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Abstract

Drought is a major threat to global agriculture and can trigger or intensify food price increase and migration. Assessment and

monitoring are essential for proper drought management. Drought indices play a fundamental task in this respect. This research

introduces the Wet-environment Evapotranspiration and Precipitation Standardized Index (WEPSI) for drought assessment

and monitoring. WEPSI is inspired by the Standardized Precipitation Evapotranspiration Index (SPEI), in which water supply

and demand are incorporated into the drought index calculation. WEPSI considers precipitation (P) for water supply and

wet-environment evapotranspiration (ETw) for water demand. We use an asymmetric complementary relationship to calculate

ETw using actual (ETa) and potential evapotranspiration (ETp). WEPSI is tested in the transboundary Lempa River basin

located in the Central American dry corridor. ETw is estimated based on evapotranspiration data calculated using the Water

Evaluation And Planning (WEAP) system hydrological model. To investigate the performance of our introduced drought

index, we compare it with two well-known meteorological indices (Standardized Precipitation Index and SPEI), together with a

hydrological index (Standardized Runoff Index), in terms of correlation and mutual information (MI). We also compare drought

calculated with WEPSI and historical information, including crop cereal production and Oceanic Niño Index (ONI) data. The

results show that WEPSI has the highest correlation and MI compared with the three other indices used. It is also consistent

with the records of crop cereal production and ONI. These findings show that WEPSI can be applied for agricultural drought

assessments.
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Abstract 23 

Drought is a major threat to global agriculture and can trigger or intensify food price increase and 24 

migration. Assessment and monitoring are essential for proper drought management. Drought 25 

indices play a fundamental task in this respect. This research introduces the Wet-environment 26 

Evapotranspiration and Precipitation Standardized Index (WEPSI) for drought assessment and 27 

monitoring. WEPSI is inspired by the Standardized Precipitation Evapotranspiration Index (SPEI), 28 

in which water supply and demand are incorporated into the drought index calculation. WEPSI 29 

considers precipitation (P) for water supply and wet-environment evapotranspiration (ETw) for 30 

water demand. We use an asymmetric complementary relationship to calculate ETw using actual 31 

(ETa) and potential evapotranspiration (ETp). WEPSI is tested in the transboundary Lempa River 32 

basin located in the Central American dry corridor. ETw is estimated based on evapotranspiration 33 

data calculated using the Water Evaluation And Planning (WEAP) system hydrological model. To 34 

investigate the performance of our introduced drought index, we compare it with two well-known 35 

meteorological indices (Standardized Precipitation Index and SPEI), together with a hydrological 36 

index (Standardized Runoff Index), in terms of correlation and mutual information (MI). We also 37 

compare drought calculated with WEPSI and historical information, including crop cereal 38 

production and Oceanic Niño Index (ONI) data. The results show that WEPSI has the highest 39 

correlation and MI compared with the three other indices used. It is also consistent with the records 40 

of crop cereal production and ONI. These findings show that WEPSI can be applied for agricultural 41 

drought assessments. 42 

1 Introduction 43 

Drought affects around 40% of the global land area and is a major threat to global 44 

agriculture (Wang et al., 2011; Wen et al., 2021). It can trigger or intensify wildfire, water scarcity, 45 

crop damage, food price increase, migration, and adverse health impacts (Mukherjee et al., 2018). 46 

Drought monitoring is crucial to pre-pare for drought and mitigate its negative effects. In this 47 

regard, drought indices are useful measures for scientists and decision makers to monitor, assess, 48 

and manage drought. 49 

Although there exists no unique standard definition for drought, it is described as the deficit 50 

in precipitation (P) compared with an average within a period (Wang et al., 2020; Yihdego et al., 51 

2019). The combination of anomalies in P and temperature, known as meteorological drought, 52 

leads to soil moisture deficit, referred to as agricultural drought, and a lack of water in lakes and 53 

streams, defined as hydrological drought (Mukherjee et al., 2018; Wilhite and Glantz, 1985). 54 

Agricultural and hydrological droughts are usually the subsequent phases of meteorological 55 

drought (Peters et al., 2003). 56 

A drought index aims to quantify drought severity and help in the identification and 57 

characterization of drought development by assimilating a hydrometeorological dataset into 58 

numerical values that indicate the magnitude of water anomalies. Selecting a proper drought index 59 

for drought assessment and monitoring is not always trivial and involves different challenges. The 60 

following considerations should be made when selecting the drought index. (1) The drought index 61 

must follow the standardization of the hydrometeorological variable used. Otherwise, in 62 

contiguous regions, the same drought index can show different drought conditions, making it 63 

difficult to calculate drought onset and spatial extent. (2) It is preferable that the methodology for 64 

the calculation is clear and that the fewest possible inputs are used. Some drought indices are not 65 

usable every-where. Some others require many inputs or have complex structures that make their 66 
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implementation difficult. (3) It is desirable if the drought index can identify different types of 67 

droughts. Some drought indices can detect various types of droughts, making them have a broader 68 

range of applications (Yihdego et al., 2019). 69 

Much academic effort has been devoted to introducing appropriate drought indices. As an 70 

early attempt, Palmer (1965) proposed a regional index to determine meteorological and 71 

agricultural droughts, known as the Palmer Drought Severity Index (PDSI). The PDSI uses 72 

temperature, soil moisture, and P. The structure of the PDSI does not allow for comparison across 73 

different regions. Time scale limitation and data complexity are also high-lighted deficiencies of 74 

the PDSI. Based on these drawbacks, three years later, Palmer introduced his Crop Moisture Index 75 

(CMI) for agricultural drought (Palmer, 1968). The self-calibrated Palmer Drought Severity Index 76 

(scPDSI), proposed by Wells et al. (2004), is another index based on the PDSI but allows 77 

comparison of different regions.  78 

One of the most outstanding advances in developing drought indices was made by McKee 79 

et al. (1993). They proposed one of the most well-known drought indices, the Standardized 80 

Precipitation Index (SPI). The SPI is popular because of its simple structure. It can be calculated 81 

with the presence of missing data. The SPI has the flexibility of calculation in short or long time 82 

steps (aggregation periods), which is especially advantageous in monitoring different types of 83 

droughts (Vicente-Serrano et al., 2010; Yihdego et al., 2019). Nevertheless, the SPI overlooks the 84 

role of other important variables, such as evapotranspiration (ET) (Mukherjee et al., 2018; Vicente-85 

Serrano et al., 2010), and it cannot reflect the in-crease in water demand because of temperature. 86 

In response to this limitation, Vicente-Serrano et al. (2010) introduced another widely used drought 87 

index, the Standardized Precipitation Evapotranspiration Index (SPEI). The SPEI uses the SPI’s 88 

structure but applies temperature and P. This drought index can capture agricultural drought more 89 

efficiently than SPI can, as it uses potential evapotranspiration (ETp) (Yihdego et al., 2019). 90 

However, the SPEI may face limitations when comparing drought across different climate regions 91 

(Mukherjee et al., 2018). 92 

P is the basis for the calculation of many drought indices. At different time aggregations, 93 

P can help indicate all types of droughts. It is relatively the most direct variable of water supply 94 

(Yihdego et al., 2019). However, using only P leads to a failure to incorporate the changes in 95 

available energy, air humidity, and wind speed; consequently, it can provide values that do not 96 

capture reality (Mukherjee et al., 2018). Drought relies not only on water supply but also on water 97 

demand, for which ET can be the proxy (Speich, 2019). ET forces around 60% of the land P to 98 

return to the atmosphere (Zhang et al., 2020) and creates two-thirds of the planet’s annual P. It 99 

also consumes more than half of the solar energy absorbed by the land surface as latent heat. 100 

Accordingly, ET, which contributes to mass and energy exchange between land and atmosphere 101 

(Zhang et al., 2020), is crucial in improving our vision of land–atmosphere interactions and the 102 

terrestrial water cycle (Xiao et al., 2020; Zheng et al., 2019). These explain ET’s important role in 103 

releasing droughts (Mukherjee et al., 2018) and drought severity at both the local and global scales 104 

(Dhungel and Barber, 2018; Zhang et al., 2020). Therefore, using ET together with P in the 105 

structure of drought indices allows a more comprehensive drought assessment (Lu et al., 2019; 106 

Zargar et al., 2011). 107 

ET has several types, and selecting its type is highly critical in defining the drought index. 108 

For instance, the so-called Standardized Precipitation Actual Evapotranspiration Index uses actual 109 

evapotranspiration (ETa) in its structure (Homdee et al., 2016). However, the difference be-tween 110 

P and ETa could not capture the real water shortage (WS). This is because ETa is not the ultimate 111 
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possible amount of ET but the real ET occurring on the surface (Kim and Rhee, 2016; Vicente-112 

Serrano et al., 2018). As one of the other types of ET, ETp, which has already been used in the 113 

structure of some drought indices in the literature, is a measure of atmospheric evaporative demand 114 

(Dash et al., 2021; Kim and Rhee, 2016; Vicente-Serrano et al., 2018; Yihdego et al., 2019). Wet-115 

environment evapotranspiration (ETw) is ET from an extensive, well-watered surface into the 116 

atmosphere (Aminzadeh et al., 2016; Kahler and Brutsaert, 2006).  117 

To specify the appropriate water demand term for drought assessment, it is essential to be 118 

aware of both water balance and energy balance (Koppa et al., 2021). The literature in this area is 119 

rich, and among existing studies is the rigorous work conducted by Fisher et al. (2011), which has 120 

taken a proper look into the concept. 121 

Based on water balance in a closed system (e.g., a watershed), where P is the only water 122 

supply, the supplied water takes one of the following forms (human systems, extraction by insects 123 

or animals, and leaking into the earth’s deep crust are not part of this scope): 124 

1) Going into the soil and Ground-Water flow or recharge (GW); 2) surface Runoff (R); 3) 125 

being Stored in lakes, ponds, and plants (S); and 4) going back to the atmosphere (ETa). The water 126 

balance equation is expressed as follows: 127 

P =  GW +  R +  S + 𝐸𝑇𝑎        (1) 128 

The upper limit of ETa in water balance is ETw and will occur only if enough water is 129 

supplied (Fisher et al., 2011). ETw changes by energy variation. Then, we can define water loss 130 

via ET as follows: 131 

P – 𝐸𝑇𝑎 =  GW +  R +  S        (2) 132 

Apparently, we always have 𝑃 − 𝐸𝑇𝑎  ≥ 𝑃 − 𝐸𝑇𝑤. 133 

Then, one can claim that ETw illustrates the real ET demand. 134 

Despite its important role as an indicator of water demand, the use of ETw in the structure 135 

of P-based drought indices has been almost overlooked in the literature. Incorporating ETw in 136 

drought index calculations, especially for agricultural purposes, is advantageous. It captures a more 137 

realistic condition in which the important role of ET as water demand is neither underestimated 138 

nor overestimated by using a pessimistic indicator. 139 

As a robust and generalized drought index running through a simple structure is essential 140 

for improving water resource management and planning (Yihdego et al., 2019), this research 141 

introduces the Wet-environment Evapotranspiration and Precipitation Standardized Index 142 

(WEPSI). WEPSI is inspired by the SPEI, in which water supply and demand are incorporated 143 

into the drought index calculation. WEPSI follows the SPI methodology for its calculation, while 144 

P is considered for water supply and ETw for water demand. Priestley and Taylor’s model (P-T 145 

model) (Priestley and Taylor, 1972) is widely used as a proxy of ETw (Kahler and Brutsaert, 2006). 146 

This model has a coefficient that was proposed to account for the drying power of the air, with an 147 

estimated mean value of 1.26 (or α = 1.26) over saturated surfaces, such as oceans. Recent research 148 

has shown that this coefficient is impacted by the radiation regime, relative humidity, air 149 

temperature, wind speed, and geographical site. This raises doubts about the use of P-T model 150 

outputs without calibration of its coefficient (Aminzadeh and Or, 2014). Accordingly, we used an 151 

asymmetric Complementary Relationship (CR) to obtain ETw using ETa and ETp, based on our 152 

reliable data (Khoshnazar et al., 2021a). To evaluate the performance of WEPSI, we first compared 153 
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its results with both well-known drought indices (SPI, SPEI), as well as with the Standardized 154 

Runoff Index (SRI). The coefficient of determination and mutual information (MI) were used for 155 

this comparison. Additionally, the fluctuation in cereal and crop production in El Salvador, as well 156 

as El Niño Southern Oscillation (ENSO) events, was compared to drought calculated using 157 

WEPSI, illustrating its performance, especially for agricultural purposes. We assessed WEPSI at 158 

the catchment scale using ET data calculated from the Water Evaluation And Planning (WEAP) 159 

system hydrological model.  160 

The remainder of the paper is organized as follows. In Section 2, Materials and Methods, 161 

we start with our case study area. Then, the WEAP model and benchmark drought indices are 162 

provided. As the core of this section, WEPSI is introduced, and the experimental setup is presented. 163 

The results and discussion are given in Section 3. Finally, Section 4 concludes the paper and 164 

suggests directions for future research. 165 

2 Materials and Methods 166 

2.1 Case study 167 

The transboundary Lempa River basin located in the Central American dry corridor is used 168 

as our case study area in investigating WEPSI. With a length of 422 km, the Lempa River is the 169 

longest stream in Central America. It originates from volcanic mountains in Guatemala, with 1,500 170 

masl elevation, and flows to the Pacific Ocean in El Salvador. Around 360.2 km (85%) of the 171 

river’s length flows into El Salvador’s territory (Hernández, 2005). This river flows through 172 

Guatemala, Honduras, and El Salvador (Figure 1). The area of the tri-national basin is 17,790 km2, 173 

of which 10,082 km2 belongs to El Salvador (49% of El Salvadorian land). The basin has a daily 174 

average temperature of 23.5°C, a total annual rainfall average of 1,698 mm, and a yearly R of 175 

19.21 dm3 s-1 km2. 176 

The Lempa River streamflow has dropped by 70% (Helman and Tomlinson, 2018; 177 

Jennewein and Jones, 2016) during the dry years. This is while based on El Salvador's Ministry of 178 

Environment and Natural Resources (MARN) (2019b) data, El Salvador gains 68% of its surface 179 

water from this river basin. The basin environs 13 of 14 departments of El Salvador, including 180 

3,967,159 inhabitants (77.5% of the country’s population). Alterations in the hydrological regime, 181 

such as extreme events (e.g., drought and tropical cyclone), worsen water quality and quantity in 182 

the region (Global Environment Facility, 2019). The current condition of the basin highlights the 183 

need for water resource management and drought assessment. 184 
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 185 

Figure 1. Lempa River basin location (Khoshnazar et al., 2021a). 186 

2.2 WEAP model 187 

The WEAP system is a well-known model for water resource planning developed by the 188 

Stockholm Environment Institute (Seiber and Purkey, 2015). WEAP allows the calculation of 189 

terrestrial hydrological cycle variables, such as R, infiltration, and ET. We used WEAP-derived 190 

ET to calculate WEPSI. The required input data on hydrometeorological and soil characteristics 191 

of the model were obtained from MARN (2019a), and the updated version of Sheffield et al. (2006) 192 

for the period 1980–2010. Based on basin management by local authorities and physiographic 193 

characteristics, the Lempa River basin was divided into the following eight sub-basins: Lempa 1, 194 

Lempa 2, Lempa 3, Guajillo, Suquioyo, Acelhuate, SS6, and SS3 (Figure 1). Khoshnazar et al. 195 

(2021a) showed that the WEAP-derived variables are reliable for drought assessment in the Lempa 196 

River basin. For the description of the validation and calibration procedure of the model, interested 197 

readers are referred to our previous publication (Khoshnazar et al., 2021a). 198 

Five methods to simulate basin processes, such as ET, R, and irrigation demands, are 199 

available in WEAP. In our research, we use the soil moisture method, which considers that the 200 

basin has two soil layers (buckets or tanks). The top soil layer is considered shallow-water 201 

capacity, and the bottom soil layer is considered deep-water capacity. Figure 2 depicts a conceptual 202 

diagram of the soil moisture method (Seiber and Purkey, 2015). The water balance is calculated 203 

for each fraction area j for the first layer, assuming that the climate is steady in each sub-basin. 204 

The water balance is calculated using Eq. (3) as follows (Oti et al., 2020): 205 

Rd𝑗

dZ1,𝑗

d𝑡
= Pe(𝑡) − ETp(𝑡)𝑘𝑐,𝑗(𝑡) ( 

5Z1,𝑗−2Z1,𝑗
2

3
) − Pe(𝑡)Z

1,𝑗

RRFj
− 𝑓𝑗𝑘𝑠,𝑗Z1,𝑗

2 − (1 − 𝑓𝑗)𝑘𝑠,𝑗Z1,𝑗
2

  (3) 206 
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where Z1,j is the relative storage based on the total effective storage of the root zone. Rdj is 207 

the soil holding capacity of the land cover fraction j (mm). ETp is calculated using the modified 208 

Penman–Monteith reference crop ETp with the crop/plant coefficient (kc,j). Pe is the effective 209 

precipitation (P), and RRFj is the R resistance factor of the land cover. Pe(𝑡)Z
1,𝑗

RRF𝑗
 is indicated as 210 

the surface R. 𝑓𝑗𝑘𝑠,𝑗Z1,𝑗
2  shows the interflow from the first layer, for which the term ks,j denotes the 211 

root zone saturated conductivity (mm/time), and fj is the partitioning coefficient that considers 212 

water horizontally and vertically based on the soil, land cover, and topography. Finally, the term 213 

(1 − 𝑓𝑗)𝑘𝑠,𝑗Z1,𝑗
2  is percolation. WEAP uses Eq. (4) to calculate ETa (Kumar et al., 2018): 214 

ETa =  ETp
(5𝑧1−2𝑧2

2)

3
         (4) 215 

where z1 and z2 are the water depth of the top and bottom soil layers (bucket), respectively 216 

(Figure 2).  217 

We calculated the monthly ETw with the WEAP-derived ETp and ETa following the 218 

procedure presented in Section 2.4.2 for each sub-basin. 219 

 220 

Figure 2. Conceptual diagram of the water balance calculation in WEAP (Seiber and 221 

Purkey, 2015). 222 

2.3 Drought indices for comparison 223 

We compare SPI and SPEI meteorological drought indices with WEPSI. As discussed, SPI 224 

is based on the total amount of water (i.e., P), whereas SPEI incorporates the reduction of water 225 

based on ETp. Then we compare these three indices (SPI, SPEI, and WEPSI) with SRI, which is a 226 

hydrological drought index and reflects the real water availability on land. The application of a 227 

hydrological drought index can provide us with further insights into the situation of the studied 228 

area compared with using only meteorological drought indices (Shukla and Wood, 2008). On the 229 
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other hand, based on the water balance equation, SRI implicitly reflects ETa (Vicente-Serrano et 230 

al., 2010). Accordingly, when a meteorological drought index reflects a high similarity with SRI, 231 

it provides more insights into the hydrological situation of the land and is closer to the real 232 

evapotranspiration condition. Such an index has a higher potential to be used solely without 233 

requiring a complementary hydrological index and, consequently, eliminates the difficulty of 234 

gathering and modeling hydrological data. 235 

The methodology for calculating these drought indices is as follows. 236 

2.3.1 The Standardized Precipitation Index (SPI) 237 

The methodology for calculating the SPI is presented as follows (McKee et al., 1993). 238 

Based on long-term P data (30 years or more), a time scale (also known as aggregation period) is 239 

specified. This time scale can be 3, 6, 9, 12, 24, or 48 months. Then, the aggregated P is fitted to 240 

a distribution function. Afterward, the cumulative probability function is equal to that of the 241 

normal distribution, for which the standardized variable with zero mean and unity standard 242 

deviation is obtained. The literature suggests the Gamma distribution as one of the best choices for 243 

SPI calculation (Kim et al., 2019; McKee et al., 1993). Therefore, we have used Gamma 244 

distribution for SPI calculation, as well. 245 

2.3.2 The Standardized Precipitation Evapotranspiration Index (SPEI) 246 

The SPEI follows the SPI methodology but uses the difference between P and ETp as its 247 

input (Vicente-Serrano et al., 2010). Several studies have shown that the log-logistic distribution 248 

is appropriate for SPEI calculation (Vicente-Serrano et al., 2010). Accordingly, we have used the 249 

three-parameter log-logistic (LL3) distribution for obtaining the SPEI. 250 

2.3.3 The Standardized Runoff Index (SRI) 251 

The SRI uses R as input and follows a similar procedure as SPI (Shukla and Wood, 2008). 252 

McKee et al. (1993) proposed a gamma distribution for the SPI and suggested that this distribution 253 

is operational for other variables related to drought (Sorí et al., 2020). Accordingly, we have used 254 

the Gamma distribution to calculate SRI, utilizing R data obtained from the WEAP model. 255 

2.4 The Wet-environment Evapotranspiration and Precipitation Standardized Index 256 

(WEPSI) 257 

2.4.1 WEPSI calculation 258 

WEPSI is calculated following the SPI methodology to standardize the input, except that 259 

WEPSI uses WS instead of P alone. 260 

WS is calculated as the difference between P (water supply) and ETw (water demand) (Eq. 261 

(5)). 262 

WS = P −  ETw        (5) 263 

WEPSI is inspired by the structure of the SPEI that uses ETp to incorporate water demand 264 

into the drought index calculation. Based on our discussions in the previous section, ETw can be 265 

an appropriate representative of water demand. Accordingly, we incorporate ETw into WEPSI as 266 

the water demand indicator and P to account for the water supply. Since WEPSI incorporates P −267 

𝐸𝑇𝑤 as its input and concerning the water balance equation (Eq. (1)), we anticipate that our 268 
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proposed drought index should have a higher correlation with SRI and, therefore, can provide 269 

useful information about the hydrological situation of the area. We will later investigate this in the 270 

numerical results. 271 

As LL3 distribution has shown good performance in SPEI calculation and similar drought 272 

indices, we consider LL3 distribution to fit WS in WEPSI calculation (Kim and Rhee, 2016; 273 

Vicente-Serrano et al., 2010). Similar to SPI, WEPSI can be obtained based on different time steps, 274 

such as 3, 6, 9, 12, 24, and 48 months. 275 

Since WEPSI follows the structure of the SPI, we consider the same drought categorical 276 

classification (Table 1). 277 

Table 1. Drought categorical classification using WEPSI 278 

WEPSI value Drought/Wet category 

≥ 2 Extreme wet 

1.5 to 2 Severe wet 

1 to 1.5 Moderate wet 

0 to 1 Low wet 

−1 to 0 Low drought 

−1.5 to −1 Moderate drought 

−2 to −1.5 Severe drought 

≤ −2 Extreme drought 

ETw used in Eq. (5) is calculated based on the methodology introduced in the following 279 

subsection. 280 

2.4.2 ETw calculation 281 

As previously mentioned, we have used CR to obtain ETw data. Based on the Bouchet 282 

hypothesis (Bouchet, 1963), equilibrium evapotranspiration or ETw is equal to ETa and ETp under 283 

saturated conditions. A saturated condition refers to an extensive, well-watered surface where 284 

input energy is the limiting factor (Xiao et al., 2020). We always have 𝐸𝑇𝑎 ≤ 𝐸𝑇𝑤 and 𝐸𝑇𝑝 ≥ 𝐸𝑇𝑤. 285 

ETw, ETp, and ETa have been related to one another by what is known as CR. A general form for 286 

CR is suggested by Kahler and Brutsaert (2006) (Eq. (6)). 287 

(1 + 𝑏)ETw = 𝑏ETa + ETp       (6) 288 

where b is an empirical constant, and ETa, ETp, and ETw are the actual, potential, and wet-289 

environment evapotranspiration, respectively.  290 

The symmetric CR considered by Bouchet is obtained by taking 𝑏 = 1 in Eq. (6). However, 291 

the literature indicates that b generally exceeds and is rarely equal to 1 (i.e., CR is asymmetric) 292 

(Aminzadeh et al., 2016). Consequently, for the ETw calculation, in addition to ETp and ETa, it is 293 

necessary to estimate the value of b. 294 

Eq. (6) can be rewritten in terms of b (Aminzadeh et al., 2016). 295 

𝑏 =  
ETp−ETw

ETw−ETa
         (7) 296 

Eq. (7) shows that the increase in ETp above ETw is proportional to the energy flux provided 297 

by surface drying and the decrease in evaporation rate. 298 

Normalizing Eq. (7) results in Eq. (8) and Eq. (9) (Aminzadeh et al., 2016), 299 
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ETa+ =  
(1+𝑏)ETMI

1+𝑏ETMI
        (8) 300 

ETp+ =   
1+𝑏

1+𝑏ETMI
        (9) 301 

where ETa+ =  
ETa

ETw
, ETp+ =  

ETp

ETw
, ETMI =  

ETa

ETp
, and ETMI is the surface moisture index 302 

(with a maximum of 1). ETa+ and ETp+ are the scaled actual and ETp, respectively. Figure 3 303 

illustrates the variation in the scaled actual and potential evapotranspiration with respect to 304 

different values of the surface moisture index. 305 

 306 

Figure 3. Scaled actual (ETa+) and potential evapotranspiration (ETp+) with respect to the 307 

surface moisture index (ETMI) variations for different values of b (Aminzadeh et al., 2016; Kahler 308 

and Brutsaert, 2006). 309 

The b parameter in Eq. (8) and (9) can be obtained from Eq. (10) (Aminzadeh et al., 2016; 310 

Granger, 1989; Xiao et al., 2020), 311 

𝑏 =  
1

𝛾
 

𝑒𝑠
∗−𝑒𝑤

∗

Ts−Tw
         (10) 312 

where 𝑒𝑠
∗ is the saturated vapor pressure at surface temperature Ts, and 𝑒𝑤

∗  is the saturated 313 

vapor pressure at a hypothetical wet surface temperature Tw. The psychometric constant γ (in 314 

k Pa ℃−1) is calculated with the atmospheric pressure (Pe) as 𝛾 = 0.665 × 10−3Pe, with Pe in 315 

kPa. 316 

Alternatively, to facilitate the calculation of CR, Aminzadeh et al. (2016) suggested an 317 

atmospheric input-based equation for b (Eq. (11)), which is more straightforward than Eq. (10) 318 

(Han and Tian, 2020); this is why we have used this equation in our paper. 319 

b = A RS,net + B        (11) 320 

where RS,net is the net shortwave radiation flux in W m−2. RS,net is calculated with the 321 

incoming shortwave radiation flux RS and the surface albedo α as RS,net  = (1 − 𝛼)Rs. 322 
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A is a function of wind speed 𝑢𝑎 (in m.S-1) (Eq. (12)). 323 

𝐴 = (3𝑢𝑎 + 2) × 10−3       (12) 324 

Finally, the B parameter is calculated as a function of wind speed (𝑢𝑎) and vapor 325 

concentration (𝑐𝑎(kg m−3)) (Eq. (13)). 326 

B = (24.3 𝑢𝑎 − 1.44)(𝑐𝑎 + 22 × 10−3) + 0.3    (13) 327 

To calculate b using Eq. (11), RS,net, 𝑢𝑎, and 𝑐𝑎 are required, which can be obtained from 328 

meteorological measurements, the literature, or empirical equations. 329 

2.5 Experimental setup 330 

2.5.1 WEPSI calculation at the catchment scale 331 

WEPSI is applied in the Lempa River basin; we have calculated it for each sub-basin 332 

(Section 2.1). Eq. (6) is used to obtain ETw.  333 

To derive ETw from Eq. (6), we first applied Eq. (11) to calculate parameter b for 12 months 334 

of the year in each sub-basin. In this order, the daily datasets of wind speed (ua), net shortwave 335 

radiation (RS,net), and vapor concentration (ca) for 31 years (1980–2010) and for each sub-basin 336 

are used to calculate the monthly average of these three inputs. The meteorological data ua, RS,net, 337 

and ca were retrieved from MARN (2019a) and Khoshnazar et al. (2021a). The ranges of the 338 

obtained b values are validated by comparing them with the values available in the literature 339 

(Aminzadeh et al., 2016). 340 

After obtaining b, we used the time series of WEAP-derived ETp and ETa (Section 2.2) as 341 

the inputs of Eq. (6) to calculate ETw in each sub-basin.  342 

Finally, with the catchment-wide P and ETw, we computed WEPSI for the time steps 3, 6, 343 

9, and 12 months, which are indicated as WEPSI03, WEPSI06, WEPSI09, and WEPSI12, 344 

respectively. 345 

2.5.2 WEPSI performance evaluation 346 

To compare WEPSI in calculating drought, we have used SPI and SPEI, two vastly applied 347 

meteorological drought indices. In drought studies, the SPEI has also been applied to agricultural 348 

drought assessments. We further utilized the SRI as a hydrological drought index to investigate 349 

whether WEPSI could provide insights into the hydrological situation. For the calculation of the 350 

SPI, SPEI, and SRI, we followed the methodology presented in Section 2.3. The catchment-wide 351 

P, ETp, and R derived from the WEAP model were the inputs used to compute the drought indices 352 

for each sub-basin. These three drought indices were similarly calculated for the time steps 3, 6, 353 

9, and 12 months. The same notation used in WEPSI is utilized in this case. Therefore, for instance, 354 

the 6-month time step for the SPI, SPEI, and SRI is indicated as SPI06, SPEI06, and SRI06, 355 

respectively. 356 

The comparison is carried out in the following steps. First, a metric commonly used in the 357 

performance evaluation of drought indices is applied to compare WEPSI, SPI, SPEI, and SRI, 358 

which is the coefficient of determination (r2) calculated using Eq. (14) as follows: 359 
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𝑟2 =  (
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2 ∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

𝑛
𝑖=1

)2      (14) 360 

where xi and yi indicate the reference variable and the variable to compare, respectively, 361 

and �̅� and �̅� indicate the mean of such values.  362 

Second, we use the concept of MI to complement our evaluation, where MI is calculated 363 

between WEPSI, SPI, SPEI, and SRI. MI is calculated between two variables to determine the 364 

amount of information one variable has about the other (Vergara and Estévez, 2014). This 365 

concept is valuable in our comparison procedure, as we seek to know how much information is 366 

available about the others in each drought index. MI is calculated using Eq. (15) (Interested 367 

readers are referred to (Vergara and Estévez, 2014) and (Al Balasmeh et al., 2020) for the 368 

theoretical background underlying the calculation of MI). 369 

MI(𝑥; 𝑦) = H(𝑥) − H(𝑥|𝑦) = ∑ ∑ 𝑝(𝑥(𝑖), 𝑦(𝑗))𝑛
𝑗=1

𝑛
𝑖=1  . log (

𝑝(𝑥(𝑖),𝑦(𝑗))

𝑝(𝑥(𝑖)) .  𝑝(𝑦(𝑗))
) (15) 370 

where MI(𝑥; 𝑦) is the MI between variable x and y, H(𝑥) is the entropy of a discrete 371 

random variable x, H(𝑥|𝑦) is the conditional entropy of two discrete random variables of x and y, 372 

𝑝(𝑥) denotes the probability of the random variable x, and 𝑝(𝑥, 𝑦) is the joint probability of the 373 

random variables of x and y. MI is zero if x and y are statistically independent, and MI(𝑥; 𝑦) =374 

MI(𝑦; 𝑥).  375 

The unit of information or entropy is nat (natural unit of information), which is based on 376 

natural logarithms and powers of e instead of the base two logarithms and powers of two used in 377 

the bit unit.  378 

Figure 4 shows the Venn diagram based on Eq. (15), which schematizes the relationship 379 

between MI and entropies (H) between the random variables x and y. 380 

 381 

Figure 4. Venn diagram of the relationship between mutual information (MI) and entropy 382 

(H). 383 

As drought is an important environmental driver that leads to cereal loss in both yield and 384 

quality worldwide (Karim and Rahman, 2015), we also compare the cereal production data of El 385 

Salvador with the results of the drought indices in this research.  386 
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With the time series of WEAP-based WEPSI calculated in each sub-basin, we compute the 387 

time series of the percentage of drought area (PDA) for the entire basin. PDAs were calculated 388 

monthly as the ratio between the area of sub-basins in drought and the total area of the basin. A 389 

drought event starts once the drought index value goes below a threshold and ends as the value 390 

rises above the threshold again (Brito et al., 2018; Corzo et al., 2018; Corzo Perez et al., 2011; 391 

Diaz et al., 2020). The threshold used in this application was drought index = −1, which is a 392 

threshold commonly used in drought assessments (Diaz et al., 2020; Khoshnazar et al., 2021a).  393 

Finally, we compared PDA fluctuations with El Niño–La Niña years and with El 394 

Salvadorian cereal production. Cereal production is used because a lack of soil moisture can lead 395 

to a severe reduction in cereal production. On the other hand, drought causes yield and quality loss 396 

of cereal globally. Then, if WS, and thereby WEPSI, can capture the status of soil moisture and 397 

drought, there should exist a relationship between WEPSI and cereal production (Khoshnazar et 398 

al., 2021a; Lewis et al., 1998). 399 

3 Results and discussion 400 

3.1. WEPSI calculation and performance evaluation 401 

CR was used to calculate the ETw dataset as follows. The b parameter was calculated 402 

following the methodology presented in Section 2.4.2 for 12 months in eight sub-basins. Figure 5 403 

depicts the asymmetric CR between ETa+ and ETp+ as functions of ETMI for 12 months of the year 404 

in the Guajillo sub-basin. This figure also shows the symmetric CR that would occur if b was equal 405 

to 1. As Figure 5 illustrates, compared with the symmetric CR, the calculated b leads to a 406 

considerable difference between the scaled evapotranspiration (ETa+ and ETp+) as the surface dries 407 

and ETa decreases (Aminzadeh et al., 2016). Figure 5 also highlights the importance of using local 408 

and temporal meteorological data (net shortwave radiation, wind speed, and vapor concentration), 409 

which can lead to a more accurate approximation of CR and, consequently, of ETw. 410 
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 411 

Figure 5. Scaled actual (ETa+) and potential evapotranspiration (ETp+) with respect to the 412 

surface moisture index (ETMI) in the Guajillo sub-basin for 12 months of the year. 413 

Figure 6 shows the time series of SPI06, SPEI06, SRI06, and WEPSI06 in the Guajillo 414 

sub-basin as an example of the calculation of the drought indices.  415 

 416 

Figure 6. SPI06, SPEI06, SRI06, and WEPSI06 time series based on the WEAP-derived 417 

ET data for the Guajillo sub-basin (1980–2010). 418 
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Our results demonstrate that in 61% of the cases, the value of WEPSI06 is larger than that 419 

of SPEI06 (i.e., SPEI depicts a worse situation than WEPSI). The findings indicate that this 420 

behavior of WEPSI is observed among all other sub-basins, as well. 421 

The literature states that an SPI with 3- or 6-month steps can be considered as an 422 

agricultural drought index (Khoshnazar et al., 2021a; McKee et al., 1993; Vicente-Serrano, 2006). 423 

It is also shown that SPI and SPEI, with 6-month time steps, have the highest correlation with each 424 

other (Diaz Mercado et al., 2018). Additionally, we compared the river streamflow with WEPSI 425 

and SRI for 3-, 6-, 9-, and 12-month time steps. We found that WEPSI06 and SRI06 were most 426 

related in terms of low flow in the basin. Accordingly, we consider WEPSI06 representative of the 427 

agricultural and hydrological drought conditions in the basin—WEPSI06 reflected a realistic 428 

vision of the basin that links meteorological, agricultural, and hydrological drought.  429 

The correlation among the four drought indices is presented in Table 2. These correlations 430 

are the averages of the eight sub-basins. The correlations between WEPSI06 and SPI06 (0.931), 431 

WEPSI06 and SPEI06 (0.904), and WEPSI06 and SRI06 (0.783) are the highest. In comparison 432 

with the other drought indices, WEPSI has the highest correlation with all drought indices, and the 433 

correlation between SPEI06 and SRI06 (0.501) is the lowest. 434 

Table 2. Correlation analysis 435 

Drought indices SPI06 SPEI06 SRI06 WEPSI06 

SPI06 1 0.741 0.634 0.931 

SPEI06 0.741 1 0.501 0.904 

SRI06 0.634 0.501 1 0.783 

WEPSI06 0.931 0.904 0.783 1 

In addition to correlation analysis, MI was calculated among the drought indices (Section 436 

2.6.2). As mentioned, MI was calculated to identify which drought index contains more 437 

information about the others. MI is expressed in nat, the International System of Units unit for 438 

entropy (details in Section 2.6.2). 439 

Figure 7 depicts Venn diagrams that provide MI between drought indices. The values 440 

presented in Figure 7 are the averages of the eight sub-basins. The highest MI is between WEPSI06 441 

and SPI06, WEPSI06 and SPEI06, and WEPSI06 and SRI06, with 0.74, 0.69, and 0.54 nat, 442 

respectively. The lowest MI is observed between SPEI06 and SRI06 (0.18 nat). The MIs between 443 

SPI06 and SPEI06, and SPI06 and SRI06 are 0.31 and 0.24 nat, respectively. Accordingly, 444 

WEPSI06 not only contains the highest amount of information about the two other meteorological 445 

drought indices (SPI06 and SPEI06) but also covers the most information about the hydrological 446 

conditions of the region (SRI06). SPEI06 and SPI06 send the lowest number of hydrological 447 

signals in terms of drought. The results of the correlation analysis and MI suggest that WEPSI is 448 

a drought index that identifies hydrological drought in the absence of R data. 449 
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 450 

Figure 7. Mutual information (MI) Venn diagram between SPI06, SPEI06, SRI06, and 451 

WEPSI06. The intersection between two circles depicts the MI between two drought indices in 452 

nat, the SI unit for entropy. 453 

Figure 8a–h compares the time series of the WEAP-based WEPSI06 in the eight sub-basins 454 

of the Lempa River basin for the period 1980–2010 (31 years). Based on Figure 8, the longest 455 

drought (i.e., number of months in which the value of WEPSI is below the threshold of −1) 456 

occurred in 2003, in general. The maximum drought frequency (3.54%) occurred in the Guajillo, 457 

SS6, and Suquioyo sub-basins, with a total of 13 droughts over 31 years. The most severe drought 458 

(i.e., aggregation of WEPSI values in sequent months at drought) occurred in Guajillo in December 459 

1994. 460 
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 461 
Figure 8. Time series of WEPSI06 in the sub-basins: (a) Acelhuate, (b) Guajillo, (c) Lempa 462 

1, (d) Lempa 2, (e) Lempa 3, (f) SS3, (g) SS6, and (h) Suquioyo. 463 

Figure 9 displays the variation of drought areas through the PDAs in the Lempa River basin 464 

for 31 years based on WEPSI06. The threshold of −1 was used to calculate drought in each WEPSI 465 

time series (i.e., a sub-basin is in drought if WEPSI06 ≤ −1; Table 1). Figure 9 shows some 466 

repetitive patterns in the behavior of droughts in the basin. Some years are in white cells, indicating 467 

the absence of PDA in those years, which are known as white years. By contrast, some other years 468 

show a tail (i.e., PDA occurs in some sequenced months, indicating long drought events). 469 
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 470 

Figure 9. Percentage of drought area (PDA) using WEPSI06 based on WEAP data in the 471 

Lempa River basin for the period 1980–2010. 472 

As ENSO events are usually linked to major flood and drought episodes (Mera et al., 2018), 473 

we have applied this information to assess the performance of WEPSI. Drought events indicated 474 

by the PDA results (Figure 9) are compared with the EL Niño and La Niña years based on the 475 

Oceanic Niño Index (ONI) (National Oceanic and Atmospheric Administration, 2015). ENSO 476 

events affect people and ecosystems across the globe via the production of secondary results that 477 

influence food supplies and prices, as well as forest fires, and create additional economic and 478 

political consequences (National Oceanic and Atmospheric Administration, 2015). Comparing the 479 

patterns of PDA based on WEPSI06 (Figure 9) and ONI shows that PDA shares similarities with 480 

La Niña in terms of white years, including weak La Niña in 1984, 2001, 2005, and 2006, moderate 481 

La Niña in 1995, 1996, 2000, and 2008, and strong La Niña in 1999. On the other hand, 482 

investigating the years with a drought tail reveals weak El Niño in 1980, 2004, 2007, 2009, and 483 

2010, moderate El Niño in 1986, 1994, 2002, and 2003, strong El Niño in 1987, 1988, 1991, and 484 

1992, and very strong El Niño in 1998. The consistency of the results provided by WEPSI06 with 485 

El Niño and La Niña years emphasize the good performance of WEPSI. 486 

The fluctuation in cereal and crop production in El Salvador is shown in Figure 10 for the 487 

period 1980–2010 (31 years) (World Bank Group, 2021).  488 
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 489 

Figure 10. Cereal production (million metric tons) and crop production index in El 490 

Salvador for the period 1980–2010 (31 years) (Khoshnazar et al., 2021a). 491 

As Figure 10 depicts, in 1984, 1988, 1990, 1992, 1995, 1999, 2002, 2006, and 2008, cereal 492 

production presented the local maximum amount compared with that in previous and subsequent 493 

years. On the other hand, the years 1982, 1986, 1989, 1991, 1994, 1997, 2001, 2003, and 2007 494 

presented the local minimum. These years with the local minimum and maximum, aside from the 495 

years with descending and ascending cereal production amounts (compared with the previous 496 

year), were used for the comparison with drought indices’ PDA. Our results endorse that the PDA 497 

of WEPSI06 based on WEAP model data detects six of the nine local maximums in El Salvador’s 498 

cereal production evolution (when a year does not have at least two sequent months with a PDA 499 

value greater than 0% based on the drought index, and that year has a local maximum in the cereal 500 

production graph, the drought index is detecting the local maximum of cereal production), as well 501 

as six of the nine local minimums in cereal production fluctuation (when a year has some 502 

consecutive months with a PDA value greater than 0% based on the drought index, and that year 503 

has a local minimum in the cereal production graph, the drought index is detecting the local 504 

minimum of cereal production). This is while both SRI06 and SPEI06 detect four of the nine local 505 

maximums. SRI06 identifies five of the nine and SPEI06 reflects four of the nine local minimums 506 

of the graph. Finally, SPI06 does not detect a considerable number of critical points (i.e., the local 507 

maximum and minimum points) in El Salvador’s cereal production graph. Besides, PDA based on 508 

WEPSI06 detects five years—1980, 1981, 1985, 2009, and 2010—when the tail of drought (at 509 

least two sequent months with a PDA greater than zero) is observed in them, and the amount of 510 

cereal production is lower than the previous year (i.e., the cereal production graph is descending); 511 

it also identifies that in 2005, which is a white year, the cereal production graph is ascending. 512 

Generally, a growing pattern in cereal and crop production is observed during our study 513 

horizon. This is because cereal and crop productions do not depend on drought alone but are also 514 

influenced by other factors, such as agricultural land and technology. For example, El Salvador’s 515 

agricultural land grew from 14,100 km2 (or 68.05% of the land area) in 1980 to 15,350 km2 (or 516 

74.08% of the land area) in 2010 (Khoshnazar et al., 2021a). There are some other descriptions for 517 

the rise or drop in the cereal production graph. For example, 1992 has a tail of drought in Figure 518 

9, while it has a local maximum in Figure 10. That is because 1992 was the end of the civil war in 519 

El Salvador, which affected the agricultural activity and production of the country. Moreover, in 520 

1997, which is a white year with a local minimum in Figure 10, a surge in coffee prices led to the 521 

replacement of other products with coffee and a drop in cereal production. By contrast, the poor 522 

harvests and falling prices (around 50%) of coffee in that year altered farming decisions, giving 523 
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rise to a local maximum in 1998 (in Figure 9), while the tail of drought was also observed in that 524 

year in Figure 10 (Encyclopedia of the Nations, 2021).  525 

As Figure 10 shows, the ascent and descent of the crop and cereal production graphs are 526 

the same except in 1987 and 1988, when the crop graph is descending but the cereal graph is 527 

ascending. There should be another probable occurrence or policy justifying this behavior of the 528 

cereal production graph, while these years have a tail of drought in Figure 9. Furthermore, the 529 

agricultural industry in El Salvador reported heavy losses because of rainfall and its consequences, 530 

such as flood and supersaturation within our study horizon (Freshplaza, 2021). This can justify the 531 

drop in cereal production in white years by PDA based on WEPSI06. For instance, in 1982, 532 

hurricane Paul killed 1,625 people and caused $520 million in damage in Central America, 533 

including El Salvador. Similarly, hurricane Pauline in 1997 and tropical storm Arlene in 1993 534 

impacted our studied basin (Carroll, 1998 ). 535 

To sum up, PDA, based on WEPSI06, detects 85% of the cereal production drop and 70% 536 

of the cereal production increase. Taking the discussed abnormal conditions into account, the PDA 537 

based on WEPSI06 (Figure 9) is 81% consistent with the cereal production graph (Figure 10).  538 

Regarding cereal production, the period between the first of April and the end of July is 539 

the lean period in the El Salvador cereal calendar based on Food and Agriculture Organization 540 

(FAO) of the United Nations (UN) (2021). Figure 9 demonstrates that tails of drought are observed 541 

in the lean period of cereal crops in El Salvador—during 1981, 1994, 2003, and 2007, when a 542 

reduction in cereal production also emerges. Additionally, the growing season, which starts from 543 

June and lasts until December (FAO, 2021), is also sensitive to WEPSI time-series droughts, as 544 

shown by the decrease in cereal production. This sensitivity to drought, similar to Daryanto et al.’s 545 

(2017) statement, is observed in 10 years in Figure 10. On the other hand, as the structure of 546 

WEPSI uses ET data, it implicitly determines soil moisture variability and, therefore, vegetation 547 

water content, directly affecting agricultural droughts (Vicente-Serrano et al., 2010). Indices that 548 

do not consider the role of temperature, and, consequently heat, could not depict the impact of this 549 

critical environmental component on crop survival, distribution, and productivity limits (Daryanto 550 

et al., 2017). This is while WEPSI implicitly takes the role of temperature into account and thus 551 

could be used for agricultural targets.  552 

These observations indicate that the results of WEPSI06 could be used for the assessment 553 

of agricultural drought. 554 

3.2 Significance of this study 555 

Because of its inputs, WEPSI can indirectly take the climate change effect into account. 556 

WEPSI softens the performance of the SPEI because it uses ETw instead of evaporative demand 557 

(i.e., ETp). Accordingly, WEPSI can detect some events that are not captured by the SPI but can 558 

eliminate some others indicated by the SPEI that are derived by excessive values of ETp. 559 

Meteorological drought indices, such as the SPI and SPEI, describe climatic anomalies 560 

without considering their hydrologic context (Kim and Rhee, 2016). Hydrological drought indices, 561 

such as the SRI, represent the impact of climate anomalies on present hydrologic conditions, as 562 

they are controlled by physical processes on the surface (Shukla and Wood, 2008). Our results 563 

show a high correlation and MI between WEPSI06 and SRI06. These results indicate that WEPSI 564 

can depict a more accurate land surface status by linking meteorological and hydrological drought 565 

indices. 566 
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ET affects R (Vicente-Serrano et al., 2010), so the SRI can depict ETa indirectly. Then, 567 

WEPSI, which, on the one hand, relatively reflects the SRI status and, on the other hand, uses ET, 568 

can indicate moisture conditions on the land surface. Additionally, our results showed a high 569 

similarity between the SRI with the 6-month time step (SRI06) and the Lempa River streamflow, 570 

suggesting that SRI06 reflects the basin’s most accurate condition. The results again indicate that 571 

WEPSI can be used for agricultural drought assessments. 572 

The proposed WEPSI drought index meets all requirements suggested by Nkemdirim and 573 

Weber for a drought index (Nkemdirim and Weber, 1999; Vicente-Serrano et al., 2010), including 574 

its use for different purposes. Drought characteristics, such as drought severity, intensity, and 575 

duration (the start and the end of the phenomenon), can also be calculated with WEPSI. 576 

Furthermore, WEPSI can be calculated worldwide and under various climates and can provide a 577 

spatial and temporal depiction of drought variation.  578 

4 Conclusions 579 

This research introduced WEPSI, which uses WS as its input. WS is calculated using P and 580 

ETw. We embed ETw into the structure of WEPSI to account for the water demand and P for the 581 

water supply. This paper also presents a procedure for ETw calculation based on the asymmetric 582 

CR that links ETp, ETa, and ETw.  583 

We tested WEPSI in the Lempa River basin, which is the longest river in Central America. 584 

The basin is sub-divided into eight sub-basins for its modeling with the WEAP system. ETw is 585 

calculated with ETp and ETa derived from WEAP.  586 

We compared WEPSI with two meteorological drought indices (SPI and SPEI) and a 587 

hydrological drought index (SRI) via data derived from WEAP. The performance evaluation 588 

procedure includes a correlation coefficient (r) and an approach based on MI. The results show 589 

that WEPSI has the highest r and MI compared with the three other indices, indicating that WEPSI 590 

can be used for meteorological, agricultural, and hydrological drought monitoring.  591 

Finally, drought events based on WEPSI were compared with El Niño–La Niña years, as 592 

well as with El Salvador’s annual cereal production. The results indicate that WEPSI is also helpful 593 

for agricultural drought assessments because it captures the most critical points of El Salvador’s 594 

cereal production (i.e., the local maximum and minimum points). 595 

These research outcomes are useful for researchers and policymakers in drought 596 

calculation, monitoring, risk assessment, and forecasting. As a future research direction, the 597 

application of remote sensing data in calculating WEPSI can be investigated to facilitate the 598 

application of WEPSI in other basins. We also suggest testing WEPSI in other case studies and 599 

with other purposes. WEPSI’s application for drought risk assessment is likewise foreseen. 600 
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