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Abstract

Detection of induced polarisation (IP) effects in airborne electromagnetic (AEM) measurements does not yet have an established

methodology. This contribution develops a Bayesian approach to the IP-detectability problem using decoupled transdimen-

sional layered models, and applies an approach novel to geophysics whereby transdimensional proposals are used within the

embarrassingly parallelisable and robust static Sequential Monte Carlo (SMC) class of algorithms for the simultaneous inference

of parameters and models. Henceforth referring to this algorithm as Reversible Jump Sequential Monte Carlo (RJSMC), the

statistical methodological contributions to the algorithm account for adaptivity considerations for multiple models and pro-

posal types, especially surrounding particle impoverishment in unlikely models. Methodological contributions to solid Earth

geophysics include the decoupled model approach and proposal of a statistic that use posterior model odds for IP detectability.

A case study is included investigating detectability of IP effects in AEM data at a broad scale.
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Key Points:8

• We introduce a reduced model space approach via decoupled layered model parame-9

ters for inference of induced polarisation (IP) models versus conductive-only models10

fitted to airborne electromagnetic (AEM) data.11

• For model and parameter inference we develop an adaptive static sequential Monte Carlo12

algorithm with reversible jump Markov chain Monte Carlo proposals (RJSMC).13

• We successfully apply RJSMC to perform airborne induced polarisation (AIP) detectabil-14

ity on data from a large survey that demonstrates spatial continuity.15
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Abstract16

Detection of induced polarisation (IP) effects in airborne electromagnetic (AEM) measurements17

does not yet have an established methodology. This contribution develops a Bayesian approach18

to the IP-detectability problem using decoupled transdimensional layered models, and applies19

an approach novel to geophysics whereby transdimensional proposals are used within the em-20

barrassingly parallelisable and robust static Sequential Monte Carlo (SMC) class of algorithms21

for the simultaneous inference of parameters and models. Henceforth referring to this algo-22

rithm as Reversible Jump Sequential Monte Carlo (RJSMC), the statistical methodological con-23

tributions to the algorithm account for adaptivity considerations for multiple models and pro-24

posal types, especially surrounding particle impoverishment in unlikely models. Methodolog-25

ical contributions to solid Earth geophysics include the decoupled model approach and pro-26

posal of a statistic that use posterior model odds for IP detectability. A case study is included27

investigating detectability of IP effects in AEM data at a broad scale.28

Plain Language Summary29

Electromagnetic models for solid-Earth geophysics often make assumptions to ease com-30

putation. These assumptions may hold in the majority of cases, however in cases where it is31

impossible to explain certain problematic data using such models it is necessary to either re-32

visit the model assumptions or to consider empirical model approximations. In this research,33

the problematic data contains significant anomalous measurements which are hypothesised to34

be due to the presence of a phenomenon known as induced polarisation (IP). This phenomenon35

is possibly explained using an empirical extension to current epistemological physical mod-36

els given sufficient statistical evidence. It is the purpose of this research to introduce a rigor-37

ous statistical methodology for detecting when it is more likely that the empirical model will38

explain the data versus the epistemological model. This methodology is tested on artificial and39

real-world data, demonstrating the applicability and usefulness of the approach.40

1 Introduction41

Negative or steeply-decaying measurements of magnetic flux density in a concentric-loop42

airborne electromagnetic (AEM) system are usually inexplicable in electromagnetic models43

that ignore intrinsic chargeability. Despite wide acknowledgement of the possibility that these44

and other anomalies are caused by induced polarisation (IP) in subsurface materials (Kratzer45

& Macnae, 2012), confirmation of these hypotheses for airborne data is currently an open area46

of research. Moreover, the influence of such IP effects is not limited to producing negative mea-47

surements; significant distortions in off-time transients can present in any number of ways that48

can produce incorrect conductivity values in non-IP ground models (Viezzoli & Manca, 2020).49

Deterministic methods for inverting time-domain AEM data with hypothesised IP effects50

generally do not consider parameter or model uncertainty, and as such do not directly provide51

a means for model inference. Approximate methods for model selection such as the Akaike52

Information Criterion (AIC) (Akaike, 1974) are not robust to the pathological posteriors of-53

ten found in layered-Earth geophysical models. To date, the most advanced Bayesian sampling54

approach applied to the Cole-Cole IP model (Cole & Cole, 1941) has been Markov Chain Monte55

Carlo (MCMC) for within-model parameter inference of non-airborne time and frequency do-56

main data (Ghorbani et al., 2007). Related work in conductive-only electromagnetic models57

applied to airborne data has advanced as far as transdimensional inference via various imple-58

mentations of reversible jump Markov chain Monte Carlo (RJMCMC) (Brodie & Sambridge,59

2012; B. Minsley, 2011; Hawkins et al., 2017) and parallel-tempering RJMCMC (Blatter et60

al., 2018). It is a natural progression to consider Bayesian transdimensional inference meth-61

ods for IP detection in airborne data in a similar manner.62

Induced polarisation in AEM data, hitherto referred to as airborne induced polarisation63

(AIP), has attracted recent research interest posing the question of detecting such effects. This64
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has been driven by the fact that ground-based IP methods comprise some of the most widely65

used techniques in mineral exploration, not only for the discovery of many anomalous min-66

eralisation prospects due to their chargeable response (Meju, 2002), but also for the increas-67

ing ability to identify subsurface materials and mineralogy (Merriam (2007), Qi et al. (2018),68

Feng et al. (2020)). Approaches using thresholds of re-parameterisations (Fiandaca et al., 2018),69

modelling of 3D IP effects (Nunes et al., 2019), and detection of IP using various approaches70

(Kang et al., 2019; Viezzoli et al., 2021) are some examples. However, Bayesian inference on71

the detectability of IP effects in AEM data has not been considered. This contribution will demon-72

strate how AIP detectability can be framed as a tractable model selection problem which can73

be accomplished using Bayesian methods. In addition, this work introduces the novel appli-74

cation of static Sequential Monte Carlo with an RJMCMC mutation kernel to parameter and75

model inference in AIP. First formally addressed in Del Moral et al. (2006); Jasra et al. (2008)76

and subsequently identified in Zhou et al. (2016) as the SMC1 algorithm, this work will ex-77

pand on the implementation of adaptive considerations in such an algorithm both generally and78

specifically for layered Earth models. It will henceforth be referred to as the Reversible Jump79

Sequential Monte Carlo (RJSMC) algorithm.80

Application of SMC methods to geophysics problems is still relatively new. Recent work81

by Amaya et al. (2021) demonstrates how adaptive static SMC can be used to an advantage82

when needing to sample from complex priors. Earlier work by Dettmer et al. (2011) demon-83

strates a completely different approach whereby in an application to sequential inference on84

geoacoustic survey lines the posterior distribution of a previous model in the sequence is in-85

put as the initial distribution for inference on parameters of the next model. Whilst such ap-86

proaches are similar by name, the algorithms of Amaya et al. (2021) and Dettmer et al. (2011)87

are configured to target different statistical quantities. Our article contributes to the growing88

literature demonstrating that RJSMC is a viable alternative to other popular methods such as89

RJMCMC and parallel tempering (Swendsen & Wang, 1986) in Geophysics. In addition, we90

present for the first time an implementation of transdimensional proposals designed for layered-91

Earth models in the SMC framework.92

In comparison to other particle-population methods such as Population MCMC (Jasra93

et al., 2007) and parallel tempering (Swendsen & Wang, 1986), SMC algorithms are based on94

a methodology of sequentially sampling from a sequence of probability distributions on a com-95

mon space (Del Moral et al., 2006). These probability distributions are approximated using96

a cloud of weighted random samples, or particles, where the process of moving to the next97

distribution is via a combination of importance sampling, resampling, and a specifically cho-98

sen mutation or propagation kernel. SMC has several benefits: the embarrassingly-parallel mu-99

tation of N particles rather than reliance on one or few sequentially computed chains in other100

MCMC methods translates easily to parallel computing architectures; the algorithm is robust101

to high-dimensional multi-modal, often pathological posteriors (referred to in Ellis (1998) as102

non-uniqueness in AEM geophysics models); the availability of the particle approximation to103

the current target distribution allows for novel tuning possibilities; and a trivial additional out-104

put of SMC is the estimation of otherwise intractable normalising constants.105

By using an MCMC kernel for particle mutation in combination with an artificial sequence106

of distributions (such as likelihood annealing) SMC can be readily applied to static parame-107

ter estimation problems such as AIP. While the use of SMC for model selection in static prob-108

lems can take several forms as explored in Zhou et al. (2016), this contribution will focus on109

an implementation that returns the joint posterior of parameters and models, facilitating a straight-110

forward application of Bayesian model selection for the detection of AIP effects.111

This paper is divided into three sections following this introduction. Section 2, titled Method-112

ology, describes a modelling approach that employs two decoupled layered-Earth models to113

reduce the size of the model space, the application of RJSMC to the IP detectability problem114

in AEM data, where we introduce the Bayes Factor Induced Polarisation Detectability (BFIPD)115

statistic. Section 3 describes the computational algorithms for SMC and RJSMC, and proposes116

adaptive considerations for the latter. Section 4, titled Case Studies, applies the described method-117
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Figure 1: Synthetic data produced using the Cole-Cole (Cole & Cole, 1941) parameterisation for
an AEM layered-Earth model. The second layer intrinsic chargeability, m, varies from 0.0 to 0.8 to
demonstrate the effect on the magnetic field response. Conductivity parameters are constant across
models. Negative log values when m ≥ 0.8 are plotted with a dashed line.

ology and RJSMC algorithm to a synthetic study and subsequently to a real data set in Col-118

orado USA demonstrating the spatial continuity of a novel IP detection statistic (described in119

Section 2.3.3).120

2 Methodology121

For any flight location and geometry of an airborne electromagnetic (AEM) system, the
response to the magnetic flux density response can be computed analytically using the 1D layered-
Earth model approximation which employs a Hankel transform and propagation matrix method
(Ward & Hohmann, 1988). This approximation use the quasi-static assumption to reduce the
Helmholtz wave equations to more tractable diffusion equations. In doing so, the dielectric per-
mittivity term that models chargeability is removed. To re-introduce this term, the empirical
Cole-Cole equation can be formulated (following Seigel (1959)) using low and high frequency
conductivity terms σs and σ∞ respectively with intrinsic chargeability defined as m = σ∞−σs

σ∞
.

This gives the following form for complex conductivity in terms of the high-frequency con-
ductivity σ∞, frequency ω, time delay constant τ and frequency dependence c:

σ̂(ω) = σ∞

(
1− m

1 + (iωτ)c

)
.

Although other formulations exist (such as that of Pelton et al. (1978)), they are not consid-122

ered here since such models can be computed from the above via a bijective transformation123

(Tarasov & Titov, 2013). This work considers only time domain elecromagnetic (TDEM) air-124

borne data for inversion using independent 1D layered-Earth models for each AEM sounding.125

A depiction of models of varying chargeability and the resultant off-time TDEM synthetic re-126

sponses computed using this mathematical model is in Figure 1. Since the number of layers127

is not known a-priori, a transdimensional approach is adopted to infer the number of layers.128

The Bayesian approach for this described in Malinverno (2002) introduced RJMCMC propos-129

als for the birth and death of layer interfaces, each being comprised of a depth (or thickness)130

and one or more electromagnetic parameters. All parameters and associated prior distributions131

are identified in Section 2.3.1, however in the next section they will all be referred to in con-132

catenated vector form using the symbol θ.133

2.1 Decoupled Layered Models134

A primary concern for algorithmic complexity is the size of the model space. If we de-135

sire inference on the detectability of Cole-Cole chargeability in every conductive layer in a 1D136
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Depth

0

(a) Layered model
with coupled parameters

(b) Layered model with de-coupled parameters
mapped to merged parameters

Weakly conductive

Strongly conductive and
strong chargeablity

Weakly conductive

Weakly conductive and
strong chargeablity

Weakly conductive

Very weakly conductive Very weakly conductive Very weakly conductive

Strongly conductive
Strongly conductive

Strongly conductive

Strong chargeability

No chargeability

No chargeability

Strongly conductive and
strong chargeablity

Figure 2: (a) A single transdimensional parameter that models both conductivity and charge-
ability with respect to depth. Change to layer interface depths will change both conductivity and
chargeability profiles because they are coupled. (b) Two de-coupled transdimensional parameters
each separately modelling conductivity and chargeability with respect to depth. These are merged
via a direct sum before computing the mathematical model.

model then we are implicitly using binary variables to model the inclusion of such parame-137

ters in each layer. We call this a coupled layered-model, where for k layers this effectively poses138

a model space M of exponential cardinality. Instead of investigating detectability of IP in this139

manner, we propose to de-couple the conductivity and Cole-Cole chargeability layer interfaces.140

This approach has been used in previous geophysical applications such as joint inversion of141

physically unrelated data in a single model (Piana Agostinetti & Bodin, 2018). In this appli-142

cation it permits a more flexible and much smaller model space
∣∣Mdecoupled

∣∣ = kκ × kλ143

where kκ, kλ signify the number of independent conductivity and Cole-Cole chargeability lay-144

ers respectively. A comparison of a decoupled design with a coupled design is visualised in145

Figure 2. The reduction of the model space cardinality is imperative when considering the in-146

ference approach we will take in the following sections whereby we begin by sampling the147

priors of each model.148

The next subsection will introduce Bayesian inference of parameters and models, fol-149

lowed by a Bayesian description of the decoupled model for conductivity and chargeability.150

Subsequently, computational algorithms for inference on these parameters and model param-151

eterisation will be discussed, including an introduction of the novel RJSMC sampler for which152

the decoupled model design is suited due to the reduced size of the model space.153

2.2 Bayesian inference of parameters and models154

Bayesian inference of parameters θ given data y, likelihood L(y|θ) (explained in Sec-
tion 2.3.2) and prior p(θ) (see Section 2.3.1) is found via application of Bayes’ theorem

π(θ|y) = L(y|θ)p(θ)
Z(y)

,

where the denominator term, known as the marginal likelihood or normalising constant, is the
integral

Z(y) =
∫
θ

L(y|θ)π(θ)dθ,

which is typically computationally intractable in a non-trivial number of dimensions. This term
can be used for model selection using Bayes Factor (Kass & Raftery, 1995) (a quantity we
will use in later sections) where between two contending models k1, k2 it is the ratio

B1,2 =

∫
p(θk1 |k1)L(y|θk1 , k1)dθk1∫
p(θk2 |k2)L(y|θk2 , k2)dθk2

=
Z(y|k1)
Z(y|k2)

.
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For inference over the joint space of models k ∈M and parameters θk we extend the above
approach to express the posterior as

π(θk, k|y) =
L(y|θk, k)p(θk|k)p(k)∑

k′∈MZ(y|k′)
,

where the Z terms in the denominator will be henceforth defined as

Zk = Z(y|k) =
∫
θk

L(y|θk, k)p(θk|k)p(k)dθk.

If the above joint posterior of models and parameters is available, we can use Bayes’ theo-
rem to express Bayes Factor in terms of the ratios of posterior model marginal densities (also
called the posterior model odds) and models priors

B1,2 =
Zk1
Zk2

=
π(k1|y)
π(k2|y)

π(k2)

π(k1)
.

2.3 Bayesian inference of induced polarisation models155

This subsection will employ the Bayesian approach to specifying IP and non-IP mod-156

els and the inference of such models and parameters with respect to AEM data.157

2.3.1 Parameter Priors158

Using the decoupled layered model design, we identify the following parameter priors
(using the indices i, j to denote the ith conductive layer and jth chargeable layer respectively).
Note that we use the notational convenience φ = log10 σ.

Number of conductive layers : κ ∼ U{0, . . . , κmax},
Number of chargeable layers : λ ∼ U{0, . . . , λmax},

Background Log10 conductivity : θφ,b ∼ U(−4, 2),
ith-layer Log10 conductivity : θφ,i ∼ U(−4, 2),

ith-layer Interface Depth : θzσ,i ∼
κ!

zκmax
,

Background Instrinsic Chargeability : θm,b = 0,

jth-layer Intrinsic Chargeability : θm,j ∼ U(0, 1),

jth-layer Interface Depth : θzm,j ∼
λ!

zλmax
,

Time Constant : θτ ∼ U(0, 1),
Frequency Dependence : θc ∼ U(0, 1).

Using bold notation θφ to denote all parameters {θφ,i}κi=1 (and similarly for θzσ , θm, and θzm )
the full prior distribution becomes

p(κ, λ, θφ,b,θφ,θzσ ,θm,θzm , θτ , θc) = p(κ)p(θφ,θzσ |κ)p(λ)p(θm,θzm |λ)p(θφ,b)p(θτ )p(θc).

The parameter vector in full, using the pair κ, λ to identify the model, is

θκ,λ =
{
θφ,b, θφ,1, . . . , θφ,κ, θzσ,1, . . . , θzσ,κ, θm,1, . . . , θm,λ, θzm,1, . . . , θzm,λ, θτ , θc

}
.

Note that θτ and θc Cole-Cole parameters are global for all chargeable layers. This could fea-159

sibly mean that there theoretically exist chargeable models that poorly fit the above param-160

eterisation; however, in practical examples this has not yet been an issue.161
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2.3.2 The Likelihood162

The data y is represented by an time-series array of response values, usually the time163

rate-of-change of the magnetic field (dBdt ) with units in picoteslas per second (pT/s), which for164

conductive only models are usually positive. Acquisition of data occurs during the off-time165

phase of the periodic waveform for the transmitted current. For example, the VTEM ET sys-166

tem (Eadie et al., 2018) begins data acquisition from 5 microseconds after the start of the off-167

time period and continues sampling for up to an additional 15 milliseconds. Data is then down-168

sampled to a time series of gates which are typically exponentially-spaced with respect to in-169

creasing time. Gates are indexed in the below using the square bracket notation y[i]. Visual-170

isations of synthetic data were introduced at the beginning of this section on methodology us-171

ing various example θ parameterisations in Figure 1.172

The mathematical forward model for an AEM system is a non-injective (and often non-
surjective) map from the 1D layered-Earth model parameterisation of conductivity and charge-
ability parameters, θ, to the data space of off-time magnetic flux density responses, denoted
yθ. The likelihood L(θ|y) is a multivariate Gaussian N (y;yθ,Σyθ ) computed in the syn-
thetic data space. Typical methods for determining Σyθ , i.e. the system noise, use an empir-
ical approximation from high-altitude measurements where the effects of the ground are not
present. This research employs the empirical model of A. Green and Lane (2003) where Σyθ

is a diagonal covariance matrix where each diagonal element is the summation in quadrature
of additive noise εAN for that time window and multiplicative noise εMN, that is

Σ
(i,j)

yθ =

{
(εAN[i])

2 + (εMN × yθ[i])2, i = j,

0, i 6= j.

Such an approach requires high-altitude calibration lines to be flown immediately prior173

to data acquisition, and such calibration determines a per-time-window value for εAN and an174

overall value for εMN, where typical values for εMN are in the order of 5%. The empirical ad-175

ditive and multiplicative noise model is adequate for data where only conductivity parameters176

are of interest. However, in data with one or several significant zero-crossings in middle to177

late time windows, the additive noise will become the dominant influence in the likelihood.178

In this research, it was found that “small” additive noise resulted in poor estimation of the pa-179

rameter posteriors; this observation was consistent with other Bayesian research in transdimen-180

sional geophysics methods (Bodin et al., 2012) which notes that the variance of data noise strongly181

affects the shape of the posterior. Since the AEM system noise models were not necessarily182

constructed with Bayesian sampling methods for IP in mind, the additive noise was kept above183

10−3 pT/s to ensure that reasonable estimates of the posterior were feasible. It would be the184

subject of future research to determine a noise model that is parametric such as that in Bodin185

et al. (2012).186

2.3.3 A statistic for Bayesian detectability of induced polarisation187

Inference of detectability of IP effects in this work is via Bayes factor using the expected
probabilities of chargeable models and non-chargeable models. Denoting the chargeable ver-
sus non-chargeable estimate of Bayes factor as B̂κλ, where k = κ is a non-chargeable model
and k = λ is a chargeable model, we define the Bayes Factor Induced Polarisation Detectabil-
ity (BFIPD) statistic to be the grouped Bayes Factor

B̂κλ =

|Mκ|
∑

λ∈Mλ

π̂(λ|y)/p(λ)

|Mλ|
∑

κ∈Mκ

π̂(κ|y)/p(κ)
.

Using log B̂κλ, a chargeable model is more likely when this value is greater than zero. Ap-188

plied to real data, the third section in Figure 5 demonstrates how this quantity can be used to189

detect chargeability in Earth materials assuming no other anomalous effects.190
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3 Computational algorithms for Bayesian model inference191

The canonical approach for inference of π(θk, k|y) is to implement a RJMCMC algo-192

rithm that proposes on the space of k as well as θ. Whilst such algorithms asymptotically con-193

verge to the posterior, there are several concerns. One is the difficulty of designing a well-mixing194

RJMCMC proposal, another is the lack of parallelisability due to the dependent nature of the195

algorithm. To solve the first, either the various adaptive proposals that conform to rules of di-196

minishing adaptation (Haario et al., 2001) or proposals that use local derivative information197

(Roberts and Stramer (2002), Girolami and Calderhead (2011)) have shown success for within198

model MCMC, but these do not always translate well for RJMCMC proposal design. For the199

second concern, frameworks such as parallel tempering (Swendsen & Wang, 1986) can be par-200

allelised to a certain degree, but do not upscale well to take advantage of increasingly com-201

mon very wide computing architectures.202

The SMC family of algorithms can be adapted for static parameter inference (Chopin203

(2002), Del Moral et al. (2006)), with the added benefit of providing an estimate of the marginal204

likelihood (Del Moral et al., 2006). For parameter estimation in a single non-linear model, static205

SMC has been demonstrated to have advantages when posteriors are pathological. To date, ap-206

plications of static SMC in solid Earth geophysics are currently sparse, however recent work207

by Amaya et al. (2021) demonstrates static SMC for within model parameter inference as well208

as the use of estimates of the marginal likelihood for model selection. In the following sec-209

tion, a static SMC algorithm will be introduced and followed by an implementation which uses210

transdimensional proposals as well as within-model proposals, which we call Reversible Jump211

Sequential Monte Carlo (RJSMC).212

3.1 Static Sequential Monte Carlo213

In this section we will briefly state the algorithm in the common configuration where214

an MCMC kernel is used for mutation (the reader may be interested in the work of Dai et al.215

(2020) for a more in-depth and up-to-date review of SMC samplers). Such a configuration en-216

sures that the computation of incremental particle weights can be evaluated with linear time217

complexity without the need to compute or approximate an expensive integral (Del Moral et218

al., 2006). The first implementation of this approach was called Iterated Batch Importance Sam-219

pling (Chopin, 2002), which used a data annealing schedule for successive target distributions.220

For brevity, the below description does not include commonly employed adaptive schemes such221

as those employed in Fearnhead and Taylor (2013), however such approaches are addressed222

in the following section for RJSMC.223

Following from Bayes Theorem in section 2.2, the posterior of parameters θ is propor-
tional to the likelihood L and prior p(·), that is

π(θ|y) ∝ L(y|θ)p(θ).

In a static SMC algorithm, a sequence of distributions πt, t = 0, . . . , T is specified that “smoothly”
transitions from a starting distribution, most commonly the prior p(·), to the target posterior
distribution π(·|y). For inference using sparse data (such as AEM time-domain data) a com-
mon choice for this sequence is likelihood annealing, where a monotonic sequence {γt}t=Tt=0

with γ0 = 0 ascending to γT = 1 defines the sequence of target distributions

πt(θ|y) =
L(y|θ)γtp(θ)

Zt
.

The proportionality constant Zt usually cannot be evaluated, so we instead define a tractable
term ηt as

ηt(θ) = Ztπt(θ|y) = L(y|θ)γtp(θ).

The target distributions πt are approximately represented by a set of N particles. During ini-
tialisation, the particles are drawn from the prior π0 = p(·). Following this, for each tem-

–8–
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perature γt, a three-step procedure of importance-sampling, resampling, and mutation is eval-
uated. A typical mutation kernel choice for static parameter inference is a target-invariant MCMC
kernel, resulting in importance weights taking the incremental form

w
(i)
t =W

(i)
t−1

ηt(θ
(i))

ηt−1(θ(i))
=W

(i)
t−1L(y|θ)γt−γt−1 ,

where θ(i) is the parameter vector for the ith particle, and the term W
(i)
t−1 represent normalised

weights from the previous target, computed via

W
(i)
t =

w
(i)
t∑N

j=1 w
(j)
t

,

where W (i)
0 = 1

N for all i particles. The resampling step simply draws N new particles θ(i)∗224

from the weighted representation of particles {W (i)
t ,θ(i)}Ni=1 and resets the normalised weights225

to W (i)
t = 1

N for all i particles.226

As stated earlier, the mutation step uses a target-invariant MCMC kernel such as sev-
eral iterations of random-walk Metropolis-Hastings (Hastings, 1970) to perturb each particle.
The resulting particle will then be used as input for the next target πt+1. Denoting particles
for targets at steps t and t+ 1 as θ(i)t and θ(i)t+1 respectively, we write the mutation step as

θ
(i)
t+1 ∼ K(·|θ(i)∗t ).

This procedure is summarised in Algorithm 2 in Appendix A. A by-product of this algorithm
is the marginal likelihood estimate as found by the following trivial computation:

Ẑ =

T∏
t=1

N∑
i=1

w
(i)
t .

Some of the concerns mentioned at the end of Section 2.2 are addressed by using an SMC al-227

gorithm. By virtue of the particle approximation of πt, proposals can be designed that take228

advantage of this information without violating any rules of diminishing adaptation. Secondly,229

the computation of L(y|θ) for N particles can be performed independently in parallel, thus230

lending itself well to a distributed computing architecture.231

Another advantageous difference between the static SMC framework and traditional Markov232

Chain sampling methods is the implicit stopping condition that an adaptive SMC algorithm233

provides. Rather than determining the number of MCMC iterations a-prior, or relying on con-234

vergence criteria, SMC terminates after traversing the sequence of target distributions.235

Whilst static SMC does produce an unbiased estimate of the normalising constant, it does236

require running an instance of the algorithm for each model. This general approach was rec-237

ommended by Zhou et al. (2016), but it ignores efficiencies that can be leveraged from exist-238

ing research in Bayesian model selection for particular problems. In the case of layered-Earth239

models, the RJMCMC proposals first introduced by Malinverno (2002) and subsequently de-240

veloped in Dosso et al. (2014) are (assuming non-pathological likelihood conditions) capable241

of efficiently traversing a medium-sized model space and sampling high likelihood models more242

often than low likelihood models, thereby implicitly introducing a sampling efficiency that in243

practice yields posterior model probabilities with low variability. We intend to leverage this244

efficiency in the implementation of static SMC with RJMCMC proposals discussed in the next245

section, and apply this approach to a model space with cardinality approaching 102. Such a246

broad prior of models is commonplace in exploration geophysics problems where there is usu-247

ally a wide variation of possible posteriors with very little informative prior knowledge.248

3.2 Reversible Jump Sequential Monte Carlo249

The target density we wish to consider is the joint posterior of models and parameters

π(θk, k|y) ∝ L(y|θk, k)p(θk|k)p(k).
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Based on the SMC1 archetype identified in Zhou et al. (2016), we specify a static SMC al-
gorithm using a likelihood-annealed sequence of target distributions where the annealing ex-
ponent sequence γt is monotonically increasing on [0, 1]. The below sequence of target dis-
tributions forms the basis of the RJSMC algorithm

πt(θk, k|y) ∝ L(y|θk, k)γtp(θk|k)p(k), t = 0, . . . , T.

If we denote the normalising constant defined in Section 2.2 for target density πt as Zt,k, we
note that the above is proportional to

∑
k∈MZt,k. For convenience of notation, we introduce

k terms ηt,k for each unnormalised target density

ηt,k(θk) = Zt,kπt(θk, k|y) = L(y|θk, k)γtp(θk|k)p(k).

Using this, and assuming an RJMCMC kernel is used for particle dynamics, we again choose
to approximate the posteror of models and parameters πt with N particles, and as such we
define the importance weights for each particle, indexed by i and for convenience the model
k, as

w
(i)
t,k =W

(i)
t−1,k

ηt,k(θ
(i)
k )

ηk(θ
(i)
k )

=W
(i)
t−1,kL(y|θk)

γt−γt−1 ,

where we denote the number of particles representing πt,k(θ|k) by Nt,k. Note that since the
algorithm is using particle approximations to such conditional densities, the total number of
particles N =

∑
k∈MNt,k should be set such that N � |M|. The weights are then nor-

malised such that they approximately represent the conditional density πt(θt,k|k,y). These
normalised weights are given by

W
(i)
t,k =

w
(i)
t,k∑Nt,k

j=1 w
(j)
t,k

.

Following the notation from the previous section on single-model SMC, parameters for the250

ith particle associated with target k at steps t and t+1 will henceforth be denoted θ(i)t,k and251

θ
(i)
t+1,k respectively. At initialisation, after sampling from the joint prior of model and param-252

eters, the normalised weights are uniform, i.e. W (i)
t,k = 1/Nt,k for all particles i = 1, . . . , Nt,k253

in model k. The same uniform initialisation is applied after the mutation step on the (now dif-254

ferent) set of particles that represent the subsequent conditional target density πt+1(θt+1,k|k,y).255

Since we are using an RJMCMC kernel, Nt,k will change at the mutation step and as256

such it is not fixed for all t in πt(θt,k|k,y). It is a design choice of this algorithm to keep Nt,k257

constant in the resample step, and a natural way to achieve this is to sample θ(i)∗t,k ∼ π̂t(·|k)258

where π̂t(·|k) is represented by the weighted particles {W (i)
t,k ,θ

(i)
t,k}

Nt,k
i=1 from model k. We re-259

fer to this constraint as within-model re-sampling, and by observing this constraint a typical260

scheme such as multinomial or systematic resampling can be used. The complete adaptive al-261

gorithm is summarised in Algorithm 1.262

3.2.1 Adaptive Considerations263

The configuration of a static SMC sampler over the joint posterior of models and pa-264

rameters is not well-researched in terms of the sequence of target densities for more than one265

model and the particle counts between models. In this subsection we will discuss the adap-266

tation of the sequence of targets πt, and in subsequent subsections we will address the deter-267

mination of the number of MCMC mutation steps, and overcoming particle impoverishment268

for the later target densities of unlikely models.269

In the single-model static SMC formulation of Schäfer and Chopin (2011), next target270

density πt+1 is specified adaptively using an estimate of the Effective Sample Size (ESS) (Kish,271

1965), where a predetermined threshold α is used to find γt+1 such that the resampling phase272
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Algorithm 1: Adaptive Reversible Jump Sequential Monte Carlo
Input: TESS threshold proportion αTESS, c probability of mutation
Output: {θ(i)T,k}

Nt,k
i=1 and ẐT,k for k ∈M

Initialise particles from the prior for i = 1, . . . , N ,k ∼ π0(k) = p(k),
θ
(i)
0,k ∼ π0(·|k) = p(·|k).

Initialise the particle weights for i = 1, . . . , Nt,k, k ∈M, W (i)
0,k ← Nt,k

−1.

Set t← 0, γ0 ← 0, and Ẑ0,k = 1 for k ∈M.
while γt 6= 1 do

Set t← t+ 1

Compute γt using a bisection method such that T̂ESSt ≈ αTESSN
Re-weight particles with normalised weights for i = 1, . . . , Nt,k, k ∈M

w
(i)
t,k ←W

(i)
t−1,kL(y|θ

(i)
t,k)

γt−γt−1

W
(i)
t,k ←

w
(i)
t,k∑Nt,k

i=1 w
i)
t,k

Ẑt,k ← Ẑt−1,k
Nt,k∑
i=1

w
(i)
t,k

Re-sample Nt,k particles θ(i)∗t,k ∼ π̂t(·|k) where π̂t(·|k) is represented by the

weighted particles {W (i)
t,k ,θ

(i)
t,k}

Nt,k
i=1 for k ∈M

Adapt MCMC and RJMCMC proposals qk→k′ using weighted power posterior
{{ν(i)s,k,θ

(i)
s,k}

Nt,k
i=1 }ts=0 where

ν
(i)
t,s,k =

L(y|θ(i)s,k)γtp(θ
(i)
s,k)

1
t

∑t
l=0 L(y|θ

(i)
s,k)

γlp(θ
(i)
s,k)(Ẑl,k)−1

for k ∈M

Compute Rt =
⌈

log c
log (1−pmin

acc )

⌉
using trial mutations

Mutate particles Rt times using an RJMCMC kernel with the nq adapted proposals

k′ ∼ qM(·|k),

θ
(i)
t+1,k′ ∼ qk→k′(·|θ

(i)∗
t,k , k

′)

end

is initiated when the ESS of πt+1 falls below αN . Such a scheme can be implemented naı̈vely273

by choosing a small step size δ (where γt+1 = γt + δ) and simply incrementing t until the274

threshold is reached. Alternatively, a bisection method can be used to determine the next γt+1275

Jasra et al. (2011).276

In the presence of multiple models, the ESS estimate for the conditioned density πt(·|k)
is

ÊSSt,k =
1∑Nt,k

i=1

(
W

(i)
t,k

)2 .

–11–
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If there are K models where K > 1, a new condition is required for when to stop and re-
sample/mutate since there are now K ESS estimates. Given a threshold 0 < α < 1, such a
condition can be met by taking a statistic of ÊSSt,k. A naı̈ve approach would be to take the
threshold condition mink(ÊSSt,k/Nt,k) < α, but this exposes the algorithm to high variabil-
ity of ÊSSt,k in unlikely models. For this reason, we choose to have the threshold condition
be dominated by the more likely models. First, we need to define the normalised effective sam-
ple size (NESS) for the conditional target density πt(θ|y, k) as

NESSt,k =
1

Nt,k
ESSt,k.

Using this quantity, we choose our threshold condition to use what we define as the Total Ef-
fective Sample Size (TESS), which expressed in terms of NESSt,k is

E[TESSt] := N · E[NESSt,k].

It is shown in Appendix C that an estimate of the TESS is simply

T̂ESSt =
∑
k∈M

ÊSSt,k.

The algorithm will resample when T̂ESSt < αN . Intuitively, one can reason that in low-277

likelihood models the variability of ESSt,k would increase, but since such models are repre-278

sented by proportionally fewer particles this variability does not translate to increased vari-279

ability in the overall TESS. As such, this approach is in practice robust to low particle counts280

in the presence of unlikely models.281

An estimate of the ratio of normalising constants between successive target distributions
in an SMC algorithm with an MCMC kernel is given by the sum of the weights. When con-
sidering the same quantity for an RJSMC algorithm, we show in Appendix D that the normal-
ising constant estimate ẐT,k reduces to the same form considering particle weights for model
k. This gives us

ẐT,k =

T∏
t=0

Ẑt,k
Zt−1,k

=

T∏
t=0

Nt,k∑
i=1

w
(i)
t,k,

noting that Z0,k = 1. From here it is possible to compute estimates of the ratios of normal-
ising constants between models using

B̂1,2 =
ẐT,k1
ẐT,k2

.

Since we are using an RJMCMC kernel, another approach (which is adopted in this work) to
estimate ratios of normalising constants is to take ratios of the empirical posterior model marginal
density weighted by prior densities

B̂1,2 =
π̂T (k1|y)
π̂T (k2|y)

p(k2)

p(k1)
,

where

π̂T (k|y) =
1

N

N∑
i=1

I(k(i) = k) =
NT,k
N

,

noting k(i) is the model indicator for particle i at step T . Other precise quantities relating to282

ratios of normalising constants derived from RJMCMC posteriors are explored in Bartolucci283

et al. (2006). The motivating reason for adopting these latter approaches is to, if possible, re-284

duce the posterior model-odds variability. This places the onus of reducing such variability285

on the RJMCMC proposal performance rather than the performance of the SMC sampler as286

a whole, which is a topic that would require further research as it is not central to this arti-287

cle. The form of the MCMC and RJMCMC proposals for the AIP inference application are288

discussed in the next subsection.289
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3.2.2 Transdimensional and within-model adaptive proposals290

For this work, within-model MCMC proposals are an adaptive component-wise random-291

walk Gaussian proposal distribution which utilises the availability of particles approximating292

πt,k to adapt the search direction and step size.293

Typical component-wise proposals treat the parameter vector as independent components294

and randomly choose a component and then sample a value for that component. This approach295

relies on well-conditioned posterior for good performance. In a layered Earth model of elec-296

trical properties, the parameter space generally yields a pathological posterior, hence a naı̈ve297

approach is inefficient. A simple approximate fit of a multivariate Gaussian N (µt,Σt) to the298

particles θ(i), i = 1, . . . , N approximating πt opens the ability to use principle components299

as search directions. Taking the eigenvalue decomposition Σt = UΛUT where Λ is diag-300

onal, our component-wise proposal selects a random component/column Ur for the search di-301

rection and scales the step size by the corresponding eigenvalue Λr. A bisection algorithm on302

trial proposals is then used to further scale proposals to target a desired acceptance rate. In303

this work we used 0.44 since it is accepted as the optimal acceptance rate for component-wise304

sampling of a standard multivariate Gaussian target (Roberts & Rosenthal, 2001).305

The cross-dimensional proposals use the RJMCMC framework, first proposed by P. J. Green306

(1995) and developed for the 1D layered-Earth model by Malinverno (2002). The form of the307

proposals used in this work extend the above using a simple adaptive design constructed in308

Appendix D. Two separate proposals are used, each mapping auxiliary variables to Earth prop-309

erty parameters θφ,i and θm,j respectively.310

3.2.3 Adapting the number of MCMC steps for multiple proposals311

There is no set procedure for determining the number of MCMC iterations for effective
mutation. Taking the approach introduced by Drovandi and Pettitt (2011), the number of mu-
tation steps can be determined simply as a function of the acceptance rate R(pacc) for a sin-
gle proposal and a tuning parameter c. However, for RJSMC there are multiple proposal types
as a result of using a birth/death RJMCMC pair of proposals and a within-model MCMC pro-
posal. Fortunately, by simple extension of the approach taken in Drovandi and Pettitt (2011),
it is shown in Appendix B that for nq proposals, the minimum acceptance rate

pmin
acc = min

j∈nq
p(j)acc

will determine the minimum number of mutations required to ensure that all particles mutate
with probability 1− c. This results in the formula for determining the minimum number of
mutation steps to be

R =

⌈
log c

log (1− pmin
acc )

⌉
.

Other more recent work by Bon et al. (2021) adopts a generalised approach which adaptively312

chooses a proposal step size based on a target expected squared jumping distance (ESJD). Such313

an approach could be examined in the context of RJSMC samplers in future research.314

3.2.4 Overcoming particle impoverishment in unlikely models315

Cross-dimensional proposals that target πt(θk, k|y) will favour models with higher prob-316

ability. Therefore, in a particle approximation of πt where N is fixed, examples will occur where317

unlikely models are represented by few or no particles. In the case where naı̈ve (RJ)MCMC318

proposals (i.e. those that do not adapt to πt) are used, this is not necessarily an issue. How-319

ever, in order to take advantage of the availability of πt for proposal tuning (see section 3.2.2320

and Appendix D for examples in this application), particle impoverishment becomes an im-321

portant issue.322
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Figure 3: Shown are four case studies employing a three-layered conductivity model, each with
varying chargeability and depth of the second layer, and the other layers having zero chargeability.
First and second layer conductivities are 0.01 S/m and 0.1 S/m respectively, second layer thickness
is 20m, and the conductivities of the the halfspace/basement layer (shown above each heatmap)
reflect typical geological examples. BFIPD values above 1 indicate higher likelihood of charge-
ability. Within each study the heatmaps show how depth and magnitude of the chargeable layer
affects the respective BFIPD statistic for each model posterior. Between studies the heatmaps show
how increasing halfspace conductivity relative to the chargeable layer reduces BFIPD statistics.

One approach to alleviate particle impoverishment is to re-use particles from previous323

target densities. Since we are considering a likelihood-annealed sequence of distributions, it324

is natural to consider the deterministic mixture recycling approach employed by Nguyen et325

al. (2015) and further implemented in SMC by South et al. (2019).326

The particle mixture weights representing the power-posterior at step t for particles i =
1, . . . , Nt,k, steps s = 0, . . . , t, and models k ∈M are

ν
(i)
t,s,k =

L(y|θ(i)s,k)γtp(θ
(i)
s,k)

1
t

∑t
l=0 L(y|θ

(i)
s,k)

γlp(θ
(i)
s,k)(Ẑl,k)−1

Since the normalising constant Zt,k for the power posterior πt is not available, we use the RJSMC327

estimate Ẑt,k.328

It is important to note that the above form for recycled particle weights is conditional329

on the model k, meaning that these weighted particles are suited only to fitting such condi-330

tional proposal densities and are not valid for representing the joint posterior of parameters331

and models.332

Whilst particle recycling has been used offline for estimation of posterior statistics, an333

online implementation for estimation of intermediate densities for proposal tuning is not known334

to the authors, and is thus proposed here as a novel step to mitigate particle impoverishment335

during the course of the algorithm.336

4 Case Studies337

This section will demonstrate the application of parameter and model inference via the338

RJSMC algorithm as applied to various synthetic and real-data examples. It will begin with339

a comprehensive synthetic case study demonstrating the performance of Bayes Factor detectabil-340

ity of chargeability, followed by inference for IP detectability in a 2D ground section of AEM341

line data.342
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4.1 Synthetic Studies343

A comprehensive series of synthetic studies were designed to demonstrate targeted quan-344

tities that are generated by the application of RJSMC to AEM data with IP effects. The quan-345

tities of interest are detectability of chargeability, recoverability of model parameters, and good-346

ness of fit.347

For investigation of IP detectability using the BFIPD statistic from Section 2.3.3, a three-348

layered model with chargeability in only the middle layer was selected as basis of four almost349

identical case studies where only the basement conductivity varied across each of the four stud-350

ies. The basement conductivities were chosen to simulate four common scenarios: a strongly351

resistive igneous/metamorphic basement (0.001 S/m), a hard sedimentary basement (0.01 S/m),352

a moderately-conductive sedimentary basement (0.032 S/m), and a conductive basement (0.1353

S/m). The conductivity of the upper two layers were held constant in all cases, being 0.01 S/m354

and 0.1 S/m for the first and second layer respectively. The time constant and frequency de-355

pendence parameters were set to θτ = 4.07×10−4 and θc = 1.0 respectively. The data was356

generated using the same VTEM ET AEM system configuration as used in Zamudio et al. (2021)357

and the data noise was simulated using the noise model discussed in Section 2.3.2.358

Within each case study, both the depth of the upper interface and the chargeability of359

the second layer were jointly varied such that the BFIPD statistic could be examined as a func-360

tion of the interaction of these two parameters. The BFIPD statistics were visualised as a heatmap361

in Figure 3. As would be expected the BFIPD statistic decreases with depth of the second layer362

and increases with the magnitude of second layer chargeability. Also, it can be seen that across363

the four studies, variation in the basement conductivity significantly affects the BFIPD statis-364

tic, where strongly resistive basement materials admit high BFIPD statistics, ranging down to365

low BFIPD statistics for conductive sedimentary basement materials such as shales, clays, or366

aquifers.367

The recoverability of model parameters is well-known to be confounded by a phenomenon368

geophysicists term “non-uniqueness” (Ellis, 1998). In the language of Bayesian statistics, this369

translates to the situation where the maximum a posteriori (MAP) model is not necessarily close370

to the data-generating model. This is frequently seen in conductivity-only inversion of AEM371

data and thus it is expected to be present in Bayesian AIP inference. For this investigation,372

we compared a selection of the model-averaged posterior densities from the four case stud-373

ies outlined above against the data-generating parameters. Figure 4 shows three selected data374

sets from the above detectability study. The posterior is summarised in two model-averaged375

plots showing depth versus conductivity and depth versus intrinsic chargeability, and the “true”376

data-generating model is shown on each posterior plot with a dark-red dashed line. It can be377

seen that the shallow layers are generally well-recovered, however the deeper layers and layer378

interfaces of the data-generating model are not usually reflected in the high-probability regions379

of the posterior. This phenomenon is well-understood for conductive-only models (Ellis, 1998)380

but the extent to which it is present in models with chargeability is not well-quantified and should381

be the subject of further research.382

A canonical Bayesian form of goodness of fit uses the posterior predictive distribution
(PPD) (Gelman et al., 2013), which has the mathematical form

p(y|ỹ) =
∫
p(ỹ|θ)π(y|θ)dθ.

A visual inspection of the PPD constitutes a posterior predictive check (PPC). PPCs for pos-383

teriors generated from three synthetic data sets are shown in Figure 4. This approach is straight-384

forward for individual soundings; however, it can be cumbersome when examining PPDs of385

the thousands of soundings in a single AEM line. In such cases, it is more feasible to display386

summary statistics of the PPD, such as the sample mean and variance, and this approach can387

be seen for the Colorado study in Figure 5.388
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Figure 4: Three figures showing data selected from the detectability synthetic study (Figure 3) to
represent posterior predictive checks and parameter posteriors from data generating models with
various intrinsic chargeability and depth parameters. Left: Posterior predictive check plots where
posterior samples are drawn from particles in the final target density of each inversion. Right: Joint
posterior density of the inversion of synthetic data. The true (data-generating) model parameters
are identified by the dark-red dashed line in each plot. In the third figure showing the posterior of
a conductive-only model the recoverability of conductivity parameters at greater depths is visibly
more successful than when chargeability is present in the data-generating model.
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4.1.1 Depth of Investigation389

A Bayesian approach to computing the level of information of the data with respect to390

depth, known as the depth of investigation (DOI), was developed by Blatter et al. (2018) us-391

ing entropy to measure information gain. By evaluating the continuous conductivity or charge-392

ability parameters at discrete intervals with respect to depth, the depth of investigation diver-393

gences are computed at 1-metre intervals. It is necessary to choose a suitable divergence thresh-394

old to mask the posterior in regions that are considered to be occluded; for this work a thresh-395

old of 1 was chosen to work well in most scenarios. Figure 4 shows the DOI for the intrin-396

sic chargeability vs depth averaged model posterior in each case. The DOI for conductivity397

was below the a priori maximum interface depth, indicating that in these cases the resolution398

of conductivity was greater than that of chargeability.399

4.2 Colorado Study400

The above methods were applied to parameter and model inference on one flight-line401

of AEM survey data from Colorado, USA (B. J. Minsley and Ball (2018), Zamudio et al. (2021)).402

Notably, there was a relatively low particle count (9600 particles per sounding) required to suf-403

ficiently permit model and parameter inference on the resultant posteriors. The selected data404

visibly contained negative magnetic flux density measurements that cannot be modelled us-405

ing non-chargeable physics. Data was spatially decimated so that soundings are spaced by ap-406

proximately 30 metres and sections of the mean summaries are shown in Figure 5. Although407

there is no published ground truth survey for this region, it is expected that the continuous sec-408

tion of non-zero intrinsic chargeability in flight line 11810 is due to the frequent occurrence409

of disseminated pyrite present in the Mancos shale formations consistent with the surround-410

ing geology (Vanderwilt, 1937).411

This flight line of data was also the subject of an earlier study by Viezzoli et al. (2019).412

In their study, the authors compare Cole-Cole IP ground parameters, recovered via a Tikhanov413

regression inversion, to a geology map of the region to demonstrate spatial consistency with414

known geological structures in the area. Notably, their findings for MAP parameters were con-415

sistent with the results in this work, however their study did not take into account parameter416

and model uncertainty and did not attempt to discriminate data on the basis of the presence417

of induced polarisation effects.418

5 Conclusions419

In this study we demonstrated the effectiveness of Bayesian parameter inference and model420

inference, the latter specifically for inference on the likelihood of non-zero intrinsic charge-421

ability when the number of layers in conductivity and chargeablility depth profiles are unknown422

a-priori. We have developed an SMC algorithm for inference of parameters and model prob-423

abilities that can exploit practically any parallel computing architecture, independent of the con-424

figuration of the model space and the number of particles, and is robust in the presence of patho-425

logical posteriors. In synthetic studies we have shown how well chargeability can be detected426

via the BFIPD statistic for a given AEM system configuration. In real data examples we have427

demonstrated how the BFIPD statistic is spatially consistent in a line of AEM data.428

Future research stemming from this work could take many avenues. Geophysics prac-429

titioners may delve into the parameterisation and/or the assumptions of the existing noise model430

that was discussed in Section 2.3.2. It would also be of interest to investigate the computa-431

tional efficiency of cross-dimensional proposals considering that such proposal design can be432

enhanced with the availability of particles approximating πt. There are potentially other ef-433

ficiencies that could be implemented in the SMC algorithm itself which could quickly make434

it computationally competitive with well-established Bayesian inference software for geophysics.435

The Python 3 code that was developed for this research is part of a larger framework under436
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Figure 5: Top: Mean posterior summaries of each sounding for conductivity and chargeability
parameter posteriors given VTEM ET data from the Colorado USA AEM survey. Each mean
posteior summary is computed using the mean of the model-averaged parameter posterior versus
depth. The third panel shows the Bayes Factor Induced Polarisation Detectability (BFIPD) statis-
tic, which is the expected non-chargeable model probability versus the expected chargeable model
probability. The fourth panel displays a summary of each data set standardised to the respective
posterior predictive distribution (PPD) such that any significant deviations of the data at each gate
time with respect to the PPD can be easily identified. Values between -1 and 1 fall within the stan-
dard deviations of the PPD. A selected sounding is highlighted with a red rectangle for further
inspection in the bottom figure. Bottom: Posterior predictive check and posterior vs depth plot of
conductivity and chargeability for data highlighted in the red rectangle in the top figure.
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development and will be released in the near future, accessible via http://www.terrascope437

.com.au/ and as a repository at https://github.com/daviesl/.438
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Appendix A Static Sequential Monte Carlo Algorithm691

Algorithm 2: Static Sequential Monte Carlo with an MCMC Kernel

Output: {θ(i)T }Ni=1 and ẐT
Initialise particles from the prior for i = 1, . . . , N , θ(i)0 ∼ π0(·) = p(·).
Initialise the particle weights for i = 1, . . . , N , W (i)

0 ← N−1.
Set t← 0, γ0 ← 0, and Ẑ0 = 1.
for t← 1, .., T do

Re-weight particles with normalised weights for i = 1, . . . , N .

w
(i)
t ←W

(i)
t−1L(y|θ

(i)
t )γt−γt−1

W
(i)
t ←

w
(i)
t∑Nt

i=1 w
i)
t

Ẑt ← Ẑt−1
Nt∑
i=1

w
(i)
t

Re-sample Nt particles θ(i)∗t ∼ π̂t(·) where π̂t(·) is represented by the weighted
particles {W (i)

t ,θ
(i)
t }

Nt
i=1

Mutate particles using an MCMC kernel with proposal q(·)

θ
(i)
t+1 ∼ q(·|θ

(i)∗
t ).

end

692

Appendix B Adapting the number of MCMC moves for multiple proposals693

If we require at least one accepted proposal with a high probability greater than a tun-694

ing parameter c′ = 1− c, say c′ = 0.99,695

P (X ≥ 1) ≥ 1− c (B1)

Evaluate B1 by taking the complement696

P (X ≥ 1) = 1− P (X = 0) ≥ 1− c
P (X = 0) ≤ c

Taking the Binomial expansion at X = 0

(1− pacc)R ≤ c
R log 1− pacc ≤ log c

R ≥ log c

log 1− pacc

Take R as the least integer upper bound697

R =

⌈
log c

log 1− pacc

⌉
(B2)
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For more than one proposal type and many parameters, the note the number of accepted pro-
posals X ∼ Multinomial(R,a) where X = {X1, ..., Xn} and a = {a1, ..., ax} for all pa-
rameters i ∈ {1, ..., n}. Evaluating using the same tuning parameter 1− c as above,

P (X ≥ 1) ≥ 1− c (B3)

Evaluate B3 by taking the complement

P (X ≥ 1) = 1− P

(
n⋃
i=1

Xi = 0

)
≥ 1− c

P

(
n⋃
i=1

Xi = 0

)
≤ c

Instead of evaluating the union of sets, it is sufficient to note that the union
⋃n
i=1(Xi = 0)

bounded below by any of the events {Xi = 0} and that the marginal distribution of the multi-
nomial is a binomial distribution. Hence enforcing

max {P (Xi = 0)} = (1− pminacc )
R ≤ P

(
n⋃
i=1

Xi = 0

)
≤ c (B4)

will satisfy B3 and as such B4 results in the same form as B2 using pminacc , that is

R =

⌈
log c

log 1− pminacc

⌉
(B5)

Appendix C Total Effective Sample Size Estimator698

First we define the Normalised Effective Sample Size (NESS) as a value between 0 and
1 giving the proportional quantity of representative samples of a distribution πt(θ|y, k) that
can be approximated with

N̂ESSt,k :=
ÊSSt,k
Nt,k

.

We then define the Total Effective Sample Size (TESS) as a value between 0 and N in terms
of the expected NESS of all models conditional on the marginal probability of the models, namely

E[TESSt] := N · E[NESSt,k]
= N · E

[
E[NESSt,k|k]

]
(Law of Total Expectation)

= N
∑
k∈M

E[NESSt,k|k]π(k|y)

Using the estimator N̂ESSt,k from above, and noting that π̂(k|y) =
Nt,k
N , we have the es-

timate

T̂ESSt = N
∑
k∈M

ÊSSt,k
Nt,k

Nt,k
N

=
∑
k∈M

ÊSSt,k

Appendix D Ratio of Normalising Constants Between Successive Target Densities699

This appendix demonstrates that the ratio of normalising constants between successive
target densities in RJSMC is derived in a similar way to those for single model static SMC.
Here we will use the notation pt(θ|k) to represent the conditional (normalised) target distri-
bution. Noting ηt,k(θk|k) = Zt,kpt(θ|k), the ratio of normalising constants can be found as
follows

Zt,k =

∫
θk

ηt,k(θk|k)dθ
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=

∫
θ

ηt,k(θk|k)
pt−1(θk|k)

pt−1(θk|k)dθ

=

∫
θ

Zt−1,k
ηt,k(θk|k)
ηt−1,k(θk|k)

pt−1(θk|k)dθ

Zt,k
Zt−1,k

=

∫
θ

ηt,k(θk|k)
ηt−1,k(θk|k)

pt−1(θk|k)dθ.

Now using the weighted sample {W (i,k)
t−1 ,θ

(i,k
t−1)}

Nt,k
i=1 from pt−1(θk|k) we obtain the follow-

ing Monte Carlo estimate

Ẑt,k
Zt−1,k

=

Nt,k∑
i=1

W
(i,k)
t−1

ηt,k(θ
(i)|k)

ηt−1,k(θ(i)|k)
.

In the case where we are using a RJMCMC kernel, the term ηt,k(θ
(i)|k)/ηt−1,k(θ(i)|k) is the

incremental weight. In this instance, the estimate of the ratio of normalising constants is

Ẑt,k
Zt−1,k

=

Nt,k∑
i=1

w
(i)
t,k.

Appendix E Reversible jump MCMC proposals700

Using π(θk, k|y) as the target of the state space θ =
⋃
k∈K({k}×RNt,k), RJMCMC701

proposal construction requires the following design choices:702

1. Dimension Match: Given nk = |Mk|, nk′ = |Mk′ |, draw random variables uk ∼
gk(·), uk′ ∼ gk′(·) of length wk and wk′ such that

nk + wk = nk′ + wk′ .

2. Bijective Map: hk→k′ : Rnk ×Rwk → Rnk′ ×Rwk′ is chosen to map

θ′k′ = hk→k′(θk,u)

The acceptance ratio that satisfies detailed balance is

α[(k,θk), (k
′,θ′k′)] = 1 ∧ π(k

′,θ′k′ |y)qk′→k(θk, k|θ′k′ , k′)gk′→k(uk′)
π(k,θk|y)qk→k′(θ′k′ , k′|θk, k)gk→k′(uk)

∣∣∣∣∣∂hk→k′ (θk,u)∂(θk,u)

∣∣∣∣∣.
E1 RJMCMC Proposals for the 1D layered Earth model703

(Malinverno, 2002) introduced a proposal for the 1D layered model based on the change-
point model from (P. J. Green, 1995). This model essentially specifies the model space as an
arbitrary number of identically-distributed change-points representing layer interfaces, each with
associated properties. The original definition used the so-called “grid trick” to enable birth-
death proposals of layer interfaces. This was formalised instead by (Dosso et al., 2014) to use
a Dirichlet-type prior on the layers themselves, visualised as the homogeneous space between
the layer interfaces. The priors are

Number of layers : P (k) =
1

kmax − kmin

ith-layer associated physical property j : P (βi,j |k) =
1

βmax − βmin

Layer thickness : P (zk|k) =
k!

zkmax

ith-layer parameter θi,k = {βi,0, . . . , βi,J , zi}
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The combined prior is given by

P (k)P (θk|k) =
1

kmax − kmin

P (zk|k)∏J
i=1(βmax − βmin)k+1

The birth acceptance term is comprised of the prior and proposal ratios. The prior ratio is

P (k′)P (θk′ |k′)
P (k)P (θk|k)

=
k + 1

zmax

∏J
i=1(βmax − βmin)

The proposal ratio for inserting a new layer in the ith position (or a uniform probability of
inserting a layer in the interval (0, zmax)) combined with the reverse step (death of the pro-
posed layer, with probability 1/(k + 1)) is

Q(k,θk|k′,θk′)
Q(k′,θk′ |k,θk)

=
1

k + 1

zmax

Qβ(β′|β)

The acceptance term for layer birth, combining all terms, is

Abirth[(k,θk), (k
′,θk′)] = 1 ∧ 1

Qβ(β′|β)
1∏J

i=1(βmax − βmin)

L(y|k′,θ′k′)
L(y|k,θk)

.

If Qβ(β′|β) is chosen to be simply drawing from the uniform prior for βi for the ith layer
being inserted, the acceptance ratio reduces to the likelihood ratio

ANaı̈ve[(k,θk), (k
′,θ′k′)] = 1 ∧ L(y|k

′,θ′k′)

L(y|k,θk)
.

E2 An adaptive reversible jump MCMC proposal for the 1D layered Earth model704

A common ailment of RJMCMC proposals is the poor mixing phenomenon identified705

by very low acceptance rates. The design of adaptive proposals is a vast field of research and706

is naturally problem specific. In this appendix we will identify one possible construction for707

an adaptive RJMCMC proposal which takes advantage of the availability of πt in an SMC al-708

gorithm without guarantees for performance in any particular context.709

This proposal design follows that of the birth/death design in Appendix E1 where the710

vector of auxilliary variables in the birth move is u = [ud, up], and the depth of the new layer711

ud is first drawn independently and uniformly over the range of the allowed depths. Note that712

since layer interfaces are sorted in order of depth, we can find the index i of the layer inter-713

face being inserted. Following this, we consider that the second auxilliary variable is drawn714

as from a standard Gaussian and then transformed via a bijective map. Thus we consider be-715

low the construction of hk→k′(θk,u).716

If it can be assumed that πt(θt|k) is unimodal and approximately Gaussian (an assump-
tion that rarely holds), its variance can be approximated via the sample variance

Σk,t =
1

Nt,k − 1

Nt,k∑
i=1

(θ
(i)
k,t − µk,t)(θ

(i)
k,t − µk,t)

T

We choose the bijective transform for the birth of one layer to be

θk+1,t[j] = θk,t[h(j)] +Σ
1
2

k+1,t[i, j]u

where j indexes each parameter component independently, h(j) maps the indices of θk to θk+1,717

and Σ
1
2

k+1,t is the ZCA colouring matrix (square root) of Σk+1,t. Also note that the row in-718

dex i is essentially arbitrary, however a common choice is the index of the layer being inserted719

into the model.720
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To form the Jacobian, we take the partial derivatives

∂θk+1[j]

∂θk[h(j)]
= 1

∂θk+1[j]

∂u
= Σ

1
2

k+1,t[i, j]

The Jacobian becomes a mostly triangular matrix with one row replicating the non-zero el-
ement locations. It can be re-arranged to a block triangular matrix

J =

[
A B
0 D

]
where A is diagonal and comprised of ∂θk+1[j]

∂θk[h(j)]
= 1 entries, and

D =

[
1 ∂θk+1[h

−1(j)]
∂up

1 ∂θk+1[j]
∂up

]
.

Hence the determinant becomes

detJ = detAdetD

=
∂θk+1[j]

∂up
− ∂θk+1[h

−1(j)]

∂up
as detA = 1

= Σ
1
2

k+1,t[i, j]−Σ
1
2

k+1,t[i, h(j)].

For the death move, we need to solve for up. Using the knowledge that elements θk[j] and
θk[h(j)] are equal for j 6= h(j), we derive

up =
θk+1[j]− θk+1[h(j)]

Σ
1
2

k+1,t[i, j]−Σ
1
2

k+1,t[i, h(j)]
.
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