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Abstract

Plastic waste is one of the main factors causing environmental pollution and affecting biodiversity, and identification and de-

tecting plastic waste is the premise of removal and treatment. Unmanned aerial vehicle (UAV) is gradually applied to identify

and classify plastic waste because of its advantages of simplicity, convenience, and safe operation, but the current visual inter-

pretation method is inefficient and cumbersome. To support the detection of plastic waste, researchers have developed various

automatic and semi-automatic algorithms. Among these algorithms, deep learning technology has outstanding performance in

river garbage detection, but there are also practical problems such as small floating garbage volume, sparse samples, complex

garbage environment, In this paper, a classification plus target detection (C+D) model is proposed, and a lightweight floating

plastic waste detection model based on deep learning is constructed. The EfficientNet classification algorithm and Yolov5 target

detection algorithm are combined and improved for experimental verification, and various floating plastic wastes are automati-

cally identified and located. In this paper, the UAV image data set obtained from the flight in Longhe River Basin, Langfang

City, Hebei Province, China, is used to investigate the plastic floating garbage. The algorithm verification experiment shows

that the detection accuracy of the three kinds of plastic garbage is higher than 85% (AP: plastic bag: 0.95; Plastic foam: 0.90;

Plastic bottle: 0.87), which shows its excellent floating plastic recognition ability. The FPS of UAV equipment can reach 40.23

on edge, which shows that its recognition speed is fast and meets the real-time demand.
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A Deep Learning Model for Automatic Plastic Waste Monitoring Us-
ing Unmanned Aerial Vehicle (UAV) Data

Wenlong Han 1,2, Wei Luo1,2*, Yongtao Jin 1,2 and Mengxun Zhu1,2

1 North China Institute of Aerospace Engineering,China
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Processing and Application of Hebei Province,China.

Key Points: (1) This model can accurately count the three types of plastic waste
in UAV images. (2) As the data set increases, the classification algorithm can
be multi-classified to solve practical problems. (3) The model can be reasonably
extended to other fields.

Abstract

Plastic waste is one of the main factors causing environmental pollution and af-
fecting biodiversity, and identification and detecting plastic waste is the premise
of removal and treatment. Unmanned aerial vehicle (UAV) is gradually ap-
plied to identify and classify plastic waste because of its advantages of sim-
plicity, convenience, and safe operation, but the current visual interpretation
method is inefficient and cumbersome. To support the detection of plastic waste,
researchers have developed various automatic and semi-automatic algorithms.
Among these algorithms, deep learning technology has outstanding performance
in river garbage detection, but there are also practical problems such as small
floating garbage volume, sparse samples, complex garbage environment, In this
paper, a classification plus target detection (C+D) model is proposed, and a
lightweight floating plastic waste detection model based on deep learning is con-
structed. The EfficientNet classification algorithm and Yolov5 target detection
algorithm are combined and improved for experimental verification, and var-
ious floating plastic wastes are automatically identified and located. In this
paper, the UAV image data set obtained from the flight in Longhe River Basin,
Langfang City, Hebei Province, China, is used to investigate the plastic floating
garbage. The algorithm verification experiment shows that the detection accu-
racy of the three kinds of plastic garbage is higher than 85% (AP: plastic bag:
0.95; Plastic foam: 0.90; Plastic bottle: 0.87), which shows its excellent floating
plastic recognition ability. The FPS of UAV equipment can reach 40.23 on edge,
which shows that its recognition speed is fast and meets the real-time demand.
This study shows that UAV technology combined with this deep learning al-
gorithm can efficiently, accurately, and cheaply realize floating plastic waste
detection.

1 Introduction

Plastic pollution has become one of the most critical global ecological and en-
vironmental problems. The global plastic output increases year by year, but
only 9% of the nearly 10 billion tons of plastic once produced has been recy-
cled((Fadeeva & Van Berkel.,2021) , and the unrecycled plastic waste eventually
flows into the ocean (Lebreton et al.,2017). Rivers are the main conduit for
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land-based transport of waste to the oceans, with just 10 river systems trans-
porting more than 90% of the global waste input, according to The Guardian
. According to statistics, marine plastic waste accounts for about 60% to 80%
of all waste, and in some areas, the proportion of plastic can reach 90% to
95% (Thompson.,2017;Thushari & Senevirathna., 2020). Plastic waste pollu-
tion causes ecological problems such as the entanglement of marine organisms
by swallowing, habitat degradation, and chemical contamination (Haward et
al.,2018 ;Monteiro et al.,2018;Haward, 2018)), which kills more than 1 million
seabirds and 100,000 animals, including whales, dolphins, and seals every year
from just one type of plastic waste, plastic bags((Thushari & Senevirathna.,
2020). Meanwhile, plastics are non-biodegradable, and over time, large plastics
decompose into microplastics that rise through the food chain and enter the hu-
man body, endangering health (Mukherjee et al., 2020). Current plastic waste
in the ocean reaches 150 million tons, about one-fifth of the total weight of ma-
rine fish, and it is expected that by 2050 the weight of plastic in the ocean will
exceed that of fish(da Costa et al., 2020). Preventing the negative impacts of
marine plastics first requires understanding the sources and locations of plastics
and their trends.

At present, plastic waste detection methods are mainly manual investigation,
aerial survey, and satellite monitoring. The manual investigation, Generally,
plastic waste is visually inspected along the cross-section, time-consuming, labor-
intensive, and unsafe for operators. For example, to understand the source and
impact of marine debris, the Australian Scientific and Industrial Research Or-
ganization organized thousands of volunteers to conduct a national garbage
survey in 175 locations around Australia for 18 months and only counted 575
cross-sections. Aerial survey is also used for the marine plastic waste survey(
Hardesty et al.,2017). Moy et al. (2018)carried out the aerial survey on each
island of Hawaii to collect high-resolution photos, visually interpret orthophoto
mosaic with a sampling distance of 2 cm on the ground, and draw a hot spot
map of debris on the beach of Hawaii Island. The survey time and survey area
for manned aircraft operation are flexible, but it is relatively expensive. Profes-
sional surveyors are needed, and the route is affected by human factors. Satel-
lite monitoring usually uses satellite images with high spatial, temporal, and
spectral resolutions. Davaasuren et al. (2018)used Sentinel-1A and COSMO-
SkyMed SAR to identify microplastics in the ocean. Topouzelis et al. (2019)
used WorldView-2 images to study the optical properties of wet plastics and dry
plastics and evaluated the possibility of detecting floating plastics in water by
multispectral images. Themistocleous et al. (2020)used Sentinel II satellite im-
ages to construct plastic index (PI) and reverse normalized difference vegetation
index (RNDVI) to identify plastic wastes in the sea. Plastic index (PI) was able
to identify plastic objects floating on the water surface accurately. Although
current experts have validated the effectiveness of satellite monitoring of plastic
waste, the accuracy of identifying plastic waste is still limited by temporal and
spatial resolution.

Unmanned aerial vehicle (UAV) survey is gradually applied to plastic waste
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monitoring with its advantages of cheap, convenient, and safe operation. Com-
pared with the manual investigation, UAV investigation not only ensures the
safety of investigators in field activities but also reduces the influence of humans
on some animals. Unlike aerial exploration, which requires high-quality profes-
sionals, a UAV survey is cost-effective and straightforward. Unmanned aerial
vehicle (UAV) is equipped with advanced sensors, providing higher resolution
images and a more flexible revisit cycle than satellite remote sensing. Deidun
et al. (2018) used unmanned aerial vehicles to find stranded and floating ma-
rine garbage and generated the density map of beach garbage to help identify
the same garbage. Geraeds et al. (2019)used images obtained from drones at
different flight altitudes to manually mark river banks and floating plastic. The
UAV survey ensured that although manual identification of classified river plas-
tic litter in UAV images is relatively accurate and reliable, manually viewing
UAV images is both time-consuming and laborious. Researchers have developed
various machine learning algorithms to detect plastic waste in UAV images. C
Martin et al. (2018) uses SVM and random forest algorithm to identify plastic
debris detection and three types of classification in UAV images. Random forest
algorithm is superior to support vector machine in multi-type plastic classifica-
tion tasks and is several times higher than visual interpretation and recognition.
Gonçalves et al. (2020) used multiple machine learning to compare detection
and mapping of river trash objects, and the results showed that random forest
had an F1 score of 70, which was slightly better than other methods. Although
non-deep neural network-based machine learning methods produce better detec-
tion results in simple cases, this method cannot exploit complex trash features
and has a limited accuracy rate.

With the enhancement of the computing power of graphics processors and the
increase of open training data sets, deep learning(Lecun, Y et al 2015)is widely
used in remote sensing image recognition and classification tasks ((Ma et al.,
2019; Zhu et al., 2019; Liang et al., 2017), such as automatic classification,
target detection, and semantic segmentation. The deep learning model has the
advantages of automatically selecting image features, etc. The models such
as VGGNet((Karen Simonyan et al.,2018), FCN(Zhuang et al., 2019), Faster R-
CNN (Hanna & Cardillo., 2013), Yolo(Redmon et al., 2016), U-Net((Hammernik
et al., 2017) have reached the most advanced accuracy in the marine plastic
garbage detection task of UAV images. Kyriaki et al. (2019)used the VGG16
model to train on three types of plastic marine garbage (i.e., bottles, barrels,
and straws), and the classifier can successfully identify the floating objects in
front with a success rate of 86%. Li et al.(2020)used the modified YOLOv3
model to detect underwater marine life and debris floating on the sea surface,
and the average accuracy was 69.6% and 77.2%, respectively. Jakovljevic et
al. (2020) used the U-net model to identify and distinguish floating plastics
in the ocean. The classification accuracy improved with the improvement of
spatial resolution, and the F1 score was up to 92%, showing the ability to
identify plastic types. Grays et al(2019)trained five deep learning networks and
compared them. The results showed that the VGG19 model performed best
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with an accuracy rate of 77.6% and an F value of 77.42%. Although the deep
learning algorithm has outstanding performance in UAV images, the current
algorithm parameters are complex, and the detection rate is slow. Deep learning
cannot be directly applied to marine plastic detection scenes when faced with
the problems of small and sparse marine garbage samples and complex and
changeable garbage environments. Therefore, the feasibility of deep learning
plastic garbage detection for UAV images deserves further study in a wide range
of hydrological environments.

The main objective of this study is to use UAV and deep learning to solve prac-
tical problems in floating plastic waste monitoring and propose a classification
plus target detection (C+D) model, and fuse the EfficientNet (Tan et al.,2019)
image classification algorithm and YoloV5 (ultralytics et al.,2020)target detec-
tion algorithm, and improve the YoloV5 target detection algorithm for plastic
floating material features to build A lightweight floating plastic garbage de-
tection model based on deep learning can automatically identify and locate a
variety of floating plastic garbage. The experimental results show that the algo-
rithm has excellent recognition ability for three kinds of experimental floating
garbage: plastic bags, plastic foam, and plastic bottles, with mAP up to 0.91
and FPS up to 40.23, which can monitor plastic garbage in real-time.

2 Materials and Methods

2.1 Study Area and UAV Data

The drone image was taken in the Longhe River Basin, Langfang City, Hebei
Province, China (as shown in Figure. 1). The Longhe River is typical in north-
ern China, and the results of the environmental survey showed that some sec-
tions of the Long River are polluted by plastic waste. A total of 5682 RGB
UAV images and 4,234 valid orthophotos were obtained from multiple shooting
campaigns, covering an effective aerial survey area of about 20km2.

The image was taken by a fixed-wing drone equipped with an Intel d435i binoc-
ular depth camera. There are four round holes on the front of the D435 camera,
including infrared and visible light sensors. The maximum distance captured
by the camera can reach 10 meters, and the video transmission rate can reach
90fps. The flying height is set to 7 meters above the ground, and the image
resolution is 5472×3678. These images captured the floating plastic garbage,
and three kinds of garbage among plastic garbage, plastic bottles, plastic foam,
and plastic bags, were selected as garbage for deep learning detection. Other
garbage was not used as the object of this experimental study due to the lack
of samples for training deep learning models spatial resolution.
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Figure 1. UAV survey area and flight trajectory

2.2. Data Preparation

Image classification and target detection are different task requirements and
require separate preparation of the dataset. The image classification algorithm
determines the presence or absence of plastic litter and classifies the data in two
categories: water without litter or with other floating objects (plant branches,
leaves, etc.) and water with floating plastic litter. The task was relatively simple,
with one expert recognizing the differentiated images in the classification process,
obtaining 1208 images containing plastic trash and 3026 images without plastic
trash. Typical sample images are shown in Figure 2 in (a) and (b).
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(a) (b)

Figure 2. data for classification algorithm (a) Clean waterbody surface ,(b)
Surface of waterbody with plastic waste.

The target detection algo-
rithm needs to label the river garbage in the image, and the ”labeling” (2019)
graphic image annotation tool is used to draw the bounding box around each
identified plastic garbage in the image. Two experts in two steps identified the
plastic waste in the drone image, and the examples annotated by the two sci-
entists were adopted as basic facts. Second, instances that one scientist only
annotated are rechecked to verify whether they should be adopted as basic facts
or discarded. The image marking process obtains images with three types of
plastic waste. A typical sample diagram is shown in Figure 3 (a) (b)and (c). In
order to enhance the reliability and robustness of the model, the data is aug-
mented, including random cropping of the data, rotation, scaling, and horizontal
flipping to generate multiple similar images.
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(a) (b)

(c)

Figure 3. data for target detection algorithm(a) plastic bottle,(b) polyfoam,
(c) plastic bag.

2.3. Model

The target detection of floating plastic waste is very challenging, and there are
problems such as low training data, highly imbalanced data sets, and frequent
target position and scene changes caused by constant plastic movement. This
paper proposes a classification plus target detection (C+D) modeling mode to
solve the above problems. First, train the EfficientNet classification network on
two categories (with garbage and no garbage) to simplify the garbage classifica-
tion and identification problem, and ignore Details of various types of garbage
to determine whether there is garbage. Then train three sub-categories on float-
ing plastic waste to simplify the classification problem. Focus on the details
of each type of floating waste on the Yolov5 target detection algorithm, and
optimize the target detection algorithm by modifying the anchor frame, adding
the attention mechanism and weighted frame fusion. Finally, the two models
are integrated by setting the high and low thresholds. The overall process is
shown in Figure 4. The specific details are introduced below.
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Figure 4. Overview of C+D model

2.3.1. EfficientNet Algorithm

EfficientNet [33] is currently one of the most outstanding image classification
algorithms. Compared with other classification networks, it has higher
accuracy and efficiency and reduces the parameter size and FLOPS order of
magnitude. Its network structure is shown in Figure 5. Unlike the ResNet
structure, EfficientNet only optimizes the depth of the network. It uses a
simple and efficient composite coefficient to enlarge the network structure
in a more structured manner. First, the composite coefficient is fixed, and
then the depth, width, and resolution coefficient pairs are used for opti-
mization. The network search, fix three coefficients, expand the baseline
network through the compound adjustment formula, and achieve the purpose
of weighing the three characteristics of the network model’s depth, width,
and resolution, and uniform scaling. The model obtained by the compound
scaling tends to focus on and more The area related to the target details
can distinguish different types of images well. Since the image classifica-
tion task is mature and EfficientNet can automatically scale the network
structure, the EfficientNet classification algorithm network structure has not
been adjusted too much. The EfficientNet-B4 version is selected from Effi-
cientNet, and the model accuracy rate is trained to more than 95% so that Junk
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images
are quickly judged.

Figure 5. EfficientNet algorithm structure

2.3.2. Modified Yolov5 Algorithm

As one of the most typical target detection algorithms, Yolo is a single-stage
algorithm that integrates the object proposal stage and the classification stage,
and the detection rate is better than the two-stage RNN algorithm. Yolov5 is
the latest version of the YOLO architecture. Yolov5 inherits Yolov4’s CSPDark-
net as the backbone feature extraction network. It integrates the advantages
of the typical Darknet and CSP structure, improves the learning efficiency of
the network structure, and dramatically improves the feature extraction rate.
The Neck part uses FPN plus PAN to generate a dense grid of reference frames,
called ”anchors,” with a specified scale and aspect ratio on the feature map.
FPN plus PAN pre-designates a score for each anchor point, which indicates
whether the anchor point contains the top-ranked anchor point of the object
of interest, which is retained as a target suggestion and input to the second
stage of the network. Finally, the low-scoring bounding box is filtered by set-
ting a threshold, non-maximum suppression (NMS) processing is performed on
the retained bounding box, and the final detection result is obtained after the
overlapping bounding box is removed and the target detection is completed.
The YOLOv5 architecture includes four architectures [34], specifically named
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. In order to prevent the model
from being too large and over-fitting, this paper chose YOLOv5s with a rela-
tively simple structure as the baseline model. The specific structure is shown
in Figure 6. In order to solve the actual problem of UAV detection of plas-
tic waste, this research proposes a variety of optimization strategies based on
Yolov5 target detection, including

anchor size revision, attention mechanism, and weighted frame fusion. The three
strategies are specifically introduced below.
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Figure
6. Yolov5s algorithm structure

The anchor structure, an important part of the Yolo series of target detection
algorithms, produces suggestions for predicting potential objects. The original
anchor structure performs well in detecting various objects in data sets such as
COCO. However, the size of these anchors is not suitable for small objects, such
as plastic waste in drone images, whose average size is less than 30 cm, and
examples occupy about 1% of the total image area. In small target detection,
setting a smaller anchor scale is a feasible solution to this problem. However, it
is arbitrary to evaluate the performance of the model by comparing the anchor
size and the sample size, and the model also can find a more suitable size
through bounding box regression. In order to select the appropriate anchor size,
we optimize the anchor size selection setting through the K-means clustering
algorithm (Jain., 2010), which is the most commonly used iterative clustering
algorithm among many clustering methods. K objects are randomly selected
as the initial clustering centers, and then the distance between each object and
each seed clustering center is calculated, and finally, each object is assigned to
the nearest clustering center. The value of each clustering center is continuously
updated during the iterative process until the best clustering result is obtained.
The target detection is performed by experimentally setting three groups of
anchor structures [45,62;25,20;16,28], [13,9;31,44;10,26], [24,54;15,21;23,30], as
shown in Figure 7.
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Figure
7. modification of anchor size

River
plastic waste spatial information is variable; the target is not easy to detect. In
order to quickly and accurately identify river waste in the model to introduce
an attention mechanism, the attention mechanism can ignore irrelevant infor-
mation and focus on effective local information. Common attention mechanism
modules include SE module (Woo et al., 2018), CBAM module(Hu et al.,
2020), etc. In this paper, we choose the SE module to be introduced into the
yolov5 model. The SE module is lightweight, and its structural features are
shown in Figure 8. By processing the convolved feature map, compressing
the spatial dimension through the squeeze operation, and learning the direct
correlation of the channels by weights, a one-dimensional vector equal to the
number of channels is finally obtained as the evaluation score of each channel,
And then apply the modified scores to the corresponding channels. The results
obtained can improve the sensitivity of the model to channel features. Only a
small amount of calculation is needed to increase performance. Embed it in
the backbone network of the YOLOv5s architecture. Improve the detection
accuracy of the model.

Figure 8. SE attention module

Non-maximum suppression (NMS) is a common prediction frame generation
algorithm used in target detection. Searching for local maxima and suppressing
non-maxima elements has good results in the case that only a single object in the
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picture is detected. However, the classical NMS algorithm has some problems in
drifting plastic detection, which is prone to the proximity and overlap of multiple
floating objects in plastic floating trash due to the point of river flow. The
classical NMS algorithm filters out one of the multiple prediction frames with
low confidence, resulting in inaccurate counts, not conducive to later removal
efforts. Weighted box fusion(Solovyev et al., 2021)is the new bounding box
fusion method to solve the above problems of the target detection model. The
weighted box fusion workflow is as follows: First, it sorts all bounding boxes in
descending order of confidence scores. It then generates another list of possible
box ”fusions” and tries to check whether they match the original box�this is
achieved by checking whether IoU is more significant than a specified threshold.
Then, it uses a formula to adjust the coordinates and the confidence scores of
all boxes in the box list. The new confidence is the average confidence of all the
boxes that are fused. The new confidence is the average confidence of all the
boxes being fused, and the new coordinates are fused and weighted in a similar
way to finally generate the most appropriate prediction box, generating the
correct coordinates with the quantity information, and the NMS is compared
with the WBF as shown in Figure 9.

Figure
9. Comparison of NMS and WBF generated prediction frames

2.3.3. Model Integration

This study selects a simple and effective high and low threshold method to in-
tegrate the model and experimentally set the low threshold to 0.1 and the high
threshold to 0.9. By checking each classification prediction. If the Efficient-
Net prediction probability is less than the low threshold, we set the prediction
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to ”no garbage.” If the classification prediction is between the low and high
thresholds, a ”garbage” prediction is obtained, which has the confidence level of
EfficientNet (not Yolov5). Finally, if the classification prediction is higher than
the high threshold, it means that the yolov5 target detection network is highly
confident that the water surface contains a high probability of floating plastic
garbage. The floating plastic garbage is classified and identified, modeled as a
classification combined with a detection model (see Fig10.)

Figure
10. C+D model

2.4. Model Evaluation

This study used FP, true positive (TP), and false negative (FN) assessment
schemes. When a predicted bounding box corresponds to a unique garbage
target, and the IOU threshold reaches 0.5, it is calculated as TP. Otherwise, the
predicted bounding box will be regarded as FP. The prediction of plastic waste
in the study is based on the recall rate and accuracy, which is defined as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃/(𝑇 𝑃 + 𝐹𝑃) (1)
𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃/(𝑇 𝑃 + 𝐹𝑁) (2)

Since recall and precision only reflect part of the performance of the target
detection model, they cannot respond well to the overall floating garbage clas-
sification and detection model. Therefore, FPS, average precision rate, and
average accuracy rate of all categories are used to evaluate the results compre-
hensively. FPS is the number of pictures that can be processed per second. The
higher the FPS, the faster the processing speed. FPS of more than 30 can meet
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the real-time requirement.

The average accuracy AP can be simply considered as the region under the
accuracy-recall curve for the application, or mathematically expressed as:

AP = Σ𝑛
𝑖=1Precision𝑖 (Recall𝑖 − Recall𝑖−1) , withRecall𝑖=0 = 0 (3)

The average accuracy of the whole class is the average value of the whole class
AP, mathematically expressed as:

mAP = Σ𝑛
𝑖=1AP/𝑛 (4)

The score threshold of the algorithm is set to 0.8 to suppress low score prediction.
High score predictions were compared with surface facts to obtain a set of TP,
FP, FN, precision, recall, and AP, mAP.

3. Results

3.1. Training results of Modified Yolov5 algorithm

This section presents the results of floating plastic trash detection using deep
learning. The training experiments in this study were conducted on a graphics
workstation with an Intel Core i9-7900X CPU, an NVIDIA GeForce GTX 1080
Ti graphics card, and eight 8 GB memory cards. During the model training,
stochastic gradient descent was used for network optimization. No overfitting
problem was found in the experiments. The deep learning model was imple-
mented on pytorch (”pytorch”, 2019) and trained for 200 iterations. After about
6.5 hours of training, all target detection models converged, and the modified,
modified Yolov5 P, R, AP, and mAP curves are shown in Figure 11.
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(a) (b)

(c)

Figure 11. model training results. (a)precision curve (b)recall curve (c)AP,
mAP curve

3.2. Comparison with the Recognition Results Using Different Object
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Detection Algorithms

The model was tested with 300 UAV images in the test set, including 225 no-
junk images, 75 junk images, and 323 junk examples. Compare the improved
YOLOv5s network with the original YOLOv5s and Faster-RCNN on the 300 test
set images under study. The target detection evaluation results are shown in
Table 1. According to Table 1, Modified Yolo v5’s P, R, and mAP were 0.86, 0.89,
0.86, respectively. The AP of plastic bottles plastic bags, and polyfoams were
0.80, 0.89 0.87, respectively. In terms of recognition accuracy, the algorithm
proposed in the mAP study of the improved YOLOv5s recognition model is
up to 0.86, which is 7% higher than the original YOLOv5 network, and the
accuracy of plastic bottles, plastic tubes, and plastic foams are increased by
2%, 6%, and 11 respectively. %, the result is slightly better than the two-level
network Faster-CNN. In terms of the recognition speed of the model, the average
detection speed of the improved YOLOv5s model is 45.63 FPS, a decrease of
2.74, slightly lower than the original structure, and about three times faster than
Faster-CNN. The results show that the modified yolov5 model balances floating
plastic’s real-time performance and accuracy, and the algorithm optimization
strategy is effective.

Table 1. Performance comparison of three object detection networks.

Network FPS P R APbottle APbag APpolyfoammAP
Faster-
CNN
Yolo
v5
Modified
Yolo
v5

3.3. Results of Plastic Waste Targets Detection

EfficientNet and Modified Yolo v5 were integrated according to the high and low
threshold methods and recognized on the test set of 300 images using the classifi-
cation plus target detection algorithm. P, R, and mAP of EfficientNet+Modified
Yolov5 were 0.93, 0.92, and 0.91, respectively. The AP of plastic bottles, plastic
bags and polyfoam were 0.87, 0.95 0.90, respectively. Plastic waste targets de-
tection results are shown in Figure. 12, plastic bottles in the red border, plastic
foam in the blue border, and plastic bags in the purple border, from the results
it can be seen that most of the floating plastic garbage is identified, and the IoU
threshold is kept chiefly above 0.9.
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Plastic waste targets detection results

3.4. Comparison with the Recognition Results Using C+D Model

To verify the gain effect of the classification algorithm on the target detection al-
gorithm, the trained classification network EfficientNet was introduced in front
of the three target detection models, respectively, and then tested and compared
the application effect on the dataset. The evaluation results are shown in Table

17



2. According to Table 2, the EfficientNet classification algorithm reduced the
Faster-CNN, Yolo v5, and Modified Yolo v5 target detection algorithms FPS
by 4.92, 5.13, and 5.4, and mAP increased by 5%, 6%, and 5%, respectively.
The results show that EfficientNet reduces FPS by a small amount and has
a sound improvement inaccuracy. Among them, the accuracy of the Efficient-
Net+Modified Yolo v5 model reached the highest mAP of 0.91, and the accuracy
of plastic bottles, plastic tubes, and plastic foams were 0.87, 0.95, 0.90, and the
FPS could also reach 40.23, meeting real-time and accuracy requirements.

Table 2. Performance comparison of three C+D Model

NetworkFPS P R APbottle APbag APpolyfoammAP
EfficientNet+
Faster-
CNN
EfficientNet+
Yolo
v5
EfficientNet+
Modified
Yolo
v5

4. Discussion

Experimental results show that Modified yolov5 is an excellent floating object
detection algorithm. The Faster-RCNN algorithm is equivalent to the algo-
rithm in this paper in terms of accuracy. However, it cannot achieve real-time
performance due to the computational burden of the two-level network and is
not suitable for river litter monitoring in complex environments. By modify-
ing the original yolov5, the three optimization strategies have different degrees
and effects of plastic identification and classification optimization. The K-mean
clustering algorithm is used to adjust the anchor frame to focus on solving the
disadvantages of small target river garbage that is difficult to identify. Adding
an attention mechanism makes the algorithm more quickly focus on the plastic
garbage target in the UAV image and integrate the plastic garbage information.
The weighted frame fusion is to fuse and filter the prediction frame to locate
the plastic waste more accurately. The plastic detection accuracy can reach
0.86 through strategy optimization, and the FPS can reach 45.63 the fastest.
Although the model is improved, the network parameter structure is increased
to reduce the FPS rate by about 3, but A 7% improvement is achieved. The
overall performance of the algorithm structure is superior to other algorithms.
In a complex and changeable river environment, the algorithm can process im-
ages in real-time and provide timely information on plastic floating objects for
UAVs and other equipment, but the river environment is complicated. In addi-
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tion, frequent target position and scene changes caused by continuous plastic
movement can easily lead to misjudgment by the target detection algorithm.

Through C+D algorithm mode, Modified Yolov5 combines with robust Efficient-
Net image classification algorithm to achieve more excellent results in water
surface floating objects. The current C plus D algorithm is slightly slower than
the target detection algorithm in terms of speed, mainly because the algorithm
needs to judge the accuracy of the algorithm according to the threshold value
after processing. In contrast, the current classification algorithm is limited by
the collective amount of data; with the expansion and completion of the data
set, the classification algorithm will be further effective in terms of speed. 40.23
and mAP can reach 0.91, which meets the practical requirements. The algo-
rithm can effectively overcome the main practical problems and investigate the
plastic river waste in a more extensive range while satisfying the accuracy and
real-time requirements.

The AP accuracy rate of the three types of plastic waste is above 85%. The
main reason for limiting the accuracy is that the occlusion of riverside reeds
and other plants causes abnormal light, angle, and time. Some floating objects
sink and cause feature changes to cause inaccurate model recognition, as shown
in Fig13(a). Among the three types of plastic garbage, the floating plastic bag
has a single characteristic, and the highest accuracy is 0.95, while the plastic
foam shape and color are slightly different, and the accuracy is slightly lower
than that of the plastic bag, which is 0.90, as shown in 3 in Fig.13(b). The
lowest accuracy of plastic bottles is 0.87, mainly due to the large difference in
the volume and size of plastic bottles and the failure to identify some flat and
compressed plastic bottle samples, as shown in Fig.13, 1and 2.

(a) (b)

Figure 13. Error monitoring example

Based on the above experimental results, the algorithm proposed in this paper is
superior to previous studies and solves the various drawbacks of floating garbage
that are difficult to identify and monitor, and is suitable for real-time dynamic
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monitoring of river floating garbage, and can have better robustness in complex
water environment with the expansion of data set.

5. Conclusions

A fusion classification detection deep learning algorithm is proposed in this pa-
per to solve various problems arising from remote sensing monitoring of river
garbage. The classification algorithm regulates the imbalance between river
background images and plastic garbage samples and solves the problem of con-
fusing other floating objects with plastic garbage to a certain extent. The target
detection algorithm and three strategies solve the problem of sparse samples in
actual river garbage monitoring, the environment is complex and changeable,
and some garbage is not easy to detect. The classification and monitoring al-
gorithm can reach 91mAP on GTX 1080 (AP: plastic bag: 0.95; plastic foam:
0.90; plastic bottle: 0.87), FPS can reach 40.63, ensuring the real-time and ac-
curacy of floating garbage detection, making the river float Garbage monitoring
has become intelligent and automated. It is cheap, effective, and accurate to
carry the development algorithm on the UAV platform of edge computing to
identify the plastic waste in the river channel, reduce the influence of subjective
factors of manual identification and classification, obtain more accurate floating
plastic waste information, and reduce the investment in human resources. En-
sure the safety of cleaners, improve the efficiency of the waste cleaning industry,
and make outstanding contributions to the protection of the water surface envi-
ronment. Combining knowledge of other disciplines such as water environment
ecology can further research and explore the source, spatial distribution, and
dynamic waste changes.

Current algorithms are currently only accurate real-time extraction of floating
plastic trash in rivers. However, this research model approach provides a new
way of thinking about classification plus detection deep learning algorithms
in remote sensing target detection is worth exploring. With the development
of deep learning, various algorithms can be selected to combine according to
different remote sensing task requirements to enhance the experimental results.
Meanwhile, the classification categories and levels can be increased or decreased
according to the complexity of the features to solve the practical problems aris-
ing from remote sensing target detection. The main result of this research is
to propose a remote sensing feature detection algorithm model of classification
plus detection, apply relevant deep learning algorithms for plastic floating ob-
ject detection on a more complex river environment, and eventually, verify the
effectiveness of the algorithm model.
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