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Abstract

Access to spatio-temporally consistent precipitation data is a key prerequisite for hydrological studies, especially in data-scarce

regions. Different global precipitation products offer an alternative way to estimate precipitation over areas with inadequate

gauge distributions. However, before use of the datasets, the accuracy of these global estimations must be carefully studied at

local and regional scale. This study evaluated 14 global precipitation products against gauge observations 2003-2012 in Karun

and Karkheh basins in southwest Iran. Different categorical and statistical indices, including Kling-Gupta Efficiency (KGE),

bias, correlation coefficient, and variability ratio, at varying spatial and temporal resolution were used to evaluate the products.

KGE results at both daily and monthly time steps suggested that TMPA-3B42V7.0 and MERRA-2 outperformed all other

products, while CMORPH-BLDV1.0 and PERSIANN-CDR was the best-performing product at daily and monthly time steps,

respectively. ERA5-Land showed the highest positive bias compared with in-situ observations, particularly for mountainous

southeastern parts of Karun basin. Overall, bias-adjusted products obtained by merging ground-based observations in the

estimations outperformed the unadjusted versions. The spatial distribution of statistical error metrics indicated that almost all

products showed their greatest uncertainties for mountainous regions, due to complex precipitation processes in these regions.

These results can significantly contribute to various horological and water resources planning measures in the study region,

including early flood warning systems, drought monitoring, and optimal dam operations.
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Figure S1 shows spatial distribution of Correlation Coefficient (CC) index for global precipitation products
at daily time steps.

Figure S2 shows spatial distribution of bias index for global precipitation products.

Figure S3 shows spatial distribution of variability ratio index for global precipitation products at daily time
steps.

Figure S4 shows spatial distribution of correlation coefficient for global precipitation products at monthly
time steps.

Figure S5 shows spatial distribution of variability ratio for global precipitation products at monthly time
steps.
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Fig. S1. Spatial distribution of correlation coefficient (CC) index for global precipitation
products at daily time steps. Blue, red, and green indicates satellite-based, multi-source, and
reanalysis precipitation products, respectively.

Fig. S2. Spatial distribution of bias index for global precipitation products. Blue, red, and
green indicates satellite-based, multi-source, and reanalysis precipitation products, respec-
tively.
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Fig. S3. Spatial distribution of variability ratio index for global precipitation products at
daily time steps. Blue, red, and green indicates satellite-based, multi-source, and reanalysis
precipitation products, respectively.
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Fig. S4. Spatial distribution of correlation coefficient (CC) for global precipitation products at
monthly time steps. Blue, red, and green indicates satellite-based, multi-source, and reanalysis
precipitation products, respectively.
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Fig. S5. Spatial distribution of variability ratio for global precipitation products at monthly
time steps. Blue, red, and green colors indicates satellite-based, multi-source, and reanalysis
precipitation products, respectively.
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Abstract 11 

Access to spatio-temporally consistent precipitation data is a key pre-requisite for hydrological studies, 12 

especially in data-scarce regions. Different global precipitation products offer an alternative way to estimate 13 

precipitation over areas with inadequate gauge distributions. However, before use of the datasets, the 14 

accuracy of these global estimations must be carefully studied at local and regional scale. This study 15 

evaluated 14 global precipitation products against gauge observations 2003-2012 in Karun and Karkheh 16 

basins in southwest Iran. Different categorical and statistical indices, including Kling-Gupta Efficiency 17 

(KGE), bias, correlation coefficient, and variability ratio, at varying spatial and temporal resolution were 18 

used to evaluate the products. KGE results at both daily and monthly time steps suggested that TMPA-19 

3B42V7.0 and MERRA-2 outperformed all other products, while CMORPH-BLDV1.0 and PERSIANN-20 

CDR was the best-performing product at daily and monthly time steps, respectively. ERA5-Land showed 21 

the highest positive bias compared with in-situ observations, particularly for mountainous southeastern 22 

parts of Karun basin. Overall, bias-adjusted products obtained by merging ground-based observations in 23 

the estimations outperformed the unadjusted versions. The spatial distribution of statistical error metrics 24 

indicated that almost all products showed their greatest uncertainties for mountainous regions, due to 25 

complex precipitation processes in these regions. These results can significantly contribute to various 26 

horological and water resources planning measures in the study region, including early flood warning 27 

systems, drought monitoring, and optimal dam operations. 28 

Keywords: Global precipitation estimation products; Spatio-temporal performance evaluation; Statistical 29 

error analysis; Categorical index; Iran.  30 
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Highlights 31 

 MERRA-2 is the most accurate product to represent daily precipitation across southwest of Iran 32 

 TMPA-3B42V7.0 is the most accurate product at monthly time scale in Karun and Karkheh basins 33 

 ERA5-Land showed highest bias versus observational data  34 

 All products showed their greatest uncertainties across mountainous areas   35 



1. Introduction 36 

Surface runoff, soil moisture, evapotranspiration, groundwater recharge, and several other hydro-37 

climatic variables are directly or indirectly influenced by precipitation amount and intensity 38 

(Ghajarnia et al., 2020; Kalantari et al., 2019). Owing to its close interactions with other land-39 

atmospheric variables, reliable estimation of precipitation is of special interest and critical 40 

importance in a variety of fields, such as water resources management, hydrological modeling, 41 

global energy analysis, climate modeling, and agricultural studies (Asante et al., 2007; Carrera-42 

Hernandez and Gaskin, 2007; Funk et al., 2014; Huffman et al., 1997; Kucera et al., 2013; Zhang 43 

et al., 2012). Ground-based observations provide the most accurate precipitation measurements 44 

(Sun et al., 2018). However, in inaccessible and remote areas and in many developing countries, 45 

estimates of gauge records are either incomplete or non-existent, mostly due to the high cost of 46 

gauge installation and maintenance (Salio et al., 2015; Sun et al., 2018). These spatial gaps in 47 

precipitation measurements, together with the common inconsistencies in gauge records, make it 48 

difficult to provide an unbiased view of precipitation at global scale (Brunetti et al., 2006). 49 

Different high-resolution precipitation products have been developed in recent decades, with 50 

increasing use of remote sensing techniques and enhanced computational capacities. These state-51 

of-the-art global and quasi-global precipitation estimation products can be classified into four 52 

categories: 1) reanalysis products (Hersbach et al., 2020; Kalnay et al., 1996; Kobayashi et al., 53 

2015; Rienecker et al., 2011); 2) gridded ground-based observations (Harris et al., 2014; Huffman 54 

et al., 1997; Schneider et al., 2008; Yatagai et al., 2012); 3) satellite-based products (Hou et al., 55 

2014; Huffman et al., 2007; Joyce et al., 2004; Sorooshian et al., 2000); and 4) Climate Data 56 

Records (CDRs) (Ashouri et al., 2015; Beck et al., 2019b). Although these spatio-temporarily 57 

consistent products are potentially good alternatives for ground-based observations and can 58 



address some of the disadvantages and uncertainties of gauge records, they must be examined 59 

thoroughly before use to ensure their reliability and accuracy (Shayeghi et al., 2020; Sun et al., 60 

2018). It is reported that the performance of these products varies by region (Duan et al., 2016), 61 

since climate patterns differ from one region to another. Therefore, numerous studies have focused 62 

on evaluating the performance of these products across different regions of the world with varying 63 

geographical and climatic conditions. These studies have been carried out at different spatial 64 

extents, including global, regional, and local scale (Awange et al., 2019; Azizian and ramezani 65 

etedali, 2019; Beck et al., 2019a; Ghajarnia et al., 2015; Hosseini-Moghari et al., 2018; Satgé et 66 

al., 2020; Sun et al., 2018). In addition to evaluations, these studies have also made comparative 67 

analyses of different technologies and algorithms of precipitation estimates, and improvements in 68 

these over time.  69 

Many previous studies have evaluated precipitation estimation products for some basins or the 70 

entire country of Iran. An early study by Javanmard et al. (2010) evaluated the performance of 71 

TMPA-3B42 precipitation estimations against synoptic gauge records of Iran 1998-2006. Many 72 

other studies (e.g. Alijanian et al., 2017; Azizi et al., 2016; Darand et al., 2017; Azizian and 73 

Ramezani Etedali, 2019; Darand and Khandu, 2020; Hosseini-Moghari and Tang, 2020; Ababaei 74 

and Etedali, 2021; S. M. Hosseini-Moghari et al., 2018; Katiraie-Boroujerdy et al., 2017, 2013; 75 

Katiraie Boroujerdy, 2013; Moazami et al., 2016, 2013; Raziei and Sotoudeh, 2017; Sharifi et al., 76 

2016; Ghajarnia et al., 2018) have since evaluated different sets of global precipitation products 77 

against in-situ observations from Iran and compared the performance of these products in different 78 

temporal extents and at varying temporal and spatial scales. Many of these studies have found that 79 

most products are more efficient in the Zagros mountains and southern Iran than in coastal regions 80 

in the north, where all products have shown poor performance (Alijanian et al., 2017; Katiraie-81 



Boroujerdy et al., 2013; Moazami et al., 2016; Raziei and Sotoudeh, 2017; Sharifi et al., 2016). 82 

Some studies have suggested that gauge-adjusted TRMM Multi-satellite Precipitation Analysis 83 

(TMPA) (Huffman et al., 2007) and fully ground-based products such as Global Precipitation 84 

Climatology Centre (GPCC) (Schneider et al., 2011) and Asian Precipitation-Highly-Resolved 85 

Observational Data Integration Towards Evaluation (APHRODITE) (Yatagai et al., 2012) may be 86 

more efficient than other products in terms of different statistical and categorical metrics across 87 

the whole country (Azizi et al., 2016; Darand and Khandu, 2020; S.-M. Hosseini-Moghari et al., 88 

2018; P. S. Katiraie-Boroujerdy et al., 2017; Moazami et al., 2013).  More recently, Fallah et al. 89 

(2020) evaluated different precipitation products using data for Karun basin and found that 90 

GPCCV8.0  was more efficient than other products in this basin. A wide range of precipitation 91 

products was evaluated using data for Karkheh basin by Mosaffa et al. (2020), who concluded that 92 

PERSIANN-CDR and Soil Moisture (SM) to Rain (SM2RAIN) were more efficient than other 93 

products for daily precipitation estimations. These basin-scale studies and two other studies in Iran 94 

(Fallah et al., 2020; Mosaffa et al., 2020) provided a better basis for choosing a good source of 95 

precipitation estimates. However, there is still considerable uncertainty regarding various aspects 96 

of precipitation products at different spatial and temporal scales in Karun and Karkheh basins. A 97 

growing body of literature has focused on a limited number of global precipitation products, and 98 

the periods and time scales of comparisons differ between studies. Another key difference between 99 

existing studies is that different observational gauge datasets have been used as reference data, 100 

such as those from Iran Meteorological Organization (IRIMO) and Iran Water Management 101 

Research Institute (TAMAB). Thus previous studies of Iran, and particularly of Karun and 102 

Karkheh basins, have still shortcomings, especially in the evaluation approaches and reference 103 

datasets used, which makes comparison of results difficult. For instance, Mosaffa et al. (2020) 104 



only used 26 rain gauges in Karkheh basin for daily assessments and Fallah et al. (2020) only 105 

focused on monthly evaluations, with limited numbers of metrics. Therefore, it is not feasible to 106 

draw conclusions for the specific region of interest from these studies. 107 

Karun and Karkheh basins, the food baskets of Iran, contain the largest rivers in the country (Karun 108 

and Karkheh rivers). These two basins are critically important in terms of agricultural production, 109 

water resources, and energy supply (Ahmad and Giordano, 2010; Hishinuma et al., 2014; 110 

Marjanizadeh et al., 2010). In recent years, the occurrence of multi-year droughts and devastating 111 

floods caused by climate change and different anthropogenic interventions in the basins has made 112 

the limited water resources in the region even more vulnerable (Afkhami et al., 2007; Peyravi et 113 

al., 2019; Vaghefi et al., 2019). Precipitation is one of the main factors influencing the hydro-114 

climatology of these two large basins, and therefore spatio-temporal analysis of precipitation is 115 

highly important from various aspects, such as quantifying hydrological patterns of the biggest 116 

rivers in Iran, inflow to multiple parallel or series dams, agricultural demands, and environmental 117 

supplies. In addition, it is important to note that the observational rain-gauge network in Iran 118 

suffers from uncertainties and measurement inconsistencies (Ghajarnia et al., 2014). Most previous 119 

studies have only used synoptic station records (as they are the most accurate rain gauges in Iran) 120 

and have neglected data from other rain gauges, such as those used by TAMAB, but synoptic 121 

stations are mostly located at low altitudes and do not sample higher elevations (which TAMAB 122 

stations do). Therefore, there is a need for a comprehensive study of Karun and Karkheh basins, 123 

considering a more complete set of in-situ rain gauges and including both synoptic stations and 124 

TAMAB stations with better coverage of higher altitudes, when evaluating the performance of the 125 

most commonly used global precipitation products in these basins. 126 



The aim of this study was to evaluate the performance of 14 common and well-known global 127 

precipitation products: PERSIANN, PERSIANN-CDR, PERSIANN-CCS, CMORPH-RAWV1.0, 128 

CMORPH-BLDV1.0, CMORPH-CRTV1.0, TMPA-3B42V7.0, TMPA-3B42RTV7.0, ERA5-129 

Land, MERRA-2, JRA-55, PGFV2.0, MSWEPV2.0, and CHIRPSV2.0 against data from the 130 

domestic rain gauge network in Karun and Karkheh basins. Product performance was analyzed 131 

using daily precipitation data 2003-2012 (and monthly data aggregated from daily observations), 132 

as described in section 2. The evaluation was performed using different statistical and categorical 133 

measures, which are also described in section 2. Results and discussion are presented in section 3, 134 

followed by a summary and conclusions in section 4.  135 

2. Material and Methods 136 

2.1.  Study area  137 

The study area lies between latitude 29°-35°N and longitude 46°-52° E and encompasses Karkheh 138 

and Karun basins, through which two of the largest rivers in Iran flow (Fig. 1).  Karkheh and Karun 139 

basin occupy an area of 51,000 and 67,000 km2, respectively, and long-term average streamflow 140 

is around 170 and 590 m3/s, respectively (Khazaei, 2021). The Zagros mountain range makes these 141 

basins among the most complex terrain in Iran, with their average elevation increasing drastically 142 

from 0 to 3916 m above sea level from north to south. Mean annual precipitation in Karkheh basin 143 

is around 450 mm/year, with a spatial variation range from 150 mm/year on arid low-elevation 144 

plains to 750 mm/year in highlands (Choubin et al., 2019). Mean annual precipitation in Karun 145 

basin is 632 mm/year, with larger spatial variability of 153 mm/year in arid southern lowlands to 146 

>2000 mm/year in mountainous areas (Fallah et al., 2020). 147 



 148 

Fig. 1. Topographical map of the Iran showing Karkheh and Karun basins in the south-western plains area. 149 

Rain gauge stations used in the reference dataset are shown as yellow dots. 150 

2.2. Reference data 151 

Rain gauge data provided by IRIMO and TAMAB were used as the reference dataset. Daily data 152 

from a total of 254 gauge stations within a 10-year period (2003-2012) were used to evaluate the 153 

performance of different global precipitation products. Figure 1 shows the spatial distribution of 154 

the rain gauges across Karkheh and Karun basins.  155 

2.3. Global precipitation products  156 

Fourteen global precipitation estimation products with different temporal and spatial resolution 157 

were chosen, and classified as reanalysis, satellite-based, and multi-source precipitation products 158 

(Table 1). 159 



2.3.1. Reanalysis precipitation products 160 

Reanalysis datasets provide a spatially complete and temporally coherent time series of data for 161 

different global atmospheric variables by benefiting from three main components: data 162 

assimilation approaches, forecasting models, and different input observations (Dee et al., 2011). 163 

Due to the lack of globally consistent observational data, climate reanalysis products are used as 164 

an alternative in a wide range of earth science studies (Qian et al., 2006). In this study, we used 165 

precipitation data from three reanalysis products: the European Center for Medium-range Weather 166 

Forecast ReAnalysis (ECMWF) 5th Generation-Land (ERA5-Land) (Hersbach et al., 2020), 167 

Japanese 55-year Reanalysis (JRA-55) (Kobayashi et al., 2015), and Modern-Era Retrospective 168 

analysis for Research and Applications, Version 2 (MERRA-2) (Rienecker et al., 2011).  ERA5-169 

Land provides a consistent view of the evolution of land variables over many decades at higher 170 

spatial and temporal resolution compared with ERA5, which was developed by replaying the land 171 

component of the ECMWF ERA5 climate reanalysis (Sabater and Data, 2019). Spanning 1950-172 

present time, ERA5-Land is one of the longest and finest reanalysis products, with temporal 173 

resolution of one hour and spatial native resolution of 9 km (Hersbach et al., 2020). JRA-55, the 174 

second reanalysis product launched by Japan Meteorological Agency, extensively improved the 175 

Japanese 25-year Reanalysis product (JRA-25) (Onogi et al., 2007). JRA-55 addresses issues 176 

identified with the previous product and produces relevant detailed climate data, especially for 177 

climate change studies and assessing multidecadal variabilities (Kobayashi et al., 2015). The daily 178 

JRA-55 reanalysis product with spatial resolution of 1.25°×1.25° covers the entire globe 179 

(Kobayashi et al., 2015). MERRA-2 is NASA's second-generation reanalysis product, spanning 180 

1979 to the present. MERRA-2 utilizes a recent version of the Goddard Earth Observing System 181 



Model, Version 5 (GEOS-5) data assimilation system. It covers the whole globe with high spatial 182 

resolution of 0.5°×0.67° and hourly time steps (Rienecker et al., 2011). 183 

2.3.2. Satellite-based precipitation products 184 

Satellite-based precipitation estimates offer an alternative way to monitor precipitation at global 185 

scale, compared with ground-based observations. Considering the high variability of precipitation 186 

in time and space, satellites can provide valuable information for estimating precipitation with 187 

suitable spatial and temporal resolution (Kidd and Huffman, 2011). For this study, we selected 188 

four widely used satellite-based products: TRMM multisatellite precipitation analysis, near-real-189 

time (3B42RT) Version 7 (TMPA-3B42RTV7.0), Climate Prediction Center MORPHing RAW 190 

Version 1 (CMORPH-RAWV1.0), Precipitation Estimation from Remotely Sensed Information 191 

using Artificial Neural Networks (PERSIANN), and PERSIANN-Cloud Classification System 192 

(PERSIANN-CCS). By using various meteorological satellites around the world, TMPA provides 193 

precipitation estimates at 0.25°×0.25° spatial resolution (covering 50°N to 50°S), at 3-hourly time 194 

scales, for 1998-2016 (Huffman et al., 2007). TMPA-3B42RTV7.0 is the near real-time (with 195 

latency of 7 h from the observation time) version of TMPA products. The satellite-based 196 

PERSIANN product is designed to produce global precipitation estimations at 0.25 × 0.25° spatial 197 

resolution using an artificial neural network. In order to generate 30-minute rainfall estimate, 198 

PERSIANN utilizes the global infrared (IR) information from geosynchronous satellites (GOES-199 

8, GOES-10, GMS-5, Metsat-6, and Metsat-7) provided by the National Oceanic and Atmospheric 200 

Administration (NOAA) Climate Prediction Center (CPC) and then aggregates these estimates into 201 

6-h rainfall (Hsu et al., 1997; Sorooshian et al., 2000). PERSIANN-CCS is a successor of the 202 

PERSIANN product that also benefits from satellite information on cloud attributes and further 203 

incorporates them into the rainfall estimation relationships (Hong et al., 2004). In comparison with 204 



PERSIANN, the CCS version has finer spatial resolution (0.04°×0.04°), covering 60°N-60°S for 205 

2004-present time at different temporal scales. CMORPH-RAWV1.0 is a near-real-time product 206 

developed by NOAA. It is based on low-orbital satellite passive microwave (PMW) sensors with 207 

IR information used to interpolate between successive PMW-derived rainfall intensity fields 208 

(Joyce et al., 2004). The primary and reprocessed versions of CMORPH are called Version 0.x 209 

and Version 1, respectively. 210 

2.3.3. Multi-source precipitation products 211 

Different multi-source precipitation products were developed due to the short period and 212 

uncertainties of precipitation estimation from satellite-based precipitation products. These multi-213 

source precipitation products are a combination of two or more precipitation estimations from 214 

various sources. In this study, we used seven high-resolution multi-source products, namely 215 

CMORPH bias-corrected Version 1 (CMORPH-CRTV1.0), CMORPH satellite-gauge merged 216 

Version 1 (CMORPH-BLDV1.0), Climate Hazards Group InfraRed Precipitation with Station V 217 

2 (CHIRPSV2.0), PERSIANN-Climate Data Record (PERSIANN-CDR), TRMM multisatellite 218 

precipitation analysis: research-grade (3B42) Version 7 (TMPA-3B42V7.0), Multi-Source 219 

Weighted Ensemble Precipitation Version 2 (MSWEPV2.0), and Princeton Global Forcings 220 

Version 2 (PGFV2.0). CMORPH-V1.0 contains three different precipitation products: (i) 221 

CMORPH-RAW (introduced earlier), (ii) CMORPH-CRT, the bias-corrected version using the 222 

probability density function (PDF)-matching bias-removal technique on CMORPH-RAW, and 223 

(iii) CMORPH-BLD merged product, generated by calibrating CMORPH-RAW estimates with 224 

in-situ data and using optional interpolation technique (Joyce et al., 2004). CHIRPSV2.0 is a 225 

another reliable, up-to-date product for many early warning objectives that covers areas exceeding 226 

50°N-50°S. It provides precipitation estimates in the period 1981-present time and combines high-227 



resolution satellite imagery (0.05°×0.05°) with data from in-situ stations (Funk et al., 2015). 228 

PERSIANN-CDR is also based on the original PERSIANN algorithm using Gridded Satellite B1 229 

(GridSat-B1) infrared data and adjusted using the Global Precipitation Climatology Project 230 

(GPCP) monthly product (Ashouri et al., 2015). This product was created for extreme daily 231 

precipitation events and climate studies that require data for more than 30 years. PERSIANN-CDR 232 

is available in high spatial resolution (0.25°×25°), covering 60N-60S for 1983-present time (with 233 

a 3-month time delay). TMPA-3B42V7.0 is the research product of TMPA, calibrated via gauge 234 

data and incorporating different sensor calibrations and additional post-processing. It is available 235 

in 0.25°×0.25° spatial resolution and covers 50°N to 50°S for 2000-2016 (Huffman et al., 2007; 236 

Liu, 2015). MSWEPV2.0, recently developed by Beck et al. (2019), is a global precipitation 237 

product with temporal and spatial resolution of 3 hours and 0.1° for 1979-2020. The exceptional 238 

feature of MSWEPV2.0 is that it combines in-situ, satellite, and reanalysis data to provide high-239 

quality global precipitation estimates. PGF is another global precipitation product that combines 240 

several sources, including in-situ, satellite, and reanalysis data, disaggregating them in time and 241 

space. It is available in 3-hour to monthly temporal scale with 1.0°, 0.5°, and 0.25° spatial 242 

resolution (Sheffield et al., 2006).  243 



Table 1. Main characteristics and references for different precipitation products used in this study. In the 244 

data source column, S, R, and G represents satellite, reanalysis, and gauge information, respectively. 245 

 246 

2.4.  Evaluation approach 247 

Several steps were taken to evaluate the performance of the global precipitation products. Initially, 248 

long-term time series of the precipitation estimates from all 14 global products and observed 249 

precipitation at rain gauge stations were collected and preprocessed by reformatting the data to 250 

 

Name Details Temporal 

coverage 

Temporal 

resolution 

Spatial 

coverage 

Spatial 

resolution 

Data 

source 

Reference 

Era5- Land European Center for 

Medium-range Weather 

Forecast ReAnalysis 5th 

Generation- land 

1950-

present 
Hourly Global 0.1° ×0.1° R 

(Hersbach et al., 

2020) 

MERRA-2 Modern-Era 

Retrospective analysis 

for Research and 

Applications, V2 

1980- 

present 
Hourly Global 0.5° ×0.67° R+G+S 

(Rienecker et al., 

2011) 

JRA-55 Japanese 55-year 

Reanalysis 
1959- 

present 
3 h Global 1.25° ×1.25° R 

(Kobayashi et al., 

2015) 

TMPA-

3B42RTV7.0 

TRMM multisatellite 

precipitation analysi: 

near-real-time 

(3B42RT) V7 

1998–2016 3 h 
60°N-

60°S 
0.25° ×0.25° S+G 

(Huffman et al., 

2007) 

TMPA-3B42V7.0 TRMM multisatellite 

precipitation analysi: 

research-grade (3B42) 

V7 

2000-2016 3 h 
50°N-

50°S 
0.25° ×0.25° S+G 

(Huffman et al., 

2007) 

CMORPH-RAW 

V1.0 

Climate Prediction 

Center MORPHing raw 

V1 

1998- 

present 
3 h 

60°N-

60°S 
0.25° ×0.25° S (Joyce et al., 2004) 

CMORPH-CRT 

V1.0 

CMORPH bias 

corrected V1 
1998- 

present 
3 h 

60°N-

60°S 
0.25° ×0.25° S+G (Xie et al., 2017) 

CMORPH-BLD 

V1.0 

CMORPH satellite-

gauge merged V1 
1998- 

present 
Daily 

60°N-

60°S 
0.25° ×0.25° S+G  

PERSIANN Precipitation Estimates 

from Remotely Sensed 

Information using 

Artificial Neural 

Network 

2000-

present 
Hourly 

60°N-

60°S 
0.25° ×0.25° S 

(Sorooshian et al., 

2000) 

PERSIANN-CCS PERSIANN-Cloud 

Classification System 
2003- 

present 
Hourly 

60°N-

60°S 
0.04° ×0.04° S (Hong et al., 2004) 

PERSIANN-CDR Precipitation Estimates 

from Remotely Sensed 

Information using 

Artificial Neural 

Network and Climate 

Data Record 

1983- 

present 
Daily 

60°N-

60°S 
0.25° ×0.25° S+G 

(Ashouri et al., 

2015) 

MSWEP V2.0 Multi-Source Weighted 

Ensemble Precipitation 

v.2.2 

1979- 

present 
3 h Global 0.25° ×0.25° R+G+S (Beck et al., 2019b) 

PGFV2.0 Princeton Global 

Forcings V2 1901-2012 3 h Global 0.25° ×0.25° R+G+S 
(Sheffield et al., 

2006) 

CHIRPSV2.0 Climate Hazards Group 

InfraRed Precipitation 

with Station V2 

1981- 

present 
Daily 

50°N-

50°S 
0.25° ×0.25° S+G (Funk et al., 2015) 



prepare them for performance evaluations, tasks carried out using Climate Data Operator (CDO) 251 

(Schulzweida, 2019). Various statistical metrics were then used to characterize model behaviors 252 

and quantify their associated uncertainties and errors in precipitation estimation. This step was 253 

carried out using Climate Data Tools (CDT) and HydroGOF packages in the R programming 254 

environment (Zambrano-Bigiarini, 2014). The error at different spatial and temporal scales for 255 

global precipitation products was computed and illustrated using various visualization techniques. 256 

The most common methods for error determination are continuous statistical parameters and 257 

metrics based on contingency tables. The primary purpose of this study was to evaluate the 258 

performance of precipitation products in daily and monthly time steps. However, annual time 259 

series and mean annual precipitation for precipitation products were also examined in the study 260 

area.  261 

2.4.1. Continuous statistical indices 262 

Kling-Gupta efficiency (KGE) was used to study the accuracy of precipitation estimations by 263 

different products. KGE combines correlation coefficient (r), bias (β), and variability component 264 

(γ) as (Gupta et al., 2009; Kling et al., 2012): 265 

KGE=1-√(r-1)2+(β-1)2+(γ-1)2                          (1) 266 

where r  denotes the Pearson correlation coefficient (hereafter CC, see Eq. (2)), β is the bias 267 

component defined as the ratio between average observed and estimated precipitation values (Eq. 268 

(3)), and γ represents the variability and is defined as the ratio of the estimated and observed 269 

coefficients of variations (eq. (4)). In the following equations, μO and μE are the average 270 

precipitation values in the observational and estimated times series, respectively, while σO and 271 

σE show the standard deviations of observations and estimations. n is the number of records in 272 



the time series with valid observed or estimated data (number of records excluding the no-data 273 

values in the time series). Oi and Ei also denote the observational and estimated data at date i in the 274 

time series. KGE, r, β, and γ all have their optimum value at unity. 275 

r =
1

n
∑

(oi−μO)∗(Ei−μE)

σO∗σE

n
1   (2) 276 

 β=
μE

μO

  (3) 277 

  γ =

σE
μE
σO
μO

  (4) 278 

2.4.2. Categorical statistical indices 279 

Categorical statistics measure the agreement between estimated and observed occurrence of 280 

events. In this study, the contingency table shown in Table 2 was used to define dichotomous 281 

estimations and calculate contingency table indices (Wilks, 2011). A dichotomous estimate 282 

determines the occurrence and non-occurrence of rainfall as "Yes" and "No" events, respectively. 283 

In order to detect “Yes” and “No” precipitation events, a threshold needs to be specified. In this 284 

study the threshold was set at 1 mm/day, based on similar assumptions in previous studies (e.g., 285 

Ghajarnia et al., 2015; Zhang et al., 2010). In the contingency table, a Hit event indicates the 286 

condition in which both observational and estimated datasets agree on the occurrence of 287 

precipitation, while a False Alarm (FA) shows that the precipitation event estimated by the model 288 

has not occurred in reality and is not a precipitation event in the observational dataset (Wilks, 289 

2011). Similarly, a Miss refers to an event recorded in the reference observation dataset but missed 290 

by the global precipitation estimation product, while a Correct Negative (CN) indicates that both 291 

observational dataset and estimation products have reported a No rainfall event (Wilks, 2011). 292 

Based on the time series of dichotomous conditions and the number of Hit, FA, Miss, and CN 293 



variables, different indicators are defined and can be calculated to evaluate the performance of 294 

different global models in estimation of precipitation occurrence (see Ebert et al. (2007) for more 295 

details). In this study, we used three indicators,  Probability of Detection (POD), False Alarm Ratio 296 

(FAR), and Heidke Skill Score (HSS), to measure the association between precipitation products 297 

and observed rainfall occurrences. POD determines the ratio of correctly identified rainfall events 298 

by the precipitation product to the total number of real rain events based on the observational 299 

dataset (perfect score = 1). FAR shows the ratio of the total number of false rainfall identifications 300 

by the model to the total number of estimated Yes rainfall events by the global precipitation 301 

product (perfect score = 0). HSS also measures the overall ability of precipitation estimation 302 

product in capturing the occurrence of precipitation events (perfect score = 1). Equations (5) to (7) 303 

were used to calculate POD, FAR, and HSS based on the dichotomous statistics according to Table 304 

2. 305 

Table 2. Contingency table for determining dichotomous (Yes/No) estimations and calculation of categorical 306 

indices 307 

  Observation 

  Yes No 

Estimation 
Yes a b 

No c d 

POD=
a

a + c
  (5)  308 

FAR=
b

b + a
  (6) 309 

HSS=
2(ad-bc)

[(a+c)(c+d)+(a+b)(b+d)]
  (7) 310 



 311 

Fig. 2. General framework for data preparation and performance evaluation used in this study. 312 

3. Results and Discussion 313 

3.1.  Overall performance of models at annual and monthly time scales  314 

The mean annual precipitation (MAP) map for Karun and Karkheh basins based on all gridded 315 

precipitation products and interpolated gauge records during the period 2003-2012 is shown in 316 

Figure 3. MAP in gauge records varied from 134 to 1384 mm/year across the basins and increased 317 

from the northwestern lowlands of Karkheh basin to the southeastern highlands of Karun. This 318 

indicates that there is a spatial pattern and relationship between MAP and elevation, with high-319 

altitude areas receiving higher amounts of annual precipitation. The terrain barrier effect leads to 320 

high precipitation rates over mountainous regions in the Zagros chain, which are a bulky feature 321 

with continuous ridge lines. In these areas, the precipitation rate is more affected by elevation 322 

changes. 323 



Overall, visual comparison of the MAP patterns for the basins showed that the main spatial patterns 324 

produced by TMPA-3B42V7.0 were the closest to the observations, followed by ERA5-Land and 325 

MERRA-2 with slight overestimations and CHIRPSV2.0 with a slight underestimation relative to 326 

the observational spatial pattern (Fig. 3). The PERSIANN family seemed to be less successful in 327 

capturing the spatial pattern of MAP in general, but PERSIANN-CCS performed better than the 328 

others, with more accurate estimations of MAP in the mountainous areas of Karun basin, while 329 

PERSIANN significantly underestimated MAP values in the highlands. CMORPH-CRT and 330 

CMORPH-BLD (adjusted versions) both improved estimations of CMORPH-RAW (non-adjusted 331 

version), but still underestimated MAP in the study area and did not correctly capture the 332 

increasing spatial pattern from lowlands to highlands. PERSIANN, MSWEPV2.0, and PGFV2.0 333 

simulated the observed spatial pattern of MAP in declining order and all largely underestimated 334 

precipitation in the study area. JRA-55 also showed relatively poor performance in capturing the 335 

MAP spatial pattern, considering its coarser spatial resolution compared with other products.  336 

Due to complex topography and the particular climate system over the study region, affected by 337 

coast proximity to the west and high mountainous ranges in the central lands, precipitation 338 

estimation was not an easy task for the global products studied. The highest and lowest MAP value 339 

among all products was produced by ERA5-Land and CMORPH-CRTV1.0, respectively, with 340 

recorded precipitation of up to 1500 and below 40 mm/year, respectively, in central areas of Karun 341 

basin (and southwestern parts of Karkheh basin). As found previously by Javanmard et al. (2010) 342 

and Darand et al. (2017), TMPA-3B42V7.0 showed relatively good performance in capturing 343 

annual precipitation in the study region, with only slight underestimation.  344 



 345 

Fig. 3. Mean annual precipitation (MAP) 2003-2012 retrieved from all products at their original grid sizes. 346 

Blue, red, and green indicates satellite-based, multi-source, and reanalysis precipitation products, 347 

respectively. 348 



Figures 4 and 5 show the temporal variation in annual and monthly precipitation time series 2004-349 

2012, measured at the rain gauge stations and estimated by different precipitation products. The 350 

bias-adjusted products MERRA-2, MSWEPV2.0, CMORPH-CRTV1.0, CMORPH-BLDV1.0, 351 

TMPA3B42V7.0, PERSIANN-CDR, and PGFV2.0, but not CHIRPSV2.0, showed almost similar 352 

trends throughout the study period (except for 2004) with annual variation close to that in 353 

observations (Fig. 4). Although the performance of some unadjusted products (i.e., JRA-55, 354 

PERSIANN-CCS, and ERA5-Land) was not acceptable when compared against the observational 355 

data, their performance slightly improved after 2008. ERA5-Land made the highest overestimation 356 

of all products, while PERSIANN and CMORPH-RAWV1.0 made the highest underestimation on 357 

an annual basis (Fig. 4). The temporal trend of precipitation at monthly scale showed relatively 358 

better performance of TMPA-3B42V7.0 and poor estimation by PERSIANN-CDR, PERSIANN-359 

CCS, PERSIANN, and CHIRPSV2.0 (Fig. 5). Other products were capable overall of detecting 360 

the general trend in observed precipitation with reasonable accuracy and slight over- or under-361 

estimation. All products except ERA5-Land tended to underestimate observed precipitation over 362 

the study area, both at annual and monthly time scales. The results obtained from time series 363 

analysis are consistent with the results from mean annual precipitation maps (see Fig. 3), which 364 

showed great overestimation by ERA5-Land across mountainous regions and better results for 365 

TMPA-3B42V7.0 overall. Although both PERSIANN-CDR and TMPA-3B42V7.0 utilized the 366 

same observational precipitation data source (GPCP; Adler et al., 2003; Huffman et al., 2007) to 367 

improve their estimations, the calibration procedure used in TMPA-3B42V7.0 seemed to be more 368 

efficient than PERSIANN-CDR and provided TMPA-3B42V7.0 with better accuracy for the study 369 

area in terms of the spatial variation in MAP and monthly and annual estimations.  370 



 371 

Fig. 4. Mean annual precipitation in the study area based on the observational dataset and estimations made 372 

by global precipitation products. Reanalysis, satellite-based, and multi-source precipitation products are 373 

presented in the top, middle, and bottom panel, respectively. 374 



 375 

Fig. 5. Mean monthly precipitation in the study area based on the observational dataset and estimations made 376 

by global precipitation products. Reanalysis, satellite-based, and multi-source precipitation products are 377 

presented in the top, middle, and bottom panel, respectively. 378 



3.2.  Statistical error in global precipitation product estimates at daily scale 379 

The performance of all 14 precipitation products at daily time steps, based on the KGE error index 380 

and its related components, is compared and evaluated in Figure 6. All products showed relatively 381 

poor accuracy, with negative KGE value for PERSIANN-CDR, CMORPH-RAWV1.0, 382 

PERSIANN, and CHIRPSV2.0. All products had KGE <0.4, but MERRA-2, with approximately 383 

KGE=0.4, performed better than all other products (Fig. 6). Overall, the bias-adjusted products 384 

(i.e., TMPA-3B42V7.0, CMORPH-BLDV1.0, and CMORPH-CRTV1.0) outperformed the 385 

unadjusted products (i.e., CMORPH-RAWV1.0 and TMPA-3B42RTV7.0) in terms of KGE 386 

(except for PERSIANN-CDR, which was the most inaccurate product). 387 

Given the poor performance of PERSIANN-CDR, CMORPH- RAWV1.0, PERSIANN, and 388 

CHIRPSV2.0 (Fig. 6), caution is needed in water-related applications of these products at daily 389 

time scale in the study area.  390 

The CC, bias, and variability ratio values revealed interesting details on the performance of 391 

different products, leading to their general KGE values (Fig. 6). Based on CC, ERA5-Land 392 

performed best among all products (CC >0.6), but its high bias value (>1.5) led to low overall 393 

KGE value (0.22) for the study area. In terms of bias, PERSIANN, CMORPH-RAWV1.0, 394 

CMORPH-CRTV1.0, CMORPH-BLDV1.0, MSWEPV2.0, and PGFV2.0 underestimated 395 

precipitation to some extent (bias <0.7) while ERA5-Land was the only product with clear 396 

overestimation at daily time scale, similar to the annual and monthly results in Figures 4 and 5. In 397 

terms of variability ratio, MERRA-2, TMPA-3B42V7.0, and PGFV2.0 with their higher KGE 398 

values also displayed variability ratio values closer to one, while CMORPH-RAWV1.0 and 399 

PERSIANN-CDR, with negative KGE values, tended to underestimate the variability in the 400 

observed precipitation dataset across the study area and at daily scale.   401 



 402 

Fig. 6. Box plots of Kling-Gupta Efficiency (KGE) index and its related components correlation coefficient 403 

(CC), bias, and variability ratio (VR), calculated for all precipitation products at daily time steps throughout 404 

2003-2012. The products are arranged in order of highest (top) to lowest (bottom) average KGE.  405 

Figure 7 shows the spatial distribution of KGE index for different products that gave scores varying 406 

from very low to high for the study area. The KGE scores ranged from around -1.65 for 407 

PERSIANN-CDR to approximately 0.8 for MERRA-2 across various regions, indicating varying 408 

performance of the products in matching reference precipitation at daily time steps. Considering 409 

the spatial distribution of KGE, it is noteworthy that CHIRPSV2.0, CMORPH-RAWV1.0, 410 

CMORPH-CRTV1.0, and all products in the PERSIANN family showed lower accuracy, with 411 

KGE <0.3 in most regions.  However, MERRA-2, MSWEPV2.0, CMORPH-BLDV1.0, ERA5-412 

Land, and PGFV2.0 outperformed other products and provided better daily estimations at different 413 

locations around the study area. The results also indicated that using gauge data was effective for 414 

products in the CMORPH and TMPA families, while there was no significance improvement for 415 



the bias-adjusted version of PERSIANN (i.e., PERSIANN-CDR) (Fig. 7). CMORPH-BLDV1.0, 416 

which benefits from a proper calibration procedure, is PMW-based and the distinction between 417 

snowfall and precipitation over mountainous regions is well captured by this product. The IR-418 

based products (i.e., CHIRPSV2.0, PERSIANN, PERSIANN-CDR, and PERSIANN-CCS) did 419 

not perform well for mountainous regions (Fig. 7). Previous studies suggest that IR-based products 420 

have limitations in estimating orographic rain events over complex terrain (Derin et al., 2016; Shen 421 

et al., 2020; Tong et al., 2014; Yong et al., 2015), as confirmed by our findings (Fig. 7). The low 422 

KGE value of MSWEPV2.0 for the Zagros mountains might result from associated uncertainty 423 

from all precipitation products for this region, since it merges multiple precipitation products to 424 

produce its final estimations (Beck et al., 2019b). Overall, the findings and patterns obtained (Fig. 425 

7) indicated that the majority of global precipitation products were ineffective for daily 426 

hydrological applications across the study area. Due to the vital importance of Karun and Karkheh 427 

basins for water resources and hydrology in Iran, use of global daily precipitation products after 428 

proper bias adjustment and enhancement of the estimations is indicated.  429 



 430 

Fig. 7. Spatial distribution of Kling-Gupta Efficiency (KGE) index for the different global precipitation 431 

products at daily time step. Blue, red, and green indicates satellite-based, multi-source, and reanalysis 432 

precipitation products, respectively. 433 

Full CC, bias, and variability ratio maps are provided in Supplementary Information (Figs. S1-3). 434 

Fig. S1 compared the spatial patterns of the CC maps between different global precipitation 435 

products at daily time scale. In general, MSWEPV2.0, ERA5-Land, and CMORPH-BLDV1.0 436 

estimates were well correlated with the gauge precipitation data, especially in the southeastern 437 



region of Karun basin, with CC values ranging from 0.5 to 0.9, while lower CC values (0-0.5) 438 

were mainly found for Karkheh basin. ERA5-Land outperformed all other products and its 439 

estimates were well correlated with gauge observations (CC >0.7) at the majority of stations. 440 

Corresponding bias-adjusted versions of CMORPH and TMPA products produced better results 441 

across the study area than their non-adjusted versions. However, PERSIANN-CDR showed no 442 

improvement on its real-time version. The poor performance of CMORPH-CRTV1.0 and 443 

PERSIANN might be due to inability of the PDF-matching-based bias-removal technique and 444 

cloud-top-based IR observations over complex terrains (Alijanian et al., 2017; Dinku et al., 2007). 445 

Based on this index, the worst results were produced by CHIRPSV2.0. 446 

Among the unadjusted products, ERA5-Land significantly overestimated precipitation amount 447 

(bias >1.35) in most regions, while other unadjusted products showed lower bias (Fig. S2). 448 

Dominant precipitation processes over complex topographies such as the Zagros mountains may 449 

have resulted in poor performance of ERA5-Land, which is consistent with findings by Fallah et 450 

al. (2020). The high bias rate for ERA5-Land may arise from its poor snowfall or precipitation 451 

detection, especially during wet months, while the lack of a proper snowfall removal process in 452 

ERA5-Land is reported to cause high overestimation for mountainous regions (Jiang et al., 2021; 453 

Orsolini et al., 2019). The spatial distribution of bias also showed that all products except ERA5-454 

Land were susceptible to low bias rate for stations located in humid southeastern parts of Karun 455 

basin. In the arid southern regions of both basins, all products overestimated precipitation amount, 456 

with bias values ranging between 1.15 and 1.35. Thus the precipitation products tended to 457 

underestimate precipitation amount for wet regions and overestimate it for dry regions, which is 458 

consistent with previous results (Amjad et al., 2020; Chiaravalloti et al., 2018; De Leeuw et al., 459 

2015; El Kenawy et al., 2015; Yuan et al., 2017).  460 



Overall, the results showed that MERRA-2, PERSIANN-CDR, PGFV2.0, and CHIRPS had 461 

acceptable accuracy for a proportion of stations, with bias rate between 0.85 and 1.35. However, 462 

these products showed moderate to high overestimation for some stations, especially in 463 

mountainous regions in southeastern Karun basin. PERSIANN and CMORPH-RAWV1.0 showed 464 

the worst performance among all products, with strong underestimation (bias <0.45) mostly for 465 

stations located in the southeastern part of Karun basin. 466 

The spatial distribution of variability ratio in daily time steps for all products is shown in Fig. S3. 467 

The bias-adjusted MERRA-2, CHIRPSV2.0, and TMPA-3B42V7.0 products were superior to 468 

other products in terms of variability ratio and had the highest number of stations with values close 469 

to the optimum (0.95-1.05). ERA5-Land, PERSIANN-CDR, CMORPH-RAWV1.0, JRA-55 and 470 

PERSIANN-CCS showed significant underestimation based on this index for most stations. 471 

Among all products, PERSIANN-CDR had the most stations with variability ratio <0.75, 472 

indicating a high rate of underestimation for the study region. Interestingly, among all products 473 

with overestimation (variability ratio >1.15), the rate of overestimation was highest for stations 474 

located in southeast Karun basin and to some extent in northwest Karkheh basin. The results of 475 

variability ratio in daily time steps, along with all other statistical indicators, indicated that almost 476 

all products could not capture accurately the spatial variability in precipitation across both basins. 477 

Therefore, effective preprocessing methods must be considered prior to utilizing these products 478 

for complex terrain.  479 

The performance of different precipitation products over the study area, in terms of the 480 

contingency table of POD, FAR, and HSS, is compared and evaluated in Figures 8-10. ERA5-481 

Land greatly outperformed all other products, with the highest POD value (>0.7). However, this 482 

might come at the cost of overestimating precipitation events, as ERA5-Land also displayed the 483 



greatest bias rate (see Figs. 4-6) and highest FAR values for the study area (Fig. 9). This is in line 484 

with previous findings (Amjad et al., 2020; De Leeuw et al., 2015; Gampe and Ludwig, 2017; 485 

Hénin et al., 2018) for both the ERA5 and ERA-interim products. PERSIANN-CCS, PERSIANN-486 

CDR, JRA-55, and CMORPH-BLDV1.0 showed acceptable accuracy and performed better than 487 

the other products in terms of POD index (Fig. 8). Interestingly and in contrast to the results for 488 

daily KGE index, calibration of PERSIANN-CDR and CMORPH-BLDV1.0 using gauge 489 

information significantly improved their rainfall detection capability. However, this was not the 490 

case for CMORPH-CRTV1.0 and TMPA-3B42V7.0, the adjusted versions of CMORPH-491 

RAWV1.0 and TMPA-3B42RTV7.0, respectively. Overall, CHIRPSV2.0, CMORPH-RAWV1.0, 492 

and PERSIANN had the worst results of all products, based on POD index (Fig. 8).  493 

Although the precipitation products performed relatively well in detecting rainy days, the FAR 494 

values were slightly high for all products across both basins (Fig. 9), showing lower ability of all 495 

products in detecting “no rainy” events. This was particularly the case for ERA5-Land, as 496 

explained before considering its high POD value. Conversely, CMORPH-RAWV1.0 which 497 

provided the lowest POD index values in Fig. 8, performed better than all other products in terms 498 

of FAR index, explaining the high underestimation of observed precipitation by CMORPH-499 

RAW1.0 across both basins (Fig. 9). Interestingly, the spatial distribution of FAR index indicated 500 

that bias-adjusted products reduced the accuracy of their unadjusted versions, especially for 501 

PERSIANN-CDR. This might be because improving either FAR or POD usually leads to the 502 

deterioration of the other, as there is a trade-off between the ability of a model in detecting rainy 503 

days (high POD) and falsely reporting them (high FAR) (Ghajarnia et al., 2016). The FAR values 504 

showed no particular spatial pattern across the study area (Fig. 9).  505 



Fig. 10 demonstrates the ability of products in correct detection of rainfall events based on the 506 

HSS index. CMORPH-BLDV1.0 and MSWEPV2.0 had the highest accuracy among all products 507 

in terms of HSS, with values >0.6 across the study area. In addition, MERRA-2 and ERA5-Land 508 

showed acceptable performance for both basins, but none of the products performed well for the 509 

northern mountainous region in Karun basin (HSS values around 0.3). CHIRPSV2.0, CMORPH-510 

RAWV1.0, TMPA-3BRTV7.0, and PERSIANN showed the worst performance across both basins 511 

(CHIRPSV2.0 had the worst results of all products). Comparing the spatial distribution of HSS for 512 

unadjusted and bias-adjusted versions of the products (Fig. 10), the results indicated enhanced 513 

performance of the adjusted versions, particularly in the PERSIANN and TMPA families, where 514 

the bias-adjusted versions showed higher HSS in southern areas of the Karun basin. 515 



 516 

Fig. 8. Spatial distribution of Probability of Detection (POD) index for global precipitation products versus 517 

gauge observations. Blue, red, and green indicates satellite-based, multi-source, and reanalysis precipitation 518 

products, respectively. 519 



 520 

Fig. 9. Spatial distribution of False Alarm Ratio (FAR) index for global precipitation products versus gauge 521 

observations. Blue, red, and green indicates satellite-based, multi-source, and reanalysis precipitation 522 

products, respectively. 523 



 524 

Fig. 10. Spatial distribution of Heidke Skill Score (HSS) for global precipitation products versus gauge 525 

observations step. Blue, red, and green indicates satellite-based, multi-source, and reanalysis precipitation 526 

products, respectively. 527 

3.3.  Statistical analysis of global precipitation products at monthly time steps 528 

To examine the performance of the global precipitation products more thoroughly at monthly 529 

scale, which is appropriate temporal resolution for water resources and climate change studies, the 530 

evaluations were repeated based on monthly time series. Compared with daily results (see Fig. 6), 531 

monthly KGE scores varied over a wider range at monthly time steps and reached higher values 532 

(Fig. 11). TMPA-3B42V7.0, PERSIANN-CDR, MERRA-2, and PGFV2.0 outperformed other 533 

products in terms of monthly KGE score, with average KGE values >0.5. The bias-adjusted 534 



products (TMPA-3B42V7.0, PERSIANN-CDR, CMORPH-BLDV1.0, and CMORPH-CRTV1.0) 535 

showed better monthly KGE scores than their unadjusted versions. Surprisingly, TMPA-536 

3B42RTV7.0, JRA-55, and PERSIANN-CCS, which are basically unadjusted products, performed 537 

even better than some bias-adjusted products such as MSWEPV2.0, CMORPH-BLDV1.0, 538 

CHIRPSV2.0, and CMORPH-CRTV1.0. Comparing the results of PERSIANN-CDR at monthly 539 

and daily time steps revealed that the significant improvement in its precipitation estimations at 540 

monthly time steps might be related to the calibration of PERSIANN-CDR with monthly GPCP 541 

data (Ashouri et al., 2015). The results also indicated higher CC values in comparison with daily 542 

values, and for the majority of the studied products (Fig. S4). MSWEPV2.0 and ERA5-Land also 543 

had very high monthly CC, but their KGE values were low due to their high under- and 544 

overestimation, respectively (low and high bias index). The high CC value obtained for 545 

MSWEPV2.0 might be related to its algorithm, in which observational data receive higher weights 546 

based on their CC in the merging scheme (Beck et al., 2019b). All products were relatively 547 

successful in representing the monthly variation in observed precipitation, as the variability indices 548 

mostly ranged around the optimum value (unity).  549 



 550 

Fig. 11. Reliability of the precipitation products at regional scale in monthly time steps 2003-2012. The 551 

products are arranged from most (top) to least (bottom) efficient in terms of average Kling-Gupta Efficiency 552 

(KGE). 553 

Figure 12 shows the spatial distribution of KGE score for the different global precipitation 554 

products. The overall spatial pattern of KGE score suggested that almost all products (except 555 

CMORPH-RAWV1.0, CMORPH-CRTV1.0, and PERSIANN) performed well in Karkheh basin, 556 

with improved performance of the bias-adjusted versions. However, in Karun basin with its more 557 

diverse topographical conditions and higher mountains, MERRA-2, PERSIANN-CDR, and 558 

TMPA-3B42V7.0 performed moderately well, while other products showed poor performance. 559 

The results also indicated that reanalysis products were significantly different from each other, 560 

with MERRA-2 having high accuracy across both basins, while ERA5-Land and JRA-55 showed 561 

poor to moderate accuracy. The bias-adjusted products of MSWEPV2.0, CMORPH-CRTV1.0, 562 



and PGFV2.0 showed poor performance across mountainous regions, indicating unsuccessful bias 563 

adjustments in the study area. The main reasons for this might be inherent limitations of the 564 

calibration procedure and lack of a gauge network in remote highlands (Dahri et al., 2021).  565 

 566 

Fig. 12. Spatial distribution of Kling-Gupta Efficiency (KGE) index for global precipitation products versus 567 

gauge observations in monthly time steps. Blue, red, and green indicates satellite-based, multi-source, and 568 

reanalysis precipitation products, respectively. 569 

The spatial distributions of CC and variability index are shown in Figs S4 and S5 in Supplementary 570 

Information. Due to the similarity of bias at monthly and daily time steps, monthly biases are not 571 

reported again in this section. All products except CMORPH-RAWV1.0, CMORPH-CRTV1.0, 572 

PERSIANN, and CHIRPSV2.0 were well correlated with gauge records (CC >0.7), and showed 573 



their best performance for stations located in the west and southeast of the study area (Fig. S4). 574 

Compared with daily time steps (Fig. S1), bias-adjusted precipitation products provided higher 575 

accuracy and were more reliable across both basins at monthly time steps. However, the 576 

differences between bias-adjusted and unadjusted versions were more negligible at daily compared 577 

with monthly time steps, which means more efficient adjustments in monthly outputs of the 578 

models. This is in line with previous findings (Alijanian et al., 2017) on the performance of 579 

PERSIANN, PERSIANN-CDR, TMPA-3B42V7.0, and MSWEP at different temporal scales in 580 

Iran indicating that the CC value increases significantly at monthly time steps compared with daily 581 

time steps. Fallah et al. (2020) found that based on monthly CC index, ERA5 performed well, 582 

whereas JRA-55 and MSWEPV2.0 showed relatively poor performance in Karun basin, which 583 

was contradictory to our findings. This might be due to the lower gauge density of the reference 584 

dataset in Fallah et al. (2020) or the difference between the study periods in the evaluations (2000-585 

2015 in Fallah et al. (2020), as opposed to 2003-2012 in this study).  586 

Figure S5 shows the spatial distribution of variability ratio in global precipitation products over 587 

the study area. The bias-adjusted products MERRA-2, MSWEPV2.0, CMORPH-BLDV1.0, and 588 

TMPA-3B42V7.0 were able to better capture the precipitation variability across the two basins 589 

(variability ratio between 0.9 and 1.05 in most regions), indicating that these products could be 590 

used to predict monthly precipitation variability with higher confidence level. However, the 591 

CHIRPSV2.0, JRA-55, and PERSIANN-CDR products largely underestimated precipitation 592 

variability, particularly in southwestern parts of the study area (variability ratio below 0.85). In 593 

addition, some products showed great overestimation in the north of Karkheh basin (PERSIANN, 594 

CMORPH-CRTV1.0, and CMORPH-RAWV1.0) and in the mountainous southeastern part of 595 

Karun basin (PERSIANN, CMORPH-CRTV1.0, and TMPA-3B42RTV7.0). Overall, considering 596 



the variability ratio of the bias-adjusted versions of PERSIANN, TRMM, and CMORPH (but not 597 

CMORPH-CRTV1.0), it is evident that the use of gauge records converted the overestimated 598 

outputs of these products to optimum or underestimated values.  599 

3.4.  Model rankings and summary of evaluations 600 

A performance diagram (Roebber, 2009) was created to summarize the results. This diagram uses 601 

the categorical indicators POD, SR (Success Ratio), CSI (as labeled solid contours) and bias (as 602 

dashed lines with labels on the outward extension of the line) and summarizes model performance 603 

based on contingency table indices, with the best values in the top right and the worst in the bottom 604 

left corner. To evaluate the performance of the 14 precipitation products for different precipitation 605 

levels, precipitation intensity was divided into four categories: 0-5, 5-10, 10-20, and ≥ 20 mm/day, 606 

indicating light, moderate, heavy, and extreme rainfall, respectively. 607 

The performance diagram for all products (Fig. 13) indicated that MERRA-2, CMORPH-608 

BLDV1.0, MSWEPV2.0, PGFV2.0, JRA-55, and ERA5-Land outperformed other products in 609 

correctly capturing precipitation occurrences, followed by PERSIANN-CDR. The results also 610 

indicated that bias-adjusted versions of PERSIANN (PERSIANN-CDR) and CMORPH 611 

(CMORPH-BLDV1.0 and CMORPH-CRTV1.0) performed better than their unadjusted versions 612 

(Fig. 13). In the TMPA family, incorporation of gauge information did not improve estimation of 613 

precipitation occurrence by TMPA-3B42V7.0. Surprisingly, all products had a near-perfect score 614 

in detecting light rainfall events (0-5 mm/day). However, the performance of all products in 615 

detecting moderate (5-10 mm/day) and heavy (10-20 mm/day) precipitation events deteriorated. 616 

Points were closer to the no skill area for the moderate class and scattered in the plot (with better 617 

performance of ERA5-Land) for the heavy precipitation class. ERA5-Land, followed by MEERA-618 

2, outperformed other products in detecting extreme precipitation events (Fig. 13). For this 619 



precipitation category JRA-55, PERSIANN-CDR, CMORPH-BLDV1.0, and MSWEPV2.0 620 

performed similarly, with SR <0.5, POD <0.2, CSI <0.2, and bias varying from 0.3 to 0.5. 621 

CMORPH-RAWV1.0, and CHIRPSV2.0 were the worst products at capturing heavy and extreme 622 

precipitation events. TMPA-3B42RTV7.0 showed similar performance to TMPA-3B42V7.0, 623 

while other bias-adjusted products (CMORPH-BLDV1.0, CMORPH-CRTV1.0, and PERSIANN-624 

CDR) outperformed their unadjusted versions in the heavy precipitation class. Overall, the 625 

performance diagram indicated that ERA5-Land and MERRA-2 performed better than the other 626 

products, particularly in reproducing rainfall events above 20 mm/day (Fig. 13). However, all 627 

products seemed to perform well in capturing rainfall events in the light intensity class. Previously, 628 

Nashwan et al. (2020) found better performance for Global Satellite Mapping of Precipitation 629 

(GSMaP) (Ushio et al., 2009) and African Rainfall Climatology (ARC) (Novella and Thiaw, 2013) 630 

for the 0-5 mm/day precipitation class in Egypt.  631 



 632 

Fig. 13. Performance diagram summarizing the results of contingency table indices for global precipitation 633 

products at different precipitation intensity and the whole time series. The light, moderate, heavy, and 634 

extreme class corresponds to 0-5, 5-10, 10-20, and ≥ 20 mm/day, respectively. Points closer to the top right 635 

corner indicate better ability of models in correctly detecting precipitation occurrence. 636 

The overall ranking of different precipitation products in term of average monthly and daily KGE 637 

scores (Fig. 14) showed that the performance of products at monthly time scale was around twice 638 

as good as at daily time scale. This might have been influenced by merging the monthly 639 

observational datasets in some products, e.g., PERSIANN-CDR. PERSIANN-CDR was the worst 640 

performing product at daily time scale, with even worst performance than PERSIANN (Fig. 14a). 641 

However, its performance improved considerably at monthly time scale, when PERSIANN-CDR 642 

was the second best product (Fig. 14b). Conversely, the performance of CMORPH-BLDV1.0 643 



deteriorated from daily to monthly time scale (Fig. 14). Based on the average KGE index, TMPA-644 

3B42V7.0, MERRA-2, and PGFV2.0 were the three best-performing products in estimation of 645 

precipitation rates, both at daily and monthly time scales. CMORPH-BLDV1.0 and PERSIANN-646 

CDR were also among the best products, but only at daily and monthly scale, respectively.  647 

 648 

Fig. 14. Ranking of global precipitation products based on (a) daily and (b) monthly Kling-Gupta Efficiency 649 

(KGE) index. 650 

4. Conclusions 651 

The performance of 14 high-resolution precipitation products (CMORPH-RAWV1.0, CMORPH-652 

BLDV1.0, CMORPH-CRTV1.0, PERSIANN, PERSIANN-CDR, PERSIANN-CDR, MSWEPV2.0, 653 

PGFV2.0, JRA-55, ERA5-Land, MERRA-2, CHIRPSV2.0, TMPA-3B42RTV7.0, TMPA-3B42V7.0) in 654 

estimating daily and monthly precipitation in Karun and Karkheh basins, Iran, 2003-2012 was evaluated 655 

and compared against reference observations from 254 local gauges across both basins. Different statistical, 656 

categorical, and visualization methods were used to scrutinize different aspects of the performance of the 657 

global precipitation products. The conclusions obtained were as follows: 658 



1. Comparison of MAP maps based on observational data and global precipitation products revealed 659 

that TMPA-3B42 (both versions), ERA5-LAND, and MERRA-2 provided better annual estimates 660 

for the whole study area.  661 

2. For annual time series of precipitation averaged over the whole study area, all products except 662 

CHIRPSV2.0 achieved similar performance in capturing changes in annual observed precipitation 663 

after 2004. At monthly time steps, TMPA-3B42V7.0 outperformed all other products, with 664 

estimates closest to the reference observations. ERA5-Land overestimated annual precipitation, 665 

while all other products were either close to or underestimated the reference dataset.  666 

3. Statistical evaluation revealed poor accuracy of all products at daily time scale, but all bias-adjusted 667 

products except PERSAINN-CDR outperformed their unadjusted version. ERA5-Land was not 668 

among the best-performing products at daily time scale. Its high CC value denoted good correlation 669 

with observed precipitation over the study area, but its high bias rate and low variability ratio led 670 

to relatively low KGE score.    671 

4. Three categorical metrics were employed (POD, FAR, HSS). Based on POD, ERA5-Land, 672 

PERSIANN-CCS, PERSIANN-CDR, JRA-55, and CMORPH-BLDV1.0 were the best-performing 673 

products. In addition, all bias-adjusted products outperformed their unadjusted versions based on 674 

POD. Based on FAR, correction lowered the performance of uncorrected versions. Based on the 675 

overall HSS index, CMORPH-BLD V1.0, MSWEPV2.0, MERRA-2, and ERA5-Land 676 

outperformed other products across the study area. None of the products performed well in 677 

mountainous areas in Karun basin.  678 

5. Statistical indices indicated considerable improvement in the performance of all products when 679 

applied to monthly results, almost twice as good as for daily time steps. In term of monthly KGE, 680 

TMPA-3B42V7.0, PERSIANN-CDR, and MERRA-2 were the best-performing products, with 681 

average KGE >0.5. Due to the complex precipitation pattern over highland areas, all products 682 

except TMPA-3B42V7.0, PERSIANN-CDR, and MERRA-2 showed poor accuracy in these 683 



regions based on the KGE index. Overall, based on all indices at monthly time scale, bias-adjusted 684 

products outperformed their unadjusted versions.  685 

6. A performance diagram showed good reliability of all products for the light rainfall category (0-5 686 

mm/day), but poor accuracy for moderate to heavy precipitation classes. ERA5-Land outperformed 687 

other products in detecting rainfall occurrences above 10 mm/day, with ERA5-Land joining it for 688 

the extreme precipitation class (>20 mm/day). Ranking the products in terms of accurate estimation 689 

of precipitation rates based on average KGE index showed that TMPA-3B42V7.0 and MERRA-690 

2 were the two most reliable products at both daily and monthly time scale across Karun and 691 

Karkheh basins in southwest Iran.  692 

These findings provide better insights on the performance of different global precipitation products for two 693 

crucial and threatened basins in Iran and can support other hydrological and water resources studies in the 694 

region. The differences found between products in estimating precipitation at daily or monthly time scale 695 

show the importance of evaluations of this type, which can allow other researchers to choose their preferred 696 

products based on their specific needs and preferences.  697 
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