation ENF site (Chang et al., 2008); NRv8.3 and all other exper-446

iments fail to accurately simulate RH dynamics at this site (median r = 0.15; median447

anomaly r = 0.50) but, with the O2 limit, TCF simulates RH with very high accuracy,448

including spikes in RH during dry-downs (r = 0.88; anomaly r = 0.85; Figures S20449

and S21).450

4 Discussion451

Three different modifications to the TCF soil decomposition model resulted in sub-452

stantial corrections to the modeled seasonal carbon cycles in the NH and improved over-453

all RECO and NEE modeling skill. Of the singular modifications tested, a seasonally vary-454

ing litterfall scheme resulted in the greatest, consistent improvement in the RECO and455

NEE phase across PFTs. As that experiment involved no model re-calibration or new456

parameterization, we can attribute that improvement to the relative change in SOC sub-457

strate availability for RH . In contrast, the moderate improvements in RECO and asso-458

ciated NEE phase under the O2 diffusion limitation and vertical soil profile experiments459

seem to have resulted from an overall reduction in RECO, particularly during the NH460

spring (Figure 3). Seasonally varying litterfall was most effective at reducing the phase461

bias in DBF, while an O2 limit was most effective in GRS; both were effective in ENF.462

The vertical soil profile was much less effective at reducing either RECO or NEE phase463

bias in most PFTs, though it did mitigate bias in croplands and improved overall mod-464

eling skill (Table 4).465

It should be noted that the high NH RECO bias of TCF is a major contributing466

factor to the NEE phase bias; as the modeled GPP cycle is tied to satellite observations467

and fixed in each experiment, merely reducing the RECO magnitude would result in a468

phase shift of the NEE cycle. In the NH, the NEE cycle would be advanced (i.e., shifted469

earlier in time). We verified the role of RECO magnitude in the TCF simulations, by470

inflating tower RECO 25%, and then re-calculating NEE using NRv8.3 GPP. Consequently,471

while an NEE phase correction may result from the reduction of a bias in RECO mag-472

nitude, we can interpret a RECO phase correction as an improvement in the timing of473

respiration phenology. To verify the mechanisms tested here, we examined the change474

in the RECO residual (difference in residual between modeled and observed RECO) for475

each experiment compared to the baseline NRv8.3 (Figures S11-S14). The experiments476

that were successful at correcting the RECO seasonal cycle all showed substantially re-477

duced RECO during the NH spring months (April, May, June), particularly for the DBF478

and cropland PFTs. With the exception of the NRv8.3 + Kok Effect experiment, which479

failed to mitigate RECO bias, each experiment reduced the spring RECO bias in a dif-480

ferent way.481

The O2 diffusion limitation produced the greatest reduction in residual RECO at482

both low and high values of soil moisture (SM), particularly in spring (Figure S13), sug-483

gesting that an optimum SM exists for soil heterotrophs, at least when antecedent SM484

conditions are not taken into account (Ryan et al., 2015; Sihi et al., 2018). An upper limit485
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on the response of RH to soil moisture has been shown to improve modeled RH estimates486

(Ťupek et al., 2019) and, as our results at COSORE sites indicate, specifically improves487

estimates at sites that experience high soil moisture conditions and at one alpine ENF488

site (Table 4 and Figure S10). When the O2 diffusion limit is combined with a linear or489

sub-linear function that increases with soil moisture (i.e., representing greater substrate490

availability), the result is a triangular function with a fairly narrow range of optimum491

soil moisture, which agrees with the observation that SM is most limiting on RH when492

soils are relatively dry or approaching saturation (Reichstein et al., 2003). At high north-493

ern latitudes, these conditions may predominate during spring thaw (Oikawa et al., 2014;494

Winnick et al., 2020), which underscores the key role of SM in accurately modeling the495

corresponding carbon cycle transitions.496

The new litterfall allocation scheme shows a similar spring reduction in the RECO497

residual but it is not patterned by soil moisture or temperature (Figure S12). Instead,498

there is a temporal pattern: residual RECO is reduced in the first half of the year but499

is elevated during the second half, effectively reducing RH and RECO in spring just as500

an O2 diffusion limitation does when SM is high. The fall RECO increase then results501

from a release from substrate limitation (Leitner et al., 2016; Nielsen et al., 2019). The502

CASA model (Randerson et al., 1996), from which our litterfall scheme is derived, dis-503

plays RECO and NEE phase biases similar to TCF (Byrne et al., 2018, Figure 2). This504

is particularly interesting as the NRv8.3 + Litterfall Phenology experiment considerably505

improved the phase offset between TCF and the tower observations (Tables 1, 2) and506

perhaps over-corrected when compared to FLUXCOM (Table S4). Randerson et al. noted507

the CASA litterfall scheme led to an advanced RH seasonal cycle (earlier peak), which508

was expected due to a build-up of fall substrate inputs and, in turn, a high substrate avail-509

ability in spring (Byrne et al., 2018). However, in our experiment, the same litterfall scheme510

only delayed the RH cycle. This discrepancy depends on whether or not winter-time RH511

is sufficiently reduced, relative to litterfall inputs, so as to allow substrate pools to in-512

crease before spring. Another key difference between CASA and TCF is the much coarser513

spatial resolution of CASA (and coarser temporal resolution in Randerson et al., 1996).514

When we look at the difference in RECO residuals from the NRv8.3 + Kok Effect515

experiment, stratified by PAR, the RECO residual is still high at almost all levels of PAR516

but especially when PAR is high, indicating that a CUE response to PAR is not hav-517

ing the intended effect on the seasonal cycle (Figure S11). This may be due to TCF’s518

high RECO bias in the NH (Figure 3), i.e., the RA fraction increases to the extent that519

RH is reduced, resulting in a similar level of RECO to NRv8.3. This intrinsic high bias520

in RECO may be due to the night-time partitioning of EC tower fluxes (Keenan et al.,521

2019). Alternatively, or in addition to this problem, there may be a problem with our522

implementation of a PAR scalar modulating CUE at daily time scale, as RA is known523

to continue throughout the day and sub-daily co-variation of PAR and temperature is524

considerable (Heskel et al., 2013; Peng et al., 2013); TCF’s use of daily average mete-525

orology that is more representative of daytime conditions may contribute to the high RECO526

bias (Wehr et al., 2016).527

Despite its small effect on the mean seasonal cycles, the greatest improvement in528

both NEE and RECO modeling skill (Figure 5) came from the incorporation of a ver-529

tical soil profile into the TCF soil decomposition model. The small correction in phase530

bias seems to be due to the lagged RH flux that arises from the slow diffusion of heat531

and, to a lesser extent, of moisture through the soil column. We verified this mechanism532

by plotting the standardized, modeled RH flux in each soil layer from the NRv8.3 + Soil533

Profile experiment, along with the (single-layer) flux from NRv8.3 (Figure S15). The re-534

sults indicate that, with a vertically stratified soil decomposition model, the individual-535

layer RH fluxes are lagged and decline in magnitude with increasing soil depth. Conse-536

quently, the whole-column, total RH flux in the vertically resolved model approaches the537

magnitude of the single-layer model, though the multi-layer total is slightly smaller. The538
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result is that the NEE and RECO cycles both peak in early July (Table S2) but the RECO539

peak is broader, consistent with Yi et al.. In mid-to-late summer, the RECO flux at the540

NH sites is substantially reduced due to SM (i.e., substrate diffusion) limits (not shown).541

This lag effect and corresponding improvement in the RECO seasonal cycle could542

be enhanced if deeper soil layers were modeled with higher SOC storage. In the NRv8.3543

+ Soil Profile experiment, SOC storage diminishes to almost zero at 1.5 and 3-m depth.544

The exponentially declining input distribution of Koven et al. is a good match for the545

median, global SOC profile from SoilGrids 250m (Figure S16) as well as the distribution546

of carbon by age (Balesdent et al., 2018); however, TCF depletes deep SOC storage dur-547

ing model spin-up (Figure S18). This underscores that further improvements to effec-548

tively model SOC protection mechanisms are needed in order to accurately simulate RH549

fluxes from a multi-layer soil decomposition model. The exponential litterfall distribu-550

tions that allocate very little SOC to deeper layers (Figure S16) are probably more re-551

alistic than distributions based on root fractions (Shi et al., 2020). However, an expo-552

nential extinction of RH with depth may not be reasonable, as there is recent evidence553

that between 30-60% of CO2 efflux originates below 1 m depth (Wan et al., 2018). For554

simplicity, our model varies neither the turnover times nor the environmental response555

functions with depth. Addressing these limitations will require improved data on the ver-556

tical distribution of RH flux.557

In TCF, calibrating SOC turnover is somewhat subjective, as the base decay rates558

are determined by comparing the inferred SOC storage from inverting the RH flux with559

that indicated by the International Geosphere-Biosphere Data and Information System560

(IGBP-DIS) soil inventory record (Global Soil Data Task Group, 2000). However, the561

base rates likely should be modified when soil decomposition mechanisms are changed562

and should probably vary with soil layer depth; doing so might result in more favorable563

RECO, NEE skill metrics for the multi-factor experiments (Figure 6). Another limita-564

tion in this study is the neglect of GPP magnitude bias. Although the phase of GPP is565

expected to be constrained by the satellite-observed fPAR (Messerschmidt et al., 2013),566

a GPP magnitude bias also has the potential to introduce an NEE phase bias and re-567

quires further research along the same lines of this study.568

The model enhancements produce similar phase corrections when results from dif-569

ferent PFTs are pooled. This equifinality suggests that the modifications to TCF assessed570

here may not be equally relevant to all PFTs. For instance, the new litterfall scheme re-571

sulted in a better match to autumnal NEE for DBF but also created a spurious high NEE572

anomaly in autumn for BCR. The combination of O2 limit and vertical soil profile also573

further delayed (advanced) the mean NEE (RECO) seasonal cycle for ENF. The equi-574

finality among experiments also indicates that the NH seasonal cycle of NEE is an emer-575

gent property of terrestrial ecosystems (Birch et al., 2021) and that we are likely miss-576

ing some interactions between limiting factors and driving relationships of soil decom-577

position, e.g., microbial biomass and stabilization of SOC (Johnston & Sibly, 2018) or578

litter input traits (Hu et al., 2018). After all, there is some residual misfit in the mod-579

eled seasonal cycles (Tables 1, 2) and TCF still retains a high RECO bias. In addition580

to the high residual RECO bias, which may be due to the partitioning of EC tower fluxes,581

TCF also has a relatively large NEE magnitude bias, as its summer-time GPP and NEE582

amplitudes are smaller than tower observations (Figure 3). Future development of TCF583

and similar models—given their promise for global, operational terrestrial carbon bud-584

geting (e.g., SMAP L4C)—should focus on reducing RECO bias, starting with an as-585

sessment of different EC flux partitioning methods (Keenan et al., 2019) and SOC pro-586

tection mechanisms.587
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5 Conclusions588

A seasonally varying adjustment of RH model processes, including the litterfall al-589

location to SOC available for decomposition, resulted in major corrections to the mod-590

eled RECO and NEE seasonal cycles, as compared to EC flux tower observations, in a591

first-order soil decomposition model. An explicit litterfall phenology, with or without a592

vertically resolved SOC decomposition model, yields the best improvement in phase. The593

NEE phase bias in TCF for high northern latitude sites (≥ 40 N), was reduced from a594

lag of 15-26 days to between a 5-day lead or 15-day lag, depending on the experiment.595

Based on a comparison to the FLUXCOM seasonal cycle above 40 degrees N latitude,596

the model enhancements generally eliminated the NEE phase bias, though a smaller RECO597

phase bias remains. Comparison to independent, in situ chamber measurements indi-598

cates the proposed mechanisms can improve RECO and NEE modeling skill.599

The RECO phase bias can result from a bias in RECO magnitude, i.e., from ex-600

cess modeled autotrophic (RA) or heterotrophic respiration (RH) at key seasonal inter-601

vals. Two model enhancements, adding a limit on O2 diffusion for soil heterotrophs or602

a seasonally varying litterfall inputs scheme, reduced the phase biases in RECO and NEE603

by reducing RH during the NH spring season. The O2 limit restricts RH as soil mois-604

ture increases, which is common in the NH spring in many regions due to snowmelt and605

increased rainfall. The new litterfall scheme directly shifts the RH seasonal cycle later606

in time by enhancing substrate limitation in the spring. Although less effective at cor-607

recting RECO or NEE phase bias, a multi-layer soil decomposition model also reduced608

spring NH RECO. This is due to lagged RH flux from deeper soil layers, effectively amor-609

tizing the whole-column RH flux over a longer period.610

Accurate timing of the terrestrial NEE cycle is key if such modeled estimates are611

to be used as priors in atmospheric inversion studies. Moreover, the NEE seasonal cy-612

cle, observed by EC flux towers or estimated in data-driven syntheses, can be used to613

diagnose missing or poorly represented model processes. Going forward, increased in situ614

monitoring of soil respiration fluxes—particularly vertically resolved fluxes—of soil or-615

ganic carbon, and of below-ground RA will be essential for constraining modeled soil res-616

piration in terrestrial carbon flux models.617
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Appendix A: Soil Hydrology Model
The soil hydrology model developed for this study proceeds in four main steps that are
repeated for each daily time step. First, the maximum soil water infiltration rate, based on
soil ice content and the land surface saturation fraction, is calculated. Second, soil water
loss through potential transpiration is calculated based on the Priestly-Taylor method [Mu
et al., 2011] and this is converted to actual transpiration in each soil layer based on the root
distributions of Jackson et al. [1996] and soil water stress, based on the wilting point and
field capacity estimates of Balland et al. [2008]. Third, the change in soil water content, ∆ θ,
is calculated based on Darcy’s Law and the Richards equation. Finally, lateral drainage due
to sub-surface saturation is removed and the soil water content in each layer is rebalanced so
as to maintain physical limits.

The model uses daily average estimates of surface infiltration and potential transpiration rates
to estimate daily changes in volumetric soil moisture, θ, using sub-daily (e.g., hourly) time
steps. Hydraulic conductivity, soil matric potential, and soil water diffusion (based on the
Richards equation) are calculated as in CLM 5.0 [Lawrence et al., 2018], based on empirical
equations from Clapp and Hornberger [1978] and Cosby et al. [1984]. Saturated hydraulic
conductivity and saturated matric potential, both functions of soil texture, are calculated as
in CLM 4.0. Soil texture, porosity, and daily surface infiltration (mm s−1) are taken from the
Catchment land model and SMAP L4SM. The fraction of the land surface that is saturated
was calculated based on relative humidity [Mu et al., 2011], which was calculated from VPD
and the saturation vapor pressure [Allen et al., 1998, Chapter 3]. Topographic slope was
computed at each site based on the L4SM global 9-km elevation model.
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The maximum surface infiltration rate is calculated as in CLM 5.0:

qmax = (1 − fsat)Θiceksat (1)

Where fsat is the fraction of the land surface that is saturated, Θice is the impedance due
to soil ice content, and ksat is the saturated hydraulic conductivity. The actual surface
infiltration rate is taken to be the minimum of qmax and the daily average rate from L4SM.
The impedance due to ice is also calculated as in CLM 5.0:

Θice = 10−ΩFice where Fice = θ
fice

θsat

= θice

θsat

; Ω = 6 (2)

Where fice is the ice fraction of the combined liquid and ice water volumes, after the empirical
formulation by Decker and Zeng [2006, Equation 4]. For simplicity, explicit phase changes
and ice content are not tracked; instead, fice is used as an instantaneous estimate of ice
content as a fraction of total soilmoisture.

Daily potential transpiration is calculated using the Priestly-Taylor method [Mu et al., 2011]
and is reduced by a factor, β, representing plant water stress:

β =
(
θliq − θW P

θF C − θW P

)q

(3)

Where θliq is the liquid soil volumetric water content; θF C and θW P are the soil moisture at
field capacity and at wilting point, respectively; and q is an empirical coefficient describing
the curvature of the relationship between transpiration and available soil water [Verhoef and
Egea, 2014]. We set q = 1 for this study. Field capacity and wilting point were defined based
on soil texture using the empirical relationships of Balland et al. [2008]. Actual transpiration
(potential transpiration reduced by β) is partitioned across the soil layers using the empirical
root profiles of Jackson et al. [1996, Table 1], based on matching PFTs; the Evergreen
Needleleaf PFT is the average of the boreal forest and temperate coniferous types of Jackson
et al. [1996].

The surface infiltration rate and the transpiration from each layer represent two key source
and sink terms, respectively, in the water balance equation, which is identical to that used in
CLM 5.0 [Lawrence et al., 2018]:

∆zi
∂ θliq,i

∂ t
= −qi−1 + qi − ei

Where ∆zi is the thickness (mm) of soil layer i, qi−1 is the flow into layer i from above (layers
are enumerated downward from the surface), qi is the flow out of layer i to the layer below,
and ei is the hydraulic sink of transpiration loss. For the surface layer, qi−1 is equal to the
surface infiltration rate. Equation , applied to each soil layer, forms a sparse, tridiagonal
system of equations where the change in liquid soil moisture in each layer, ∆θliq, is solved for
simultaneously.
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There are two additional, potential hydraulic sinks that are computed separately: free
drainage from the bottom layer and lateral drainage in the presence of sub-surface saturation,
including from perched, saturated zones. The free drainage condition is equivalent to the “flux”
boundary condition of CLM 5.0 [UCAR, 2020] and is based on the hydraulic conductivity, k,
and derivative of k of the bottom layer:

qdrain = ki +
[
∂ k

∂ θliq

× ∆θliq

]
i

(4)

When the soil column is saturated from the bottom-up, lateral drainage from the saturated
layer(s) is calculated after CLM 4.5 [Oleson et al., 2013]:

qdrain = Θice 10 sin(γ) exp(−fdrainz∇) where fdrain = 2.5 m−1 (5)

Where γ is the topographic slope and z∇ is the depth to the water table (top of saturated
zone). Lateral drainage from a perched, saturated zone is also calculated after CLM 4.5:

qperch = 10−5sin(γ)
(∑i=k

i=j Θice,i ksat(zi) ∆zi∑i=k
i=j ∆zi

)
(zfrost − z∇,perch) (6)

Where j and k are the soil layers that are perched and frozen (first such layer counting
down from the surface), respectively, and zfrost and z∇,perch are the depths to the frozen and
perched layers.

After the change in liquid soil moisture is applied and lateral drainage is removed, soil
moisture is manually re-balanced so as to maintain each layer within physical limits of
1 mm ≤ θliq,i∆zi ≤ (φ − θice,i)∆zi, as described in Lawrence et al. [2018]. While the
maximum surface infiltration rate and the actual transpiration rate are calculated once per
day, the remaining steps are taken using sub-daily time intervals, usually less than 1 hour,
and the soil moisture of the time final step is recorded as a daily snapshot and used as the
initial conditions for the next day. The sub-daily time step varies according to the adaptive
time-stepping scheme of CLM 5.0 [Lawrence et al., 2019]. All modeled sites are spun-up over
a 20-year period to equilibrium soil moisture using a 365-day climatology of driver datasets.
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Supplemental Tables

Table S1: The 25 COSORE datasets used in this study.
*These sites provided concurrent, daily soil moisture and
temperature measurements along with CO2 flux. **This
site was reported as “Open shrubland” and was mapped
to the MOD12Q1 PFT “Shrubland.” ***This “wetland”
site is a northern peatland and was mapped to MOD12Q1
PFT “Grassland.”

Dataset PFT Citation
d20190424_ZHANG_maple DBF [Zhang et al., 2018]
d20190424_ZHANG_oak DBF [Zhang et al., 2018]
d20200212_ATAKA* DBF [Ataka et al., 2014]
d20200212_KAYE_LNE* DBF n.a.
d20200212_KAYE_LNW* DBF n.a.
d20200212_KAYE_LSE* DBF n.a.
d20200212_KAYE_LSW* DBF n.a.
d20200212_KAYE_UNE* DBF n.a.
d20200212_KAYE_USE* DBF n.a.
d20200212_KAYE_USW* DBF n.a.
d20200221_MATHES DBF [Curtis et al., 2005]
d20200224_MATHES DBF [Detto et al., 2013]
d20200328_UEYAMA_TESHIO DNF [Ueyama et al., 2018]
d20200228_RENCHON EBF n.a.
d20200108_JASSAL ENF [Jassal et al., 2008]
d20200114_CARBONE_SC_EMBUDO* ENF [Carbone et al., 2011]
d20200114_CARBONE_SC_SAUCE* ENF [Carbone et al., 2013]
d20200120_CHANG* ENF [Chang et al., 2008]
d20200122_BLACK ENF [Gaumont-Guay et al., 2014]
d20200220_GAVAZZI ENF [Noormets et al., 2010]
d20200417_ARAIN_TP39 ENF [Arain, 2018]
d20200331_PEICHL GRS*** [Järveoja et al., 2018]
d20200423_OYONARTE* GRS [Vargas et al., 2018]
d20191017_BALDOCCHI SHB [Baldocchi et al., 2006]
d20200423_SANCHEZ-CANETE* SHB** [Sánchez-Cañete et al., 2016]

4



Table S2: Day-of-year (DOY) of NEE minimum, RECO
maximum for EC flux towers (“Towers”) and mean dif-
ference in DOY (experiment minus Towers), in days, for
each experiment, based on the mean NEE seasonal cycle,
identified using a low-pass filter, for all sites above 40
degrees N latitude.

Product Peak RECO DOY Peak NEE DOY RECO Phase (days) NEE Phase (days)
Towers 197 181 n.a. n.a.
NRv8.3 183 196 -14 +15
NRv8.3 + Kok Effect 184 196 -13 +15
NRv8.3 + Litterfall Phenology 187 182 -10 +1
NRv8.3 + O2 Limit 186 186 -11 +5
NRv8.3 + Soil Profile 185 186 -12 +5
NRv8.3 + O2 Limit + Litterfall 187 182 -10 +1
NRv8.3 + Soil Profile + Litterfall 186 183 -11 +2
NRv8.3 + Soil Profile + O2 Limit 186 186 -11 +5
NRv8.3 + Soil Profile + O2 Limit + Litterfall 186 183 -11 +2
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Table S3: Mean difference in day-of-year (DOY) of NEE
minimum, RECO maximum for each experiment com-
pared to that of EC flux towers (experiment minus Tow-
ers), based on the seasonal cycle north of 40 degrees N
latitude using Fourier regression. Standard deviation
across PFTs is shown in parentheses.

Product RECO Phase (days) NEE Phase (days)
Towers n.a. ( 4.7) n.a. (14.6)
NRv8.3 -12.0 ( 4.7) 26.2 (17.6)
NRv8.3 + Kok Effect -11.9 ( 5.1) 22.8 (15.4)
NRv8.3 + O2 Limit -7.4 ( 4.5) 11.0 (13.4)
NRv8.3 + Litterfall Phenology -1.6 ( 7.3) -4.7 ( 9.3)
NRv8.3 + Soil Profile -9.4 ( 3.4) 15.6 (13.1)
NRv8.3 + O2 Limit + Litterfall -0.6 ( 6.2) -17.9 (21.1)
NRv8.3 + Soil Profile + O2 Limit -4.4 ( 5.5) -7.2 (21.1)
NRv8.3 + Soil Profile + Litterfall -4.8 ( 4.6) 4.2 ( 9.6)
NRv8.3 + Soil Profile + O2 Limit + Litterfall -2.3 ( 6.2) -13.5 (18.4)

Table S4: Day-of-year (DOY) of RECO maximum for EC
flux towers (“Towers”) and difference in DOY (experiment
minus Towers), in days, for each experiment, based on
the mean RECO seasonal cycle, identified using Fourier
regression, for all sites above 40 degrees N latitude.

Product ENF DNF DBF SHB GRS CCR BCR
NRv8.3 -11.9 -20.2 -10.9 -6.2 -4.8 -10.5 -19.6
NRv8.3 + Kok Effect -11.5 -20.8 -10.7 -6.0 -4.0 -11.0 -19.3
NRv8.3 + O2 Limit -8.8 -18.8 -5.0 -3.1 -2.4 -4.4 -9.0
NRv8.3 + Litterfall Phenology -8.0 -11.3 2.7 -1.6 0.9 -1.4 7.7
NRv8.3 + Soil Profile -10.3 -18.2 -6.1 -7.2 -3.7 -6.6 -14.0
NRv8.3 + O2 Limit + Litterfall -5.9 -10.3 2.1 1.0 1.1 1.5 6.1
NRv8.3 + Soil Profile + O2 Limit -8.4 -15.5 -1.4 -4.7 -2.9 0.7 1.3
NRv8.3 + Soil Profile + Litterfall -9.0 -12.3 -0.9 -5.7 -1.9 -2.4 -1.0
NRv8.3 + Soil Profile + O2 Limit + Litterfall -7.4 -12.6 1.0 -3.7 -1.2 2.2 5.6
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Table S5: Difference in day-of-year (DOY) of NEE mini-
mum and RECO maximum for each experiment and for
the EC flux towers (“Towers”) compared to that of FLUX-
COM (experiment/ Towers minus FLUXCOM), based on
the seasonal cycle north of 40 degrees N latitude using
Fourier regression.

Product RECO Phase (days) NEE Phase (days)
Towers +5.7 -2.2
NRv8.3 -5.9 +16.1
NRv8.3 + Kok Effect -5.8 +16.2
NRv8.3 + Litterfall Phenology +3.4 -8.2
NRv8.3 + O2 Limit -0.9 +1.3
NRv8.3 + Soil Profile -2.7 +6.5
NRv8.3 + O2 Limit + Litterfall +4.7 -20.5
NRv8.3 + Soil Profile + Litterfall +1.0 -3.3
NRv8.3 + Soil Profile + O2 Limit +2.1 -24.6
NRv8.3 + Soil Profile + O2 Limit + Litterfall +3.9 -28.2

Table S6: The mean RH :RS ratios, and standard deviation
in ratio across studies, from the Soil Respiration Database
(SRDB) version 5, based on inferring Plant Functional
Types from reported biome, ecosystem type, and leaf
habit.

PFT Rh:Rs Ratio Std. Dev.
DBF 0.581 0.192
EBF 0.597 0.172
ENF 0.599 0.198
GRS 0.584 0.192
SHB 0.637 0.230
Cropland 0.642 0.210
Other 0.634 0.198
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Supplemental Figures

Figure S1: The mean seasonal cycle of soil moisture (SM) across USCRN and SCAN sites at
the same depth north of 40 degrees N latitude. Very high variability is seen in the winter
months, when in situ soil moisture measurement is less reliable, but a clear increase in
surface soil moisture can be seen in spring. SM data were first cleaned, removing spikes and
measurements during freezing conditions. SM measurements are unreliable at near or below
freezing, which is the cause of the high variability seen in winter months.
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Figure S2: NEE and RECO seasonal cycles at each EC flux tower site in each PFT group, as
modeled in the NRv8.3 + Kok Effect experiment.

Figure S3: NEE and RECO seasonal cycles at each EC flux tower site in each PFT group, as
modeled in the NRv8.3 + Litterfall Phenology experiment.
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Figure S4: NEE and RECO seasonal cycles at each EC flux tower site in each PFT group, as
modeled in the NRv8.3 + O2 Limit experiment.

Figure S5: NEE and RECO seasonal cycles at each EC flux tower site in each PFT group, as
modeled in the NRv8.3 + Soil Profile experiment.
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Figure S6: NEE and RECO seasonal cycles at each EC flux tower site in each PFT group, as
modeled in the NRv8.3 + Soil Profile + O2 Limit experiment.

Figure S7: NEE and RECO seasonal cycles at each EC flux tower site in each PFT group, as
modeled in the NRv8.3 + Soil Profile + Litterfall experiment.
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Figure S8: NEE and RECO seasonal cycles at each EC flux tower site in each PFT group, as
modeled in the NRv8.3 + O2 Limit + Litterfall experiment.

Figure S9: NEE and RECO seasonal cycles at each EC flux tower site in each PFT group, as
modeled in the NRv8.3 + Soil Profile + O2 Limit + Litterfall experiment.
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Figure S10: Predicted (modeled) RECO versus observed RECO at COSORE sites for
each experiment, for all COSORE sites within an eddy covariance tower footprint or with
independent driver data. Soil wetness and RH are averaged within bins of 0.25 g C m−2 d−1.
Dotted line is the 1:1 line; red dashed line is the line of best fit.
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Figure S11: Change in modeled RECO residuals between NRv8.3 and the NRv8.3 + Kok
Effect experiment (NRv8.3 minus experiment) for each PFT; shown as mean change in
residual for each bin of PAR values by month. A black dot indicates that the change in
RECO residual represents an improvement; i.e., a decrease in a high-biased RECO residual
or an increase in a low-biased RECO residual.
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Figure S12: Change in modeled RECO residuals between NRv8.3 and the NRv8.3 + Litterfall
Phenology experiment (NRv8.3 minus experiment) for each PFT; shown as mean change in
residual for each bin of soil moisture values by month. A black dot indicates that the change
in RECO residual represents an improvement; i.e., a decrease in a high-biased RECO residual
or an increase in a low-biased RECO residual.
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Figure S13: Change in modeled RECO residuals between NRv8.3 and the NRv8.3 + O2 Limit
experiment (NRv8.3 minus experiment) for each PFT; shown as mean change in residual for
each bin of soil moisture values by month. A black dot indicates that the change in RECO
residual represents an improvement; i.e., a decrease in a high-biased RECO residual or an
increase in a low-biased RECO residual.
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Figure S14: Change in modeled RECO residuals between NRv8.3 and the NRv8.3 + Soil
Profile (NRv8.3 minus experiment) for each PFT and each soil layer; shown as mean change
in residual for each bin of soil moisture values by month. A black dot indicates that the
change in RECO residual represents an improvement; i.e., a decrease in a high-biased RECO
residual or an increase in a low-biased RECO residual.

17



Figure S15: For each PFT, the normalized, mean seasonal cycle of RH for NRv8.3 and mean seasonal cycle of RH by depth
for the NRv8.3 + Soil Profile experiment. The seasonal amplitude, in carbon units, for both NRv8.3 (blue, dotted line) and
NRv8.3 + Soil Profile (red, solid line) are shown in the upper-left of each subplot. Note that the NRv8.3 results are not vertically
stratified and therefore do not change across the rows, i.e., they are shown for reference in each soil layer but do not correspond
to any single soil layer.
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Figure S16: Litterfall input distribution functions, based on the NRv8.3 average daily litterfall
(fraction of annual NPP sum). The median SoilGrids profile is from the global SoilGrids
250m product. The CLM/ Jackson et al. (1996) function is described in Lawrence et al.
[2018], Equation 2.11.1.
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Figure S17: The analytical steady-state soil organic carbon (SOC) distribution, by depth,
based on different litterfall input distribution functions and using a negative-exponential
extinction function for heterotrophic respiration. The dotted, green line shows the reference
SoilGrids 250m SOC profile.
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Figure S18: The numerical (final) steady-state soil organic carbon (SOC) distribution, by
depth, based on different litterfall input distribution functions and using a negative-exponential
extinction function for heterotrophic respiration. The dotted, green line shows the reference
SoilGrids 250m SOC profile.
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Figure S19: Total soil organic carbon (SOC) content distribution for each experiment, across all sites and all dates.
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Figure S20: Observed (COSORE) or modeled RH flux for select experiments, showing only those date ranges wherein COSORE
data are available. Of the single-factor experiments, NRv8.3 + Litterfall Phenology is not shown because its dynamics are very
similar to NRv8.3.
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Figure S21: Observed (COSORE) or modeled RH flux, normalized by each site and product’s range in values, for select
experiments, showing only those date ranges wherein COSORE data are available. Of the single-factor experiments, NRv8.3 +
Litterfall Phenology is not shown because its dynamics are very similar to NRv8.3.
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