
P
os
te
d
on

22
N
ov

20
22

—
C
C
-B

Y
-N

C
-N

D
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
7
89
9.
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Accurate load balancing accelerates Lagrangian simulation of water

ages on distributed, multi-GPU platforms

CHEN YANG1, Reed M. Maxwell1, and Richard Valent2

1Princeton University
2National Center for Atmospheric Research

November 22, 2022

Abstract

Water age is a fundamental descriptor of source, storage, and mixing of water parcels in a watershed. The Lagrangian,

particle tracking, approach is a powerful tool for physically-based modeling of water age distributions, but its application has

been hampered since it is computationally demanding. In this study, we present a parallel approach for particle tracking

simulations. This approach uses multi-GPU with MPI parallelism based on domain decomposition. An inherent challenge of

distributed parallelization of Lagrangian approaches is the disparity in computational work or load imbalance (LIB) among

different processing elements (PEs). Here, load balancing (LB) schemes were proposed to dynamically balance the distribution

of particles across PEs during runtime. In the followed hillslope simulations, LIB was observed in all LB-disabled runs, e.g.,

with a load ratio of 423.62% by using 2-GPU in LW Shrub case. LB schemes then accurately balanced the load distribution

and improved the parallel scaling. Additionally, the parallel approach showed excellent overall speedup: a 60-fold improvement

using 4-GPU relative to the serial run. A regional scale application further demonstrated the LB performance. The parallel

time used by 8-GPU without LB was 31.33% reduced after LB was activated. When increasing 8-GPU with LB to 16-GPU with

LB, it showed parallel scalability by reducing the parallel time of ˜50%. This work shows how massively parallel computing

can be applied to particle tracking in water age simulations. It also demonstrates the practical importance of load balancing in

this context, which enables the large-scale simulations with an increased complexity of flow paths.

1

 1

Accurate load balancing accelerates Lagrangian simulation of water 1

ages on distributed, multi-GPU platforms 2

 3

Chen Yang
1*

, Reed M. Maxwell
1,2*

, Richard Valent
3

4

 5
1
Department of Civil and Environmental Engineering, Princeton University, 6

Princeton, NJ 08544, USA 7
2
High Meadows Environmental Institute, Princeton University, Princeton, NJ 8

08544, USA 9
3
Computational and Information Systems Laboratory, National Center for 10

Atmospheric Research, Boulder, CO 80305, USA 11

 12

 13

Corresponding author: 14

Chen Yang cy15@princeton.edu 15

Reed Maxwell reedmaxwell@princeton.edu 16

 17

 18

 19

 20

Key points: 21

 22

 Massively parallel computing of Lagrangian water-age simulations is 23

realized 24

 Mechanisms of load imbalance are identified and LB schemes are proposed 25

 Parallel performance of the approach is demonstrated at the regional scale 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

mailto:cy15@princeton.edu
mailto:reedmaxwell@princeton.edu

 2

Abstract 37

Water age is a fundamental descriptor of source, storage, and mixing of water parcels in a 38

watershed. The Lagrangian, particle tracking, approach is a powerful tool for physically-based 39

modeling of water age distributions, but its application has been hampered since it is 40

computationally demanding. In this study, we present a parallel approach for particle tracking 41

simulations. This approach uses multi-GPU with MPI parallelism based on domain 42

decomposition. An inherent challenge of distributed parallelization of Lagrangian approaches is 43

the disparity in computational work or load imbalance (LIB) among different processing 44

elements (PEs). Here, load balancing (LB) schemes were proposed to dynamically balance the 45

distribution of particles across PEs during runtime. In the followed hillslope simulations, LIB 46

was observed in all LB-disabled runs, e.g., with a load ratio of 423.62% by using 2-GPU in 47

LW_Shrub case. LB schemes then accurately balanced the load distribution and improved the 48

parallel scaling. Additionally, the parallel approach showed excellent overall speedup: a 60-fold 49

improvement using 4-GPU relative to the serial run. A regional scale application further 50

demonstrated the LB performance. The parallel time used by 8-GPU without LB was 31.33% 51

reduced after LB was activated. When increasing 8-GPU with LB to 16-GPU with LB, it showed 52

parallel scalability by reducing the parallel time of ~50%. This work shows how massively 53

parallel computing can be applied to particle tracking in water age simulations. It also 54

demonstrates the practical importance of load balancing in this context, which enables the large-55

scale simulations with an increased complexity of flow paths. 56

 57

 58

 59

Keywords 60

Water age, Particle tracking, Multi-GPU with MPI, Domain decomposition, Load balancing 61

 3

1. Introduction 62

Water age is an important metric that can unravel the journey that water-parcels and 63

pollutants take while traveling through a watershed (Botter, Bertuzzo, & Rinaldo, 2011). 64

Methods used to quantify water ages mainly include tracer data, lumped analytical models, and 65

distributed numerical models (Nicholas B. Engdahl & Maxwell, 2014). Tracer data are direct 66

observations of system behavior, however they have technical challenges such as tracer selection 67

and data interpretation (Sprenger et al., 2019). Moreover, the limited sampling cannot provide a 68

full view of the spatiotemporal variations of water ages (Nicholas B. Engdahl, McCallum, & 69

Massoudieh, 2016; McCallum, Engdahl, Ginn, & Cook, 2014). Analytical solutions can also 70

provide an understanding of the real system, although the limitations of this approach due to 71

simplifications have been well acknowledged by the community (Basu, Jindal, Schilling, Wolter, 72

& Takle, 2012). For distributed numerical models, the application of Eulerian framework is 73

hampered by the complications to solve the high-dimensional governing equation of water age 74

(Gomez & Wilson, 2013). Therefore, Lagrangian approach based on integrated hydrologic 75

modeling has become a promising tool to simulate transient age distributions (Nicholas B. 76

Engdahl & Maxwell, 2014; Jing et al., 2019; Wilusz, Harman, Ball, Maxwell, & Buda, 2019). 77

The Lagrangian approach is computationally demanding which limits widespread application 78

(Sprenger et al., 2019; Wilusz et al., 2019). Current studies of water ages using particle tracking 79

are limited to either catchments at small scales (Wilusz et al., 2019; J. Yang, Heidbüchel, 80

Musolff, Reinstorf, & Fleckenstein, 2018) or larger scales with a limited number of particles or 81

for steady-state conditions (Jing et al., 2020; Maxwell et al., 2016). Recently, as global water 82

security and climate change become increasing concerns, a growing number of studies have 83

proposed simulating water age at larger scales over long time-periods at high resolution 84

(Maxwell et al., 2016; McGuire et al., 2005; Starn, Kauffman, Carlson, Reddy, & Fienen, 2021). 85

Accomplishing these goals will significantly increase the computational burden of particle 86

tracking; massively parallel computing represents a promising solution. 87

 Currently, there are few studies documenting parallelization of particle tracking approaches 88

for water age (Jing et al., 2020; Wilusz et al., 2019; J. Yang et al., 2018). Maxwell, Condon, 89

Danesh-Yazdi, and Bearup (2019) developed EcoSLIM, a particle tracking code, using OpenMP 90

(Open Multi-Processing) on CPU (Central Processing Unit). Yang and coauthors (C. Yang et al., 91

2021), added CPU-based MPI (Message Passing Interface) and multi-GPU (Graphics Processing 92

 4

Unit) with OpenMP into EcoSLIM. Ji, Luo, and Wang (2019) sped up MODPATH (Pollock, 93

2016) through multi-GPU with OpenMP/MPI based on domain decomposition (DDC). However, 94

their parallelized codes are limited to steady state simulations, and MODPATH is unable to 95

simulate evapotranspiration (ET) age and source water composition. N. B. Engdahl, Schmidt, 96

and Benson (2019) proposed two schemes for speeding up particle tracking simulations with 97

mass transfer to represent chemical reactions. One of the schemes also implemented MPI 98

parallelism through DDC. In DDC-based MPI parallelism, a typical problem encountered is load 99

imbalance among processing elements (MPI processes and/or GPUs), which can present a 100

challenge for good parallel efficiency. However, load imbalance has not been quantified in water 101

age simulations and its effects on parallel performance are unclear. 102

Load balancing (LB) schemes have been used to overcome these parallelization challenges 103

discussed above. Other disciplines using particle tracking, such as the molecular dynamics (MD) 104

and the smoothed particle hydrodynamics (SPH) (Boulmier, Raynaud, Abdennadher, & Chopard, 105

2019; Egorova, Dyachkov, Parshikov, & Zhakhovsky, 2019; Eibl & Rüde, 2019; Fattebert, 106

Richards, & Glosli, 2012; Furuichi & Nishiura, 2017; Kunaseth et al., 2013) have presented LB 107

schemes that greatly improved parallel simulation performance. However, LB has not been 108

applied to hydrologic modeling based on particle tracking; even in the studies using MPI through 109

DDC mentioned above. Additionally, when applying the particle tracking at larger scales in 110

long-term simulations, spatiotemporal variations of water age drivers in the real-world 111

applications can increase the heterogeneity of flow paths. This heterogeneity causes uneven 112

particle distributions and velocities within the domain, presenting new challenges to efficiency. 113

This will further complicate the distribution of particles across different subdomains and thus the 114

processing elements (which we are using here as a generic term for compute resources such as 115

CPU cores or a GPU). Furthermore, it becomes challenging to implement LB when considering 116

the increasing complexity of code structure of particle tracking due to the growing capabilities 117

such as simulating ET age and source-water composition at transient state in EcoSLIM. 118

In this study, we present new LB approaches implemented in the EcoSLIM code which is a 119

particle tracking code simulating water age (ET, outflow, and groundwater) and source water 120

mixing (initial subsurface water, rainfall, and snow). EcoSLIM is a grid-based approach which is 121

different from the mesh-free particle tracking in other disciplines. EcoSLIM works seamlessly 122

with ParFlow.CLM (Kollet & Maxwell, 2008a), which is an integrated hydrologic model 123

 5

simulating the coupled land-surface and subsurface water- and energy-processes at transient state. 124

ParFlow.CLM provides the temporally variant hydrodynamics and spatially variable subsurface-125

properties for EcoSLIM as input files, such as saturation, precipitation minus ET, three-126

dimensional velocity fields, and IDs and porosities of the subsurface units. 127

Objectives of this study are twofold. Firstly, we use MPI to manage multi-GPU instead of 128

OpenMP in our previous work (C. Yang et al., 2021). This changes the target of the 129

decomposition from computational load to modeling domain. MPI parallelism removes the 130

barrier of a limited number of GPUs on a single computational node by created when using 131

OpenMP and potentially extends the particle tracking applications to massively parallel 132

computing. Secondly, three schemes with increasing physical representation are proposed to 133

dynamically balance the load among different MPI-processes/GPUs during runtime, which is 134

crucial for parallel efficiency. In following sections, the EcoSLIM code, the implementation of 135

multi-GPU with MPI, and the load balancing schemes are introduced in section 2. The setup of 136

test cases and platforms are followed in section 3. In section 4, validation of the new code is 137

verified and parallel performances of the code with/without the LB schemes are illustrated. 138

Specifically, application of the code for a 40-year simulation at regional scale in the North China 139

Plain was shown. Finally, contributions and implications of this work to hydrologic modeling 140

using Lagrangian approach are concluded in section 5. 141

2. Methodology 142

2.1. EcoSLIM code 143

EcoSLIM is originally implemented in Fortran and further accelerated by GPUs using CUDA 144

(Compute Unified Device Architecture) Fortran (C. Yang et al., 2021). Its original structure is 145

briefly introduced here to understand the following implementations of multi-GPU with MPI and 146

LB schemes. For more details, please refer to our previous work (Maxwell et al., 2019; C. Yang 147

et al., 2021). In each timestep of a transient simulation, key steps are as follows: 148

(1) New particles are added into grid-cells where precipitation minus ET (PME) is positive. 149

(2) Mass balance of precipitation and ET is calculated based on PME. 150

(3) Advancing each active particle by a do-loop. Each particle either moves forward with an 151

increase of age or exits the modeling domain through outflow or ET. 152

 6

(4) After the particle loop, inactive particles that have left the modeling domain via outflow 153

or ET are sorted out of the array of particles, the number of active particles is updated and 154

space at the end of this array is made available for new particles. 155

(5) The time loop moves to next timestep. 156

In the particle loop, other attributes of each particle are also updated, such as the 157

saturated/unsaturated travel time, the saturated/unsaturated travel length, and the travel 158

time/length in some specified subsurface units. Statistics of outflow and ET of the whole 159

modeling domain, such as mass, mass weighted age, and source water composition, are included. 160

Additionally, gridding information is recorded, such as mass, cell-averaged age, and source 161

water composition for each grid-cell. Particle loop is the main computational load in EcoSLIM 162

which occupies more than 99% of the total simulation time when serially executing the code (C. 163

Yang et al., 2021). Therefore, our previous work (C. Yang et al., 2021) and also this study 164

focused on parallelizing the particle loop. 165

2.2. Multi-GPU with MPI 166

Instead of the load decomposition in our previous work (C. Yang et al., 2021), MPI 167

parallelism is applied here based on DDC. The modeling domain is split into P and Q parts in x 168

and y directions respectively, which generates a computing topology using P  Q MPI processes. 169

The quantity of GPUs utilized in a simulation equals that of MPI processes. We use the method 170

in Ruetsch and Fatica (2014) to assign a unique GPU to each MPI rank. GPUs, MPI ranks, and 171

subdomains are all numbered from 0 to P  Q - 1. Each GPU is responsible for a subdomain of 172

the same number. Source of particles on each GPU is from the assigned subdomain while 173

transport of these particles is in the whole modeling domain. For the particle loop, we adopt the 174

same GPU kernel in our previous work (C. Yang et al., 2021) with a few modifications for 175

tracking particles in specified subsurface units. After the mapping to subdomains, each MPI-176

process/GPU works almost independently with a limited MPI collective communications. They 177

are the calculation of mass balance mentioned in item (2) in section 2.1 and the ET/outflow 178

statistics of the whole modeling domain also mentioned in section 2.1, which are performed 179

before and after the execution of the kernel respectively. 180

The transport of particles in the whole domain, instead of in the subdomain where they were 181

added, avoids the MPI communications of exchanging particles between subdomains when 182

particles move out of a subdomain. The disadvantage of such a design is the redundant copies of 183

 7

the global information (e.g., velocities, porosities, saturations, and PME) for all MPI processes. 184

This is CPU-memory expensive. However, for present clusters which are commonly equipped 185

with 2/4/8 GPUs per node, the 2/4/8 copies of necessary information on one node are not a 186

bottleneck for regional modeling with scales of Tran, Zhang, Cohard, Condon, and Maxwell 187

(2020) and C. Yang et al. (2020). The multi-GPU with MPI was also conducted in our previous 188

work based on load decomposition (C. Yang et al., 2021). However, in each timestep, the 189

overhead of distributing load from rank 0 to others by MPI communication is over the speedup 190

by extending single GPU to multi-GPU. Though the DDC in this study avoids such a problem, 191

the load imbalance mentioned in section 1 becomes a new issue. Therefore, three schemes with 192

increasing physical representation are proposed to balance the load among GPUs/MPI-processes 193

during runtime in next section. 194

2.3. Schemes of load balancing 195

2.3.1 Direct transfer (S1) 196

The movement of particles in current EcoSLIM are independent, so the loads on GPUs can 197

be redistributed by directly transferring particles between MPI processes with a user specified 198

frequency. It is implemented by communications on CPU using the MPI functions of MPI_Send 199

and MPI_Recv after the sort of particles. At a given time, the number of active particles on each 200

MPI process is gathered. Thus, the old numbers of the starting and ending particles (np_lo and 201

np_ro) on each process ranked in a global queue are obtained. Then the starting and ending 202

numbers are updated to new ones (np_ln and np_rn) based on an even division of the global 203

queue. Then the transfer is accomplished on each MPI process by the following four steps: (1) 204

sending particles to the upstream process if np_lo is smaller than np_ln, (2) receiving particles 205

from the downstream process if np_ro is smaller than np_rn, (3) sending particles to the 206

downstream process if np_ro is larger than np_rn, and (4) receiving particles from the upstream 207

process if np_lo is larger than np_ln. The number of active particles is updated after each transfer. 208

The overhead of this scheme is determined by the quantity of particles transferred and the 209

bandwidth of the computing platform. 210

2.3.2 Cyclic mapping (S2) 211

In this scheme, the DDC is static which is determined after initialization of the simulation. In 212

a simulation using n GPUs/MPI-processes, the mapping between subdomains and GPUs (both 213

numbered from 0 to n-1) is continuously shifted with a user specified frequency. For instance, at 214

 8

a given time t1, the mapping is shifted from ‘the mth subdomain  the mth GPU’ to ‘the (m+1)th 215

subdomain  the mth GPU’ where m ranges from 0 to n-1. If m+1 is larger than n-1, the 216

subdomain numbered with the reminder of m+1 and n will be mapped to the mth GPU. Table 1 217

showed the cyclic mapping between subdomains and GPUs in a simulation using four MPI 218

processes. Using this scheme, each GPU traverses the loads of all subdomains periodically, and 219

thus the load distribution is dynamically balanced among GPUs. The overhead of shifting the 220

mapping is almost negligible. 221

Table 1. Cyclic mapping in a simulation using four GPUs/MPI-processes 222

t0

(Initial)

Subdomain number 0 1 2 3

GPU number 0 1 2 3

t1
Subdomain number 1 2 3 0

GPU number 0 1 2 3

t2
Subdomain number 2 3 0 1

GPU number 0 1 2 3

 223

2.3.3 Dynamic DDC (S3) 224

In the initialization of a simulation, particles are evenly distributed in space, so we 225

decompose the modeling domain into subdomains of an equal size. PME is spatiotemporally 226

variable, so the number of particles added into each subdomain is different at a given timestep 227

and such a difference varies with time. More importantly, particles added into different 228

subdomains have different exits from the whole modeling domain. Both source and exit are 229

responsible for heterogeneity of the flow paths. A subdomain of more source particles and longer 230

flow paths imposes heavier load on its corresponding GPU. As a result, after the initial even-231

decomposition, we dynamically update the decomposition during runtime based on flow paths of 232

particles. At a given timestep, the initial location of an active particle is identified and the 233

corresponding grid-cell in the top layer get one score. After traversing all the active particles, we 234

get the accumulated scores for each grid-cell in the top layer. This was implemented through 235

atomic operations on a two-dimensional matrix in the GPU kernel mentioned in section 2.2. 236

Then we conduct DDC based on this weight matrix. The frequency of such a dynamic DDC can 237

be specified by users. 238

The orthogonal recursive bisection (ORB) method is used for DDC, which is popular in MD 239

and SPH (Egorova et al., 2019; Fattebert et al., 2012). The domain or each subdomain is divided 240

into two in a direction at one time. By switching the direction, the whole domain is recursively 241

 9

divided into the scheduled number of subdomains (P  Q). DDC is only implemented in x and y 242

directions in this study. It starts in a direction which will be divided into more pieces. For 243

example, if Q is larger than P, DDC will start in y direction, otherwise, it starts in x direction. 244

Two algorithms are provided in the code to determine the dividing line. One calculates the 245

accumulated particles of columns (rows) in x (y) direction. Once the number of particles of n-1 246

columns (rows) is less than half the total particles in this subdomain while that of n columns 247

(rows) is more than half the total particles in this subdomain, the dividing line is found as column 248

(row) n. The other algorithm to find the dividing line with higher efficiency is the typical 249

dichotomizing search. 250

3. Test setup 251

3.1. Hillslope model 252

Tests were conducted based on a hillslope model (Maxwell et al., 2019; C. Yang et al., 2021). 253

The modeling domain has the length of 100-, 1-, and 9.4-m in x, y, and z directions, respectively. 254

It was divided into 20 columns, 5 rows, and 20 layers with constant resolutions in x and y 255

directions. In vertical direction, the layer-thickness was variable: 0.5 m for the bottom 18 layers 256

while 0.3- and 0.1-m for the top 2 layers. Soil has the homogeneous properties: saturated 257

hydraulic conductivity of 0.05 m/h, Manning’s N of 10
-6

 m
1/3

h
-1

, porosity of 0.2, and van 258

Genuchten parameters with α of 1.0 m
-1

 and exponent n of 2.0. Two real meteorological-forcings 259

were used to drive ParFlow.CLM, representing a high elevation, snow dominated mountain 260

headwaters (ER) and a semiarid, rain-dominated plains system (LW). Two homogeneous land-261

cover types were used which are the Shrub plant functional type (Shrub) and the Evergreen 262

Needleleaf plant functional type (Trees). Thus, four cases were tested with a combination of the 263

meteorological forcings and the land-cover types, which were named as: ER_Shrub, ER_Trees, 264

LW_Shrub, and LW_Trees. For simulations of both ParFlow.CLM and EcoSLIM, no flux 265

boundaries were adopted except the land surface which was open for precipitation, outflow and 266

ET. For each case, ParFlow.CLM simulation of 5 years was conducted using hourly timestep. 267

One-year forcing data were repeatedly used in the whole simulation. Dynamic equilibrium of the 268

flow field was approached at the end of simulation. Hence, the transient flow field of the last 269

year in ParFlow.CLM simulation was repeatedly used in EcoSLIM simulation of 20 years with 270

hourly timestep. At the end of each simulation, EcoSLIM system achieved the dynamic 271

equilibrium. 272

 10

By injecting 2 particles into the modeling domain per precipitation event, the average 273

particle-numbers in the last year of the simulations for four cases are 0.39-, 0.83-, 1.30-, and 274

1.03-million, respectively. Such quantities of particles are comparable to those in most of the 275

previous studies (Danesh-Yazdi, Klaus, Condon, & Maxwell, 2018; Nicholas B. Engdahl & 276

Maxwell, 2015; Jing et al., 2019; Jing et al., 2020; Kollet & Maxwell, 2008b; Maxwell et al., 277

2016; Weill, Lesparre, Jeannot, & Delay, 2019; Wilusz et al., 2019). It has a maximum of 6.8 278

million in Weill et al. (2019) to the best of our knowledge. In fact, the particle-number in most 279

previous studies is the total injected particles while that during runtime is a fewer quantity. 280

However, the number in this study is the active particles in the modeling domain and the 281

particles out of the domain through ET and outflow are not included. Thus, the particle-282

quantities are much more than those in previous studies. 283

3.2. Test platform 284

Tests were conducted on the Casper cluster in the Computational and Information Systems 285

Laboratory at the National Center for Atmospheric Research. The computational node used for 286

the following simulations is equipped with 2.3-GHz Intel
®

 Xeon
®

 Gold 6140 processors and 287

NVIDIA Tesla V100 32GB SXM2 GPUs with NVLink. The compiler is NVIDIA HPC SDK of 288

version 20.11, the MPI is implemented using Open MPI of version 4.0.5, the GPU driver version 289

is 450.51.06, and the CUDA version is 11.0.3. Tests were also repeated on a personal 290

workstation (WS). The WS is equipped with 2.00-GHz Intel
®

 Xeon
®

 E5-2683 v3 processors 291

together with four GPUs of 12 GB GeForce GTX 1080 Ti. Other necessary setups of the WS 292

environment are NVIDIA HPC SDK 20.11, Open MPI 3.1.5, GPU driver 440.118.02, and 293

CUDA 10.2. 294

4. Results and discussion 295

4.1. Code-to-code verification 296

To verify the availability of the new code, simulation results using the new code were 297

compared to those of the original OpenMP version (Maxwell et al., 2019). Comparisons were 298

performed for all four cases while that of the ER_Shrub case was shown in Figures 1 (outflow) 299

and 2 (ET). Results of other test cases had performances as good as that of ER_Shrub. Tests in 300

this study were conducted using one, two, and four GPUs successively while the results using 301

four GPUs were illustrated in Figures 1 and 2. Subplots in Figures 1 and 2 were for results 302

without LB and with each LB scheme. The water-age and -mass for both outflow and ET 303

 11

simulated by the new code well fitted those generated by the original code. The deviations 304

between them were attributed to the generation of pseudo-random numbers (PRNs). Though the 305

ensembles of the PRNs were statistically the same for each run, the PRN for a specific particle 306

probably changed due to the invoking sequence of the generation-function which was dependent 307

on the parallelism, i.e., the OpenMP or the multi-GPU with MPI. For the same parallelism, if 308

different numbers of CPU-threads/GPUs were used, there were also such deviations during our 309

tests. The fitness of outflow was better than that of ET because ET in EcoSLIM were directly 310

dependent on PRNs. 311

 312
Figure 1. Comparisons for age and mass of outflow based on ER_Shrub case between the original 313
EcoSLIM code and that parallelized in this study. 314
 315

0 100 200 300
0

2

4

6

O
u

tf
lo

w
 (

m
m

/d
)

a
n

d

R
e
si

d
en

ce
 T

im
e

(y
)

Age

Age-Imbalance

Mass

Mass-Imbalance

0 100 200 300
0

2

4

6
Age

Age-Scheme1

Mass

Mass-Scheme1

0 100 200 300

Time (day)

0

2

4

6

O
u

tf
lo

w
 (

m
m

/d
)

a
n

d

R
es

id
en

ce
 T

im
e

(y
)

Age

Age-Scheme2

Mass

Mass-Scheme2

0 100 200 300

Time (day)

0

2

4

6
Age

Age-Scheme3

Mass

Mass-Scheme3

 12

 316
Figure 2. Comparisons for age and mass of ET based on ER_shrub case between the original 317
EcoSLIM code and that parallelized in this study. 318

 319

4.2. Parallel performance 320

 321

Figure 3. Wall-clock time consumption of each test. n-GPU represents the number of GPUs used in 322
simulations. Sn represents different LB schemes. WS indicates tests conducted on workstation 323
while others on Casper. 720 indicates S3 worked every 720-hour while others worked every 8760-324
hour. 325

 326
 327

0 100 200 300
0

0.2

0.4

0.6

0.8

1

E
T

 (
m

m
/d

)
a

n
d

R
e
si

d
en

ce
 T

im
e

(y
)

Age

Age-Imbalance

Mass

Mass-Imbalance

0 100 200 300
0

0.2

0.4

0.6

0.8

1
Age

Age-Scheme1

Mass

Mass-Scheme1

0 100 200 300

Time (day)

0

0.2

0.4

0.6

0.8

1

E
T

 (
m

m
/d

)
a

n
d

R
es

id
en

ce
 T

im
e

(y
)

Age

Age-Scheme2

Mass

Mass-Scheme2

0 100 200 300

Time (day)

0

0.2

0.4

0.6

0.8

1
Age

Age-Scheme3

Mass

Mass-Scheme3

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

ER_Shrub ER_Trees LW_Shrub LW_Trees

T
im

e
(h

o
u

r)

1-GPU without LB

2-GPU without LB

4-GPU without LB

2-GPU with LB-S1

4-GPU with LB-S1

2-GPU with LB-S2

4-GPU with LB-S2

2-GPU with LB-S3

4-GPU with LB-S3

1-GPU without LB (WS)

2-GPU without LB (WS)

4-GPU without LB (WS)

2-GPU with LB-S1 (WS)

4-GPU with LB-S1 (WS)

2-GPU with LB-S2 (WS)

4-GPU with LB-S2 (WS)

2-GPU with LB-S3 (WS)

2-GPU with LB-S3-720 (WS)

4-GPU with LB-S3 (WS)

4-GPU with LB-S3-720 (WS)

 13

 328
Figure 4. Load distribution for LW_Shrub by using 2-GPU. Sn represents LB schemes. 720h 329
represents that S3 worked every 720-hour while others were 8760-hour. 330
 331

 332
Figure 5. Load distribution for LW_Shrub by using 4-GPU. Sn represents LB schemes. 720h 333
represents that S3 worked every 720-hour while others were 8760-hour. 334

 335
 336

 14

Figure 3 shows wall-clock time consumption of each test on both Casper and WS. Load 337

distributions for tests using 2- and 4-GPU were shown in Figures 4 and 5, respectively. Tests 338

using 2-GPU (P = 2 and Q = 1) were performed by evenly dividing the domain in x direction 339

while those using 4-GPU (P = 2 and Q = 2) had an additional division in y direction. All LB 340

schemes worked every 8760-hour except that in Figures 4d and 5d were 720-hour for S3. 341

Though only LW_Shrub was taken as an example in Figures 4 and 5, other cases had similar 342

performances. Time used for four cases by one CPU-thread based on the original code were 343

tested on WS, which were 36.41-, 76.34-, 121.56-, and 92.40-hour for ER_Shrub, ER_Trees, 344

LW_Shrub, and LW_Trees, respectively. Speedup of each case was then calculated and listed in 345

Table 2. 346

Table 2. Speedup of each test relative to the serial run using one CPU-thread 347

Platform Case name

Speedup

Without LB Scheme 1 Scheme 2 Scheme 3

1-GPU 2-GPU 4-GPU 2-GPU 4-GPU 2-GPU 4-GPU 2-GPU 4-GPU

Casper

ER_Shrub 20.5403 20.5693 33.5134 30.5237 54.8938 31.0469 52.7465 30.6935 46.3058

ER_Trees 21.1316 20.1687 22.3125 23.5297 57.5619 23.5857 58.7581 24.8849 48.6518

LW_Shrub 21.1858 20.3505 34.5421 23.7138 51.5341 26.3410 47.6590 26.4183 41.5489

LW_Trees 15.9127 18.8541 32.9764 25.3874 56.0544 24.1910 54.8824 26.9184 46.2856

WS

ER_Shrub 13.9637 17.2900 36.0809 34.4456 48.8535 34.4522 54.4261 33.4696 49.0443

ER_Trees 13.8955 11.5971 26.0117 25.0581 47.8438 25.1381 60.4948 24.5480 51.0523

LW_Shrub 13.5910 17.5129 27.0710 24.7589 37.1392 24.9531 43.0452 23.8150 37.1698

LW_Trees 13.6440 17.7556 26.1808 24.6492 45.1304 24.8835 57.2562 24.7449 40.4952

In tests without LB, time used by 2-GPU was even more than that by 1-GPU for ER_Trees 348

and LW_Shrub on Casper (Figure 3). This performance degradation has two reasons. Firstly, 349

severe load imbalance can be observed in Figure 4 when using 2-GPU with a particle-number 350

ratio of 423.62%. The larger one (yellow lines in Figure 4) which determined the parallel 351

efficiency almost achieved the total load. It confirmed that load imbalance also exists in 352

Lagrangian hydrologic modeling and decreases the parallel performance. Secondly, collective 353

MPI communications mentioned in section 2.2 introduced overhead when increasing the GPU 354

number from one to two. When using 4-GPU without LB, the maximum load largely decreased 355

(Figure 5) due to the additional decomposition in y direction. The hillslope model is quasi-three-356

dimensional with a x slope of 0.1 and a y slope of 0. Hence, the movement of particles in y 357

direction can be neglected which formed the parallel flow paths along x direction. Along x 358

direction, particles added upstream had much longer flow paths than those added downstream. 359

As a result, the division in y direction was much more effective than that in x direction to 360

 15

improve the parallel performance. However, load imbalance was still significant (Figure 5) and 361

parallel scalability was not shown by increasing 2-GPU to 4-GPU (Figure 3). 362

When S1 was activated, time used by 2- and 4-GPU were dramatically decreased relative to 363

those without LB. With S1, time used by 4-GPU was even less than half of that used by 2-GPU 364

on Casper (Figure 3). The overhead of particle transfer was small for all four cases, which was 365

less than 3 seconds in each 20-year simulation. S2 had performance as good as S1 (Figure 3). It 366

was mentioned in section 2.3.2 that the overhead of S2 was small enough to be neglected. For S3, 367

more time was used by 4-GPU when compared to that of S1 and S2 (Figure 3). In Figures 4c and 368

5c, the load distribution was not well balanced relative to that of S1 and S2. The flow paths of 369

particles were transient, so the weight matrix at a moment cannot effectively balance the load for 370

a long-period of simulation (i.e., 8760-hour). When S3 was activated with a higher frequency of 371

every 720-hour, the improved load balance can be observed in Figures 4d and 5d and the further 372

speedup was indicated in Figure 3. However, difference of the loads between GPUs 1-2 and 3-4 373

was still observed in Figure 5d. This is due to the model dimension which is five grid-cells in y 374

direction. Hence it cannot be evenly divided by ORB introduced in section 2.3.3. 375

S3, a physically-based scheme, not only aims to balance the load but also to understand the 376

load imbalance in Lagrangian hydrological modeling. To build S3, we also tried DDC based on 377

the source of particles (i.e., PME). The score/weight of a grid-cell is determined by the 378

accumulated particle-number added into it in a period. However, it didn’t show good 379

performance. Current implementation actually integrates the effects of both the quantity of 380

source particles and the flow-path lengths. This trial and error indicates that the flow-path 381

lengths instead of the quantity of added particles dominate the load distribution. This has 382

important implications to efficiently build other physically-based LB schemes. Generally, with 383

LB, the new code showed excellent parallel performance in the tests on both Casper and WS 384

(Table 2). The speedup by one GPU is ~13-fold on WS with 1080 Ti while ~21-fold on Casper 385

with Tesla V100. The speedup by 4-GPU is over 50-fold on both Casper and WS and has a 386

maximum over 60-fold. With LB schemes, the code showed parallel scalability from 2-GPU to 387

4-GPU. 388

4.3. Application in the North China Plain 389

We applied the new parallel code on a North China Plain (NCP) domain to demonstrate its 390

capacity for large-scale simulations. To the best of our knowledge, there have been no previous 391

 16

studies based on particle tracking at such a regional scale for water ages of ET, groundwater 392

(GW), and outflow in a unified framework. The NCP ParFlow.CLM model was adopted from C. 393

Yang et al. (2020) with a few modifications. The model has 509 and 921 grid-cells in x and y 394

directions respectively while it is discretized into five layers in vertical direction. The horizontal 395

resolution is 1 km while the layer thickness from bottom to top is 100-, 1-, 0.6-, 0.3-, and 0.1-m. 396

Thus, the NCP model has a dimension of 509 km × 921 km × 102 m in total. We conducted an 397

EcoSLIM simulation of 40 years on Casper with hourly timestep, in which the hourly outputs of 398

one-year simulation from ParFlow.CLM were repeatedly used. 399

The EcoSLIM simulation was started using 8-GPU (P = 2 and Q = 4) without LB 400

(abbreviated as R1 hereafter). From the 155,928th hour, S1 was activated every 240-hour (R2) 401

while R1 was continued for the following 7.8 years. At the 247,032th hour, the load of R2 was 402

evenly divided into 16 portions and a new run (R3) was started using 16-GPU (P = 4 and Q = 4) 403

with S2 activated every 240-hour. The overlap between R2 and R3 is 3.4 years. We also tried 16-404

GPU without LB for the first five years of the simulation (R4). Figure 6 showed the active-405

particle-number and the wall-clock time consumption of each timestep during the latter 22 years 406

of the simulation (the 155,929th to the 350,400th hour). R1, R2, and R3 were indicated by green, 407

blue, and red in Figure 6 respectively. The active-particle-number is around 200 million during 408

this simulation time-interval (Figure 6a). The discrepancy of the particle number between 409

different runs in the overlaps are due to the generation of random numbers discussed in section 410

4.1. 411

 17

 412
Figure 6. Computational load (a) and wall-clock time consumption (b) for the EcoSLIM simulation 413
in the North China Plain. The time interval is from the 155929th to the 350400th hour in the 40-414
year simulation. 415

For the overlap between R1 and R2, parallel time of the particle loop was 98.390- and 416

65.987-hour for R1 and R2 respectively (Figure 6b). The overhead of S1 for transferring data 417

was 1.573-hour. S1 (overhead included) decreased 31.33% of the time used by R1, which 418

demonstrated the high efficiency of S1. Figures 7a and 7b showed the well-balanced load by S1. 419

For the overlap between R2 and R3, the parallel time was 43.311- and 21.844-hour for R2 and 420

R3 respectively (Figure 6b). Though it showed 50% decrease of the parallel time, the obvious 421

jitters of the time in R2 has to be considered. Based on their baselines, the time used by R3 was a 422

little longer than half the time used by R2. This should be due to the better load balancing effect 423

of S1 than that of S2, which was shown in Figures 7b and 7d. However, when comparing the 424

load distribution between R3 and R4 for a time interval of the same length (4.94-year), the load 425

balancing effect of S2 was significant. The difference between the maximum- and minimum-426

load at the end of the comparing time-interval in R4 was 6.66 million (Figure 7d) while that in 427

R3 was 3.52 million (Figure 7c), which was 47.21% decrease of the load variance. Additionally, 428

based on the increasing trend in Figures 7c and 7d, the load variance in R3 with S2 gradually 429

achieved a steady state while that in R4 continued increasing. 430

 18

 431
Figure 7. Load distributions in the application in the North China Plain. Load distribution on 8-432
GPU before and after using S1 in R2 (a), on 8-GPU with S1 in R2 (b), on 16-GPU without LB in R4 433
(c), and on 16-GPU with S2 in R3. (b) was magnified from (a). 434

 435

5. Conclusions 436

Water age can reveal the source, storage, and mixing of water parcels in a watershed. Though 437

data- and model-driven methods have significantly advanced our understanding of water ages, 438

the quantification of water ages is still technically challenging. Lagrangian particle tracking is an 439

invaluable tool for physically-based transient modeling of water ages, but it is computationally 440

expensive. When considering climate change and global water security, it is essential to conduct 441

simulations of water ages at large scale with high resolution, which makes the implementation of 442

massively parallel computing in particle tracking for this purpose pressing. Though parallel 443

computing is widely implemented for Eulerian hydrological modeling, applications to 444

Lagrangian based simulations are developing. This is likely due to the inherent difficulties such 445

as load imbalance across computational resources which will become more challenging when 446

modeling a real hydrologic system with high spatiotemporal variability. 447

In this study, multi-GPU with MPI parallelism based on domain decomposition (DDC) was 448

implemented in the Lagrangian, particle tracking code EcoSLIM, to accelerate simulations of 449

 19

water age and source-water mixing. Three load balancing (LB) schemes with increasing physical 450

representation (i.e., direct transfer, cyclic mapping, and dynamic DDC) were built to 451

dynamically balance the quantity of particles across GPUs during runtime. With LB, the code 452

showed excellent parallel performance in the hillslope simulations on two different platforms, 453

e.g., a maximum of 60-fold speedup on 4-GPUs and the parallel scalability from 2-GPU to 4-454

GPU that is almost ideal. A 40-year simulation conducted in the North China Plain further 455

demonstrated the high parallel efficiency of LB for a large-scale application. Using 8-GPU with 456

LB, it reduced 31.33% of the parallel time using 8-GPU without LB. When increasing 8-GPU 457

with LB to 16-GPU with LB, ~50% reduction of the parallel time demonstrated the parallel 458

scalability. 459

More importantly, results confirmed the load imbalance in Lagrangian hydrologic modeling. 460

In LW_Shrub case using 2-GPU, the particle-number ratio achieved 423.62%, which severely 461

degraded the parallel performance without LB. For LB schemes, physically-based dynamic DDC 462

performed as well as other schemes in hillslope simulations. Trial and error of building this 463

scheme identified that the distribution of flow-path lengths in the domain instead of the quantity 464

of particles added into the domain dominates the load distribution. This illustrated both the 465

mechanisms of load imbalance and the directions to build efficient physically-based LB schemes 466

in this context. This study realized the massively parallel computing of particle tracking in water 467

age simulations which is lacking in hydrologic modeling. It also demonstrated that LB have 468

practical importance enabling its applications at large scales with increased heterogeneity of flow 469

paths. The LB schemes can be borrowed to other hydrologic models using Lagrangian approach 470

and the parallelized EcoSLIM is a promising tool to accelerate the scientific progress of water 471

age studies. 472

 473

Acknowledgements 474

This work was supported by the U.S. Department of Energy Office of Science, Offices of 475

Advanced Scientific Computing Research and Biological and Environmental Sciences IDEAS 476

project and Watershed Function Scientific Focus Area under Award Number DE-AC02-477

05CH11231. The authors acknowledge high-performance computing support from Cheyenne 478

(doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems 479

Laboratory, sponsored by the National Science Foundation. Fortran/CUDA-Fortran code 480

 20

(https://github.com/aureliayang/EcoSLIM/tree/multi-GPU) which can reproduce the results is 481

located on Github. Once the manuscript is accepted, this repository will be archived in Zenodo to 482

get a DOI for citation purpose. 483

 484

References 485

Basu, N. B., Jindal, P., Schilling, K. E., Wolter, C. F., & Takle, E. S. (2012). Evaluation of 486

analytical and numerical approaches for the estimation of groundwater travel time 487

distribution. Journal of Hydrology, 475, 65-73. 488

doi:https://doi.org/10.1016/j.jhydrol.2012.08.052 489

Botter, G., Bertuzzo, E., & Rinaldo, A. (2011). Catchment residence and travel time distributions: 490

The master equation. Geophysical Research Letters, 38(11). doi:10.1029/2011gl047666 491

Boulmier, A., Raynaud, F., Abdennadher, N., & Chopard, B. (2019, 23-26 Sept. 2019). On the 492

Benefits of Anticipating Load Imbalance for Performance Optimization of Parallel 493

Applications. Paper presented at the 2019 IEEE International Conference on Cluster 494

Computing (CLUSTER). 495

Danesh-Yazdi, M., Klaus, J., Condon, L. E., & Maxwell, R. M. (2018). Bridging the gap 496

between numerical solutions of travel time distributions and analytical storage selection 497

functions. Hydrological Processes, 32(8), 1063-1076. Retrieved from <Go to 498

ISI>://WOS:000430466700006 499

Egorova, M. S., Dyachkov, S. A., Parshikov, A. N., & Zhakhovsky, V. V. (2019). Parallel SPH 500

modeling using dynamic domain decomposition and load balancing displacement of 501

Voronoi subdomains. Computer Physics Communications, 234, 112-125. 502

doi:https://doi.org/10.1016/j.cpc.2018.07.019 503

Eibl, S., & Rüde, U. (2019). A systematic comparison of runtime load balancing algorithms for 504

massively parallel rigid particle dynamics. Computer Physics Communications, 244, 76-505

85. doi:https://doi.org/10.1016/j.cpc.2019.06.020 506

Engdahl, N. B., & Maxwell, R. M. (2014). Approximating groundwater age distributions using 507

simple streamtube models and multiple tracers. Advances in Water Resources, 66, 19-31. 508

doi:https://doi.org/10.1016/j.advwatres.2014.02.001 509

Engdahl, N. B., & Maxwell, R. M. (2015). Quantifying changes in age distributions and the 510

hydrologic balance of a high-mountain watershed from climate induced variations in 511

recharge. Journal of Hydrology, 522, 152-162. 512

doi:https://doi.org/10.1016/j.jhydrol.2014.12.032 513

Engdahl, N. B., McCallum, J. L., & Massoudieh, A. (2016). Transient age distributions in 514

subsurface hydrologic systems. Journal of Hydrology, 543, 88-100. 515

doi:https://doi.org/10.1016/j.jhydrol.2016.04.066 516

Engdahl, N. B., Schmidt, M. J., & Benson, D. A. (2019). Accelerating and Parallelizing 517

Lagrangian Simulations of Mixing-Limited Reactive Transport. Water Resources 518

Research, 55(4), 3556-3566. doi:10.1029/2018wr024361 519

Fattebert, J. L., Richards, D. F., & Glosli, J. N. (2012). Dynamic load balancing algorithm for 520

molecular dynamics based on Voronoi cells domain decompositions. Computer Physics 521

Communications, 183(12), 2608-2615. doi:https://doi.org/10.1016/j.cpc.2012.07.013 522

https://github.com/aureliayang/EcoSLIM/tree/multi-GPU
https://doi.org/10.1016/j.jhydrol.2012.08.052
https://doi.org/10.1016/j.cpc.2018.07.019
https://doi.org/10.1016/j.cpc.2019.06.020
https://doi.org/10.1016/j.advwatres.2014.02.001
https://doi.org/10.1016/j.jhydrol.2014.12.032
https://doi.org/10.1016/j.jhydrol.2016.04.066
https://doi.org/10.1016/j.cpc.2012.07.013

 21

Furuichi, M., & Nishiura, D. (2017). Iterative load-balancing method with multigrid level 523

relaxation for particle simulation with short-range interactions. Computer Physics 524

Communications, 219, 135-148. doi:https://doi.org/10.1016/j.cpc.2017.05.015 525

Gomez, J. D., & Wilson, J. L. (2013). Age distributions and dynamically changing hydrologic 526

systems: Exploring topography-driven flow. Water Resources Research, 49(3), 1503-527

1522. doi:https://doi.org/10.1002/wrcr.20127 528

Ji, X. H., Luo, M. L., & Wang, X. S. (2019). Accelerating Streamline Tracking in Groundwater 529

Flow Modeling on GPUs. Groundwater. doi:10.1111/gwat.12959 530

Jing, M., Heße, F., Kumar, R., Kolditz, O., Kalbacher, T., & Attinger, S. (2019). Influence of 531

input and parameter uncertainty on the prediction of catchment-scale groundwater travel 532

time distributions. Hydrol. Earth Syst. Sci., 23(1), 171-190. doi:10.5194/hess-23-171-533

2019 534

Jing, M., Kumar, R., Heße, F., Thober, S., Rakovec, O., Samaniego, L., & Attinger, S. (2020). 535

Assessing the response of groundwater quantity and travel time distribution to 1.5, 2, and 536

3 °C global warming in a mesoscale central German basin. Hydrol. Earth Syst. 537

Sci., 24(3), 1511-1526. doi:10.5194/hess-24-1511-2020 538

Kollet, S. J., & Maxwell, R. M. (2008a). Capturing the influence of groundwater dynamics on 539

land surface processes using an integrated, distributed watershed model. Water Resources 540

Research, 44(2). doi:Artn W0240210.1029/2007wr006004 541

Kollet, S. J., & Maxwell, R. M. (2008b). Demonstrating fractal scaling of baseflow residence 542

time distributions using a fully-coupled groundwater and land surface model. 543

Geophysical Research Letters, 35(7). Retrieved from <Go to 544

ISI>://WOS:000254716500001 545

Kunaseth, M., Richards, D. F., Glosli, J. N., Kalia, R. K., Nakano, A., & Vashishta, P. (2013). 546

Analysis of scalable data-privatization threading algorithms for hybrid MPI/OpenMP 547

parallelization of molecular dynamics. The Journal of Supercomputing, 66(1), 406-430. 548

doi:10.1007/s11227-013-0915-x 549

Maxwell, R. M., Condon, L. E., Danesh-Yazdi, M., & Bearup, L. A. (2019). Exploring source 550

water mixing and transient residence time distributions of outflow and evapotranspiration 551

with an integrated hydrologic model and Lagrangian particle tracking approach. 552

Ecohydrology, 12(1). Retrieved from <Go to ISI>://WOS:000454601400016 553

Maxwell, R. M., Condon, L. E., Kollet, S. J., Maher, K., Haggerty, R., & Forrester, M. M. (2016). 554

The imprint of climate and geology on the residence times of groundwater. Geophysical 555

Research Letters, 43(2), 701-708. doi:10.1002/2015gl066916 556

McCallum, J. L., Engdahl, N. B., Ginn, T. R., & Cook, P. G. (2014). Nonparametric estimation 557

of groundwater residence time distributions: What can environmental tracer data tell us 558

about groundwater residence time? Water Resources Research, 50(3), 2022-2038. 559

doi:10.1002/2013wr014974 560

McGuire, K. J., McDonnell, J. J., Weiler, M., Kendall, C., McGlynn, B. L., Welker, J. M., & 561

Seibert, J. (2005). The role of topography on catchment-scale water residence time. 562

Water Resources Research, 41(5). doi:10.1029/2004wr003657 563

Pollock, D. W. (2016). User guide for MODPATH Version 7—A particle-tracking model for 564

MODFLOW (2016-1086). Retrieved from Reston, VA: 565

http://pubs.er.usgs.gov/publication/ofr20161086 566

https://doi.org/10.1016/j.cpc.2017.05.015
https://doi.org/10.1002/wrcr.20127
http://pubs.er.usgs.gov/publication/ofr20161086

 22

Ruetsch, G., & Fatica, M. (2014). CUDA Fortran for scientists and engineers : best practices for 567

efficient CUDA Fortran programming. Amsterdam Boston: Morgan Kaufmann, an 568

imprint of Elsevier. 569

Sprenger, M., Stumpp, C., Weiler, M., Aeschbach, W., Allen, S. T., Benettin, P., . . . Werner, C. 570

(2019). The Demographics of Water: A Review of Water Ages in the Critical Zone. 571

Reviews of Geophysics, 57(3), 800-834. doi:https://doi.org/10.1029/2018RG000633 572

Starn, J. J., Kauffman, L. J., Carlson, C. S., Reddy, J. E., & Fienen, M. N. (2021). Three-573

Dimensional Distribution of Groundwater Residence Time Metrics in the Glaciated 574

United States Using Metamodels Trained on General Numerical Simulation Models. 575

Water Resources Research, 57(2), e2020WR027335. 576

doi:https://doi.org/10.1029/2020WR027335 577

Tran, H., Zhang, J., Cohard, J.-M., Condon, L. E., & Maxwell, R. M. (2020). Simulating 578

Groundwater-Streamflow Connections in the Upper Colorado River Basin. Groundwater, 579

58(3), 392-405. doi:10.1111/gwat.13000 580

Weill, S., Lesparre, N., Jeannot, B., & Delay, F. (2019). Variability of Water Transit Time 581

Distributions at the Strengbach Catchment (Vosges Mountains, France) Inferred Through 582

Integrated Hydrological Modeling and Particle Tracking Algorithms. Water, 11(12), 2637. 583

Retrieved from https://www.mdpi.com/2073-4441/11/12/2637 584

Wilusz, D. C., Harman, C. J., Ball, W. B., Maxwell, R. M., & Buda, A. R. (2019). Using particle 585

tracking to understand flow paths, age distributions, and the paradoxical origins of the 586

inverse storage effect in an experimental catchment. Water Resources Research, n/a(n/a), 587

e24397. doi:10.1029/2019wr025140 588

Yang, C., Li, H.-Y., Fang, Y., Cui, C., Wang, T., Zheng, C., . . . Yang, X. (2020). Effects of 589

Groundwater Pumping on Ground Surface Temperature: A Regional Modeling Study in 590

the North China Plain. Journal of Geophysical Research: Atmospheres, 125(9), 591

e2019JD031764. doi:10.1029/2019jd031764 592

Yang, C., Zhang, Y.-K., Liang, X., Olschanowsky, C., Yang, X., & Maxwell, R. (2021). 593

Accelerating the Lagrangian particle tracking of residence time distributions and source 594

water mixing towards large scales. Computers & Geosciences, 104760. 595

doi:https://doi.org/10.1016/j.cageo.2021.104760 596

Yang, J., Heidbüchel, I., Musolff, A., Reinstorf, F., & Fleckenstein, J. H. (2018). Exploring the 597

Dynamics of Transit Times and Subsurface Mixing in a Small Agricultural Catchment. 598

Water Resources Research, 54(3), 2317-2335. doi:10.1002/2017wr021896 599

 600

https://doi.org/10.1029/2018RG000633
https://doi.org/10.1029/2020WR027335
https://www.mdpi.com/2073-4441/11/12/2637
https://doi.org/10.1016/j.cageo.2021.104760

