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Abstract

We use a statistical emulation technique to construct synthetic ensembles of global and regional sea-air carbon dioxide (CO2)

flux from four observation-based products over 1985-2014. Much like ensembles of Earth system models that are constructed

by perturbing their initial conditions, our synthetic ensemble members exhibit different phasing of internal variability and a

common externally forced signal. Our synthetic ensembles illustrate an important role for internal variability in the temporal

evolution of global and regional CO2 flux and produce a wide range of possible trends over 1990-1999 and 2000-2009. We

assume a specific externally forced signal and calculate the likelihood of the observed trend given the distribution of synthetic

trends during these two periods. Over the decade 1990-1999, three of the four observation-based products exhibit small negative

trends in globally integrated sea-air CO2 flux (i.e., enhanced ocean CO2 absorption with time) that are highly probable (44-72%

chance of occurrence) in their respective synthetic trend distributions. Over the decade 2000-2009, however, three of the four

products show large negative trends in globally integrated sea-air CO2 flux that are somewhat improbable (17-19% chance of

occurrence). Our synthetic ensembles suggest that the largest observation-based positive trends in global and Southern Ocean

CO2 flux over 1990-1999 and the largest negative trends over 2000-2009 are somewhat improbable (<30% chance of occurrence).

Our approach provides a new understanding of the role of internal and external processes in driving sea-air CO2 flux variability.
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Abstract24

We use a statistical emulation technique to construct synthetic ensembles of global and re-25

gional sea-air carbon dioxide (CO2) flux from four observation-based products over 1985-26

2014. Much like ensembles of Earth system models that are constructed by perturbing their27

initial conditions, our synthetic ensemble members exhibit different phasing of internal vari-28

ability and a common externally forced signal. Our synthetic ensembles illustrate an impor-29

tant role for internal variability in the temporal evolution of global and regional CO2 flux30

and produce a wide range of possible trends over 1990-1999 and 2000-2009. We assume a31

specific externally forced signal and calculate the likelihood of the observed trend given the32

distribution of synthetic trends during these two periods. Over the decade 1990-1999, three33

of the four observation-based products exhibit small negative trends in globally integrated34

sea-air CO2 flux (i.e., enhanced ocean CO2 absorption with time) that are highly probable35

(44-72% chance of occurrence) in their respective synthetic trend distributions. Over the36

decade 2000-2009, however, three of the four products show large negative trends in globally37

integrated sea-air CO2 flux that are somewhat improbable (17-19% chance of occurrence).38

Our synthetic ensembles suggest that the largest observation-based positive trends in global39

and Southern Ocean CO2 flux over 1990-1999 and the largest negative trends over 2000-40

2009 are somewhat improbable (<30% chance of occurrence). Our approach provides a new41

perspective on the important role of internal variability in sea-air CO2 flux trends, and fur-42

thers understanding of the role of internal and external processes in driving sea-air CO2 flux43

variability.44

1 Introduction45

The ocean plays a key role in the climate system, absorbing ∼25% of the annual carbon46

dioxide (CO2) emissions from anthropogenic activities [Friedlingstein et al., 2020]. While47

this sea-air CO2 flux slows the rate of anthropogenic climate change [Le Quéré et al., 2018],48

it also enhances ocean acidification and can thus influence marine organisms, ecosystems,49

and the societies that depend on those ecosystems [Doney et al., 2020]. Earth system models50

suggest that ocean carbon absorption will continue through the end of the century [Ciais and51

Sabine, 2013], though the magnitude of the globally integrated sea-air CO2 flux will largely52

depend on our emissions trajectory [Lovenduski et al., 2016; Ridge and McKinley, 2021].53

Global sea-air CO2 exchange is not steady with time, but rather exhibits temporal54

variability. Studies using estimates of sea-air CO2 flux from sparse measurements of the55
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surface ocean partial pressure of CO2 (?CO2) [Bakker et al., 2016] suggest that this CO256

flux variability is particularly pronounced on decadal timescales. These studies report a pe-57

riod of stagnation in global ocean carbon absorption over the decade 1990-1999 [Le Quéré58

et al., 2009; Rödenbeck et al., 2015; Landschützer et al., 2016; DeVries et al., 2019], fol-59

lowed by intensification of ocean carbon absorption over the decade 2000-2009 [Fay and60

McKinley, 2013; Rödenbeck et al., 2015; Landschützer et al., 2016; DeVries et al., 2019].61

These observed decadal trends in sea-air CO2 flux are superimposed on a background char-62

acterized by high interannual variability on global and regional scales [Landschützer et al.,63

2019], and this challenges our ability to quantify the magnitude of the decadal trends and64

to attribute them to particular drivers [e.g., Fay and McKinley, 2013]. While some studies65

link the decadal sea-air CO2 flux trends to modes of internal climate variability, such as the66

Southern Annular Mode or the El Niño-Southern Oscillation [ENSO; Landschützer et al.,67

2015, 2019], others cite external forcing from volcanic eruptions and changes in the atmo-68

spheric CO2 growth rate as the driving factor behind these trends [McKinley et al., 2020]. It69

is critical that we quantify and understand the drivers of these decadal trends in sea-air CO270

flux for future predictions of the global carbon cycle that are reported in documents such as71

the Intergovernmental Panel on Climate Change (IPCC) reports.72

Large initial condition ensembles of Earth system models are a relatively new tool that73

can be used to quantify the roles of internal climate variability and external forcing in long-74

term trends of Earth system variables. These large ensemble experiments are conducted with75

a single Earth system model wherein each ensemble member is subject to perturbations in76

initial conditions, but all ensemble members are subject to identical external forcing. This77

procedure produces an ensemble where each member portrays modes of internal climate78

variability with unique phasing and amplitude, and where the average across all ensemble79

members captures the response of the Earth system to external forcing [Deser et al., 2020].80

McKinley et al. [2016] and McKinley et al. [2017] used the Community Earth System Model81

Version 1 Large Ensemble [CESM1-LE; Kay et al., 2015] to illustrate how internal vari-82

ability can cloud our ability to quantify and interpret sea-air CO2 flux trends on decadal and83

longer timescales. Their analysis demonstrates that decadal trends in sea-air CO2 flux from84

a single CESM1-LE ensemble member are strongly affected by internal climate variability85

[McKinley et al., 2017]. Since the historical record of sea-air CO2 flux variations is akin to a86

single ensemble member in this large ensemble framework, the magnitude of decadal trends87

in the historical record is likely heavily influenced by internal variability. However, sea-air88
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CO2 flux variability in CESM1-LE and other Earth system models may not match that of the89

real world [Hauck et al., 2020], and this necessitates our development of a large ensemble90

that is based on real-world observations.91

Here, we use a statistical emulation method to place the observation-based estimates92

of sea-air CO2 flux into a large ensemble framework by constructing synthetic ensembles93

of observed sea-air CO2 flux. Much like a large ensemble of an Earth system model, each94

synthetic ensemble member experiences a different phasing of internal climate variability,95

but an identical externally forced signal. We develop synthetic ensembles of sea-air CO296

flux for four observation-based products and remark on the importance of internal climate97

variability for the interpretation of decadal trends in the observational record.98

2 Observations and models99

Our study utilizes a collection of interpolated observations and output from Earth sys-100

tem models to develop, analyze, and test our synthetic ensemble of observed sea-air CO2101

fluxes. We illustrate our statistical methodology for the reader using sea-air CO2 fluxes de-102

rived from surface ocean ?CO2 (?CO>22 ) observations collected in the Drake Passage Time-103

series program. We then develop synthetic ensembles for four global, observation-based104

sea-air CO2 flux products, for which we use ensemble mean estimates of sea-air CO2 flux105

from Earth system models contributing to the 6Cℎ Coupled Model Intercomparison Project106

(CMIP6). Finally, we use output from the CESM1-LE to test our statistical methodology. In107

this section, we describe each of these datasets in turn.108

2.1 Drake Passage sea-air CO2 flux estimates109

We use a single time-series of annual mean sea-air CO2 flux derived from underway110

estimates of ?CO>22 collected as part of the Drake Passage Time-series program over 2004-111

2018 [Figure 1a; Munro et al., 2015a,b; Fay et al., 2018]. Each annual mean estimate of sea-112

air CO2 flux is calculated from monthly means of all underway ?CO>22 observations within113

a region in the center of the Drake Passage (i.e., from 58 to 60◦S and 61.5 to 65.5◦W) where114

monthly Cross-Calibrated Multi-Platform version 2 (CCMPv2) winds were used to estimate115

sea-air CO2 flux [Atlas et al., 2011]. Observations were collected in eight to eleven different116

months of each year within this region, from approximately twenty Southern Ocean crossings117

per year.118
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2.2 Observation-based sea-air CO2 flux products119

Our synthetic ensembles of sea-air CO2 flux are derived from observation-based esti-120

mates that rely upon sparse ?CO>22 measurements collected in the Surface Ocean CO2 Atlas121

[SOCAT; Bakker et al., 2016] and the Lamont-Doherty Earth Observatory database [LDEO;122

Takahashi et al., 2018]. These observation-based products use a range of statistical and ma-123

chine learning approaches to gap-fill ?CO>22 where and when measurements are not available124

(Table 1).125

The Council for Scientific and Industrial Research-Machine Learning ensemble [CSIR-126

ML6; Gregor et al., 2019] uses an ensemble of two-step neural network methods where two127

types of clusters and three types of regressions are used to interpolate ?CO>22 from SOCAT128

v2020 using chlorophyll-a, sea surface temperature, absolute dynamic topography, mixed129

layer depth, sea ice, and sea surface salinity. The final product uses an ensemble average of130

six machine-learning models.131

The Max Planck Institute Self-Organizing Map-Feed-Forward Neural Network [MPI-132

SOMFFN; Landschützer et al., 2013, 2014, 2015, 2016] uses a two-step neural network133

method to gap-fill ?CO>22 . In the first step, a self-organizing map is used to subdivide the134

ocean into 16 provinces with similar climatological biogeochemical properties. In the second135

step, a feed-forward neural network is used to predict the non-linear relationships between136

driver variables and SOCAT v2020 observations in each province. Driver variables for MPI-137

SOMFFN include sea surface temperature, mixed layer depth, satellite derived chlorophyll-a138

concentration, sea surface salinity, and atmospheric ?CO2.139

The Max Planck Institute for Biogeochemistry-Mixed Layer Scheme [JENA-MLS; Rö-140

denbeck et al., 2014] combines ocean mixed layer biogeochemistry with ?CO>22 data from141

SOCAT v2020 and seasonal, interannual and short-term (daily) variations of sea surface tem-142

perature, mixed layer depth, ice-free fraction, salinity, wind speed, and alkalinity.143

The Copernicus Marine Environment Monitoring Service Feed-Forward Neural Net-144

work [CMEMS-FFNN; Denvil-Sommer et al., 2019] uses a two-step process that first re-145

constructs monthly climatologies of global ?CO>22 from the LDEO database, and then recon-146

structs monthly anomalies using the SOCAT v5 grid. The driver variables used are chlorophyll-147

a, sea surface temperature, mixed layer depth, sea surface salinity, the atmospheric CO2 mole148

fraction (jCO2), and sea surface height.149
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In this study, we use annual mean sea-air CO2 flux estimates spanning the common150

observation-based product period of 1985 to 2014. As in McKinley et al. [2020] and Fay151

et al. [2021], we correct for the spatial coverage differences in each observation-based prod-152

uct by filling missing areas in each with a scaled climatology product which extends to coastal153

and high latitude regions [Landschützer et al., 2020]. CO2 flux is then estimated from each154

product’s area-filled ?CO2 using common atmosphere, ice, and solubility, and wind speed155

inputs from the SeaFlux product [Gregor and Fay, 2021; Fay et al., 2021] and a quadratic156

flux parameterization [Ho et al., 2006; Wanninkhof , 2014]. This preprocessing ensures that157

differences in decadal trends or interannual variance in our synthetic ensemble are due solely158

to differences in the ?CO2 products rather than from statistical artifacts or flux calculation159

parameters.160

2.3 Community Earth System Model Version 1 Large Ensemble161

We evaluate our statistical methodology using output from CESM1-LE. CESM Ver-162

sion 1 is a fully coupled climate model that simulates Earth’s climate system [Hurrell et al.,163

2013]. The model is comprised of four component models that synchronously simulate164

Earth’s land, atmosphere, ocean, and sea ice, with one central coupler component that ex-165

changes fluxes and boundary conditions between the individual components [Hurrell et al.,166

2013]. The ocean component model of CESM1 is the Parallel Ocean Program model with167

nominal 1◦ resolution and 60 vertical levels [Danabasoglu et al., 2012] coupled to the Bio-168

geochemical Elemental Cycling model for ocean biogeochemistry, including full carbonate169

chemistry thermodynamics and sea-air CO2 fluxes [Moore et al., 2004; Moore and Doney,170

2007; Moore and Braucher, 2008]. We analyze 34 ensemble members of CESM1-LE that171

span 1920-2005 and are forced with historical greenhouse gas and aerosol concentrations172

developed for the 5Cℎ Coupled Model Intercomparison Project [CMIP5; Taylor et al., 2012;173

Kay et al., 2015]. Random phasing of internal climate modes is accomplished in CESM1-LE174

via round-off-level differences in the 1 January 1920 air temperatures [Kay et al., 2015].175

2.4 Earth system models from CMIP6176

We take advantage of newly available output from three CMIP6 Earth system models177

with active ocean biogeochemistry that submitted multiple historical (1850-2014) ensemble178

members derived from initial conditions perturbations to the CMIP6 archive: the Canadian179

Earth System Model Version 5 [CanESM5; Swart et al., 2019], the Institut Pierre-Simon180
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Laplace Coupled Model 6 [IPSL-CM6; Boucher et al., 2020], and the Community Earth181

System Model Version 2 [CESM2; Danabasoglu et al., 2020]. We analyze 25 ensemble182

members of CanESM5, 31 ensemble members of IPSL-CM6, and 11 ensemble members of183

CESM2. These simulation output were derived from concentration-driven simulations [i.e.,184

their atmospheric CO2 concentrations were prescribed and were thus unaltered by variability185

in sea-air CO2 fluxes; Eyring et al., 2016].186

3 Synthetic ensemble construction187

Before analyzing the global observation-based sea-air CO2 flux products, we first il-188

lustrate our synthetic ensemble approach for the reader using a single time-series of an-189

nual mean CO2 flux derived from observations collected in Drake Passage (Figure 1). Our190

method is built upon the approach developed in McKinnon et al. [2017] and McKinnon and191

Deser [2018]. We statistically model sea-air CO2 flux as:192

- 8,C = V80 + V
C
� + V

8
ENSOM

C
ENSO + V

8
PDV⊥M

C
PDV⊥ + Y

8,C (1)

where - 8,C is the sea-air CO2 flux at location i and time t. In this model, sea-air CO2 flux193

is described as a linear combination of the mean state V0
8 , the response to external forc-194

ing V�
C (which we assume to be spatially uniform globally), the response to climate modes195

V8ENSOMC
ENSO and V8PDV⊥MC

PDV⊥ , and the residual internal variability Y8,C . The term V�
C in196

Equation 1 captures the response of CO2 flux to external forcing, while V8ENSOMC
ENSO and197

V8PDV⊥MC
PDV⊥ capture the role of these climate modes in sea-air CO2 flux. Both ENSO and198

Pacific Decadal Variability (PDV) have been shown to influence sea-air CO2 flux on global199

scales [McKinley et al., 2004, 2006, 2017]. We address the covariance between ENSO and200

PDV by creating a time-series of PDV (PDV⊥) that is orthogonalized with respect to ENSO201

[method described in McKinnon and Deser, 2018].202

Figure 1 (top row) illustrates our statistical model for Drake Passage CO2 flux, as in213

Equation 1. Figure 1a shows the annual mean flux in this region over 2004 to 2018 (- 8,C ) as214

a solid line, and anomalies in the flux once the the temporal mean flux (V0
8) has been sub-215

tracted as a dashed line. In this illustrative example, we model the external forcing (V� C )216

as a simple linear trend (note that we model external forcing differently for the four global217

observation-based products, discussed later in this section). We model the influence of cli-218

mate modes on sea-air CO2 flux variability by calculating the linear regression between glob-219

ally integrated CO2 flux and the standardized indices for ENSO and orthogonalized PDV220
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Figure 1. Synthetic ensemble construction. (a-c) Statistical model of annual mean Drake Passage sea-air

CO2 flux, as in Equation 1: (a) (solid) Time-series of CO2 flux (black, - 8,C ) and (dashed) CO2 flux with

temporal mean (V80) removed, (b) regression of CO2 flux anomalies (temporal mean and response to external

forcing (a simple linear trend in this example), V� C , removed) onto the ENSO (red) and PDV (blue) climate

indices (V8ENSO, V8PDV⊥ ), and (c) residual variability, Y8,C . (d-f) Construction of the synthetic ensemble: (d)

The block bootstrap process re-samples the residual variability, Y8,C , (e) the IAFFT technique produces surro-

gate ENSO and PDV⊥ indices (ENSO shown here), and (f) two synthetic ensemble members show alternative

phasing of internal variability and different long-term trends (dashed) than the original time-series (solid

black line same as in a). Positive fluxes correspond to decreased oceanic carbon uptake. Panel (d) adapted

from Elsworth et al. [2020].

203

204

205

206

207

208

209

210

211

212

(V8ENSO, V8PDV⊥ ; Figure 1b). The CO2 flux residuals (Y8,C ) are modeled as the component of221

X8,C that is not captured by the external forcing or internal climate modes, and these residu-222

als are quite large in the Drake Passage region (Figure 1c), suggesting only a small role for223

ENSO and PDV in CO2 flux here.224

Figure 1 (bottom row) illustrates how we construct a synthetic ensemble from our sta-225

tistical model of Drake Passage CO2 flux. We use block bootstrapping with a block length226

of 3 years to re-sample the residuals (Y8,C ) 1,000 times [Figure 1d; block length according to227

Wilks, 1997]. Block bootstrapping selects any contiguous 3-year block of sea-air CO2 flux228

from the anomaly time-series and randomly samples these blocks with replacement to gen-229
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erate a new time-series with the same length as the original. This technique and block length230

preserves some of the temporal characteristics (e.g., year-to-year variations) of the residu-231

als (Figure 1d). Next, we use the Iterative Amplitude Adjustment Fourier Transfer (IAAFT)232

technique [Schreiber and Schmitz, 1996, 2000] to produce 1,000 surrogate ENSO and PDV233

indices with similar spectral characteristics as the original climate indices (Figure 1e). For234

example, an IAFFT-generated surrogate ENSO index will exhibit a spectral peak in the 3- to235

7-year time window, as the observed ENSO index does. We produce 1,000 unique synthetic236

ensemble members of Drake Passage CO2 flux (2 members shown in Figure 1f) by combin-237

ing the re-sampled residuals (Y8,C ), the CO2 flux evolution due to the surrogate climate modes238

(V8ENSOMC
ENSO and V8PDV⊥MC

PDV⊥ ), the external forcing (V� C ), and the temporal mean flux239

(V0
8). This technique produces 1,000 “alternative histories" of sea-air CO2 flux in this re-240

gion.241

Figure 1f shows the temporal evolution of Drake Passage CO2 flux from two synthetic242

ensemble members and the original observations over 2004-2018. Each synthetic ensemble243

member has statistical properties that are similar to the observational record and an identical244

externally forced signal, but a unique sequence of internal variability. Here, we see the clear245

influence of internal variability on the long-term trend: different phasing of internal variabil-246

ity in sea-air CO2 flux between members is substantial enough to drive different estimates of247

the long-term trend (Figure 1f). The effect of internal variability on long-term trends is espe-248

cially pronounced over the relatively short time period and at the regional scale of the Drake249

Passage observations [Hawkins and Sutton, 2009]. While the observed CO2 flux and syn-250

thetic ensemble members exhibit negative trends (more ocean carbon absorption with time),251

ensemble member 174 exhibits a much larger negative trend than the others over the same252

period. This outcome emphasizes the importance of internal variability for interpretation of253

long-term trends in sea-air CO2 fluxes in this region.254

We use our statistical emulation technique to develop synthetic ensembles of globally261

and regionally integrated sea-air CO2 flux for each of the observation-based products (CSIR-262

ML6, JENA-MLS, CMEMS-FFNN, and MPI-SOMFFN; Figure 2) and for the average of263

the 4 observation-based products. Our approach is identical to that described for the Drake264

Passage time-series, with the exception of our model for the externally forced signal (V� C ).265

Here, we model V� C as the mean of three ensemble mean CO2 flux estimates from historical266

simulations of CMIP6 Earth system models (Figure 2; see Section 2.4). As sea-air CO2 flux267

is sensitive to variations in atmospheric ?CO2 and short-term volcanic forcing [McKinley268
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Figure 2. Global CO2 flux variations. Temporal evolution of globally integrated sea-air CO2 flux anoma-

lies (temporal mean, V80, removed) from the (blue) CSIR-ML6, (purple) MPI-SOMFFN, (pink) JENA-MLS,

and (orange) CMEMS-FFNN observation-based products. Black line shows the global CO2 flux response to

external forcing, V� C , estimated as the mean of three ensemble means from Earth system model (ESM) output

contributed to the CMIP6 archive (CanESM5, IPSL-CM6, CESM2). Positive flux anomalies correspond to

decreased oceanic carbon uptake.

255

256

257

258

259

260

et al., 2020], we use the ensemble mean time-series of CO2 flux from Earth system models269

that are driven by these external forcing variations to isolate the temporal evolution of the270

forced signal [V� C ; McKinley et al., 2016]. This allows us to generate synthetic ensemble271

members that differ due to internal variability, rather than anthropogenic and natural external272

forcing. We further account for differences in model structure for estimation of the forced273

signal by averaging across ensemble means from three different Earth system models. In274

Section 5, we explore the sensitivity of our results to the statistical model of the externally275

forced signal.276

4 Results277

The synthetic ensemble of globally integrated sea-air CO2 flux from the four observation-278

based products reveal multiple possible trajectories for the temporal evolution of ocean car-279

bon uptake (Figure 3). While the ensemble mean trend is negative over 1985-2014 (increased280

ocean carbon absorption with time, likely driven by external forcing), different phasing of281
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internal variability produces a different CO2 flux evolution across the synthetic ensemble282

(Figure 3). In Figure 3, we highlight the CO2 flux from the original products in yellow and283

a single synthetic ensemble member in black (with the remaining 999 synthetic members as284

thinner, multi-hued lines) for each product to illustrate how the observed temporal evolution285

of CO2 flux may not be replicated by the synthetic ensemble member, and the observed long-286

term trend may be amplified or muted in the synthetic ensemble member. This showcases the287

utility of the synthetic ensemble for quantifying the effects of internal variability on particu-288

lar features of the time-series and the long-term trend.289
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Figure 3. Synthetic ensembles of global sea-air CO2 flux. Temporal evolution of globally integrated

sea-air CO2 flux from 1,000-member synthetic ensembles of the (a) CSIR-ML6, (b) MPI-SOMFFN, (c)

JENA-MLS, and (d) CMEMS-FFNN observation-based products. Yellow lines show the CO2 flux evolution

from the given observation-based product, and black line shows the temporal evolution of a single ensemble

member with the remaining 999 members shown in thin multi-hued lines. Negative fluxes correspond to

ocean carbon uptake.

290

291
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294

295

The synthetic ensembles of globally integrated CO2 flux from the four observation-296

based CO2 flux products display statistical properties that are different for each product (Fig-297

ure 3). While all four ensembles show a long-term negative ensemble mean trend (increased298

ocean carbon absorption with time), the average ensemble spread ranges from 0.13 Pg C yr−1
299
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(1f, CMEMS-FFNN) to 0.27 Pg C yr−1 (1f, JENA-MLS). This synthetic ensemble spread300

derives from the variance in the original observation-based product (Figure 2), and so it is301

not surprising that the product with the highest variance (JENA-MLS) exhibits the largest302

synthetic ensemble spread (Figure 3c), while the product with the lowest variance (CMEMS-303

FFNN) exhibits the lowest synthetic ensemble spread (Figure 3d).304
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Figure 4. Probability of decadal trends in global CO2 flux. Probability density functions (kernel density

estimation, purple curves) of decadal trends in globally integrated sea-air CO2 flux for (first row) 1990-1999

and (second row) 2000-2009, as estimated from synthetic ensembles of the (first column) CSIR-ML6, (second

column) MPI-SOMFFN, (third column) JENA-MLS, and (fourth column) CMEMS-FFNN observation-based

products. Purple vertical lines show the ensemble mean trend, and the 1f (67%) and 2f (95%) confidence

intervals are shaded in purple and pink respectively. Black lines show the observed decadal trend from each

product with its 95% confidence interval shaded in gray. Negative trends correspond to increased ocean

carbon uptake with time. Note that the x- and y-axes differ between panels.
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306

307
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309

310

311

312

If internal variability had been phased differently in the past, would we have observed313

the same decadal trends in sea-air CO2 flux? We answer this question by analyzing the sta-314

tistical properties of linear CO2 flux trends over 1990-1999 and 2000-2009 from the four315

synthetic ensembles and displaying the results as probability density functions (PDFs; Fig-316

ure 4). These decades were selected for analysis as they are associated with stagnation and317

growth of the ocean carbon sink, respectively, in several previous studies [see, e.g., Ritter318
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et al., 2017]. The PDFs in Figure 4 show the distributions of trends over the two decades in319

globally integrated CO2 flux from 1,000 synthetic ensemble members of each observation-320

based product (purple line; kernel density estimation), with the 1f (67%) confidence inter-321

vals shaded in purple and the 2f (95%) confidence intervals shaded in pink (note the dif-322

ferent x-axes for each product). The width of these trend distributions vary across products,323

with MPI-SOMFFN exhibiting the widest distribution and CMEMS-FFNN exhibiting the324

narrowest (Table 2); for MPI-SOMFFN, internal variability alone can produce a wide range325

of trends for globally integrated flux (nearly 0.2 Pg C yr−2 in a single decade, Table 2). For326

CMEMS-FFNN, the range of trends is nearly half of MPI-SOMFFN (∼0.1 Pg C yr−2 in a327

single decade, Table 2). The answer to the question posed at the beginning of this paragraph328

requires not only information about the width of the trend distributions, but also information329

about the center of the trend distributions. Our approach assumes that the center of the trend330

distribution (vertical purple lines in Figure 4) is the mean of three Earth system model en-331

semble means and is thus identical for all of the observation-based synthetic ensembles in332

each time period (we examine this assumption in further detail in Section 5). Armed with333

this information, we can now quantify the probability of the observed decadal trends (ver-334

tical black lines and associated gray shading in Figure 4) in the context of the synthetic en-335

semble trend distribution for each observation-based product (Table 2; trend probabilities336

estimated as the lower/upper cumulative distribution for a normal distribution). Using the337

observation-based trend mean value and 1f or 2f values, the observed trend in globally in-338

tegrated CO2 flux over 1990-1999 is a small negative number (more ocean carbon uptake339

with time) that is likely to occur (>40% chance of occurrence) in three of the four products340

(CSIR-ML6, JENA-MLS, and CMEMS-FFNN) within the distribution of synthetic trends341

(Figure 4, Table 2). Whereas, the observed trend in MPI-SOMFFN over 1990-1999 is a pos-342

itive number (less ocean carbon uptake with time) that has a low probability of occurrence343

(25%) within the distribution of synthetic trends (Table 2). Over 2000-2009, three of four344

observation-based products (CSIR-ML6, MPI-SOMFFN, and CMEMS-FFNN) exhibit large345

negative trends that are in the tails of the synthetic trend distributions (<25% chance of oc-346

currence (Figure 4, Table 2), calling into question the Earth system model representation of347

external forcing in this period. Thus, the answer to the question we posed at the beginning348

of this paragraph is product and period dependent. Over 1990-1999, three of the four prod-349

uct ensembles indicate high probability of the observed trends, but over 2000-2009, three of350

the four products indicate that the observed trends are somewhat improbable with different351
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Figure 5. Probability of decadal trends in Southern Ocean CO2 flux. As in Figure 4, but for the CO2

flux integrated over the Southern hemisphere super-biome, made up of Southern Ocean Ice, Subpolar and

Subtropical Seasonally Stratified biomes [biomes defined in Fay and McKinley, 2014]

360

361

362

.

phasing of internal variability, with only one (JENA-MLS) slightly probable (Figure 4, Ta-352

ble 2). For MPI-SOMFFN, however, the observed trends fall on the tails of the PDFs for both353

decades (25% chance of occurrence in 1990-1999 and 17% chance of occurrence in 2000-354

2009; Table 2), suggesting that different phasing of internal variability would likely have pro-355

duced different observed trends in this product. A synthetic ensemble generated from the356

average of all four observation-based products produces a narrow synthetic trend distribu-357

tion (0.11 Pg C yr−2) and low probabilities for observed trends in both decades (Figure S1;358

Table 2), much like the MPI-SOMFFN product.359

We estimate the probability of observed trends in regional sea-air CO2 flux over 1990-363

1999 and 2000-2009 by creating synthetic ensembles of CO2 flux integrated over “super-364

biomes”, i.e., biomes that capture large-scale oceanographic regions [Canadell et al., 2021],365

and performing similar statistical analyses as for the globally integrated fluxes (Figures 5 and366

S2-S5). We focus our discussion here on the Southern Ocean region, as previous work sug-367

gests large, opposite-signed decadal CO2 flux trends in this region across the two decades368

of interest [Le Quéré et al., 2007; Lovenduski et al., 2008; Landschützer et al., 2015; Ritter369
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et al., 2017]. The observation-based synthetic ensembles of sea-air CO2 flux integrated over370

the Southern Ocean Ice, Subpolar and Subtropical Seasonally Stratified biomes [SO ICE,371

SO-SPSS, SO-STSS; biomes defined in Fay and McKinley, 2014] produce narrow PDFs of372

the decadal trends over 1990-1999 and 2000-2009 (Figure 5). The externally forced trend373

(mean of Earth system model ensemble means) in the Southern Ocean is negative for both374

decades (more Southern Ocean carbon absorption with time, purple vertical lines in Fig-375

ure 5). The 95% confidence interval of the synthetic trends ranges from -0.05 to 0.05 Pg C376

yr−2 in each decade across the products (Figure 5), suggesting that both negative and posi-377

tive trends are possible with different phasing of internal variability in both decades. How-378

ever, the observed Southern Ocean flux trends range from negative to positive and do not379

always fall within 1f of the PDFs (black vertical lines in Figure 5). For example, observed380

trends in the CSIR-ML6 and MPI-SOMFFN products over both decades fall outside the 1f381

confidence interval of the PDFs, indicating low chance of occurrence given different phas-382

ing of internal variability (Figures 5a,b and 5e,f). Thus, results from this analysis suggest383

that the magnitudes of observed decadal trends in the Southern Ocean carbon sink discussed384

in the literature [e.g., Landschützer et al., 2015] are not consistent across the observation-385

based products (as also noted by Ritter et al. [2017] and DeVries et al. [2019]), and for CSIR-386

ML6 and MPI-SOMFFN, are somewhat improbable given the distribution of synthetic trends387

and an assumed externally forced signal. This cross-product inconsistency is expected from388

the sparse ?CO>22 measurements in the Southern Ocean [Bakker et al., 2016; Gloege et al.,389

2021], and the improbable nature of the observed trends advocates for a more refined ap-390

proach, like the one presented in this study, to report on the likelihood of trends experienced391

in this region.392

The distribution of synthetic trends and the probabilities of observed trends in other396

super-biomes over 1990-1999 and 2000-2009 are shown in Supporting Information Figures397

S2-S5 and briefly described here. In the Northern hemisphere high latitude super-biome, the398

distribution of synthetic trends is very broad (-0.4 to 0.4 Pg C yr−2; minimum and maximum399

values of PDFs) and, similar to the global fluxes, the observed trends over 2000-2009 are400

somewhat improbable within this distribution (Figure S2). The subtropical super-biomes401

in the Northern and Southern Hemispheres exhibit narrow distributions of synthetic trends,402

due to lower interannual variability in CO2 flux in these regions (-0.2 to 0.1 in the Northern403

hemisphere, -0.15 and 0.1 in the Southern hemisphere, Figures S3 and S4). The Equatorial404

super-biome synthetic ensemble produces a wide distribution of decadal trends over both405
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393

394

395

periods (-0.5 to 0.4 Pg C yr−2) and highly probable observed trends (Figure S5). Thus, the406

analysis of our super-biome synthetic ensembles suggests that our findings are also regionally407

dependent.408

5 Testing our approach and assumptions409

We now consult the CESM1-LE as a testbed, where we apply our synthetic ensemble410

method to a single ensemble member to see if we reproduce the spread across the full en-411

semble. Using the globally integrated CO2 flux from a single ensemble member of CESM1-412

LE, our statistical emulation technique generates a synthetic ensemble of CO2 flux that is413

similar to the true CESM1-LE (Figure 6). We model the statistical properties of a particular414

CESM1-LE ensemble member (in this case, member 18, black line in Figure 6) using Equa-415

tion 1 with the external signal (V� C ) modeled as the mean of three ensemble mean CO2 flux416

estimates from historical simulations of CMIP6 Earth system models (see Section 2.4), and417

the climate modes (MC
ENSO and MC

PDV⊥ ) produced from CESM1 for this ensemble member.418

We then generate a 1,000-member synthetic ensemble of ensemble member 18 as before.419

Figure 6 illustrates the resulting synthetic ensemble in pastel colors overlain on the original420

CESM1-LE ensemble in gray. While not exactly identical, the envelope of variability in our421
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synthetic ensemble is a close match to that of the full CESM1-LE (Figure 6), as the average422

standard deviation (trend removed) of the synthetic ensemble is only 2% different from that423

of full CESM1-LE over 1920-2005 (Table 3). We generate a synthetic ensemble of globally424

integrated sea-air CO2 flux for each of the 34 CESM1-LE ensemble members and display the425

quotient of the two standard deviations (synthetic ensemble divided by CESM1-LE) averaged426

over 1920-2005 in Table 3. This analysis reveals that the synthetic ensemble can overesti-427

mate the standard deviation by as much as 29% (ensemble member 8) and can underestimate428

the standard deviation by as much as 15% (ensemble member 21), depending upon the sta-429

tistical properties of the original time-series used to generate the synthetic ensemble. On430

average across the 34 ensemble members, however, the underestimation bias in the standard431

deviation is relatively small (2%; Table 3). Thus, results from this analysis suggest that our432

statistical emulation technique for synthetic ensemble generation is relatively unbiased.433

The length of the time-series used to generate the synthetic ensemble can have an in-434

fluence on its statistical properties (Table 3). In this study, we generate a synthetic ensemble435

from observational products that are only 30 years long (1985-2014) and thus may not cap-436

ture the full temporal spectrum of internal variability that occurs in the real world [McKin-437

non et al., 2017; McKinnon and Deser, 2018]. We assess whether this shorter time series can438

produce biased estimates of variance by generating synthetic ensembles of each CESM1-LE439

member over 1976-2005 (a 30-year period) and comparing their standard deviations to that440

of the full CESM1-LE over the same time period (Table 3). The synthetic ensembles gener-441

ated from the shorter record produce larger biases in the standard deviations of the synthetic442

ensembles than the synthetic ensembles generated from the longer record, with overestimates443

as large as 54% and underestimates as small as 31% (Table 3). This finding lends support444

to continued and new observations of ?CO>22 from which long records of sea-air CO2 flux445

variability can be derived.446

The probabilities of observed trends reported in the previous section are undoubtedly457

sensitive to the externally derived signal. Because the externally derived signal sets the cen-458

ter value of the synthetic trend distribution, a different assumption about this signal can shift459

the distribution to the left/right and affect the probability of the observed trend. Recall that460

our estimate of the externally forced signal is derived from the mean of three Earth system461

model ensemble means. McKinley et al. [2020] used an idealized upper-ocean box model to462

produce an estimate of externally forced variations in sea-air CO2 flux driven by variations in463

atmospheric ?CO2 and volcanic eruptions alone. Figure 7 illustrates that the probability of464
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Figure 7. Probability of decadal trends in global CO2 flux with alternative model of external forc-

ing. Probability density functions (kernel density estimation, purple and pink curves) of decadal trends in

globally integrated sea-air CO2 flux for (first row) 1990-1999 and (second row) 2000-2009, as estimated from

synthetic ensembles of the (first column) CSIR-ML6, (second column) MPI-SOMFFN, (third column) JENA-

MLS, and (fourth column) CMEMS-FFNN observation-based products. Purple curves show probability

density when the external signal is derived from the mean of three ensemble means from Earth system model

(ESM) output submitted to the CMIP6 archive. Pink curves show probability density when the external signal

is derived from the McKinley et al. [2020] upper ocean box model. Pink and purple vertical lines indicate the

ensemble mean trend, and black vertical lines show the observed decadal trend from each product with 95%

confidence intervals in gray shading. Note that the x- and y-axes differ between panels.

447

448

449

450

451

452

453

454

455

456

–18–



Confidential manuscript submitted to Global Biogeochemical Cycles

observed trends are similar regardless of whether we model the external forcing (V� C ) using465

the McKinley et al. [2020] box model or the mean of the three Earth system model ensemble466

means.467

6 Conclusions and discussion468

We develop synthetic large ensembles of global and regional sea-air CO2 flux from469

four observation-based products using a statistical emulation technique. Much like a large470

initial condition ensemble of an Earth system model, the resulting synthetic ensemble mem-471

bers exhibit different phasing of internal variability and a common externally forced sig-472

nal. We use these synthetic large ensembles to quantify the probability of decadal trends473

in CO2 flux for each observation-based product. We further comment on the likelihood of474

the observed decadal trends given the synthetic trend probability distribution. We find that475

the phasing of internal variability creates unique features in the time-series of CO2 flux and476

plays an important role in setting the multi-decadal trends in sea-air CO2 flux for each syn-477

thetic ensemble member. The statistical properties of the synthetic large ensembles differ478

across the four observation-based products with JENA-MLS exhibiting the highest variance479

and CMEMS-FFNN exhibiting the lowest variance. Over the decade 1990-1999, three of480

the four products show negative observed trends in globally integrated sea-air CO2 flux that481

are highly probable given different phasing of internal variability. However, over the decade482

2000-2009, three of the four products show somewhat improbable larger negative trends in483

sea-air CO2 flux, calling into question the Earth system model estimate of external forcing484

in this period. The JENA-MLS product trends over these decades are highly probable, while485

the MPI-SOMFFN product trends over these decades are unlikely given different phasing486

of internal variability. The signs of the observed decadal trends in Southern Ocean sea-air487

CO2 flux are inconsistent across the four observation-based products and, in the case of MPI-488

SOMFFN and CSIR-ML6, their magnitude is somewhat improbable given different phasing489

of internal variability. While the short length of the time-series used to construct the syn-490

thetic ensembles can bias the resulting statistical properties of the synthetic ensemble, the491

results of our study are similar whether we use an Earth system model or a box model to es-492

timate the external signal, and are capable of producing robust estimates of the statistical493

properties when we construct the synthetic ensembles using longer time-series.494

Our approach provides a new perspective on the important role of internal variability495

in short-term global and regional sea-air CO2 flux trends estimated from the observational496
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record. While we are not the first to demonstrate this point [see, e.g., McKinley et al., 2011;497

Fay and McKinley, 2013; McKinley et al., 2016], our synthetic ensembles provide stirring498

visualizations of this variability. Further, the statistical properties of the synthetic ensembles499

provide a basis for examining the likelihood of observed global and regional trends in sea-air500

CO2 flux given different phasing of internal variability. Finally, our work adds to the recent501

discussion about the role of internal versus external processes in interannual to decadal vari-502

ations in sea-air CO2 flux [Landschützer et al., 2019; DeVries et al., 2017; McKinley et al.,503

2020]. Regardless of how we model the externally forced signal, internal variability seems to504

play a key role in driving the observed decadal trends across our synthetic ensembles.505

Sustained and new observations of ?CO2 across the global ocean and the continued506

development and refinement of observation-based gap-filled products will further expand our507

understanding of sea-air CO2 flux variations. This understanding is critical for near-term pre-508

dictions of the global carbon cycle [e.g., Ilyina et al., 2021] and for our community’s ability509

to inform international emission reduction efforts [Peters et al., 2017].510
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Observation-

based product

Abbreviation Methodology Reference

Council for

Scientific and In-

dustrial Research-

Machine Learn-

ing ensemble

CSIR-ML6 Ensemble of two-step neural net-

work methods: two types of clus-

ters and three types of regressions

are used to interpolate ?CO>22 from

SOCAT v2020 using chlorophyll-a,

sea surface temperature, absolute

dynamic topography, mixed layer

depth, sea ice, and sea surface

salinity. The final product uses an

ensemble average of six machine-

learning models.

Gregor et al. [2019]

Max Planck

Institute Self-

Organizing Map-

Feed-Forward

Neural Network

MPI-SOMFFN uses a two-step neural network

method to gap-fill ?CO>22 . In the

first step, a self-organizing map

is used to subdivide the ocean

into 16 provinces with similar

climatological biogeochemical

properties. In the second step, a

feed-forward neural network is

used to predict the non-linear rela-

tionships between driver variables

and SOCAT v2020 observations in

each province. Driver variables for

MPI-SOMFFN include sea surface

temperature, mixed layer depth,

satellite derived chlorophyll-a con-

centration, sea surface salinity, and

atmospheric ?CO2.

Landschützer et al. [2013,

2014, 2015, 2016]

Jena, Germany,

Max Planck

Institute for Bio-

geochemistry

- Mixed Layer

Scheme

JENA-MLS Combines ocean mixed layer bio-

geochemistry with ?CO>22 data

from SOCAT v2020 and seasonal,

interannual and short-term (daily)

variations of sea surface temper-

ature, mixed layer depth, ice-free

fraction, salinity, wind speed, and

alkalinity.

Rödenbeck et al. [2014]

Copernicus

Marine Environ-

ment Monitoring

Service Feed-

Forward Neural

Network

CMEMS-FFNN Two-step process that first recon-

structs monthly climatologies of

global ?CO>22 from the LDEO

database, and then reconstructs

monthly anomalies using the SO-

CAT v5 grid. The driver variables

used are chlorophyll-a, sea surface

temperature, mixed layer depth, sea

surface salinity, the atmospheric

CO2 mole fraction (jCO2), and sea

surface height.

Denvil-Sommer et al.

[2019]

Table 1. Observation-based products of sea-air CO2 flux used in this study.817
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Observation-based Width of trend Width of trend Probability of Probability of

product distribution distribution observed trend observed trend

1990-1999 2000-2009 1990-1999 2000-2009

CSIR-ML6 0.13 0.13 64% 19%

MPI-SOMFFN 0.19 0.19 25% 17%

JENA-MLS 0.14 0.14 44% 21%

CMEMS-FFNN 0.08 0.09 72% 20%

Average of all observation-

based products 0.11 0.11 22% 15%

Table 2. Width of trend distributions and trend probabilities for synthetic ensembles of globally integrated

CO2 flux produced from the CSIR-ML6, MPI-SOMFFN, JENA-MLS, and CMEMS-FFNN observation-

based products. Widths estimated as 4f (Pg C yr−2). Probabilities estimated as the lower/upper cumulative

distribution for a normal distribution.

818

819

820

821
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fSE
fCESM1−LE

fSE
fCESM1−LE

Ensemble member 1920-2005 1976-2005

1 1.16 1.08

2 0.90 1.10

3 1.09 0.83

4 0.91 0.90

5 1.15 0.92

6 0.86 0.88

7 1.00 0.69

8 1.29 1.07

9 0.96 1.18

10 0.99 1.21

11 0.98 1.10

12 0.93 1.22

13 0.93 0.78

14 1.01 1.05

15 1.01 1.14

16 0.88 0.84

17 0.91 0.93

18 1.00 1.10

19 1.10 0.78

20 0.95 0.94

21 0.85 0.93

22 1.11 1.26

23 0.97 0.94

24 0.90 1.17

25 1.01 1.02

26 1.05 0.94

27 0.87 0.72

28 1.10 1.54

29 1.06 1.24

30 1.12 1.00

31 1.10 1.03

32 1.10 1.03

33 1.11 0.99

34 0.99 0.93

mean 1.02 1.01

Table 3. Standard deviation quotient (synthetic ensemble standard deviation divided by Earth system model

mean of ensemble means standard deviation) for synthetic ensembles of globally integrated CO2 flux pro-

duced from each CESM1-LE member, and the mean standard deviation across all ensemble members for two

time periods.
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