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Abstract

This is a laboratory zonal-jet study using a rotating water tank. The bottom topography has a tent-shaped radial cross section

designed to generate two critical latitudes, i.e. two positions where βe, the radial gradient of the potential vorticity (PV),

changes sign. This configuration is motivated by observations indicating Jupiter and Saturn have not only multiple zonal

jets, but multiple stable critical latitudes. It is known that “supersonic” critical latitudes (with respect to Rossby waves) are

stable, whereas “subsonic” critical latitudes are posited to be unstable. Because Rossby waves are uni-directional, “supersonic”

critical latitudes come in two varieties: Rossby Mach number MR > 1 and MR < 0, where the latter holds when the waves are

directed downstream. Experiments focus on: i) how do zonal jets emerge from localized forcing in a system with alternating

PV gradients? and ii) what differences are there between the evolution of various types of critical latitudes? The water is

forced by mass injection along one radius. Laboratory altimetry provides accurate, unobtrusive records of the circulations that

reveal the emergence of counter-propagating β-plumes (Rossby-wave envelopes), which expand into tank-encircling zonal jets.

The tank’s negative βe annulus is characterized by MR ˜ 1, which is the condition surmised for Jupiter and Saturn. The weaker

critical latitude (in terms of jumps in the PV-gradient) adjusts its position by ˜4% of the tank radius and maintains MR ˜ 1.

In contrast, the stronger one vacillates while maintaining |MR| << 1, and may be relevant to steep oceanic seamounts.
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Key Points:7

• Stability of jets is assured when critical latitudes (extrema of potential vorticity)8

are “supersonic” with respect to Rossby waves.9

• Multiple stable critical latitudes on Jupiter and Saturn motivate this study of a10

rotating water tank with two built-in critical latitudes.11

• Lab altimetry records alternating jets forming from local forcing and distinguishes12

between Jupiter-like and non-Jupiter-like environments.13
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Abstract14

This is a laboratory zonal-jet study using a rotating water tank. The bottom topogra-15

phy has a tent-shaped radial cross section designed to generate two critical latitudes, i.e.16

two positions where βe, the radial gradient of the potential vorticity (PV), changes sign.17

This configuration is motivated by observations indicating Jupiter and Saturn have not18

only multiple zonal jets, but multiple stable critical latitudes. It is known that “super-19

sonic” critical latitudes (with respect to Rossby waves) are stable, whereas “subsonic”20

critical latitudes are posited to be unstable. Because Rossby waves are uni-directional,21

“supersonic” critical latitudes come in two varieties: Rossby Mach number MR > 1 and22

MR < 0, where the latter holds when the waves are directed downstream. Experiments23

focus on: i) how do zonal jets emerge from localized forcing in a system with alternat-24

ing PV gradients? and ii) what differences are there between the evolution of various types25

of critical latitudes? The water is forced by mass injection along one radius. Laboratory26

altimetry provides accurate, unobtrusive records of the circulations that reveal the emer-27

gence of counter-propagating β-plumes (Rossby-wave envelopes), which expand into tank-28

encircling zonal jets. The tank’s negative βe annulus is characterized by MR ∼ 1, which29

is the condition surmised for Jupiter and Saturn. The weaker critical latitude (in terms30

of jumps in the PV-gradient) adjusts its position by ∼ 4% of the tank radius and main-31

tains MR ∼ 1. In contrast, the stronger one vacillates while maintaining |MR| � 1,32

and may be relevant to steep oceanic seamounts.33

Plain Language Summary34

Jupiter is striped with dark and light bands called belts and zones, which are as-35

sociated with its steady eastward and westward jet streams (“jets” for short). Entwined36

within these are long waves that would cause the jets to meander and buckle, like Earth’s37

jet streams do, were it not for guide rails that are buried inside the gas giant: the steady38

pressure ridges and troughs, called dynamic topography, that are associated with the planet’s39

abyssal jets. This work employs an optical altimetry method for measuring the circu-40

lations in a rotating water tank without disturbing the flow. The tank’s bottom topog-41

raphy is a tent-shaped peak that encircles the tank like a doughnut and provides a Jupiter-42

style guide rail. The flow is forced by injecting water from the holes of a submerged pipe43

that extends along one radius. Many different types of waves are recorded propagating44

away from this forcing, and the circulations are seen to evolve into alternating eastward45

and westward jets that encircle the tank. Where long waves travel upstream at about46

the same rate as the flow itself travels downstream, such that the waves are approximately47

stationary, the system exhibits Jupiter-like characteristics.48

1 Introduction49

Jet streams (“jets” for short) play a guiding role in atmospheric and oceanic fluid50

dynamics, and have analogies across many disciplines, including jets in magnetized plas-51

mas and in protoplanetary disks (Baldwin et al., 2007; Dowling, 2019). Jupiter’s jets are52

the prototypical system: the first hint of order out of chaos came from the discovery of53

the planet’s belts in 1630 (Graney, 2010). The jets are beautifully structured and pro-54

vide counterpoints to atmospheric turbulence, as evident in high-resolution imagery from55

Pioneer 10 and 11, Voyager 1 and 2, Galileo, Juno, Cassini-Huygens and New Horizons.56

The flow visualization of Jupiter’s cloud tops rivals that which can be achieved in the57

laboratory, permitting detailed analysis of velocity and vorticity fields. This has revealed58

that Jupiter’s troposphere is composed of not only multiple stable jets, but of multiple59

stable critical latitudes (Dowling & Ingersoll, 1989; Dowling, 1993, 1995b; Read et al.,60

2006). This appears to also hold for Saturn (Read, Conrath, et al., 2009; Read, Dowl-61

ing, & Schubert, 2009). The inference that gas giants have multiple stable critical lat-62

itudes is the primary motivation for the class of laboratory experiments initiated here.63
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1.1 Multiple stable critical latitudes64

In the context of inviscid shear stability, a critical latitude (also known as a crit-65

ical line, critical surface, or critical layer) marks the position of a local extremum in po-66

tential vorticity (PV), where the gradient of the PV changes sign. Rossby wave phase67

speeds (before advection by the wind) travel with high PV on their right—they are uni-68

directional—hence a critical latitude marks a pivot point for the direction of propaga-69

tion, which has a governing effect on the fluid dynamics. “Supersonic” critical latitudes70

are proven to be stable (the quotes indicate the discussion is about Rossby waves, not71

sound waves), via the two branches of Kelvin-Arnol’d shear stability theory (KA-I and72

KA-II) cast in non-dimensional form (McIntyre & Shepherd, 1987; Dowling, 2014). The73

Rayleigh, Kuo, Charney-Stern, and Fjørtoft stability criteria are special cases of the KA-74

I branch, and interestingly, both branches are “supersonic”: KA-II corresponds to the75

usual MR > 1, where MR is the analog of the Mach number, and KA-I corresponds to76

MR < 0, which stems from the uni-directionality of Rossby waves and holds when their77

longwave speeds are directed downwind. This MR point of view is shedding new light78

on the classic problem of inviscid shear stability, where the lack of physical insights has79

long been cited as a deterrent to progress (e.g. Lin, 1945; Darrigol, 2005). The compact80

statement that “supersonic” critical latitudes are stable has a straightforward physical81

interpretation: vortical eddies, which must lean into the shear to be self-amplifying, are82

relentlessly toppled downstream and thus rendered self-damping (see Figures 5 and 6 in83

Dowling, 2014). Likewise, an open conjecture posits that “subsonic” critical latitudes84

are unstable, which has numerical support (e.g. Dowling, 1993; Stamp & Dowling, 1993;85

Dowling, 2020) but has not yet been proven mathematically.86

Systems containing a single stable critical latitude have been well studied (e.g. Kuo,87

1949; Balmforth & Morrison, 1999; Hirota & Morrison, 2016), including applications to88

rotating water tank experiments (e.g. del Castillo-Negrete & Morrison, 1993). The more89

complicated case of multiple stable critical latitudes is “possibly the most interesting”90

(Balmforth & Morrison, 2002, p. 138), but is less-well studied and so there is much that91

laboratory experiments can contribute. Three questions immediately present themselves.92

Firstly, the existence of multiple critical latitudes means that Rossby wave propagation93

switches direction where the sign of the PV gradient switches. In such an environment,94

how do jets spin up and stabilize? Secondly, how do the various kinds of critical latitudes95

evolve? Thirdly, when there is only one critical latitude, it dictates the reference frame,96

but when there is more than one, some type of special communication must occur in or-97

der to have the zonal wind be zero at each latitude where the PV gradient is zero. Phys-98

ically, this corresponds to long Rossby waves being stationary and coherent across al-99

ternating jets. There is evidence that such coherence occurs in the tropospheres of Jupiter100

and Saturn (Deming et al., 1989; Dowling, 1995a; Read, Dowling, & Schubert, 2009). The101

first two questions, how jets evolve and how different kinds of critical latitudes behave,102

are directly addressed in this study.103

1.2 Laboratory experiments on zonal jets104

Azimuthal jets have been studied in rotating-tank laboratory experiments under105

a variety of configurations for decades, as recently reviewed by Read (2019) and Y. D. Afanasyev106

(2019). Two key distinguishing characteristics are: i) the techniques used to measure the107

circulations, and ii) the manner of forcing used to drive the flow.108

1.2.1 Measuring the circulations109

The present experiments are barotropic in the vertical dimension, in the sense that110

only one rapidly-rotating, incompressible layer of water is used. Vertically varying (baro-111

clinic) structures are suppressed by the gyroscopic Taylor-Proudman effect (Vallis, 2017)112

and so there is little need to try to measure them (there are effective means for deduc-113
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ing them in rotating tanks that contain stratified fluids, which will come into play in fu-114

ture experiments of this type). Measuring the circulations in a single layer can be done115

accurately when the fluid is rapidly rotating, by measuring the highs and lows of the wa-116

ter’s surface elevation, which are strongly coupled to the circulations via geostrophy, the117

balance between Coriolis accelerations and horizontal pressure gradients.118

The practical challenge when monitoring rotating tank experiments is to extract119

as much information as possible, while disturbing the flow as little as possible. The op-120

tical altimetry technique is used in this study to precisely determine the surface eleva-121

tion remotely, without introducing any disturbances to the flow (Y. D. Afanasyev et al.,122

2009; Y. D. Afanasyev, 2015). The surface is illuminated with a bright computer mon-123

itor located above the surface of water. The monitor displays a color pattern resembling124

a color wheel used by painters. Primary colors at the periphery of the pattern combine125

in its center into white. The pattern is reflected as white where the spun-up water is an126

undisturbed parabola, but otherwise is reflected as one hue or another depending sen-127

sitively on the slope and orientation of the surface anomaly (this technique is adopted128

from the telescope-mirror manufacturing industry). Gradient-wind balance is then used129

to invert this slope altimetry into high-resolution velocity and vorticity fields. The im-130

ages are taken with a video camera that yields temporal resolution that is sufficient to131

discern the different propagation characteristics of all the wave types of interest, and to132

record the long-term evolution of jets.133

1.2.2 Forcing134

There are about as many schemes for forcing as there are world-wide laboratories135

engaged in rotating-tank experiments. A system’s reactions can be divided into those136

that are independent of the forcing type, and those that are a signature of the partic-137

ular forcing employed. Quite uniform small-scale forcing can be achieved thermally via138

evaporative cooling of warm water, which creates small-scale convective vortices. Condie139

and Rhines (1994) observed jets forming from this type of forcing, and Matulka et al.140

(2016) did the same by combining this technique with heating at the bottom. An alter-141

native is to employ the second half of oceanography’s thermohaline driver, the haline/saline142

half, for example Read et al. (2019) sprayed salty water on the surface to generate small-143

scale convective motions and observe jet formation.144

In addition to thermohaline techniques, one can also generate jets by perturbing145

the momentum or mass fields in a tank. A straightforward example of the former is to146

have sliding concentric rings on the bottom (e.g. Antipov et al., 1983). Various tanks147

employ the latter by pumping water in and out of holes arrayed in patterns at the bot-148

tom (e.g. Sommeria et al., 1989). Since zonal jets are large-scale phenomena, there are149

some advantages to using azimuthally localized forcing that is much smaller in scale than150

the resultant jets, which is the technique employed here. In this approach, fluid is pumped151

into the tank in a localized area, often along a single radius. Either the same or differ-152

ent density from the fluid in the tank can be used, which results in barotropic or baro-153

clinic circulations, respectively. Using this approach, Y. D. Afanasyev et al. (2012) and154

Slavin and Afanasyev (2012) observed zonal jets forming out of the growing envelope of155

Rossby waves emitted from the local forcing, called the β-plume mechanism.156

Although small-scale convective forcing is arguably more relevant to modelling plan-157

etary atmospheres, in this study the azimuthally localized, same-density mass injection158

technique is used, which permits β-plumes to expand into an otherwise unforced domain.159

This is advantageous for studying how β-plumes grow into zonal jets when the system160

has adjacent zones with alternating signs of the PV gradient, such that the Rossby-wave161

propagation direction alternates.162
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1.2.3 Bottom topography163

The PV gradient has three components on a rotating planet, which arise from changes164

with respect to latitude of the planetary, relative, and stretching vorticities. The plan-165

etary vorticity gradient is β = df/dy, where f = 2Ω sin(φg) is the planetary vorticity166

or Coriolis parameter, Ω is the sidereal angular velocity of the planet’s rotation, φg is167

the planetographic latitude, and y is the local Cartesian latitude coordinate. The β term168

has the feature that it is positive in both the northern and southern hemispheres (zero169

at the poles), and has played an important role in the theory of Rossby waves (Platzman,170

1968). Although β is difficult to reproduce in the laboratory, where rotating tanks usu-171

ally have a cylindrical geometry instead of a spherical-shell geometry (a notable excep-172

tion is the microgravity convection apparatus deveolped by Hart et al., 1986), its absence173

in rotating tanks is of little concern, for at least two reasons. Firstly, the fluid cannot174

cherry-pick β out of the full PV gradient, so as long as one or both of the other two terms175

yields a non-zero PV gradient, there is no awareness in the system that β = 0. Secondly,176

on Jupiter and Saturn the alternating jets are so strong that the relative vorticity and177

stretching vorticity gradients are two to three times larger in magnitude than β (Ingersoll178

et al., 1981; Dowling, 2020), implying that β itself could be turned off without strongly179

affecting the dynamics.180

The primary method for arranging a background PV gradient in a rotating tank181

is to configure the depth of the water to change with respect to radius, which causes gra-182

dients in the stretching vorticity and hence the PV. Variations in depth are due to a com-183

bination of bottom topography and the parabolic shape of the free surface of the rotat-184

ing water, plus any perturbations. While in previous laboratory experiments the result-185

ing PV gradients have typically been single-signed across the domain, here a bottom to-186

pography is employed that creates zones that alternate from positive to negative back187

to positive PV gradient with respect to radius. This builds in two critical latitudes (crit-188

ical radii) where the PV gradient changes sign.189

The rest of the article is organized as follows. Section 2 reviews pertinent advances190

in the theory of Rossby waves, jets, and their interactions. In particular, the reciprocal191

of the analog of the Mach number for Rossby waves is highlighted as a unifying dimen-192

sionless parameter. Section 3 contains details of the laboratory apparatus and the op-193

tical altimetry system. Section 4 describes the results of the experiments, and Section194

5 gives concluding remarks.195

2 Theory196

Jet streams are inextricably linked with shear and vorticity—vortical flow—and197

vorticity waves, which are called Rossby waves in geophysical fluid dynamics and drift198

waves in plasma dynamics, are central to the genesis and maintenance of jets (Galperin199

& Read, 2019; Dowling, 2019). Rossby waves are the result of fluid parcels conserving200

their PV in the presence of an environmental PV gradient (Vallis, 2017), hence the sign201

and magnitude of PV gradients are controlling factors in the development of jets.202

2.1 Rossby waves and critical latitudes203

The central evolution equation for inviscid, adiabatic, and hydrostatic flow is con-204

servation of PV (symbol Q), which is formed by combining the conservation laws of mass,205

momentum and thermal energy to yield (in the primitive Ertel form):206

dQ

dt
= 0 ; Q =

f + ζ

h
, (1)207

where f is the aforementioned planetary vorticity (the Coriolis parameter), ζ is the lo-208

cal vertical component of the relative vorticity (relative to the rotating frame of refer-209
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ence), and h is the fluid depth of the water (the distance from the bottom topography210

to the water’s surface), or for atmospheres the thickness density of the air (Vallis, 2017).211

2.1.1 Meridional gradient of PV212

For most systems, the meridional component of the gradient of the PV is the largest213

and most important. It is expressed here for clarity in the Cartesian framework,214

Qy =
1

h
(fy + ζy)− hy

h2
(f + ζ) , (2)215

where subscripts denote differentiation. For zonally symmetric flow the relative vortic-216

ity is ζ = −uy, and the product hQy may be written217

hQy ≡ βe = β + βu + βh , (3)218

where βe is the mass-weighted PV gradient (“e” for “effective”), β = fy is the plane-219

tary vorticity gradient, βu = ζy = −uyy is the relative vorticity gradient, and220

βh = −f hy
h

(
1− uy

f

)
, (4)221

is the stretching vorticity gradient.222

2.1.2 Height, thickness, and the geoid223

Following standard notation for interface heights and layer thicknesses (e.g. Val-224

lis, 2017, p. 106), the zero for lab-based altitude is at or near the average of the tank’s225

bottom topography, and η and ηb are the respective altitudes of the water surface and226

bottom topography, such that the water thickness is h = η−ηb. When the tank is not227

spinning, the surface is flat and its altitude equals its average thickness, h0. After the228

tank is spun up, but otherwise undisturbed, the radial pressure-gradient force balances229

the centrifugal acceleration such that the surface is parabolic; this furnishes the system’s230

reference geoid,231

ηgeoid(r) = h0 +
(ΩR)2

2g

[( r
R

)2

− 1

2

]
, (5)232

where g is the acceleration of gravity, Ω is the angular velocity of the tank, R is the tank233

radius, and r is the radial coordinate measured from the center (Figure 1). One could234

equally well define the geoid in terms of the corresponding geopotential, Φgeoid = gηgeoid,235

but the slope of η itself is what is measured by the laboratory altimetry system.236

There are two different definitions of “horizontal” motion relevant to a rotating tank,237

and to minimize confusion it is important to explicitly pick one. One is translation par-238

allel to the laboratory floor, which is perpendicular to both Earth’s gravity and to the239

angular velocity vector of the rotating tank. The other is translation parallel to the wa-240

ter’s geoid, which is perpendicular to the effective gravity (the net sum of Earth’s grav-241

ity and the centrifugal acceleration of the rotating tank), which, for example, a water242

bug standing on the surface would deem to be sensible. In this article, the former is used:243

horizontal motion and horizontal velocities refer to translation parallel to the laboratory244

floor. The primary reason for this choice is the gyroscopic Taylor-Proudman effect, which245

causes the bulk circulations in a rapidly rotating incompressible fluid to translate as co-246

herent columns that are parallel to the rotation axis (Vallis, 2017). Thus, surface-height247

disturbances relative to the geoid are measured using lab-vertical altitude, not local geopo-248

tential height (i.e. not the geopotential divided by a constant reference gravity, g0), and249

are denoted η−ηgeoid = ∆η. Ignoring viscous boundary layers, the system under study250

is barotropic (has only one layer) and so behaves largely in a two-dimensional manner.251

The bottom topography in this study is zonally (azimuthally) symmetric, ηb = ηb(r),252

and the surface height can be conveniently decomposed as either η(r, θ) = h(r, θ)+ηb(r)253

or as η(r, θ) = ∆η(r, θ) + ηgeoid(r), where θ is the azimuthal angle.254
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2.1.3 Quasi-geostrophic limit255

The asymptotic limit of rapid rotation and strong stratification leads to the quasi-256

geostrophic version of βe (sometimes written qy). Complete derivations of quasi-geostrophic257

theory are given in geophysical fluid dynamics textbooks (e.g. Vallis, 2017), so here we258

restrict to a brief summary of the basics to be clear about the various contributions to259

βe, which figure into the design of experiments. What makes the quasi-geostrophic limit260

particularly tractable is that both the momentum and mass fields are expressed in terms261

of the same streamfunction, which in this system is proportional to ∆η. This simplifies262

the analysis because it leads to a single equation in a single unknown. Consider in turn263

each of the three terms on the right-hand side of the PV gradient (3). The first is sim-264

ple: the planetary vorticity gradient, β, is unmodified in the quasi-geostrophic limit. The265

relevant approximations associated with β are that it is often assumed to be constant,266

and that it usually appears in the context of local Cartesian geometry (the β-plane ap-267

proximation).268

For the meridional gradient of the relative vorticity, βu, consider that in a rapidly269

rotating fluid, the horizontal pressure-gradient force and the Coriolis force are nearly in270

balance, called geostrophic balance, such that the mass and momentum (pressure and271

velocity) fields are strongly coupled. Consequently, a useful way to write the lab-horizontal272

pressure-gradient force is to define the lab-horizontal geostrophic velocity, which for a273

layer of water may be written in Cartesian form,274

(ug, vg) =
g

f0
(−∆ηy, ∆ηx) . (6)275

A key small parameter in quasi-geostrophic theory is the dimensionless Rossby number,276

Ro = U/(f0L), where U and L are representative horizontal speed and length scales,277

respectively. A rapidly rotating fluid satisfies Ro � 1, and the magnitude of Ro indi-278

cates the relative error between (ug, vg) and the actual horizontal velocity, (u, v). This279

coupling (which is made more accurate below) is the general principle behind determin-280

ing circulations via remote-sensing altimetry.281

The geostrophic velocity has zero divergence, (ug)x + (vg)y = 0, and its relative282

vorticity is related to ∆η via a horizontal Laplacian,283

ζ ≈ ζg = (vg)x − (ug)y =
g

f0
(∆ηxx + ∆ηyy) . (7)284

(Note that in this notation, the “∆” symbol is not the Laplacian, rather the subscript285

partial derivatives are.) For zonally symmetric flow in the quasi-geostrophic limit, (7)286

implies that the relative-vorticity gradient is approximately equal to the third deriva-287

tive of the height anomaly, multiplied by g/f0,288

βu = −uyy ≈
g

f0
∆ηyyy . (8)289

A streamfunction is often introduced to simplify the notation, ψ = (g/f0)∆η, but again290

since ∆η is directly measured by the laboratory altimetry method, in this article the rel-291

evant expressions are mostly maintained in terms of ∆η.292

For the meridional gradient of the stretching vorticity, βh, consider that for the case293

of rapid rotation, Ro approaches zero and thus the factor (1 − uy/f) ∼ (1 ± Ro) ap-294

proaches unity, such that (4) becomes295

βh ≈ −
f0
h
hy =

1

L2
d

(
− g

f0
hy

)
,296

where L2
d = gh/f20 is the square of the deformation length, an important intrinsic length297

scale in rotating-fluid systems. Since h = ηgeoid + ∆η − ηb, such that hy = ∆ηy +298
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(ηgeoid − ηb)y, the geostrophic current (6) replaces −(g/f0)∆ηy to yield299

βh ≈
1

L2
d

(
ug −

g

f0
(ηgeoid − ηb)y

)
. (9)300

For application to planetary systems, where the definition of horizontal is in the geopo-301

tential sense for which (ηgeoid)y = 0, then the remaining ηb term in (9) is interpreted302

as the dynamic topography of deep jets (Ingersoll & Cuong, 1981; Dowling, 2020); al-303

ternatively, when the definition of horizontal is in the lab sense as in this article, then304

the combination (ηb − ηgeoid) serves the same purpose.305

2.1.4 Rossby waves306

Rossby waves largely govern the formation and evolution of jets, which is a lead-307

ing reason that alternating PV gradients are interesting. Phillips (1965) analyzed, in cylin-308

drical geometry, Rossby waves arising from the stretching-vorticity gradient associated309

with the parabolic geoid of a rotating water tank. Staying for the moment in Cartesian310

geometry, conservation of PV is311

dq/dt = 0 ⇒ qt + (u− α)qx + vqy = 0 . (10)312

The term α is a built-in Galilean reference-frame shift, which will prove useful below when313

analyzing critical latitudes (note that q itself is Galilean invariant). Rossby waves are314

found by linearizing (10) about a basic state. Consider a zonally symmetric profile, u =315

u(y) + u′, v = v′, and q = q + q′, which yields316

q′t + (u− α)q′x + v′ qy = 0 . (11)317

In the quasi-geostrophic limit, all the perturbations in (11) can be expressed in terms318

of a single variable, the eddy surface height relative to the geoid, η′, which is defined in319

the same manner as ∆η, but is written with a prime to signal that only small-amplitude320

perturbations are being considered.321

Working on (11) from right to left, the meridional velocity is v′ = (g/f0)η′x. The322

environmental PV gradient, qy ≡ βe(y), is a given profile and in general is one of the323

two non-constant coefficients of the differential equation. If β is the dominant compo-324

nent of βe, then this is an approximately constant coefficient, as it is often assumed to325

be in introductory textbooks (e.g. Cushman-Roisin & Beckers, 2011). However, jets by326

their nature are associated with non-negligible values of βu (barotropic jets) and/or βh327

(baroclinic jets). These change as the jets evolve, and generally render βe(y) to not be328

a constant coefficient. Considering that the fluid cannot pick β or βu or βh, but only re-329

acts to their sum, βe, it is important to focus on the latter (see the discussion on the Rhines330

length below). Moving to the middle of (11), the zonal wind, u(y)−α, is also a given331

profile and is also a non-constant coefficient where there are jets, by definition. Fortu-332

nately, qy and (u−α) are usually correlated in Nature (Dowling, 1993; Read et al., 2006;333

Read, Conrath, et al., 2009; Read, Dowling, & Schubert, 2009; Du et al., 2015; Dowl-334

ing et al., 2017; Stanley et al., 2020).335

The remaining factors in (11) are q′x and q′t. The eddy relative vorticity in (7), to-336

gether with the stretching vorticity implicit in the gradient (9), imply337

q′x =
g

f0

(
η′xxx + η′yyx − L−2d η′x

)
, (12)338

339

q′t =
g

f0

(
η′xxt + η′yyt − L−2d η′t

)
. (13)340

To proceed to analytical results for non-constant coefficient cases, one can limit the341

variation of the coefficients (meaning the variation of the jets) and work in the WKBJ342
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framework (e.g. Young & Rhines, 1980), or proceed in terms of a series or Galerkin frame-343

work customized to the particular case in hand, such as a sinusoidal jet (e.g. Stamp &344

Dowling, 1993). Short of this, and as a step towards building intuition for the fully non-345

linear experiments, consider the textbook case when βe and Ld are constant and the bound-346

ary conditions are periodic, so that one can assume sinusoidal perturbations for Carte-347

sian geometry, η′ ∝ exp[i(kx + ly − ωt)], such that ∂/∂t → −iω, ∂/∂x → ik, and348

∂/∂y → il. Conservation of quasi-geostrophic PV in terms of η′ then yields the follow-349

ing dispersion relation for Rossby waves (Vallis, 2017)350

ω(k, l) = (u− α)k − βek

k2 + l2 + L−2d
(constant u, βe, Ld) . (14)351

The intrinsic zonal phase speed (before Doppler shifting), ĉx = ω/k − (u− α), is352

ĉx = −βeL2
d (1 + Bu)

−1
(constant coeffs.) , (15)353

where Bu = (k2 + l2)L2
d is the wave Burger number, which can be interpreted as the354

non-dimensional squared deformation length associated with a given wavenumber, or vice355

versa.356

Significantly, there also exists a non-constant coefficient special case: when βe and357

(u−α) are strictly proportional to each other, such that βe = κ2(u−α) for some pro-358

portionality constant, κ2. In other words, the jets in this case can be zigzaggy like Jupiter’s,359

so long as the PV gradient is equally zigzaggy. In the steady-state limit, q′t = 0 in (11)360

and the non-constant coefficients then cancel out, leaving361

∂

∂x

(
q′ + κ2ψ′

)
= 0 , (16)362

where the streamfunction notation has been brought in for convenience, v′ = (g/f0)η′x =363

ψ′x. Apart from an innocuous outer x derivative, (16) is simply the eigenvalue problem364

connecting the eddy PV to the eddy streamfunction. The corresponding eigenfunctions365

are steady, and they extend coherently across the alternating jets without being sheared366

(Stamp & Dowling, 1993; Dowling, 2019). While the present experiments are not opti-367

mized to study this phenomenon, it is a long-term goal.368

2.1.5 Critical latitudes369

Recall that latitudes where Rossby waves change direction relative to the flow are370

called critical latitudes, and correspond to locations where ĉx changes sign, which from371

(15) correspond to where βe changes sign. Critical latitudes have major implications for372

the dynamics of jets, including wave transmission and absorption (Vallis, 2017). The mag-373

nitude of the intrinsic phase speed is fastest in the longwave limit, Bu→ 0, and in this374

limit the phase speed and the group velocity both asymptote to the same value, −βeL2
d,375

such that long Rossby waves are non-dispersive (Hide, 1969). Both these facts make it376

straightforward to define and work with the analog of the Mach number for Rossby waves,377

as discussed below. From the MR point of view, analyzing shear stability proceeds by378

first finding all the critical latitudes in a system, and then classifying each as “supersonic”,379

“sonic”, or “subsonic”. Only systems with “subsonic” critical latitudes can develop shear380

instability.381

A “giant’ domain (like Jupiter, Saturn, or Earth’s oceans) corresponds to one for382

which there is sufficient room to take Bu→ 0 (Earth’s atmosphere is not particularly383

giant in this regard). An intriguing question arises with multiple critical latitudes: are384

the longest Rossby waves confined meridionally between them, such that Bu cannot be385

reduced to zero and the gravest waves remain dispersive? Or instead, is the basic state386

able to configure itself so that the gravest waves extend coherently across critical lines,387

without being sheared? As alluded to above, there is empirical evidence that the latter388
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occurs on Jupiter (e.g. Deming et al., 1989) and Saturn (e.g. Read, Dowling, & Schu-389

bert, 2009), and numerical work that suggests such slowly-moving long waves are the hall-390

mark of alternating zonal jets that are close to marginal shear stability (Stamp & Dowl-391

ing, 1993).392

2.2 Analog of the Mach number for Rossby waves, MR393

Since the 19th century, for compressible and hydraulic circulations the upstream394

flow of information via sound waves and buoyancy waves has respectively been charac-395

terized by the dimensionless Mach and Froude numbers. A generic Mach-type number396

defined for flow in the x direction takes the form u/(−ĉx), such that −ĉx is the same sign397

as u for upstream waves (which are the implicit choice for omni-directional waves like398

sound waves and buoyancy waves). The sum cx = u + ĉx is the net wave speed after399

advection by the flow (after Doppler shifting). Generally, ĉx is Galilean invariant, whereas400

u is not, hence a Mach-type field will change depending on the reference frame. Unlike401

sound waves and buoyancy waves, Rossby waves are uni-directional, which means that402

−ĉx has the opposite sign to u in locations where the waves point downstream (have high403

PV on the right looking downstream).404

In general, the analog of the Mach number for Rossby waves is405

MR =
u

−ĉx
=
−ψy
βeκ−2

→ −κ2 ∂ψ
∂q

, (17)406

where ψ is the streamfunction. The rightmost expression in (17) relaxes the assumption407

of zonal symmetry. Notice that the sign of MR is always opposite to the sign of the cor-408

relation between the streamfunction and PV. When working with field data, this streamfunction-409

vorticity correlation is determined via a local linear regression (Du et al., 2015; Dowl-410

ing et al., 2017; Stanley et al., 2020). Negative MR corresponds to the case when the long411

Rossby waves are directed downstream and consequently information flows downstream412

regardless of the flow speed, with no possibility of standing or upstream-directed waves.413

This MR < 0 case is a second form of “supersonic” flow that arises only for uni-directional414

waves (i.e. not sound waves or gravity waves).415

2.2.1 MR and eastward currents416

One of the earliest mentions of MR appears in Long (1952) as part of an analysis417

of experiments using a rotating hemispherical shell that is orientated like a bowl and filled418

with water. An obstacle representing a mountain or seamount barrier is moved either419

slightly more slowly or slightly more quickly than the shell, such that in the obstacle’s420

reference frame there is either a fairly uniform eastward or westward (prograde or ret-421

rograde) current, respectively. The form of MR considered is V/βL2, where V and L are422

characteristic horizontal velocity and length scales, respectively (Long, 1952, p. 195). Al-423

though V/βL2 is not explicitly treated as a signed quantity in this early paper, it is done424

so implicitly since βe ≈ β is positive and one of the main results of the work is the ex-425

istence of standing long Rossby waves for eastward currents (V > 0, MR ∼ 1) and their426

absence for westward currents (V < 0, MR < 0).427

The theme of fairly uniform eastward currents, for which both βu and βh in (3) are428

negligible compared to β, so that βe → β and MR > 0, has continued to be pursued429

by several groups. In these studies, MR is generally treated as a positive constant, rather430

than as a field variable. Fultz (1961, p. 67) gives V/βL2 the name β-Rossby number, de-431

notes it R∗0β , and points out its dynamical equivalence to the Froude number that arises432

in two-dimensional stratified flow. White (1971) studies the wake of an eastward cur-433

rent past a cylindrical island with radius a, defines an island number, Is = (βa2/U)1/2
434

— which is M
−1/2
R with V → U and L → a — and identifies the wavenumber for sta-435

tionary waves, (β/U)1/2, which is the reciprocal of the Rhines length discussed below.436

–10–



manuscript submitted to JGR: Planets

Armi (1989) develops the Froude-number analogy for hydraulic control of an eastward437

current with half-width a interacting with Rossby waves. Armi (1989) cites Fultz (1961)438

for Roβ = U/βa2, who cites Long (1952). More recently, Y. Afanasyev et al. (2008) present439

an experimental study of cylinder wakes on a β-plane using the altimetric imaging ve-440

locimetry technique employed in this article.441

2.2.2 MR and the turbulence-to-waves transition442

In general, there is nothing intrinsic to a rotating fluid that requires the PV gra-443

dient to be dominated by its meridional component. Except, when jets are just begin-444

ning to form, the relative vorticity gradient is weak and the planetary β does provide445

a meridional bias to the full PV gradient, which translates into a zonal bias for wave prop-446

agation and jet formation. The same holds true for a rotating tank with meridionally447

varying, zonally symmetric bottom topography, and for the troposphere of a gas giant448

that has abyssal zonal jets setting its lower boundary condition. Vallis and Maltrud (1993)449

demonstrate of how this zonal bias for emerging jets evolves in wavenumber space.450

Rhines (1975) equates the frequency of Rossby waves to the rotational frequency451

of eddies to obtain a length-scale separating the domain of smaller eddies, which are isotropic,452

from larger ones, which have wave-like zonal bias. This leads to the squared Rhines length,453

L2
Rh =

u

β
. (18)454

An analytical advantage of (18) is that β is a constant on a β-plane, such that if u is also455

a representative constant, then the analysis is simplified because L2
Rh becomes an exter-456

nal parameter. However, as already noted, the fluid itself cannot pick β out of βe, and457

the circulations on Jupiter and Saturn have βe/β = ±3 (Ingersoll et al., 1981; Dowl-458

ing & Ingersoll, 1989; Read et al., 2006; Read, Conrath, et al., 2009; Li et al., 2021). In459

light of this, one should employ the complete PV gradient and upgrade L2
Rh to be460

L2
jet =

u

βe
. (19)461

(Although L2
jet is squared, it should be kept in mind that it can easily be negative.) The462

dimensionless variable M−1
R now comes into play, because in the longwave limit, κ−2 →463

L2
d and the zonally symmetric version of (17) with (19) yields464

M−1
R = κ−2

βe
u
→

(
Ld

Ljet

)2

. (20)465

This reveals that M−1
R is a type of jet Burger number (albeit one that can easily be neg-466

ative). It follows from (20) that (Ld/Ljet)
2 < 1 implies shear stability (M−1

R < 1) and467

that Ljet = Ld corresponds to the “sonic” or choked PV case (M−1
R = 1).468

In this study, jets form via a turbulence-to-waves process called the β-plume mech-469

anism. A β-plume is a flow structure that grows horizontally from spatially localized forc-470

ing in the presence of a background PV gradient. It is essentially a gyre consisting of two471

zonal jets flowing in opposite directions. The linear theory of Rossby waves emitted by472

a localized perturbation provides a straightforward explanation for the creation of β-plumes.473

Studies using the Green’s function approach show that when the local forcing is switched474

on, it emits a spectrum of Rossby waves from which high-frequency transients propagate475

away, leaving behind low-frequency waves that have nearly zonal wave-crests (Stommel,476

1982; Davey & Killworth, 1989; Y. D. Afanasyev & Ivanov, 2019).477

2.2.3 MR and shear stability478

In 1880, the year that shear-stability theory began in earnest with Rayleigh’s inflection-479

point theorem, Kelvin makes a major contribution as well by arguing on energetic grounds480
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that for inviscid vortical systems there are two branches of stability (Thomson, 1880).481

Geometrically, Kelvin’s point is that the closed contours on a topo map, which he en-482

visions to be the appropriate energy field associated with a stable configuration, can ei-483

ther be associated with a depression or a hill. Arnol’d (1966) establishes these two branches484

rigorously by constructing the relevant topo map out of a combination of perturbation485

energy and squared perturbation vorticity (enstrophy). Today this is called the pseu-486

doenergy, and these two branches are called the Kelvin-Arnol’d-I and Kelvin-Arnol’d-487

II (KA-I and KA-II) stability branches.488

McIntyre and Shepherd (1987) apply both branches to geophysical flows and show489

that they take the form ∂ψ/∂q > 0 and ∂ψ/∂q < −κ−2, respectively, where κ2 is the490

gravest eigenvalue relating the eddy PV to the eddy streamfunction, q′ = −κ2ψ′, and491

is the same as in (16). Non-dimensionalizing these is straightforward and insightful (Dowling,492

2014): given (17), the dimensionless versions of KA-I and KA-II are MR < 0 and MR >493

1, respectively . It is thus evident that KA-I and KA-II refer to the two “supersonic”494

cases, and that these concatenate into one compact statement in terms of the recipro-495

cal,496

stable : M−1
R < 1 . (21)497

The physical intuition associated with KA-I and KA-II boils down to this: “supersonic”498

critical latitudes are stable.499

3 Experimental set-up and data acquisition500

The experiments are performed in a cylindrical tank of radius R = 55 cm that is501

installed on a rotating table (Figure 1a). The tank is filled with water of mean depth502

h0 = 14 cm and then rotated counterclockwise with angular velocity Ω = 2.4 rad s−1.503

3.1 Bottom topography with two critical latitudes504

The key feature is the tank’s bottom topography, ηb(r), which varies with respect505

to radius in a triangular or tent-shaped fashion that is azimuthally symmetric (Figure506

1b). The peak height of the bottom topography is 8 cm and the base of the triangle is507

30 cm wide. As a result of this combination of surface and bottom topographies, the tank508

naturally partitions into four zones (Figure 2a): Zone 1 (0 < r < 20 cm) is a polar area509

where depth increases modestly with radius; Zone 2 (20 < r < 35 cm) has depth de-510

creasing sharply due to bottom topography; Zone 3 (35 < r < 50 cm) has depth in-511

creasing sharply; and Zone 4 (50 < r < 55 cm) is an equatorial annulus where depth512

increases less sharply.513

The discussion above concerning the PV gradient in Cartesian geometry carries over514

to a cylindrical tank, with f = f0 = 2Ω, β = df/dy = 0, dr = −dy. The cylindrical-515

coordinate map factors are accounted for in the calculation of relative vorticity,516

ζ =
1

r

∂(ur)

∂r
+

1

r

∂v

∂θ
, (22)517

where θ is the azimuthal angle, positive in the counterclockwise (prograde, eastward) di-518

rection, u = rdθ/dt, and v = −dr/dt. In the undisturbed case, ζ = 0 and βu = 0,519

and consequently the PV gradient, βe, is due to the undisturbed βh term alone, which520

by (4) is βh = −fhy/h = 2Ωhr/h. Since h is given by the difference between the parabolic521

surface, ηgeoid in (5), and the tent-shaped bottom topography, ηb in Figure 2a, the PV522

gradient is (Figure 2b)523

βh(r) =
2Ω

h

(
Ω2

g
r − dηb

dr

)
. (23)524

This configuration initializes the tank with one strong critical latitude (in terms of the525

jump in βh) positioned over the peak of the ridge, and one weak one positioned over the526
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Figure 1. Experimental set-up: (a) top view of the tank as seen by the nadir-pointing video

camera with superposed velocity vectors and (b) cross-section of the tank. Yellow circles in (a)

correspond to the radial positions of the outer edge, peak, and inner (polar) edge of the tent-

shaped bottom topography. The sign of topographic βh is indicated in (b) for each region; it is

negative between the peak and inner edge of the triangular bottom, which sets up two critical

latitudes (radial positions) where βh changes sign.
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Figure 2. Profiles for rotating, unforced tank versus radius, r: (a) water depth and (b) to-

pographic βh. Dashed line in (a) is unforced geoid height, ηgeoid. By design, there are two topo-

graphic critical latitudes where βh changes sign, located on the boundaries of Zone 2.
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poleward foot of the ridge (at the boundary with Zone 1). Inside of Zone 2 the PV gra-527

dient is negative, and outside it is positive, weakly so in Zone 1 (the polar region) and528

more strongly so in Zones 3 and 4.529

3.2 Forcing530

Flow in the tank is forced by a fresh-water source-and-sink combination driven by531

a pump, with fresh water throughout the tank. In its details this approach is new, but532

it is similar to the forcing used by Y. D. Afanasyev et al. (2012), in which a linear source533

of fresh/buoyant water is injected into a tank of salt water, without a sink. In this study,534

there is a sink at the bottom of the tank near the wall, and the source is a radial pipe535

with multiple small holes drilled along its entire length, as shown in Figure 1b, which536

is connected to the sink via a remote-controlled pump. The pipe is under the surface of537

the water and extends from the wall to the center of the tank. The holes in the pipe face538

upwards and create strong vertical jets and intense turbulence above the pipe. Pump-539

ing intensity is an external control parameter, which is held constant during each exper-540

imental run and varied between them. This pumping sets up a tank-sized anticyclone,541

and consequently a convenient non-dimensional measure of the forcing strength is the542

difference between ∆η = η−ηgeoid at the center of the tank and that at the outer wall543

(azimuthally averaged), divided by the average depth, h0:544

δf =
∆η(0)−∆η(R)

h0
. (24)545

This forcing parameter δf is calculated during the statistically steady period in each ex-546

periment.547

δf Transient Statistically Steady
Run [%] Rotations Rotations

1 0.9 0–25 25–150
2 1.9 0–35 35–230
3 2.5 0–35 35– 90

Table 1. Summary of control parameters for the experimental runs. The strength of forcing is

quantified by δf as defined in (24).

Three full-length runs are recorded, with the forcing summarized in Table 1. Qual-548

itatively similar results are obtained in all three experiments, so most of the following549

analysis focuses on Run 2, which is the longest one. Run 1 serves primarily as an ini-550

tial practice run; apart from successfully testing the forcing and data acquisition systems,551

and demonstrating that forcing stronger than δf = 0.9% should be tried, it is not men-552

tioned further. Run 3 has about 30% stronger forcing than Run 2 and is used to verify553

that the features seen in Run 2 are robust. The statistically steady period for each run,554

the period after the zonal jets have encircled the tank, is estimated by inspection of space-555

time (Hovmöller) diagrams; for example, for Run 2 it begins around t = 35 rotations556

(see Figure 4).557

3.3 Altimetric Imaging Velocimetry (AIV)558

The two horizontal components of the gradient of ∆η are measured using the Al-559

timetric Imaging Velocimetry (AIV) technique. See Y. D. Afanasyev et al. (2009) for de-560

tails on the local-water-surface versus lab coordinates associated with this technique. The561

gradient is obtained by processing a video sequence of each experiment frame by frame.562
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The videos are recorded by a nadir-pointing, co-rotating camera installed above the tank.563

Horizontal velocity is estimated to first order in Rossby number, Ro = |ζ|/f0, via geostrophic564

balance and improved to second order (e.g. Cushman-Roisin et al., 1990) via565

~v =
g

f0
k̂ × ~∇(∆η)− g

f20
~∇(∆ηt)−

g2

f30
J
(

∆η, ~∇(∆η)
)
. (25)566

The first term on the right-hand side is geostrophic balance (6). In the second term, the567

temporal derivative or tendency, ∆ηt, is calculated via finite difference between two suc-568

cessive frames in the video sequence, with a time interval of approximately 0.15 s. In the569

third term, J is the Jacobian operator (the determinant of the matrix of partial deriva-570

tives), which in Cartesian geometry is J(A,B) = AxBy −BxAy. The Rossby number571

satisfies Ro . 0.2 everywhere in the flow, except in the vicinity of the source pipe (where572

it exceeds unity), hence away from the forcing (25) is accurate to 4% (i.e. Ro2 . 0.04).573

4 Results574

Laboratory experiments allow for detailed observations of the evolution in time of575

the developing jets and shear flows, which are difficult or impossible to obtain for plan-576

etary systems but can provide insights into how statistically steady patterns emerge.577

4.1 Eddies, waves, and plumes578

Analyses of the video sequences reveal the emergence and evolution of a variety of579

eddies, waves, and plumes. Figure 3 shows snapshots of the flow taken at the beginning580

of Run 2, during a period spanning 16 rotations. Multiple small-scale vortical eddies are581

created by the thin jets injected from the pipe, and several different types of waves de-582

velop.583

4.1.1 Gravity waves584

Turning on the forcing generates surface gravity waves (buoyancy waves) that are585

fast and have high frequency such that they are almost unaffected by rotation. Their phase586

propagates away from the forcing in the familiar sense of a rock thrown into a pond. When587

these waves are slow enough to feel the Coriolis acceleration, but with frequency still greater588

than 2Ω, they are called inertia-gravity waves. These waves don’t contribute significantly589

to the overall dynamics and can be filtered out during data processing if desired. The590

forcing also generates transient Kelvin waves, which are half waves or shelf waves that591

exist when there is a support on their right-hand side that they can lean against. These592

can be seen propagating quickly eastward (prograde, counterclockwise) along the wall593

of the tank (Figure 3a). Their speed is equal to the fast speed of long gravity waves, c =594

(gh)1/2 ≈ 120 cm s−1, such that they travel around the tank in less than 3 s, faster than595

one period of rotation. Kelvin waves are only observed briefly after the initial transient596

of turning on the forcing.597

4.1.2 Inertial waves598

Distinct from inertia-gravity waves, thin stripes of inertial waves, also known as599

gyroscopic waves, can be seen in Figure 3. Inertial waves have frequency less than 2Ω600

and are an important component of the dynamics of oceans and planetary atmospheres601

(Kelvin, 1880; Maas, 2001; Rabitti & Maas, 2013). They can be identified in a flow due602

to the peculiar property that their phase propagates towards the source of the pertur-603

bation, rather than away from it. Thus, when inertial waves are generated by an eddy,604

the concentric pattern of the waves looks like it is collapsing into the eddy. These waves605

are omnipresent in the tank, particularly near the forcing area.606
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Figure 3. Initial evolution of rotating and forced flow (Run 2). Surface deviation, ∆η, in cm

(left column) and zonal (azimuthal) velocity, u, in cm/s (right column), for t = 0.9 (a, b), 1.8 (c,

d), 3.0 (e, f) and 16.0 (g, h) rotations. Inertial waves, Kelvin waves, and eddies are labeled in (a).

The four zones of bottom topography are numbered as in Figure 2 and indicated with yellow cir-

cles in (c). A westward (retrograde) β-plume emanates from the forcing in the positive-βh Zone

3, whereas an eastward (prograde) β-plume emanates from the forcing in the negative-βh Zone 2.
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4.1.3 Rossby waves and β-plumes607

Arguably the most important waves for the evolution of jets and large-scale cir-608

culations are Rossby waves. As discussed in Section 2.1.4, Rossby waves oscillate in or-609

der to conserve PV in the presence of an environmental PV gradient. The nature of this610

restoring force has at least two important ramifications for the evolution of jets. Firstly,611

these waves affect jet dynamics wherever vorticity gradients are present, and jets by their612

nature associate with vorticity and shear—a more generic name for Rossby waves would613

be vorticity waves. Secondly, Rossby waves are planetary in scale and are sensitive to614

bottom and surface slopes. Hence they are diagnostic of the boundary conditions that615

lie beneath a system’s visible jets, like the dynamic topography associated with Jupiter’s616

abyssal jets, or the bottom topography in this study.617

Rossby waves exhibit a difference in character depending on whether they are long-618

wave or shortwave. Recall from (15) that Bu is the dimensionless horizontal wavenum-619

ber. Significantly, in the longwave limit, Bu→ 0, Rossby waves are non-dispersive such620

that their zonal phase speed (ω/k) and group velocity (∂ω/∂k, i.e. their envelope veloc-621

ity) asymptote to the same fastest value relative to the flow, ĉ = −βeL2
d. In regions where622

βe > 0, such as Zones 1, 3, and 4 (Figure 2), this is westward (retrograde, clockwise)623

of the forcing. But in regions where βe < 0, such as Zone 2, this is eastward (prograde,624

counterclockwise).625

In suitably forced systems, Rossby waves manifest as β-plumes (Stommel, 1982;626

Davey & Killworth, 1989; Y. D. Afanasyev & Ivanov, 2019). For short-enough wavelengths,627

the intrinsic group velocity switches direction (Vallis, 2017), and in the tank long zonal628

jets and non-linear transport are observed to set up on the longwave side of the forcing,629

and short, wavy patterns are observed to set up on the short-wave side. Two distinct630

β-plumes are evident in Figure 3, highlighted with red-dashed outlines in panel c. The631

plume in Zone 3, where βe > 0, expands primarily westward, which is expected since632

this is its longwave group direction. This plume’s overall surface-deviation is negative,633

∆η < 0, and so it is a low-pressure anomaly with cyclonic circulation. Contrast this634

with the Zone-2 plume, where βe < 0, which expands primarily eastward, which is its635

longwave group direction. It is intriguing to watch the two plumes evolve in opposite di-636

rections next to each other, reminiscent of the alternating jets on Jupiter and Saturn.637

The Zone-2 plume has ∆η > 0 and so is a high-pressure anomaly with anticyclonic cir-638

culation (Figure 3d,f,h). In the polar region where βe ≈ 0 (Zone 1), there are no dis-639

cernible β-plumes, but instead a growing collection of vortical eddies.640

4.2 Hovmöller diagrams641

A useful way to visualize the development of the flow is to pick a particular radius642

and plot a space-time diagram, called a Hovmöller diagram, with time running horizon-643

tally and longitude (azimuthal angle) running vertically. The separate panels in Figure644

4 show the evolution of the zonal (azimuthal) velocity at four different radii: in the mid-645

dle of the polar region (Zone 1), at the boundary between the polar and negative βe re-646

gions (between Zones 1 and 2), and in the middle of the negative and positive βe regions647

(in Zones 2 and 3). The azimuthal angle, θ, is measured counterclockwise from the source,648

which can be easily identified by its small-scale perturbations, and is plotted down the649

page. For orientation, one can consider the view to be overhead, with the center of the650

tank on the right and the source located between θ = 360◦ and 0◦. In these diagrams,651

retrograde and prograde drifts correspond to coherent markings oriented in the right-652

leaning and left-leaning ( / and \ ) senses, respectively. The zonal velocity itself can be653

negative or positive, which is shown in blue or yellow, ranging from −2 to 2 cm s−1. Slower654

or faster zonal drifts correspond to more horizontal or more vertical slopes. The nearly655

vertical, fine-scale eddies are fast gravity waves that are continuously emitted by the source656

and reflected from the walls of the tank.657
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4.2.1 Zone 1658

Consider first Zone 1, the polar region, shown in Figure 4a. Relatively large ed-659

dies are created on the westward (retrograde) side of the source (θ = 360◦) and are ad-660

vected by the local retrograde ( / ) circulation. Rossby waves propagating in the west-661

ward sense are weakly present, since βe is weakly positive in Zone 1. For the large ed-662

dies there is a noticeable change in character from irregular to smooth bands about halfway663

around the tank, implying that the waves are transforming into smooth β-plumes.664

Figure 4. Hovmöller (space-time) diagrams (Run 2) of zonal (azimuthal) velocity, u = rdθ/dt,

measured along the concentric circles of radius r = 15 cm (a); 20 cm (b); 28 cm (c); and 40 cm

(d). These positions are within the polar region (Zone 1), at the boundary between the polar and

negative βh regions (between Zones 1 and 2), in the middle of the negative βh region (Zone 2),

and in the middle of the positive βh region (Zone 3); compare with Figure 2. Time is in units of

rotation period. The statistically steady interval begins at about rotation 35. Color scale is in

cm/s.

4.2.2 Zone 2665

Now consider the transition to the negative βe region (the interface between Zones666

1 and 2), shown in Figure 4b. This is in the vicinity of the system’s weaker critical lat-667

itude. The bottom half of the panel (180◦ to 360◦) is similar to Zone 1, with retrograde668

drift of large eddies. However, the top half (0◦ to 180◦) is different, with no large eddies669

but with a band of prograde (yellow) velocity that is the signature of the zonal jet at the670

poleward flank of the β-plume in Zone 2. In addition, small eddies emanate from the source671

and propagate in the prograde ( \ ) direction. Rossby waves propagating eastward like672

this are observed on Jupiter where βe < 0 (e.g., Rogers et al., 2016).673

Moving into the middle of the negative βe region (Zone 2), Figure 4c is positioned674

along the equatorward flank of the β-plume (see Figure 3c). A band of retrograde (blue)675

velocity extends from the source to approximately halfway around the tank (θ = 0◦ to676
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180◦). Even though this position is in between two critical latitudes, namely the flanks677

of Zone 2, the flow in this area lacks major perturbations and is stable. Retrograde of678

the forcing (on the bottom half of the figure), overlying a mean speed that is approx-679

imately zero (green), there exists a crisscross pattern of small eddies with prograde and680

retrograde speeds. These are small-scale vortical eddies created by the pipe’s jets.681

4.2.3 Zone 3682

Figure 4d is positioned past the strong critical latitude between Zones 2 and 3 and683

into the middle of the positive βe region of Zone 3. Overall, the eddies are less vigorous684

and finer than in Zone 1, but there is a general resemblance, including the transition in685

the top half to smooth β-plumes. The dispersive nature of Rossby waves is nicely ev-686

ident in this panel, with smaller wavenumber features propagating faster than larger wavenum-687

ber features (i.e., longer wavelengths are propagating faster).688

A general result of the Hovmöller analysis is that the character of the flow differs689

between the prograde and retrograde halves of the tank relative to the diameter contain-690

ing the mass source (i.e. the top and bottom halves of the diagrams). This asymmetry691

is a peculiarity of the forcing method being used, but is interesting in its own right and692

is explored next.693

4.3 Monopolar and dipolar components694

A variety of methods have been devised for forcing laboratory experiments, not to695

mention numerical simulations, and it is helpful to distinguish between the components696

of the reaction that are intrinsic to the system versus those that associate with the forc-697

ing method. In these experiments, the forcing is mass injection that is localized along698

a particular radius of the tank, rather than some type of more-or-less uniform distribu-699

tion. A consequence is the introduction of an azimuthal dipolar component to the evo-700

lution, in addition to the anticipated β-plumes and zonal jets.701

To separate out the dipolar component, a fast Fourier transform (FFT) of ∆η(r, θ)702

with respect to θ is calculated at each radius. The zeroth and first-order amplitudes from703

the FFT then yield the monopolar and dipolar components, which may be written con-704

veniently in terms of real factors as705

∆η(r, θ) = M(r) + a(r) cos θ + b(r) sin θ + . . . , (26)706

where the monopolar component, M(r), is the zonal (azimuthal) average. An example707

decomposition is shown in Figure 5 for Run 2, after 3 rotations of the tank. The full ∆η708

is shown in Panel (a), with the axis of the dipole indicated by a dashed line, which nearly709

aligns with the forcing radius, as expected. The monopolar and dipolar components are710

isolated in Panels (c) and (d), respectively.711

4.3.1 Monopolar component712

Consider first the monopolar component, M(r), in Figure 5c. The mass injection713

generates a tank-sized anticyclonic vortex, except at the tank’s center, where the source-714

pipe does not reach and the flow develops cyclonic circulation, and at the tank’s periph-715

ery, where the mass sink is located. The sink is a drain-pipe with a relatively wide (∼716

1 cm diameter) opening, located at the bottom near the wall, about 10 cm counterclock-717

wise from the source-pipe. The sink does not strongly affect the momentum of the tank,718

although it does create small cyclones that can be seen in the images; these generate a719

low-pressure β-plume that propagates along the wall in Zone 4. These various patterns720

can be seen in the velocity vectors shown in Panel (c). Within this general circulation,721

alternating zonal jets form via the β-plume mechanism, with their direction controlled722

by the sign of βe.723
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Figure 5. Monopolar and dipolar components of the flow (Run 2): (a) original surface de-

viation field at t = 3 rotations of the tank, (b) the residual of the field when the monopolar

component is subtracted, (c) the monopolar component and (d) the dipolar component obtained

by the decomposition (26). Dashed line in (a) shows the axis of the dipole. Surface deviation is

in cm; arrows in (c) and (d) show respectively the monopolar and dipolar velocity fields.
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4.3.2 Dipolar component724

The dipolar component (Figure 5d) is only two times smaller in magnitude than725

the monopolar component. Figure 5b shows the residual field with the monopolar com-726

ponent subtracted, ∆η−∆ηmonopole. The dipolar component is evident, as are higher-727

order angular modes. The axis of symmetry aligns with the source. Such dipolar struc-728

tures, with analogies to features seen in Earth’s polar regions, have been previously stud-729

ied in similar experimental set-ups and are relatively well understood. For example, Y. D. Afanasyev730

and Jewtoukoff (2009) use the same laboratory altimetry technique employed here to study731

dipoles that are generated by a force centered at the pole, rather than via an off-center732

mass source/sink.733

4.4 Statistically steady circulations734

Once β-plumes encircle the tank, a mature circulation is reached that includes com-735

plete alternating zonal jets, as well as embedded jet streaks that are provoked by the con-736

tinuous forcing. Figure 6 shows surface deviation, velocity, and vorticity from the dy-737

namically steady state period of Run 2, at t = 51 rotations. Consider first the large-738

scale pattern of the flow revealed by ∆η, shown in Panel (a). The anticyclonic circula-739

tion is evident: ∆η is high in the tank center and generally decreases to the wall. In ad-740

dition, an annulus of positive ∆η at r ≈ R/2 is evident, which corresponds to the β-741

plume in Zone 2.742

4.4.1 Velocity and vorticity fields743

Next consider medium and small scales revealed in the zonal velocity, u, shown in744

Panel (b). Bands of different color in u indicate both complete zonal jets and jet streaks745

within the general anticyclonic circulation. In the outer, positive-βe region (Zones 3 and746

4) there are cyclonic jet streaks (green and yellow) that are opposing the large-scale an-747

ticyclonic circulation (blue) but are not strong enough to prevail. Zone 2 has anticyclonic748

flow, but in addition there is a distinct cyclonic (yellow) jet sitting on the border with749

Zone 1 that persists throughout the mature phase of the run.750

Medium and small-scale features are also evident in the PV shown in Panel (c). In751

Zone 1, cyclonic and anticyclonic eddies are co-mingling, which tends to homogenize PV.752

The two built-in critical latitudes in the interior of the system are visible: the stronger753

one is the pronounced green-yellow-green (maximum q) annulus situated over the ridge754

of the bottom topography, and the weaker one is the more subtle green-blue-green (min-755

imum q) pattern on the border between Zones 2 and 1. These are analyzed below.756

4.4.2 M−1
R and Rossby waves757

As reviewed above, the reciprocal of the analog of the Mach number for Rossby waves,758

M−1
R (Figure 6d), has emerged as a useful diagnostic for systems with evolving jets. One759

advantage of the reciprocal over MR itself is that it concatenates the Kelvin-Arnol’d I760

branch (KA-I) of shear stability theory, MR < 0, and the Kelvin-Arnol’d II branch (KA-761

II), MR > 1, into one compact “supersonic” condition, M−1
R < 1. As a consequence,762

two important but distinct PV concepts, PV mixing and shear stability, are non-dimensionalized763

and clarified via M−1
R into a discussion of “0 versus 1” (Dowling, 2020).764

On the large scale, the most striking feature of Figure 6d is its bulls-eye pattern:765

proceeding from out to in, Zones 4 and 3 are mostly blue, Zone 2 is mostly white, and766

Zone 1 is mostly green. Consider first Zones 4 and 3. The KA-I branch corresponds to767

negative M−1
R or MR, which is rendered blue in Figure 6d. This branch is logically equiv-768

alent to the Fjørtoft and Ripa shear-stability criteria. By making judicious choices of769

the Galilean shift in (u−α), KA-I also includes as special cases the Rayleigh, Kuo and770

–22–



manuscript submitted to JGR: Planets

Figure 6. Features of mature circulation (Run 2, t = 51 rotations). Shown are (a) surface

deviation, ∆η, in cm, (b) zonal velocity, u, in cm/s, (c) potential vorticity, q, in (cm s)−1 and

(d) reciprocal “Mach” number, M−1
R , calculated in the tank’s rotating reference frame. A special

color scale is used in (d) to highlight where M−1
R is near zero versus near unity (green or white),

which corresponds to homogeneous/mixed PV versus choked/“sonic” PV, respectively.
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Charney-Stern stability criteria (see Dowling, 2019, and references therein). Zones 4 and771

3 are evidently KA-I stable, except near the source. This is reasonable, since the gen-772

eral circulation in these two zones is anticyclonic (westward), and since βe > 0, Rossby773

waves propagate westward (15), which is downstream (blue). Notice that whether or not774

there are critical latitudes in Zones 4 and 3 does not come up—the dog does not bark—775

since they are only relevant to instability in red regions. In other words, blue and green776

(“supersonic”) critical lines are innocuous, as in practice are white ones (“sonic”). There777

are red patches near the source region in Zones 4 and 3 that are quite turbulent.778

Zone 2 stands out as a mostly white annulus (“sonic” or choked PV) with some red.779

It also exhibits an intriguing annular feature on the border with Zone 1 that is blue, which780

corresponds to the yellow (eastward) jet in Panel (b). The green of Zone 1 indicates that781

all three components of βe are small: β is zero across the tank, βh is naturally small in782

the polar region (Figure 2), and the relative vorticity is not strong enough for βu to make783

a significant contribution. The co-mingling vortices in Zone 1 originate mainly from the784

source pipe rather than from shear instability. On the whole, in Zone 1 the appropriate785

dimensionless version of βe, namely M−1
R , has little chance of being anything but ∼ 0.786

4.4.3 Numerator and denominator of M−1
R787

The focus now turns to the dynamics in the vicinity of the system’s two built-in788

topographic critical latitudes. It is instructive to pull apart M−1
R and simultaneously track789

the evolution of its numerator and denominator, −ĉx and u, as a function of radius and790

time. To benefit from zonal averaging, but at the same time to avoid the complications791

around the source region, these variables are averaged over a sector of θ values. To av-792

erage out small eddies and emphasize long Rossby waves, sectors of ∆θ = 30◦ to 45◦793

(1.0 to 1.5 hours on a 12-hour dial) prove to be sufficient. As can be anticipated from794

the full-tank images, after the circulation is mature, any sectors that avoid the source795

pipe yield similar results. Sectors in the vicinity of 8 o’clock (where the top of the tank796

images is 12 o’clock, and the source pipe is at 10:40 o’clock) are displayed in what fol-797

lows because this neighborhood is somewhat less affected by the perturbations advected798

from the forcing radius.799

Figure 7a shows −ĉx(r) and u(r) separately during the entire Run 2. The zonal800

velocity profiles (blue) start with near-zero values but rapidly develop a quasi-steady pat-801

tern with a few distinct jets. The profiles collapse around this steady-state profile and802

vary only slightly afterwards, except in Zone 1 (the leftmost one) where the variability803

is significant at all times. Compare this with the (negative) intrinsic phase velocity pro-804

files, −ĉx (yellow). These start along the profile of βh (red curve; use this to distinguish805

Zones 1 to 4 from left to right), but then evolve into a pattern generally following that806

of u, particularly in Zone 2. The only region where this M−1
R → 1 process does not gain807

any traction is Zone 3. Figure 7b shows the same quantities averaged over short peri-808

ods of time, using different line styles to indicate the temporal evolution. Variability of809

−ĉx and u can be judged visually by the thickness of the yellow or blue profiles in Panel810

(a). To quantify this variability, we compute the standard deviation, σ, of both quan-811

tities during the steady-state period of Run 2 (Figure 7c). As expected, in Zone 1 the812

variability of both is significant. It decreases to a relatively small constant value in Zone813

2. Intriguingly, σ(−ĉx) and σ(u) have robust peaks on both sides of critical latitude at814

r = 35 cm, with a minimum in between.815

To test the effects of the strength of forcing, δf , snapshots taken during the sta-816

tistically steady period of Runs 2 and 3 (δf = 1.9 and 2.5%) are shown in Figure 8. These817

are averaged over the sector 7 to 8 o’clock (∆θ = 30◦). In terms of M−1
R (r), the runs818

are qualitatively similar across the tank. They are also similar in terms of u(r) in Zones819

1 and 2, with somewhat stronger retrograde jets developing in Zones 3 and 4 for the stronger820

forcing case.821
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Figure 7. Radial profiles of the negative intrinsic zonal phase speed, −ĉx(r), and the zonal

velocity, u(r), in the sector between 6:30 and 8 o’clock (Run 2). Shown are (a) time sequences of

−ĉx (yellow) and u (blue), every 50 frames (2.9 rotations); (b) selected 5-rotation time averages

of −ĉx and u: t = 6–11 (solid lines), 12–17 (dashed lines), 55–60 (dash-dot lines) and 110–115

(dotted lines) and (c) standard deviation, σ, of −ĉx (yellow) and u (blue) during the steady-

state period. For reference, the red curve indicates −ĉx based on undisturbed βh; in panel (c) its

magnitude is reduced by a factor of 10.
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Figure 8. Radial profiles of (a) M−1
R and (b) u averaged in the sector 7 to 8 o’clock, for

weaker forcing (magenta, Run 2, t = 51 rotations, δf = 1.9%) and stronger forcing (blue, Run 3,

t = 57 rotations, δf = 2.5%). Black arrows in (b) indicate the zone boundaries.
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4.4.4 Galilean shift822

Figure 9. Zoom-in of the critical latitude in the vicinity of r = 20 cm (Run 2) averaged in the

6:30 to 8 o’clock sector. Shown every 2.9 rotations during the statistically steady period are (a)

−ĉx (yellow) and (u − ushift) (blue), which by definition crosses zero where −ĉx crosses zero. The

red profile is the topography-based −ĉx. The right panels show time series over the entire Run 2:

(b) slope of u(r) at the critical latitude, (c) MR computed using L’Hospital’s rule (see text), and

(d) radial position of the critical latitude.

Inspection of Figure 7a reveals that the yellow curves (−ĉx) go through zero slightly823

off the exact zero of the topographic βh at r = 20 cm, but instead cross at r ≈ 22 cm.824

Here is where the freedom of the Galilean shift in (u−α) comes into play. Recall that825

PV, and hence −ĉx, is invariant to such a shift. For cylindrical geometry, the procedure826

is as follows. Firstly, the position of the critical latitude, rc, is located where −ĉx(rc) =827

0. Secondly, the zeroes of the numerator and denominator of M−1
R are made to coincide828

by shifting to a new reference frame with angular velocity, Ωshift = u(rc)/rc, and cor-829

responding zonal velocity, (u − ushift), where ushift(r) = rΩshift. To stay in the refer-830

ence frame of the circulation’s critical latitude, this shift is recalculated for each time.831

A zoom-in of the shifted velocity profiles for the weaker critical latitude is shown832

in Figure 9a. The radial derivative, du/dr at r = rc (Figure 9b), remains negative through-833

out the entire Run 2. Figure 9c shows a time series of MR = −(u − ushift)/ĉx at the834

critical latitude, r = rc. Since both the numerator and denominator tend to zero at rc,835

L’Hospital’s rule is used to compute MR in the form −(du/dr)(dĉx/dr)
−1. Finally, Panel836

(d) shows the position of the critical latitude as a function of time.837

A similar analysis is made for the stronger critical latitude. Unlike for the weaker838

one, here the factor d(−ĉx)/dr is practically infinite, such that the position of the crit-839

ical latitude stays fixed at rc = 35 cm throughout the runs. The velocity profiles shifted840

to 0 at this latitude are shown in Figure 10a, and Panel (b) shows the derivative, du/dr,841

as a function of time. Notice that du/dr oscillates around zero, but with some prevalence842

for negative (stable) values. Consequently, MR is quite small and vacillates around zero843

in a manner consistent with a weak shear that is being continuously buffeted by forc-844
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Figure 10. As in Figure 9a,b, but for the critical latitude at r = 35 cm.
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ing (in such weak-shear situations, the reciprocal, M−1
R , is less useful because it switches845

between ±∞). Unlike the other critical latitude, this one does not exhibit M−1
R → 1846

behavior.847

4.5 Details in Zone 2848

The main novelty of these experiments is the tent-shaped seamount that yields an849

annulus (zone) with negative βh that is surrounded by positive βh. There are two ad-850

ditional features of interest to point out for the circulations in this Zone 2. Firstly, the851

Rossby wave phase speed is eastward (cyclonic, prograde, counterclockwise) in Zone 2,852

and hence this is the only one where long Rossby waves have a chance to propagate up-853

stream against the tank-wide westward flow (anticyclonic, retrograde, clockwise) induced854

by the mass-injection forcing. As shown in Figure 3c, a high-pressure β-plume propa-855

gates eastward from the forcing in Zone 2, flanked by counter-flowing zonal jets in the856

anticyclonic sense. When the flow achieves a mature state, both jets encircle the tank857

and settle into their final positions, the eastward-flowing jet at the boundary between858

Zones 1 and 2 at r = 20 cm, and the westward-flowing jet in the middle of Zone 2.859

The fate of the built-in topographical critical layer at r = 20 cm is in fact more860

complicated than just the simple translation to r = 22 cm documented above: a sec-861

ond critical latitude develops just inside Zone 1 at r ≈ 18 cm, as can be seen in Fig-862

ure 7 (Run 2) and Figure 8a (Runs 2 and 3). The general development of M−1
R towards863

unity in the region where Rossby waves propagate upstream is analogous to the chok-864

ing phenomenon of hydraulics, but for Rossby waves instead of gravity waves (e.g. Armi,865

1989; Dowling, 1993; Stanley et al., 2020). The lesson for the circulations on Jupiter seems866

to be that instead of wiping out critical latitudes (M−1
R → 0), when tropospheric jets867

are strong enough, they can stabilize by moving and even splitting critical latitudes, pre-868

serving them via M−1
R ∼ 1. The dynamic topography from deep jets is essential to this869

process, since MR = 1 in Jupiter’s troposphere implies the deep jets are related to βu870

calculated for the tropospheric jets, udeep = (β + βu)L2
d 6= 0 (Dowling, 1993, 2020).871

Secondly, there are often areas in Zone 2 where M−1
R exceeds unity (e.g. Figures872

6d and 8), which is interesting because this is necessary for shear instability. The dipo-873

lar component of the circulation discussed above causes the left and right halves of Zone874

2 to be different (Figure 6d). Evidently, the dipolar circulation is blocking the propa-875

gation of M−1
R ∼ 1 into the right half. As a result, the potentially unstable areas of high-876

positive M−1
R are more extensive and the flow is more “wavy” in the right half (Figure877

4c).878

5 Conclusions879

A rotating water tank with localized mass forcing and strong bottom topography880

is used to initiate laboratory studies of systems with alternating potential vorticity gra-881

dients, βe, as motivated by observations of Jupiter and Saturn. A tent-shaped seamount882

that is azimuthally symmetric sets up four zones: a polar Zone 1, a negative βe Zone 2,883

and two outer, positive-βe Zones 3 and 4.884

Once the water is at rest in the tank’s rotating reference frame, mass injection from885

a submerged source pipe along one radius is turned on continuously, with the strength886

varied between experiments. This forcing creates alternating jets via the β-plume mech-887

anism, which involves radiation of Rossby-wave envelopes from the forcing. Each β-plume888

is a region of high or low pressure, i.e. high or low surface deviation from the parabolic889

geoid, which grows in the zonal direction with two jets flowing in opposite directions.890

Conditions in Zone 2 allow for the upwind combination of eastward propagating891

long Rossby waves and westward fluid velocity, such that the Rossby waves propagate892
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upstream over much of the zone. Hydraulic-like control of the flow takes hold and is made893

evident by computing the analog of the Mach (or Froude number) for Rossby waves, MR,894

which approaches unity over much of Zone 2, with some shaping by the circulation. It895

is emphasized that this parameter and its reciprocal, M−1
R , are central to a range of the-896

ories, including those pertaining to jet spacing (e.g. Rhines, 1975), hydraulic control of897

Rossby waves (e.g. Armi, 1989), and shear stability (e.g. Dowling, 2019), and that in898

all these applications, the condition MR ∼ 1 is favored. In Zone 3, the environmental899

conditions are sufficiently different from Zone 2 that M−1
R ∼ 1 does not develop. The900

mass injection causes a tank-sized westward (anticyclonic) circulation, and this circu-901

lation sweeps downstream Rossby waves generated in the forcing area of Zone 3, which902

is the negative M−1
R or MR case and is shear stable.903

The present design of experiments provides a system with two built-in topographic904

critical latitudes where βh changes sign, namely the boundaries of Zone 2. For the outer905

boundary positioned above the peak of the seamount, which has the stronger change in906

PV gradient, MR vacillates about zero, with weak but persistent unsteadiness and a slight907

preference for negative (stable) values. This configuration may be applicable to the vicin-908

ity of oceanic seamounts. In contrast, the inner critical latitude, positioned above the909

poleward foot of the seamount, rapidly achieves M−1
R ∼ 1. It is able to reconfigure it-910

self, with a split and lateral shifts, which lends support to the idea that gas-giant tro-911

pospheres are flexible in their ability to adjust to the dynamic topography of abyssal jets.912

These experiments explore the evolution of zonal flows starting from rest, and con-913

tribute to the understanding of the paths an evolving system may take towards the M−1
R →914

1 state. The β-plume mechanism is a feature of these experiments because of the con-915

tinuous, localized forcing strategy employed. This mechanism represents only one means916

of forming alternating jets, but it proves to be a robust one. It can be motivated for gas917

giants along the following lines. Suppose there are relatively persistent sources of vor-918

tical eddies, created by moist convection and/or shear instability, which generate β-plumes919

via radiation of Rossby waves (in the present experiments the plumes originate in the920

forcing area only). Each plume consists of two counter-flowing zonal jets. Where βe and921

u have the same sign, such that M−1
R is positive and Rossby waves travel upstream and922

can become choked, the condition M−1
R → 1 is readily established and expands to en-923

circle the planet. On the other hand, where βe and u have opposite signs, such that M−1
R924

is negative, this circulation may be squeezed out by being continuously washed down-925

stream, and may even jump tracks to merge into an adjacent zone.926

To further test such ideas, and otherwise to advance laboratory analogies for Jupiter927

and Saturn, future experiments should consider modifications to this initial study with928

the goal of configuring a system for which: i) M−1
R → 1 is possible in adjacent zones929

with alternating PV gradients, and ii) critical latitudes are in communication with each930

other regarding meridional coherence of long Rossby waves. The first design lesson from931

this study is that the seamount or seamounts probably do not need to be as strong (as932

tall) as employed here. The second lesson is that multiple seamounts are likely to suc-933

ceed in producing multiple stable critical latitudes, even in a similarly sized tank, con-934

sidering that alternating β-plumes developed in this study without difficulty. The third935

lesson is that other forms of forcing should be tried, for example a more uniform distri-936

bution of mass sources that does not produce a tank-sized anticyclone, or one of vari-937

ous types of thermal forcing. All of these modifications are relatively straightforward,938

and so the prospects for future Jupiter-in-a-tank experiments are bright.939
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