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Abstract

Water age is a fundamental descriptor of source, storage, and mixing of water parcels in a watershed. The Lagrangian,

particle tracking, approach is a powerful tool for physically-based modeling of water age distributions, but its application has

been hampered since it is computationally demanding. In this study, we present a parallel approach for particle tracking

simulations. This approach uses multi-GPU with MPI parallelism based on domain decomposition. An inherent challenge of

distributed parallelization of Lagrangian approaches is the disparity in computational work or load imbalance (LIB) among

different processing elements (PEs). Here, load balancing (LB) schemes were proposed to dynamically balance the distribution

of particles across PEs during runtime. In the followed hillslope simulations, LIB was observed in all LB-disabled runs, e.g.,

with a load ratio of 423.62% by using 2-GPU in LW Shrub case. LB schemes then accurately balanced the load distribution

and improved the parallel scaling. Additionally, the parallel approach showed excellent overall speedup: a 60-fold improvement

using 4-GPU relative to the serial run. A regional scale application further demonstrated the LB performance. The parallel

time used by 8-GPU without LB was 31.33% reduced after LB was activated. When increasing 8-GPU with LB to 16-GPU with

LB, it showed parallel scalability by reducing the parallel time of ˜50%. This work shows how massively parallel computing

can be applied to particle tracking in water age simulations. It also demonstrates the practical importance of load balancing in

this context, which enables the large-scale simulations with an increased complexity of flow paths.
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Abstract 37 

Water age is a fundamental descriptor of source, storage, and mixing of water parcels in a 38 

watershed. The Lagrangian, particle tracking, approach is a powerful tool for physically-based 39 

modeling of water age distributions, but its application has been hampered since it is 40 

computationally demanding. In this study, we present a parallel approach for particle tracking 41 

simulations. This approach uses multi-GPU with MPI parallelism based on domain 42 

decomposition. An inherent challenge of distributed parallelization of Lagrangian approaches is 43 

the disparity in computational work or load imbalance (LIB) among different processing 44 

elements (PEs). Here, load balancing (LB) schemes were proposed to dynamically balance the 45 

distribution of particles across PEs during runtime. In the followed hillslope simulations, LIB 46 

was observed in all LB-disabled runs, e.g., with a load ratio of 423.62% by using 2-GPU in 47 

LW_Shrub case. LB schemes then accurately balanced the load distribution and improved the 48 

parallel scaling. Additionally, the parallel approach showed excellent overall speedup: a 60-fold 49 

improvement using 4-GPU relative to the serial run. A regional scale application further 50 

demonstrated the LB performance. The parallel time used by 8-GPU without LB was 31.33% 51 

reduced after LB was activated. When increasing 8-GPU with LB to 16-GPU with LB, it showed 52 

parallel scalability by reducing the parallel time of ~50%. This work shows how massively 53 

parallel computing can be applied to particle tracking in water age simulations. It also 54 

demonstrates the practical importance of load balancing in this context, which enables the large-55 

scale simulations with an increased complexity of flow paths.   56 

 57 
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1. Introduction 62 

Water age is an important metric that can unravel the journey that water-parcels and 63 

pollutants take while traveling through a watershed (Botter, Bertuzzo, & Rinaldo, 2011). 64 

Methods used to quantify water ages mainly include tracer data, lumped analytical models, and 65 

distributed numerical models (Nicholas B. Engdahl & Maxwell, 2014). Tracer data are direct 66 

observations of system behavior, however they have technical challenges such as tracer selection 67 

and data interpretation (Sprenger et al., 2019). Moreover, the limited sampling cannot provide a 68 

full view of the spatiotemporal variations of water ages (Nicholas B. Engdahl, McCallum, & 69 

Massoudieh, 2016; McCallum, Engdahl, Ginn, & Cook, 2014). Analytical solutions can also 70 

provide an understanding of the real system, although the limitations of this approach due to 71 

simplifications have been well acknowledged by the community (Basu, Jindal, Schilling, Wolter, 72 

& Takle, 2012). For distributed numerical models, the application of Eulerian framework is 73 

hampered by the complications to solve the high-dimensional governing equation of water age 74 

(Gomez & Wilson, 2013). Therefore, Lagrangian approach based on integrated hydrologic 75 

modeling has become a promising tool to simulate transient age distributions (Nicholas B. 76 

Engdahl & Maxwell, 2014; Jing et al., 2019; Wilusz, Harman, Ball, Maxwell, & Buda, 2019).  77 

The Lagrangian approach is computationally demanding which limits widespread application 78 

(Sprenger et al., 2019; Wilusz et al., 2019). Current studies of water ages using particle tracking 79 

are limited to either catchments at small scales (Wilusz et al., 2019; J. Yang, Heidbüchel, 80 

Musolff, Reinstorf, & Fleckenstein, 2018) or larger scales with a limited number of particles or 81 

for steady-state conditions (Jing et al., 2020; Maxwell et al., 2016). Recently, as global water 82 

security and climate change become increasing concerns, a growing number of studies have 83 

proposed simulating water age at larger scales over long time-periods at high resolution 84 

(Maxwell et al., 2016; McGuire et al., 2005; Starn, Kauffman, Carlson, Reddy, & Fienen, 2021). 85 

Accomplishing these goals will significantly increase the computational burden of particle 86 

tracking; massively parallel computing represents a promising solution. 87 

 Currently, there are few studies documenting parallelization of particle tracking approaches 88 

for water age (Jing et al., 2020; Wilusz et al., 2019; J. Yang et al., 2018). Maxwell, Condon, 89 

Danesh-Yazdi, and Bearup (2019) developed EcoSLIM, a particle tracking code, using OpenMP 90 

(Open Multi-Processing) on CPU (Central Processing Unit). Yang and coauthors (C. Yang et al., 91 

2021), added CPU-based MPI (Message Passing Interface) and multi-GPU (Graphics Processing 92 
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Unit) with OpenMP into EcoSLIM. Ji, Luo, and Wang (2019) sped up MODPATH (Pollock, 93 

2016) through multi-GPU with OpenMP/MPI based on domain decomposition (DDC). However, 94 

their parallelized codes are limited to steady state simulations, and MODPATH is unable to 95 

simulate evapotranspiration (ET) age and source water composition. N. B. Engdahl, Schmidt, 96 

and Benson (2019) proposed two schemes for speeding up particle tracking simulations with 97 

mass transfer to represent chemical reactions. One of the schemes also implemented MPI 98 

parallelism through DDC. In DDC-based MPI parallelism, a typical problem encountered is load 99 

imbalance among processing elements (MPI processes and/or GPUs), which can present a 100 

challenge for good parallel efficiency. However, load imbalance has not been quantified in water 101 

age simulations and its effects on parallel performance are unclear. 102 

Load balancing (LB) schemes have been used to overcome these parallelization challenges 103 

discussed above. Other disciplines using particle tracking, such as the molecular dynamics (MD) 104 

and the smoothed particle hydrodynamics (SPH) (Boulmier, Raynaud, Abdennadher, & Chopard, 105 

2019; Egorova, Dyachkov, Parshikov, & Zhakhovsky, 2019; Eibl & Rüde, 2019; Fattebert, 106 

Richards, & Glosli, 2012; Furuichi & Nishiura, 2017; Kunaseth et al., 2013) have presented LB 107 

schemes that greatly improved parallel simulation performance. However, LB has not been 108 

applied to hydrologic modeling based on particle tracking; even in the studies using MPI through 109 

DDC mentioned above. Additionally, when applying the particle tracking at larger scales in 110 

long-term simulations, spatiotemporal variations of water age drivers in the real-world 111 

applications can increase the heterogeneity of flow paths. This heterogeneity causes uneven 112 

particle distributions and velocities within the domain, presenting new challenges to efficiency. 113 

This will further complicate the distribution of particles across different subdomains and thus the 114 

processing elements (which we are using here as a generic term for compute resources such as 115 

CPU cores or a GPU). Furthermore, it becomes challenging to implement LB when considering 116 

the increasing complexity of code structure of particle tracking due to the growing capabilities 117 

such as simulating ET age and source-water composition at transient state in EcoSLIM. 118 

In this study, we present new LB approaches implemented in the EcoSLIM code which is a 119 

particle tracking code simulating water age (ET, outflow, and groundwater) and source water 120 

mixing (initial subsurface water, rainfall, and snow). EcoSLIM is a grid-based approach which is 121 

different from the mesh-free particle tracking in other disciplines. EcoSLIM works seamlessly 122 

with ParFlow.CLM (Kollet & Maxwell, 2008a), which is an integrated hydrologic model 123 
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simulating the coupled land-surface and subsurface water- and energy-processes at transient state. 124 

ParFlow.CLM provides the temporally variant hydrodynamics and spatially variable subsurface-125 

properties for EcoSLIM as input files, such as saturation, precipitation minus ET, three-126 

dimensional velocity fields, and IDs and porosities of the subsurface units.  127 

Objectives of this study are twofold. Firstly, we use MPI to manage multi-GPU instead of 128 

OpenMP in our previous work (C. Yang et al., 2021). This changes the target of the 129 

decomposition from computational load to modeling domain. MPI parallelism removes the 130 

barrier of a limited number of GPUs on a single computational node by created when using 131 

OpenMP and potentially extends the particle tracking applications to massively parallel 132 

computing. Secondly, three schemes with increasing physical representation are proposed to 133 

dynamically balance the load among different MPI-processes/GPUs during runtime, which is 134 

crucial for parallel efficiency. In following sections, the EcoSLIM code, the implementation of 135 

multi-GPU with MPI, and the load balancing schemes are introduced in section 2. The setup of 136 

test cases and platforms are followed in section 3. In section 4, validation of the new code is 137 

verified and parallel performances of the code with/without the LB schemes are illustrated. 138 

Specifically, application of the code for a 40-year simulation at regional scale in the North China 139 

Plain was shown. Finally, contributions and implications of this work to hydrologic modeling 140 

using Lagrangian approach are concluded in section 5.  141 

2. Methodology  142 

2.1. EcoSLIM code 143 

EcoSLIM is originally implemented in Fortran and further accelerated by GPUs using CUDA 144 

(Compute Unified Device Architecture) Fortran (C. Yang et al., 2021). Its original structure is 145 

briefly introduced here to understand the following implementations of multi-GPU with MPI and 146 

LB schemes. For more details, please refer to our previous work (Maxwell et al., 2019; C. Yang 147 

et al., 2021). In each timestep of a transient simulation, key steps are as follows: 148 

(1) New particles are added into grid-cells where precipitation minus ET (PME) is positive.  149 

(2) Mass balance of precipitation and ET is calculated based on PME.  150 

(3) Advancing each active particle by a do-loop. Each particle either moves forward with an 151 

increase of age or exits the modeling domain through outflow or ET.  152 



 6 

(4) After the particle loop, inactive particles that have left the modeling domain via outflow 153 

or ET are sorted out of the array of particles, the number of active particles is updated and 154 

space at the end of this array is made available for new particles.  155 

(5) The time loop moves to next timestep. 156 

In the particle loop, other attributes of each particle are also updated, such as the 157 

saturated/unsaturated travel time, the saturated/unsaturated travel length, and the travel 158 

time/length in some specified subsurface units. Statistics of outflow and ET of the whole 159 

modeling domain, such as mass, mass weighted age, and source water composition, are included. 160 

Additionally, gridding information is recorded, such as mass, cell-averaged age, and source 161 

water composition for each grid-cell. Particle loop is the main computational load in EcoSLIM 162 

which occupies more than 99% of the total simulation time when serially executing the code (C. 163 

Yang et al., 2021). Therefore, our previous work (C. Yang et al., 2021) and also this study 164 

focused on parallelizing the particle loop. 165 

2.2. Multi-GPU with MPI 166 

Instead of the load decomposition in our previous work (C. Yang et al., 2021), MPI 167 

parallelism is applied here based on DDC. The modeling domain is split into P and Q parts in x 168 

and y directions respectively, which generates a computing topology using P  Q MPI processes. 169 

The quantity of GPUs utilized in a simulation equals that of MPI processes. We use the method 170 

in Ruetsch and Fatica (2014) to assign a unique GPU to each MPI rank. GPUs, MPI ranks, and 171 

subdomains are all numbered from 0 to P  Q - 1. Each GPU is responsible for a subdomain of 172 

the same number. Source of particles on each GPU is from the assigned subdomain while 173 

transport of these particles is in the whole modeling domain. For the particle loop, we adopt the 174 

same GPU kernel in our previous work (C. Yang et al., 2021) with a few modifications for 175 

tracking particles in specified subsurface units. After the mapping to subdomains, each MPI-176 

process/GPU works almost independently with a limited MPI collective communications. They 177 

are the calculation of mass balance mentioned in item (2) in section 2.1 and the ET/outflow 178 

statistics of the whole modeling domain also mentioned in section 2.1, which are performed 179 

before and after the execution of the kernel respectively.  180 

The transport of particles in the whole domain, instead of in the subdomain where they were 181 

added, avoids the MPI communications of exchanging particles between subdomains when 182 

particles move out of a subdomain. The disadvantage of such a design is the redundant copies of 183 
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the global information (e.g., velocities, porosities, saturations, and PME) for all MPI processes. 184 

This is CPU-memory expensive. However, for present clusters which are commonly equipped 185 

with 2/4/8 GPUs per node, the 2/4/8 copies of necessary information on one node are not a 186 

bottleneck for regional modeling with scales of Tran, Zhang, Cohard, Condon, and Maxwell 187 

(2020) and C. Yang et al. (2020). The multi-GPU with MPI was also conducted in our previous 188 

work based on load decomposition (C. Yang et al., 2021). However, in each timestep, the 189 

overhead of distributing load from rank 0 to others by MPI communication is over the speedup 190 

by extending single GPU to multi-GPU. Though the DDC in this study avoids such a problem, 191 

the load imbalance mentioned in section 1 becomes a new issue. Therefore, three schemes with 192 

increasing physical representation are proposed to balance the load among GPUs/MPI-processes 193 

during runtime in next section.  194 

2.3. Schemes of load balancing  195 

2.3.1 Direct transfer (S1) 196 

The movement of particles in current EcoSLIM are independent, so the loads on GPUs can 197 

be redistributed by directly transferring particles between MPI processes with a user specified 198 

frequency. It is implemented by communications on CPU using the MPI functions of MPI_Send 199 

and MPI_Recv after the sort of particles. At a given time, the number of active particles on each 200 

MPI process is gathered. Thus, the old numbers of the starting and ending particles (np_lo and 201 

np_ro) on each process ranked in a global queue are obtained. Then the starting and ending 202 

numbers are updated to new ones (np_ln and np_rn) based on an even division of the global 203 

queue. Then the transfer is accomplished on each MPI process by the following four steps: (1) 204 

sending particles to the upstream process if np_lo is smaller than np_ln, (2) receiving particles 205 

from the downstream process if np_ro is smaller than np_rn, (3) sending particles to the 206 

downstream process if np_ro is larger than np_rn, and (4) receiving particles from the upstream 207 

process if np_lo is larger than np_ln. The number of active particles is updated after each transfer. 208 

The overhead of this scheme is determined by the quantity of particles transferred and the 209 

bandwidth of the computing platform.  210 

2.3.2 Cyclic mapping (S2) 211 

In this scheme, the DDC is static which is determined after initialization of the simulation. In 212 

a simulation using n GPUs/MPI-processes, the mapping between subdomains and GPUs (both 213 

numbered from 0 to n-1) is continuously shifted with a user specified frequency. For instance, at 214 
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a given time t1, the mapping is shifted from ‘the mth subdomain  the mth GPU’ to ‘the (m+1)th 215 

subdomain  the mth GPU’ where m ranges from 0 to n-1. If m+1 is larger than n-1, the 216 

subdomain numbered with the reminder of m+1 and n will be mapped to the mth GPU. Table 1 217 

showed the cyclic mapping between subdomains and GPUs in a simulation using four MPI 218 

processes. Using this scheme, each GPU traverses the loads of all subdomains periodically, and 219 

thus the load distribution is dynamically balanced among GPUs. The overhead of shifting the 220 

mapping is almost negligible. 221 

Table 1. Cyclic mapping in a simulation using four GPUs/MPI-processes 222 

t0  

(Initial) 

Subdomain number 0 1 2 3 

GPU number 0 1 2 3 

t1 
Subdomain number 1 2 3 0 

GPU number 0 1 2 3 

t2 
Subdomain number 2 3 0 1 

GPU number 0 1 2 3 

 223 

2.3.3 Dynamic DDC (S3) 224 

In the initialization of a simulation, particles are evenly distributed in space, so we 225 

decompose the modeling domain into subdomains of an equal size. PME is spatiotemporally 226 

variable, so the number of particles added into each subdomain is different at a given timestep 227 

and such a difference varies with time. More importantly, particles added into different 228 

subdomains have different exits from the whole modeling domain. Both source and exit are 229 

responsible for heterogeneity of the flow paths. A subdomain of more source particles and longer 230 

flow paths imposes heavier load on its corresponding GPU. As a result, after the initial even-231 

decomposition, we dynamically update the decomposition during runtime based on flow paths of 232 

particles. At a given timestep, the initial location of an active particle is identified and the 233 

corresponding grid-cell in the top layer get one score. After traversing all the active particles, we 234 

get the accumulated scores for each grid-cell in the top layer. This was implemented through 235 

atomic operations on a two-dimensional matrix in the GPU kernel mentioned in section 2.2. 236 

Then we conduct DDC based on this weight matrix. The frequency of such a dynamic DDC can 237 

be specified by users.  238 

The orthogonal recursive bisection (ORB) method is used for DDC, which is popular in MD 239 

and SPH (Egorova et al., 2019; Fattebert et al., 2012). The domain or each subdomain is divided 240 

into two in a direction at one time. By switching the direction, the whole domain is recursively 241 
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divided into the scheduled number of subdomains (P  Q). DDC is only implemented in x and y 242 

directions in this study. It starts in a direction which will be divided into more pieces. For 243 

example, if Q is larger than P, DDC will start in y direction, otherwise, it starts in x direction. 244 

Two algorithms are provided in the code to determine the dividing line. One calculates the 245 

accumulated particles of columns (rows) in x (y) direction. Once the number of particles of n-1 246 

columns (rows) is less than half the total particles in this subdomain while that of n columns 247 

(rows) is more than half the total particles in this subdomain, the dividing line is found as column 248 

(row) n. The other algorithm to find the dividing line with higher efficiency is the typical 249 

dichotomizing search.  250 

3. Test setup 251 

3.1. Hillslope model 252 

Tests were conducted based on a hillslope model (Maxwell et al., 2019; C. Yang et al., 2021). 253 

The modeling domain has the length of 100-, 1-, and 9.4-m in x, y, and z directions, respectively. 254 

It was divided into 20 columns, 5 rows, and 20 layers with constant resolutions in x and y 255 

directions. In vertical direction, the layer-thickness was variable: 0.5 m for the bottom 18 layers 256 

while 0.3- and 0.1-m for the top 2 layers. Soil has the homogeneous properties: saturated 257 

hydraulic conductivity of 0.05 m/h, Manning’s N of 10
-6

 m
1/3

h
-1

, porosity of 0.2, and van 258 

Genuchten parameters with α of 1.0 m
-1

 and exponent n of 2.0. Two real meteorological-forcings 259 

were used to drive ParFlow.CLM, representing a high elevation, snow dominated mountain 260 

headwaters (ER) and a semiarid, rain-dominated plains system (LW). Two homogeneous land-261 

cover types were used which are the Shrub plant functional type (Shrub) and the Evergreen 262 

Needleleaf plant functional type (Trees). Thus, four cases were tested with a combination of the 263 

meteorological forcings and the land-cover types, which were named as: ER_Shrub, ER_Trees, 264 

LW_Shrub, and LW_Trees. For simulations of both ParFlow.CLM and EcoSLIM, no flux 265 

boundaries were adopted except the land surface which was open for precipitation, outflow and 266 

ET. For each case, ParFlow.CLM simulation of 5 years was conducted using hourly timestep. 267 

One-year forcing data were repeatedly used in the whole simulation. Dynamic equilibrium of the 268 

flow field was approached at the end of simulation. Hence, the transient flow field of the last 269 

year in ParFlow.CLM simulation was repeatedly used in EcoSLIM simulation of 20 years with 270 

hourly timestep. At the end of each simulation, EcoSLIM system achieved the dynamic 271 

equilibrium.  272 
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By injecting 2 particles into the modeling domain per precipitation event, the average 273 

particle-numbers in the last year of the simulations for four cases are 0.39-, 0.83-, 1.30-, and 274 

1.03-million, respectively. Such quantities of particles are comparable to those in most of the 275 

previous studies (Danesh-Yazdi, Klaus, Condon, & Maxwell, 2018; Nicholas B. Engdahl & 276 

Maxwell, 2015; Jing et al., 2019; Jing et al., 2020; Kollet & Maxwell, 2008b; Maxwell et al., 277 

2016; Weill, Lesparre, Jeannot, & Delay, 2019; Wilusz et al., 2019). It has a maximum of 6.8 278 

million in Weill et al. (2019) to the best of our knowledge. In fact, the particle-number in most 279 

previous studies is the total injected particles while that during runtime is a fewer quantity. 280 

However, the number in this study is the active particles in the modeling domain and the 281 

particles out of the domain through ET and outflow are not included. Thus, the particle-282 

quantities are much more than those in previous studies. 283 

3.2. Test platform 284 

Tests were conducted on the Casper cluster in the Computational and Information Systems 285 

Laboratory at the National Center for Atmospheric Research. The computational node used for 286 

the following simulations is equipped with 2.3-GHz Intel
®

 Xeon
®

 Gold 6140 processors and 287 

NVIDIA Tesla V100 32GB SXM2 GPUs with NVLink. The compiler is NVIDIA HPC SDK of 288 

version 20.11, the MPI is implemented using Open MPI of version 4.0.5, the GPU driver version 289 

is 450.51.06, and the CUDA version is 11.0.3. Tests were also repeated on a personal 290 

workstation (WS). The WS is equipped with 2.00-GHz Intel
®

 Xeon
®

 E5-2683 v3 processors 291 

together with four GPUs of 12 GB GeForce GTX 1080 Ti. Other necessary setups of the WS 292 

environment are NVIDIA HPC SDK 20.11, Open MPI 3.1.5, GPU driver 440.118.02, and 293 

CUDA 10.2.  294 

4. Results and discussion 295 

4.1. Code-to-code verification 296 

To verify the availability of the new code, simulation results using the new code were 297 

compared to those of the original OpenMP version (Maxwell et al., 2019). Comparisons were 298 

performed for all four cases while that of the ER_Shrub case was shown in Figures 1 (outflow) 299 

and 2 (ET). Results of other test cases had performances as good as that of ER_Shrub. Tests in 300 

this study were conducted using one, two, and four GPUs successively while the results using 301 

four GPUs were illustrated in Figures 1 and 2. Subplots in Figures 1 and 2 were for results 302 

without LB and with each LB scheme. The water-age and -mass for both outflow and ET 303 
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simulated by the new code well fitted those generated by the original code. The deviations 304 

between them were attributed to the generation of pseudo-random numbers (PRNs). Though the 305 

ensembles of the PRNs were statistically the same for each run, the PRN for a specific particle 306 

probably changed due to the invoking sequence of the generation-function which was dependent 307 

on the parallelism, i.e., the OpenMP or the multi-GPU with MPI. For the same parallelism, if 308 

different numbers of CPU-threads/GPUs were used, there were also such deviations during our 309 

tests. The fitness of outflow was better than that of ET because ET in EcoSLIM were directly 310 

dependent on PRNs.  311 

 312 
Figure 1. Comparisons for age and mass of outflow based on ER_Shrub case between the original 313 
EcoSLIM code and that parallelized in this study.  314 
 315 
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 316 
Figure 2. Comparisons for age and mass of ET based on ER_shrub case between the original 317 
EcoSLIM code and that parallelized in this study.  318 

 319 

4.2. Parallel performance  320 

 321 

Figure 3. Wall-clock time consumption of each test. n-GPU represents the number of GPUs used in 322 
simulations. Sn represents different LB schemes. WS indicates tests conducted on workstation 323 
while others on Casper. 720 indicates S3 worked every 720-hour while others worked every 8760-324 
hour.  325 
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 328 
Figure 4. Load distribution for LW_Shrub by using 2-GPU. Sn represents LB schemes. 720h 329 
represents that S3 worked every 720-hour while others were 8760-hour.   330 
 331 

 332 
Figure 5. Load distribution for LW_Shrub by using 4-GPU. Sn represents LB schemes. 720h 333 
represents that S3 worked every 720-hour while others were 8760-hour.   334 

 335 
 336 
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Figure 3 shows wall-clock time consumption of each test on both Casper and WS. Load 337 

distributions for tests using 2- and 4-GPU were shown in Figures 4 and 5, respectively. Tests 338 

using 2-GPU (P = 2 and Q = 1) were performed by evenly dividing the domain in x direction 339 

while those using 4-GPU (P = 2 and Q = 2) had an additional division in y direction. All LB 340 

schemes worked every 8760-hour except that in Figures 4d and 5d were 720-hour for S3. 341 

Though only LW_Shrub was taken as an example in Figures 4 and 5, other cases had similar 342 

performances. Time used for four cases by one CPU-thread based on the original code were 343 

tested on WS, which were 36.41-, 76.34-, 121.56-, and 92.40-hour for ER_Shrub, ER_Trees, 344 

LW_Shrub, and LW_Trees, respectively. Speedup of each case was then calculated and listed in 345 

Table 2.  346 

Table 2. Speedup of each test relative to the serial run using one CPU-thread 347 

Platform Case name 

Speedup 

Without LB Scheme 1 Scheme 2 Scheme 3 

1-GPU 2-GPU 4-GPU 2-GPU 4-GPU 2-GPU 4-GPU 2-GPU 4-GPU 

Casper 

ER_Shrub 20.5403 20.5693 33.5134 30.5237 54.8938 31.0469 52.7465 30.6935 46.3058 

ER_Trees 21.1316 20.1687 22.3125 23.5297 57.5619 23.5857 58.7581 24.8849 48.6518 

LW_Shrub 21.1858 20.3505 34.5421 23.7138 51.5341 26.3410 47.6590 26.4183 41.5489 

LW_Trees 15.9127 18.8541 32.9764 25.3874 56.0544 24.1910 54.8824 26.9184 46.2856 

WS 

ER_Shrub 13.9637 17.2900 36.0809 34.4456 48.8535 34.4522 54.4261 33.4696 49.0443 

ER_Trees 13.8955 11.5971 26.0117 25.0581 47.8438 25.1381 60.4948 24.5480 51.0523 

LW_Shrub 13.5910 17.5129 27.0710 24.7589 37.1392 24.9531 43.0452 23.8150 37.1698 

LW_Trees 13.6440 17.7556 26.1808 24.6492 45.1304 24.8835 57.2562 24.7449 40.4952 

In tests without LB, time used by 2-GPU was even more than that by 1-GPU for ER_Trees 348 

and LW_Shrub on Casper (Figure 3). This performance degradation has two reasons. Firstly, 349 

severe load imbalance can be observed in Figure 4 when using 2-GPU with a particle-number 350 

ratio of 423.62%. The larger one (yellow lines in Figure 4) which determined the parallel 351 

efficiency almost achieved the total load. It confirmed that load imbalance also exists in 352 

Lagrangian hydrologic modeling and decreases the parallel performance. Secondly, collective 353 

MPI communications mentioned in section 2.2 introduced overhead when increasing the GPU 354 

number from one to two. When using 4-GPU without LB, the maximum load largely decreased 355 

(Figure 5) due to the additional decomposition in y direction. The hillslope model is quasi-three-356 

dimensional with a x slope of 0.1 and a y slope of 0. Hence, the movement of particles in y 357 

direction can be neglected which formed the parallel flow paths along x direction. Along x 358 

direction, particles added upstream had much longer flow paths than those added downstream. 359 

As a result, the division in y direction was much more effective than that in x direction to 360 
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improve the parallel performance. However, load imbalance was still significant (Figure 5) and 361 

parallel scalability was not shown by increasing 2-GPU to 4-GPU (Figure 3).  362 

When S1 was activated, time used by 2- and 4-GPU were dramatically decreased relative to 363 

those without LB. With S1, time used by 4-GPU was even less than half of that used by 2-GPU 364 

on Casper (Figure 3). The overhead of particle transfer was small for all four cases, which was 365 

less than 3 seconds in each 20-year simulation. S2 had performance as good as S1 (Figure 3). It 366 

was mentioned in section 2.3.2 that the overhead of S2 was small enough to be neglected. For S3, 367 

more time was used by 4-GPU when compared to that of S1 and S2 (Figure 3). In Figures 4c and 368 

5c, the load distribution was not well balanced relative to that of S1 and S2. The flow paths of 369 

particles were transient, so the weight matrix at a moment cannot effectively balance the load for 370 

a long-period of simulation (i.e., 8760-hour). When S3 was activated with a higher frequency of 371 

every 720-hour, the improved load balance can be observed in Figures 4d and 5d and the further 372 

speedup was indicated in Figure 3. However, difference of the loads between GPUs 1-2 and 3-4 373 

was still observed in Figure 5d. This is due to the model dimension which is five grid-cells in y 374 

direction. Hence it cannot be evenly divided by ORB introduced in section 2.3.3.  375 

S3, a physically-based scheme, not only aims to balance the load but also to understand the 376 

load imbalance in Lagrangian hydrological modeling. To build S3, we also tried DDC based on 377 

the source of particles (i.e., PME). The score/weight of a grid-cell is determined by the 378 

accumulated particle-number added into it in a period. However, it didn’t show good 379 

performance. Current implementation actually integrates the effects of both the quantity of 380 

source particles and the flow-path lengths. This trial and error indicates that the flow-path 381 

lengths instead of the quantity of added particles dominate the load distribution. This has 382 

important implications to efficiently build other physically-based LB schemes. Generally, with 383 

LB, the new code showed excellent parallel performance in the tests on both Casper and WS 384 

(Table 2). The speedup by one GPU is ~13-fold on WS with 1080 Ti while ~21-fold on Casper 385 

with Tesla V100. The speedup by 4-GPU is over 50-fold on both Casper and WS and has a 386 

maximum over 60-fold. With LB schemes, the code showed parallel scalability from 2-GPU to 387 

4-GPU. 388 

4.3. Application in the North China Plain 389 

We applied the new parallel code on a North China Plain (NCP) domain to demonstrate its 390 

capacity for large-scale simulations. To the best of our knowledge, there have been no previous 391 
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studies based on particle tracking at such a regional scale for water ages of ET, groundwater 392 

(GW), and outflow in a unified framework. The NCP ParFlow.CLM model was adopted from C. 393 

Yang et al. (2020) with a few modifications. The model has 509 and 921 grid-cells in x and y 394 

directions respectively while it is discretized into five layers in vertical direction. The horizontal 395 

resolution is 1 km while the layer thickness from bottom to top is 100-, 1-, 0.6-, 0.3-, and 0.1-m. 396 

Thus, the NCP model has a dimension of 509 km × 921 km × 102 m in total. We conducted an 397 

EcoSLIM simulation of 40 years on Casper with hourly timestep, in which the hourly outputs of 398 

one-year simulation from ParFlow.CLM were repeatedly used.  399 

The EcoSLIM simulation was started using 8-GPU (P = 2 and Q = 4) without LB 400 

(abbreviated as R1 hereafter). From the 155,928th hour, S1 was activated every 240-hour (R2) 401 

while R1 was continued for the following 7.8 years. At the 247,032th hour, the load of R2 was 402 

evenly divided into 16 portions and a new run (R3) was started using 16-GPU (P = 4 and Q = 4) 403 

with S2 activated every 240-hour. The overlap between R2 and R3 is 3.4 years. We also tried 16-404 

GPU without LB for the first five years of the simulation (R4). Figure 6 showed the active-405 

particle-number and the wall-clock time consumption of each timestep during the latter 22 years 406 

of the simulation (the 155,929th to the 350,400th hour). R1, R2, and R3 were indicated by green, 407 

blue, and red in Figure 6 respectively. The active-particle-number is around 200 million during 408 

this simulation time-interval (Figure 6a). The discrepancy of the particle number between 409 

different runs in the overlaps are due to the generation of random numbers discussed in section 410 

4.1.  411 
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 412 
Figure 6. Computational load (a) and wall-clock time consumption (b) for the EcoSLIM simulation 413 
in the North China Plain. The time interval is from the 155929th to the 350400th hour in the 40-414 
year simulation. 415 

For the overlap between R1 and R2, parallel time of the particle loop was 98.390- and 416 

65.987-hour for R1 and R2 respectively (Figure 6b). The overhead of S1 for transferring data 417 

was 1.573-hour. S1 (overhead included) decreased 31.33% of the time used by R1, which 418 

demonstrated the high efficiency of S1. Figures 7a and 7b showed the well-balanced load by S1. 419 

For the overlap between R2 and R3, the parallel time was 43.311- and 21.844-hour for R2 and 420 

R3 respectively (Figure 6b). Though it showed 50% decrease of the parallel time, the obvious 421 

jitters of the time in R2 has to be considered. Based on their baselines, the time used by R3 was a 422 

little longer than half the time used by R2. This should be due to the better load balancing effect 423 

of S1 than that of S2, which was shown in Figures 7b and 7d. However, when comparing the 424 

load distribution between R3 and R4 for a time interval of the same length (4.94-year), the load 425 

balancing effect of S2 was significant. The difference between the maximum- and minimum-426 

load at the end of the comparing time-interval in R4 was 6.66 million (Figure 7d) while that in 427 

R3 was 3.52 million (Figure 7c), which was 47.21% decrease of the load variance. Additionally, 428 

based on the increasing trend in Figures 7c and 7d, the load variance in R3 with S2 gradually 429 

achieved a steady state while that in R4 continued increasing.  430 
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 431 
Figure 7. Load distributions in the application in the North China Plain. Load distribution on 8-432 
GPU before and after using S1 in R2 (a), on 8-GPU with S1 in R2 (b), on 16-GPU without LB in R4 433 
(c), and on 16-GPU with S2 in R3. (b) was magnified from (a). 434 

 435 

5. Conclusions  436 

Water age can reveal the source, storage, and mixing of water parcels in a watershed. Though 437 

data- and model-driven methods have significantly advanced our understanding of water ages, 438 

the quantification of water ages is still technically challenging. Lagrangian particle tracking is an 439 

invaluable tool for physically-based transient modeling of water ages, but it is computationally 440 

expensive. When considering climate change and global water security, it is essential to conduct 441 

simulations of water ages at large scale with high resolution, which makes the implementation of 442 

massively parallel computing in particle tracking for this purpose pressing. Though parallel 443 

computing is widely implemented for Eulerian hydrological modeling, applications to 444 

Lagrangian based simulations are developing. This is likely due to the inherent difficulties such 445 

as load imbalance across computational resources which will become more challenging when 446 

modeling a real hydrologic system with high spatiotemporal variability.      447 

In this study, multi-GPU with MPI parallelism based on domain decomposition (DDC) was 448 

implemented in the Lagrangian, particle tracking code EcoSLIM, to accelerate simulations of 449 



 19 

water age and source-water mixing. Three load balancing (LB) schemes with increasing physical 450 

representation (i.e., direct transfer, cyclic mapping, and dynamic DDC) were built to 451 

dynamically balance the quantity of particles across GPUs during runtime. With LB, the code 452 

showed excellent parallel performance in the hillslope simulations on two different platforms, 453 

e.g., a maximum of 60-fold speedup on 4-GPUs and the parallel scalability from 2-GPU to 4-454 

GPU that is almost ideal. A 40-year simulation conducted in the North China Plain further 455 

demonstrated the high parallel efficiency of LB for a large-scale application. Using 8-GPU with 456 

LB, it reduced 31.33% of the parallel time using 8-GPU without LB. When increasing 8-GPU 457 

with LB to 16-GPU with LB, ~50% reduction of the parallel time demonstrated the parallel 458 

scalability. 459 

More importantly, results confirmed the load imbalance in Lagrangian hydrologic modeling. 460 

In LW_Shrub case using 2-GPU, the particle-number ratio achieved 423.62%, which severely 461 

degraded the parallel performance without LB. For LB schemes, physically-based dynamic DDC 462 

performed as well as other schemes in hillslope simulations. Trial and error of building this 463 

scheme identified that the distribution of flow-path lengths in the domain instead of the quantity 464 

of particles added into the domain dominates the load distribution. This illustrated both the 465 

mechanisms of load imbalance and the directions to build efficient physically-based LB schemes 466 

in this context. This study realized the massively parallel computing of particle tracking in water 467 

age simulations which is lacking in hydrologic modeling. It also demonstrated that LB have 468 

practical importance enabling its applications at large scales with increased heterogeneity of flow 469 

paths. The LB schemes can be borrowed to other hydrologic models using Lagrangian approach 470 

and the parallelized EcoSLIM is a promising tool to accelerate the scientific progress of water 471 

age studies.    472 
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