
P
os
te
d
on

21
N
ov

20
22

—
C
C
-B

Y
-N

C
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
78
79
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Correcting coarse-grid weather and climate models by machine

learning from global storm-resolving simulations

Christopher S. Bretherton1, Brian Henn2, Anna Kwa2, Noah D Brenowitz2, Oliver
Watt-Meyer2, Jeremy McGibbon2, W. Andre Perkins2, Spencer K. Clark2, and Lucas
Harris3

1University of Washington
2Allen Institute for Artificial Intelligence
3GFDL

November 21, 2022

Abstract

Global atmospheric ‘storm-resolving’ models with horizontal grid spacing of less than 5˜km resolve deep cumulus convection and

flow in complex terrain. They promise to be reference models that could be used to improve computationally affordable coarse-

grid global climate models across a range of climates, reducing uncertainties in regional precipitation and temperature trends.

Here, machine learning of nudging tendencies as functions of column state is used to correct the physical parameterization

tendencies of temperature, humidity, and optionally winds, in a real-geography coarse-grid model (FV3GFS with a 200˜km

grid) to be closer to those of a 40-day reference simulation using X-SHiELD, a modified version of FV3GFS with a 3˜km grid.

Both simulations specify the same historical sea-surface temperature fields. This methodology builds on a prior study using

a global observational analysis as the reference. The coarse-grid model without machine learning corrections has too little

cloud, causing too much daytime heating of land surfaces that creates excessive surface latent heat flux and rainfall. This

bias is avoided by learning downwelling radiative flux from the fine-grid model. The best configuration uses learned nudging

tendencies for temperature and humidity but not winds. Neural nets slightly outperform random forests. Forecasts of 850 hPa

temperature gain 18 hours of skill at 3–7 day leads and time-mean precipitation patterns are improved 30\% by applying the

ML correction. Adding machine-learned wind tendencies improves 500 hPa height skill for the first five days of forecasts but

degrades time-mean upper tropospheric temperature and zonal wind patterns thereafter.
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Abstract16

Global atmospheric ‘storm-resolving’ models with horizontal grid spacing of less than17

5 km resolve deep cumulus convection and flow in complex terrain. They promise to be18

reference models that could be used to improve computationally affordable coarse-grid19

global climate models across a range of climates, reducing uncertainties in regional pre-20

cipitation and temperature trends. Here, machine learning of nudging tendencies as func-21

tions of column state is used to correct the physical parameterization tendencies of tem-22

perature, humidity, and optionally winds, in a real-geography coarse-grid model (FV3GFS23

with a 200 km grid) to be closer to those of a 40-day reference simulation using X-SHiELD,24

a modified version of FV3GFS with a 3 km grid. Both simulations specify the same his-25

torical sea-surface temperature fields. This methodology builds on a prior study using26

a global observational analysis as the reference. The coarse-grid model without machine27

learning corrections has too little cloud, causing too much daytime heating of land sur-28

faces that creates excessive surface latent heat flux and rainfall. This bias is avoided by29

learning downwelling radiative flux from the fine-grid model. The best configuration uses30

learned nudging tendencies for temperature and humidity but not winds. Neural nets31

slightly outperform random forests. Forecasts of 850 hPa temperature gain 18 hours of32

skill at 3–7 day leads and time-mean precipitation patterns are improved 30% by apply-33

ing the ML correction. Adding machine-learned wind tendencies improves 500 hPa height34

skill for the first five days of forecasts but degrades time-mean upper tropospheric tem-35

perature and zonal wind patterns thereafter.36

Plain Language Summary37

Global weather and climate models can be made more realistic by using a finer com-38

putational grid, but this is too expensive for routine use. We design a machine-learned39

correction to make a more economical coarse-grid model better track a fine-grid refer-40

ence version of this model. The correction is trained using a limited, computationally41

affordable, period of fine-grid model output. It is applied interactively during the coarse-42

grid simulation. As desired, adding the correction substantially improves how well weather43

forecasts and time-mean rainfall patterns with the coarse-grid model match the fine-grid44

reference.45
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1 Introduction46

In the last few years, global atmospheric ‘storm-resolving’ models (GSRMs) with47

horizontal grid spacing of less than 5 km have become computationally feasible for sim-48

ulations of months and longer (Tomita et al., 2005; Stevens et al., 2019). Their fine grids49

enable these models to resolve vertical motions within deep convective cloud systems,50

rather than relying on assumption-laden cumulus parameterizations. They also more fully51

resolve circulations in complex orography that modulate precipitation and create drag.52

Attractively, because they resolve more fine-scale atmospheric circulations, many of their53

subgrid parameterization assumptions can be simpler and more testable than for coarser-54

grid climate models.55

The recent DYAMOND intercomparison of nine such GSRMs (Stevens et al., 2019)56

shows their potential for more accurately simulating severe weather and global climate,57

especially as they become observationally-calibrated backbones for global weather fore-58

casts. But computational constraints make it unlikely that GSRMs will soon be prac-59

tical for the atmospheric part of century-long climate simulations. How, then, can the60

climate projection enterprise benefit from this exciting new class of global models?61

This paper will explore coarse-graining (hereafter coarsening) of GSRMs for train-62

ing machine learning (ML) parameterizations for use in coarse-grid global atmospheric63

models. Past studies have addressed aspects of this problem but not provided an end-64

to-end solution. A key challenge is training the ML to make stable, accurate online sim-65

ulations in which it is coupled to the dynamical core (numerical flow solver) and other66

components of the model.67

Some studies have demonstrated online skill in simplified settings such as zonally-68

symmetric aquaplanets and/or superparameterized models that include artificial scale-69

separation assumptions (Rasp et al., 2018; Brenowitz & Bretherton, 2019; Yuval & O’Gorman,70

2020, 2021). This makes the ML training problem easier to precisely formulate, but also71

sidesteps important real-world complications such as orography, land surface heterogene-72

ity, complex coastlines, etc. Other studies have tackled real-world geography but only73

demonstrated offline or single-column ML skill (Han et al., 2020; Mooers et al., 2021).74

Here, we present a coarsening-based ML approach that is formulated to work within75

a state-of-the-art global atmospheric model, FV3GFS, used operationally by the National76
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Oceanic and Atmospheric Administration (NOAA) in the U. S. for weather forecasting77

on daily to seasonal timescales. We show that this approach has attractive on-line skill78

across these timescales and especially improves the coarse-grid simulation of time-mean79

precipitation over land, a challenge for many conventional climate models.80

Our new ‘nudge-to-fine’ approach is a variant of the ‘nudge-to-observations’ method-81

ology recently introduced by Watt-Meyer et al. (2021), hereafter WM21. Both approaches82

are forms of state-dependent bias correction, (e.g. Leith, 1978; DelSole et al., 2008); see83

WM21 for more historical context. WM21 add a ‘corrective ML’ scheme to the phys-84

ical parameterizations that makes the coarse-grid model evolve similarly to a reference85

data set. For nudging-based ML training, a linear relaxation term is added to the coarse86

model that ‘nudges’ the temperature, humidity and wind at every grid point toward the87

reference data set; the ML learns these ‘nudging tendencies’. In WM21, the reference88

was six-hourly global observational analyses. Here, the reference is coarsened output from89

a fine-grid GSRM. Nudging to a reference has also been used to facilitate parameter es-90

timation within climate model parameterizations (Lyu et al., 2018).91

It is conceptually helpful if the dynamical core and shared parameterizations of the92

coarse and fine-grid models are similar, so that the learned correction reflects the coarser93

grid spacing rather than the different model formulations. We use FV3GFS with a C4894

cubed-sphere grid (∼ 200 km grid spacing) and 79 vertical terrain-following coordinate95

levels as the coarse model and a modified version of FV3GFS, X-SHiELD, which has a96

C3072 grid (approximately 3 km spacing), as the fine model. X-SHiELD (Harris et al.,97

2020) is developed at NOAA’s Geophysical Fluid Dynamics Laboratory, or GFDL. Both98

FV3GFS and X-SHiELD use D-grid horizontal staggering of wind components relative99

to cell centers. We use a basket of five weather forecast and time-mean bias metrics to100

choose between candidate ML configurations.101

Section 2 describes the models and the coarsening method. Section 3 presents the102

nudged training simulation approach, including forcing of the land surface. Section 4 de-103

scribes the ML methods used. Section 5 discusses ML-relevant aspects of the nudging104

tendency fields and the offline ML skill. Section 6 discusses prognostic skill for weather105

forecasts and time-mean biases. Section 7 interprets the nudging tendencies as the sum106

of a physics component due to fine-coarse parameterization tendency differences and a107

residual ‘dynamics’ component mainly due to fine-coarse vertical motion differences. Con-108
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clusions follow in Section 8. The acknowledgments include a statement of data and soft-109

ware availability.110

2 3 km reference simulation and coarsening method111

2.1 Reference simulation112

We performed a 40-day fine-grid reference simulation using X-SHiELD. Our X-SHiELD113

implementation was configured similarly to the GFDL submission to the DYAMOND114

intercomparison of GSRMs (Stevens et al., 2019), with 79 vertical levels. The FV3GFS115

gravity wave drag and deep cumulus and parameterizations were disabled in X-SHiELD,116

but we retained the FV3GFS shallow cumulus convection because it improved cloud cover117

in the global simulations. The FV3 dynamical core employed an updated scalar advec-118

tion scheme and included microphysical adjustments during each of seven sub-steps taken119

within the 225-second time step used for the parameterized physics. The reference sim-120

ulation was initialized at 0 UTC on 1 Aug. 2016 from GFS operational analysis inter-121

polated to the C3072 native grid, and ran through Sept. 9, 2016 on 13824 cores of NOAA’s122

GAEA computing system.123

One important change we made to the DYAMOND implementation was to lightly124

nudge the fields of temperature T , horizontal wind components u, v, and surface pres-125

sure ps, but not humidity, toward GFS reanalysis with a 24-hour timescale. We call this126

‘meteorological nudging’, following Zhou et al. (2021); it should not be confused with other127

applications of nudging for ML training in this paper. It kept the large-scale meteorol-128

ogy of X-SHiELD very similar to the reanalysis, with a 99.5% correlation between the129

simulated and reanalyzed patterns of 500 hPa height, while allowing meaningful com-130

parison of the humidity, cloud and precipitation fields with observations. It had reassur-131

ingly little impact on the 40-day time-mean cloud and radiation biases of X-SHiELD com-132

pared to the original free-running DYAMOND simulations, with global-mean TOA out-133

going longwave and shortwave fluxes matching within 1 W/m2.134

A second change was that many internal variables of X-SHiELD were ‘coarsened’135

in-line to a C384 79-level grid of approximately 25 km horizontal resolution, as described136

in the next section, and output on this grid every 15 minutes. The coarsened output was137

exported to Google Cloud Storage for use in a custom ML workflow written in Python,138

described below.139
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2.2 Coarse-grid model, Python wrapper and cloud-based ML workflow140

As in WM21, our goal is to use ML to improve a coarse-grid version of FV3GFS,141

with the same 79 vertical levels as X-SHiELD. The results presented here use a C48 hor-142

izontal grid with approximately 200 km horizontal resolution, a 15 minute physics timestep,143

and 6 dynamics substeps per physics timestep. Our version of FV3GFS, described in McGibbon144

et al. (2021), is built from portions of NOAA’s Unified Forecast System (https://ufscommunity.org;145

code repository at https://doi.org/10.5281/zenodo.4460292). We disable microphys-146

ical updates within the dynamical core of the coarse-grid model to cleanly separate ten-147

dencies due to model dynamics and physics. Unlike X-SHiELD, the coarse model uses148

the FV3GFS deep cumulus and gravity-wave drag parameterizations. Other smaller dif-149

ferences include the choice of scalar advection scheme and version differences in the mi-150

crophysics and land-surface models.151

Because of the wealth of powerful machine-learning packages available in Python,152

major units of the FV3GFS Fortran code were wrapped in Python (McGibbon et al.,153

2021). The ML and FV3GFS workflows were executed as containerized steps on Google154

Cloud Platform, similar to WM21. We have shared the code to do this in a documented,155

open-source repository (https://doi.org/10.5281/zenodo.5211066).156

2.3 Is the fine-grid reference more skillful than the coarse-grid model?157

The nudge-to-fine approach can only be useful if the fine-grid reference simulation158

is substantially more skillful than the ‘baseline’ coarse-grid model with no ML correc-159

tion. Because the fine simulation is meteorologically nudged, it has good weather fore-160

cast skill by construction. However, since its humidity is not nudged, it is still meaning-161

ful to compare precipitation from the fine simulation and a similar meteorologically nudged162

no-ML C48 coarse FV3GFS simulation with observations. Fig. 1 compares Day 3–40 mean163

precipitation maps from these simulations with observational estimates for the same pe-164

riod from the Global Precipitation Climatology Project or GPCP (Huffman et al., 2001)165

over land, where precipitation most immediately impacts human and natural systems.166

The fine reference model has 35% smaller spatial pattern errors of precipitation vs. GPCP167

than the coarse model, with negligible bias in land-mean precipitation. Although 38 days168

is a short comparison period, the meteorological nudging makes this comparison mean-169

ingful by removing weather variability as a source of uncertainty.170
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200 km FV3GFS
Bias = -0.36 mm/day
RMSE = 2.25 mm/day

3 km X-SHiELD
Bias = -0.02 mm/day
RMSE = 1.49 mm/day

−6 −4 −2 0 2 4 6
Mean precipitation difference over land, simulated minus observed [mm/day]

Figure 1. Error in Day 3–40 mean precipitation vs. GPCP of meteorologically nudged (a)

FV3GFS with C48 (200 km) horizontal grid resolution, and (b) X-SHiELD with C3072 (3 km)

horizontal resolution. In the plot titles, RMSE is the root mean squared spatial pattern error and

bias is the time-mean error averaged over all land.

2.4 Pressure-level (p) coarsening171

We coarsened the C3072 simulation outputs to C48 grid columns as follows. To con-172

serve mass, the hydrostatic pressure thickness of each coarse grid layer was calculated173

as an area-average over fine grid cells with the same layer index. Surface and other two-174

dimensional fields were coarsened using area-weighted averaging. Three-dimensional at-175

mospheric scalar fields were pressure-level (p) coarsened using area-weighted averaging176

of C3072 data vertically interpolated to the pressure levels of the parent C48 grid cell.177

In mountainous regions, this average was only over those C3072 grid columns for which178

the C48 pressure level in question was above ground. On a D-grid, the tangential hor-179

izontal velocity component are specified at the centers of each grid cell edge. Thus, tan-180

gential wind components are coarsened by pressure-level averaging over the fine-grid cell181

edges comprising each coarse-grid cell edge.182

The attraction of p-coarsening is clearest in the special case of an atmosphere at183

rest over orography. For this case, neglecting virtual effects, temperature must be purely184

a function of pressure. Since p-coarsening preserves this relationship, it efficiently cap-185

ture the stratified vertical structure of such an atmosphere, while coarsening along terrain-186

following model levels would average temperature across a range of heights. Similarly,187
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p-coarsening preserves thermal wind balance above orography, unlike model-level coars-188

ening.189

As described in Appendix A1, area-weighted coarsening of hydrostatic pressure lev-190

els requires a correction to the area-weighted surface elevation, which is almost always191

negative and depends on the local topographic variability. Over the Andes and Himalayas,192

it locally exceeds -150 m (Fig. A1). We calculate this topographic correction at the ini-193

tial time of a coarse simulation and leave it fixed thereafter.194

3 Methodology for nudged training simulation195

Our methodology for constructing an ML training data set evolved to overcome196

early shortcomings. Key advances were the use of nudging (Secs. 3.1-3.3) and the use197

of fine-model downwelling radiation and precipitation to force the land surface (Sec. 3.4).198

3.1 Failure of a tendency-difference method as motivation for nudging199

We first tried a ‘tendency difference’ method (Brenowitz & Bretherton, 2019). The200

coarse model was initialized with a p-coarsened state from the fine model and integrated201

over one 15-minute physics timestep to determine average tendencies of four prognos-202

tic variables T, q, u, v at each grid point. Fluctuations in these ‘memory variables’ per-203

sist over many time steps so they are important to accurately forecast. The coarse-model204

tendencies were subtracted from the p-coarsened fine-grid tendencies averaged over the205

same period to get fields of tendency differences which we hoped to use as ML targets.206

Unfortunately, the coarse model immediately spun up strong vertical velocities around207

orography that contaminated these tendency differences. The excess vertical velocities208

took about three hours to damp out. This was a form of initialization shock, a challenge209

noted and addressed since the early days of numerical weather prediction (Daley, 1981).210

As in WM21, we have circumvented initialization shock by smoothly nudging the211

coarse training model with an appropriate time scale τ so it stays close to the evolving212

coarsened fine model output, but remains near a dynamically adjusted state of the free-213

running coarse model. We choose τ = 3 hours, the time vertical velocity variance takes214

to equilibrate. WM21 chose τ = 6 hours for their similar approach of nudging a coarse215

model to a reanalysis, because that was the frequency of the available GFS analysis data.216
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We will show that both choices perform similarly well. Our shorter τ has the concep-217

tual advantage of keeping the nudged atmospheric state closer to the coarsened-fine state.218

3.2 Mathematical formalism for nudging approach219

Our mathematical notation for the nudging approach is summarized in Table 1.220

We consider an arbitrary scalar field a (e.g. T, q) that has been prognosed by the fine221

reference model on the fine grid (af (xf , yf , pf , t)). We p-coarsen af to the field a(xc, yc, pc, t)222

given on the coarse grid. We initialize the coarse model with the coarsened-fine output223

from some time t0:224

an(x, y, p, t0) = a(x, y, p, t0).

We run the coarse model, nudging its prognosed fields (denoted by a superscript n) to-225

ward their reference values:226

∂an

∂t
= −∇ · (vnan) +Qp

a + ∆Qa, (1)

Here Qp
a(x, y, p, t) is the tendency of a due to the physical parameterizations of the coarse227

model. Analogous equations with additional pressure-gradient and Coriolis terms are used228

for the eastward and northward velocity components u and v.229

The nudging tendency230

∆Qa = −a
n − a
τ

. (2)

corrects the coarse training simulation to evolve similarly to the coarsened fine simula-231

tion.232

Eq. 2 also shows that the nudged coarse atmospheric state differs slightly from the233

reference coarsened fine-grid state in proportion to the nudging tendency and the nudg-234

ing timescale. Thus plots of nudging tendency also translate (by relabeling the color bar)235

into plots of the nudged state difference.236

The primary ML targets are the time-dependent nudging tendencies of the mem-237

ory variables in all coarse-model grid points sampled over a sufficiently long nudged sim-238

ulation. Since the nudged run is initialized from coarsened fine model output, the first239

few hours of the nudged simulation suffer from initialization shock and should not be used240

for ML training. Instantaneous nudging tendency fields look very noisy where the coarse241

model state in each grid column varies strongly from time step to time step, e.g. due to242

episodic cumulus convection. If the nudging is applied with a relaxation timescale τ , it243

–9–
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Notation Description

a(x, y, p, t) Arbitrary scalar field.

af (xf , yf , pf , t) a represented on the fine grid

ac(xc, yc, pc, t) a represented on the coarse grid (xc, yc implied for a single grid column)

a(xc, yc, pc, t) Area-weighted pressure-level average of af (xf , yf , pc, t) across a coarse grid cell

Qp
a(xc, yc, pc, t) Source of a from coarse-model physics parameterizations

Qa(xc, yc, pc, t) Apparent source of a from fine reference simulation on coarse grid

V(x, y, p, t) Velocity vector with components u = Dx/Dt, v = Dy/Dt, ω = Dp/Dt

Table 1. Coarsening notation

suffices to use the nudging tendency averaged over the timescale τ (3 hours by default)244

as our ML target.245

We treat the nudging tendency as a correction to the parameterized physics. Phys-246

ical processes represented in GCMs, like radiative transfer, boundary-layer turbulence,247

cloud microphysics, or cumulus convection, can be approximated as operating within in-248

dividual coarse grid columns, as long as the grid spacing is larger than the O(10 km) depth249

of the troposphere. Thus, GCM parameterizations of these processes are generally for-250

mulated column-wise, with tendencies that only depend on the atmospheric state in the251

corresponding column. In this work, as in WM21, we make the same assumption for machine-252

learning the nudging tendencies, although we will also note its flaws.253

3.3 Nudging, training, and coarse-grid forecast periods254

The nudged coarse simulation has a C48 (200 km) horizontal grid spacing. It is started255

at 01 UTC on 1 August 2016, one hour into the 40-day fine-grid simulation, when it has256

all necessary coarsened fine-grid initialization data. It extends to the end of the fine-grid257

simulation.258

The first four days of the fine-grid reference and nudged coarse simulations are treated259

as a spin-up period. We use Days 5–40 of the nudged coarse simulation to generate a 36-260

day dataset of field values an(x, y, p, t) and nudging tendencies ∆Qa(x, y, p, t) that is sam-261
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pled for ML training and testing. Time-means from the fine and nudged coarse datasets262

are computed over this 36-day period.263

Free-running prognostic (forecast) runs are by default initialized from the coars-264

ened fine output at the beginning of Day 5 (0 UTC 5 August 2016) and are run for 36265

days. The fine-grid simulation is used as reference ‘truth’ to measure their forecast skill.266

Time-means are computed using their last 30 days to allow for forecast spin-up. A set267

of four shorter ten-day simulations initialized on Days 5, 13, 21 and 29 are used to as-268

sess weather forecast error. The skill of ML-corrected model versions is compared against269

an identically initialized baseline version of the coarse model with no added ML.270

3.4 Forcing the land surface in a nudged training run271

We specify sea surface temperature (SST) but the land model is interactively cou-272

pled to the atmosphere. For this paper, our ML approach is to correct the atmosphere273

but not the land model or the ocean surface flux algorithm. Our nudged coarse train-274

ing run supports this approach by forcing the land surface consistently with the fine ref-275

erence model.276

The land model is forced by the atmosphere through downwelling shortwave and277

longwave radiation, precipitation, and lowest-level wind, humidity and temperature (which278

affect the turbulent heat and moisture fluxes from land to atmosphere). In the training279

run, the lowest-level quantities are already nudged toward coarsened fine model predic-280

tions. The downwelling fluxes and precipitation diagnosed by the physical parameter-281

izations of the nudged coarse model are typically biased relative to the fine-grid refer-282

ence model. These biases are large for our case, due to the nudged coarse model gener-283

ating much less cloud than the fine-grid model. The global-mean fine-grid surface down-284

welling shortwave radiation flux is 33 W/m2 less than the coarse-grid model. This is partly285

compensated by a downwelling longwave flux increase of 11 W/m2, to give a net of -22286

W/m2. Fig. 2 shows a time-mean map of this quantity, showing the bias is largest in land287

and ocean regions with high insolation and extensive high cloud.288

To minimize land surface drift in the nudged training run, we therefore force the289

surface with the coarsened downwelling radiation and precipitation from the fine-grid290

model. In our simulations, this has no impact over the ocean because the surface forc-291

ings do not feed back on SST. The right panels of Fig. 3 show that this keeps the time-292

–11–
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Figure 2. Time-mean difference between the fine-grid and nudged coarse total (shortwave

plus longwave) downward radiative flux at the surface.

average land surface latent heat flux (LHF) and sensible heat flux (SHF) desirably close293

to their reference values. The left panels of Fig. 3 show the large land-surface surface294

flux biases that develop in the training run if this is not done. As expected, the biases295

of time-average LHF and SHF over the oceans are insensitive to this change. The LHF296

over warm oceans is typically somewhat smaller in the nudged training run than in the297

fine-grid model.298

4 Machine-learning methods299

Our ML schemes are trained ‘offline’ (without considering their feedback on other300

parts of the climate model), because we can take advantage of efficient methods for do-301

ing that. They are then applied ‘online’, for which those feedbacks become important302

and can lead to climate drifts or model instability. Ultimately, online performance must303

be the primary metric for evaluating our ML schemes; our hope is this is founded on good304

offline skill.305

We use random forests (RFs) and neural nets (NNs) to learn the three-hour av-306

erage nudging tendency profiles and the fine-grid surface downward radiative fluxes. Each307

has its own strengths. RFs do not extrapolate outside their training range, an advan-308

tage for prognostic simulations in which climate drifts and extreme events inevitably cre-309

ate out-of-range samples. Prognostic simulations with an RF used for the ML correc-310

tion may experience significant climate drifts, but generally remain stable until those drifts311

are already unacceptably large. NNs have many architectural variants that can help op-312
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Figure 3. Map of time-mean biases of SHF (top) and LHF (bottom) from the C48 nudged

training run relative to the fine-grid reference. Left panels: Surface forced by coarse-model physi-

cal parameterizations. Right panels: Surface forced by fine-grid radiation and precipitation.

timize their skill, and they can run more efficiently than RFs on accelerator-based com-313

puting architectures.314

To ensure moisture conservation, in prognostic runs we use an atmospheric column315

humidity budget to infer surface precipitation (see Sec. 6.1).316

4.1 ML methodology317

We store the model state and the averaged nudging tendencies from the nudged318

coarse run every three hours. Our primary ML scheme predicts vertical profiles of 3-hour319

averaged nudging tendencies in each GCM grid column. Our training sample comprises320

the global fields of T, q and (where noted) u, v nudging tendencies at 130 randomly-selected321

times from Days 5–31 of the nudged coarse simulation. This temporal sub-sampling is322

needed for efficient training of random forests. For C48 grid resolution, there are 13824323

grid columns over the globe and hence ∼1.8M atmospheric columns used for training.324
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The diagnostic testing is on another sub-sample of 50 times during the last 9 days (Sept.325

1–9).326

We machine-learn the nudging tendencies ∆QT,q and (where noted) ∆Qu,v as func-327

tions of the column state from the nudged coarse run, defined as the 79-level column pro-328

files of T, q and (where noted) u, v, plus the cosine of solar zenith angle (needed for ra-329

diation), and the surface geopotential (an indicator of mountains). For RFs we also use330

the land-sea-ice mask (0=sea, 1=land, 2=sea ice), but this categorical variable is not a331

suitable feature for NNs. The learned approximations are denoted with a superscript ML,332

e.g. ∆QML
a .333

The loss function is a sum of normalized mean squared errors (for RFs) or mean334

absolute errors (for NNs) in the target nudging tendency profiles. For each nudging ten-335

dency, the loss at each vertical level is normalized by dividing the prediction error by the336

standard deviation of the target nudging tendency at that level, such that all levels are337

weighted roughly equally in the total loss.338

A secondary ML scheme is trained to predict fine-grid surface downwelling short-339

wave and longwave radiative fluxes and to deduce the surface net shortwave flux, which340

is also a required input for forcing the FV3GFS land surface model. This is needed to341

correct the large surface radiation biases of the coarse model that feed back on LHF and342

SHF over land. This scheme uses the same features as the tendency ML, not including343

wind profiles, and the same set of test and training samples. RFs are straightforward to344

train for this purpose; NNs are trained with a positivity constraint to avoid model crashes345

driven by negative ML-predicted fluxes.346

The ML approaches are named using a string of letters describing the learned nudg-347

ing tendencies (plus downwelling radiation, if learned) followed after a hyphen by the348

type of ML. For instance, for TquvR-RF, a random forest is used to learn the T, q, u, v349

nudging tendencies and a second random forest is used to learn the downwelling radi-350

ation R.351

4.2 RF configuration352

The RF for nudging tendencies is implemented in scikit-learn. It uses 13 trees353

of maximum depth 13. The Tq option learns the T and q nudging tendencies from the354
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T and q profiles. The Tquv option learns all four nudging tendencies from all four pro-355

files. A RF for longwave and shortwave downwelling radiation is similarly configured us-356

ing a mean squared error loss between the prediction and the fine-grid targets.357

4.3 NN configuration358

Neural nets are implemented in keras. We use fully-connected NNs with two hid-359

den layers and learning rate 2×10−3. To achieve 40-day stable prognostic NN-corrected360

simulations, we made the following changes to the RF training protocol:361

• Mean absolute error is used in the loss functions to reduce sensitivity to outliers.362

• If wind corrections are used (Tquv option), train separate NNs for ∆Qu,v and for363

∆QT,q instead of predicting all four tendencies in a single model. Customizing the364

input feature set and hyperparameters for the separate models enables better on-365

line stability. The ∆QT,q model has a width of 128 while the ∆Qu,v model has366

a width of 32; these widths were selected for good offline performance.367

• Include a rectification layer in the training and output that prevents negative sur-368

face downwelling radiative fluxes.369

• Regularize the NNs using a L2 coefficient γ = 10−4 for T, q, and γ = 10−2 for370

u, v to achieve online stability and smooth dependence of outputs on input pro-371

files.372

• Train four different NNs with different random seeds in stochastic gradient descent,373

and use the median prediction of the four.374

5 ML target characteristics and offline ML skill375

Our ML targets are time-dependent nudging tendency profiles and downwelling sur-376

face radiative fluxes from around the world. This section discusses some salient charac-377

teristics of these targets and the offline skill of RFs and NNs in learning them. Five ma-378

jor points are:379

1. Three-hour nudging keeps the nudged coarse model state very similar to the coarsened-380

fine reference.381

2. Instantaneous nudging tendency profiles can have complex vertical structure that382

varies greatly in space and time and challenges ML skill.383
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Figure 4. South-north cross-sections along 0◦E (a) humidity nudging tendency from the C48

nudged training run, compared to (b) RF and (c) NN.

3. Time-mean nudging tendencies are large and well-learned by ML.384

4. Fine-grid surface radiative fluxes are skillfully learned.385

5. RFs and NNs have comparable offline skill.386

5.1 3-hour mean humidity nudging tendency cross-section387

Fig. 4 illustrates challenges in ML of nudging tendencies, Fig. 4a shows the 3-hour388

mean humidity nudging tendency ∆Qq along a south-north vertical section through west389

Africa along 0◦E, on the afternoon of Day 36 of the nudged training run, a time in our390

ML test sample. The legend is given in units of g/kg per 3 hours. Thus, with sign re-391

versed, it corresponds to the difference between the nudged coarse and fine humidity, which392

is seen to have a typical magnitude less than 1 g/kg.393

The humidity nudging tendency has a complex spatial structure, with both sharp394

and diffuse vertical structures at a range of pressures, presenting a challenging data set395

for machine learning. Figs. 4b-c show the corresponding RF and NN learned cross-sections396

at this time in our test sample. They are similar to each other. They both qualitatively397

resemble Fig. 4a but with much lower amplitude.398
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Figure 5. Vertical profiles of R2 of the nudging tendencies over the test times for offline TqR

and TquvR RF and NN configurations. For TqR configurations, only ∆QT,q are predicted. The

TquvR-NN configuration predicts the same ∆QT,q (and has the same R2) as does TqR-NN.

5.2 ML skill for 3-hr nudging tendencies399

To evaluate offline skill in learning the vertical profile of each nudging tendency,400

we use area-weighted fraction of variance (R2) at each pressure level p, taken over the401

test data (Appendix A2 gives a mathematical specification). R2 measures the skill im-402

provement (or degradation if R2 < 0) of a prediction over a trivial default, in this case403

the global mean of the nudging tendency over the test data at pressure level p.404

The cross-section example hints that the RF and NN have low and comparable skill405

in predicting 3-hr nudging tendencies. Fig. 5 shows the profiles of R2 vs. pressure for406

the four nudging tendencies over the test times. For all variables, R2 is modest, vary-407

ing between 0.1-0.3 depending on pressure. That is, neither type of ML is able to learn408

the bulk of the space-time variability of the nudging tendencies based on single-column409

features. For temperature and humidity, the NN has a somewhat higher R2 at all pres-410

sures. For winds, the NN has much smaller offline skill, due to applying heavy regular-411

ization to avoid prognostic instabilities.412

The R2 profiles for ∆QT and ∆Qq are slightly larger for the NN than for the RF,413

especially in the lower troposphere. For the RF, the results shown are for the TqR case414

that only T and q are predicted. If all four nudging tendencies are simultaneously pre-415

dicted, then R2 is slightly degraded at all levels.416
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5.3 Time-mean ML skill for humidity nudging tendency417

To avoid systematically forcing climate biases, the ML corrective tendencies should418

be approximately unbiased in time-mean relative to the actual nudging tendencies. This419

can be checked using column-integrated maps and globally-integrated profiles of the hu-420

midity nudging tendency.421

The column-integrated humidity nudging tendency 〈∆Qq〉 measures how much mois-422

ture must be supplied to each coarse-model grid column to match the evolution of the423

fine run. It reflects fine-coarse differences in precipitation, surface evaporation and hor-424

izontal moisture convergence. Figure 6a is a map of the column humidity nudging ten-425

dency 〈∆Qq〉 averaged over the 50 test samples. This map is a specklier version of the426

full Day 5–40 time-mean shown later in Fig. 14a. It also looks very similar to Fig. 2c427

of WM21, who nudged to an observational analysis rather than a fine-grid model. (WM21428

referred to ∆Qq as ∆Q2; we have changed their notation to avoid potential confusion,429

since Q2 is traditionally the apparent drying given in energy units (Yanai et al., 1973).)430

Almost everywhere, and especially in regions of strong mean precipitation, 〈∆Qq〉 <431

0, i.e. the fine-grid reference simulation is drying more (has a larger excess of precipi-432

tation over evaporation) than the nudged coarse simulation despite similar thermody-433

namic states. This indicates a substantial global bias of the FV3GFS parameterized physics434

toward inhibiting precipitation when applied at C48 grid resolution.435

Figs. 6b-c show the offline time-mean column-integrated humidity nudging tendency436

predicted by the RF and NN. Both ML approaches provide smooth but accurate approx-437

imations to the target map in Fig. 6a, with similar spatial pattern RMSEs of 1.0-1.3 mm/d.438

The TqR-RF approach has negligible global-mean bias, but TqR-NN has a global moist-439

ening bias of 0.3 mm/d compared to the target. This is partly an undesirable consequence440

of regularizing the NN loss function, which particularly affects the humidity nudging ten-441

dencies. The NN tends to preserve extrema of the target map better, at the expense of442

creating spurious features such as a drying maximum over coastal Antarctica south of443

the Indian Ocean. The ML approximations of other nudging tendencies have qualita-444

tively similar time-mean characteristics, except that the off-line global-mean biases of445

the NNs are comparable or less than for the RFs.446
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Figure 6. Column humidity (a) nudging tendencies, (b) from offline TqR-RF, and (c) from

offline TqR-NN, averaged over the 50 test times from the nudged training run. Spatial pattern

RMSEs for the ML methods are with respect to the target nudging tendencies.
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Figure 7. Global mean vertical profile of humidity nudging tendency averaged over the test

times, and the offline TqR-RF and TqR-NN approximations to it.

Another useful off-line ML bias measure is the global mean vertical profile of nudg-447

ing tendency averaged over the test times, shown for humidity in Fig. 7. The RF matches448

the target profile nearly perfectly; the NN has a small but significant positive bias ex-449

cept near the surface.450

5.4 Nudging tendencies of other fields451

In this section, we document the time-mean nudging tendencies of the other prog-452

nostic memory variables, T , u and v. These are all substantial and well replicated off-453
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line by both RF and NN, without much bias (not shown). Temperature tendencies are454

expressed in units of heating rate.455

Fig. 8a-c shows time-mean column-integrated nudging tendencies for heat (∆Q1 =456

cv∆QT ), moist static energy (∆Qm = ∆Q1 + Lv∆Qq), and u. In these formulas, cv457

(the specific heat of air at constant volume) replaces the standard cp (the specific heat458

of air at constant pressure) because of a FV3GFS peculiarity of the interfaces between459

the physical parameterization tendency, the nudging tendency and the FV3 dynamical460

core. Lv is the latent heat of vaporization.461

The column heat nudging tendencies 〈∆Q1〉 are dominated by latent heating as-462

sociated with precipitation, so they look nearly like mirror images of the humidity nudg-463

ing tendencies. Artifacts at the edges of the cubed-sphere tiles are evident over the South-464

ern Ocean. The column nudging tendency of moist static energy (Fig. 8b) is illuminat-465

ing because it cancels out effects of latent heating and drying to reveal fine minus nudged466

coarse differences in atmospheric radiative heating and surface latent plus sensible heat467

flux. Over most ocean locations, it is 25–50 W/m2. This is due to the fine model hav-468

ing somewhat stronger latent heat flux and less atmospheric radiative cooling (due to469

more simulated high cloud) than the nudged coarse model over ocean regions (Fig. 3).470

Over some land regions such as Eurasia, the column moist static energy nudging ten-471

dency is negative. Over land, the surface sensible and latent fluxes are similar in the fine472

and nudged coarse runs, and the radiative heating correction is smaller because there473

is less high cloud over land, and hence a lesser opportunity for a fine-coarse atmospheric474

radiative heating difference induced by high cloud biases.475

The u-wind nudging tendencies are strongest around major mountain ranges and476

windy coastlines. Like for humidity, the maps of column heat and zonal-wind nudging477

tendencies look similar to those shown by WM21. This is expected, because the tem-478

perature and winds of the fine-grid reference runs are lightly nudged to reanalysis. There-479

fore, nudging these coarse model fields to the fine-grid reference is functionally similar480

to nudging them to a global analysis.481

Fig. 8d shows a latitude-pressure cross section of the zonal-time-average v nudg-482

ing tendency. It shows low-level meridional convergence and upper-level divergence away483

from 10◦N. That is, the fine-grid reference is nudging the meridional winds in the coarse484
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Figure 8. Time-mean nudging tendencies from the C48 nudged training run. (a-c) Column

integrals of heating 〈∆Q1〉, moist static energy tendency 〈∆Qm〉, and zonal wind acceleration

〈∆Qu〉, and (d) zonal-mean latitude-height cross section of meridional wind acceleration ∆Qv

run (which has less precipitation and latent heating in the Intertropical Convergence Zone)485

toward a stronger Hadley circulation.486

5.5 ML adjustment of surface downwelling radiation487

For accurately forcing the land surface in prognostic simulations, we train RFs and488

NNs to match the fine-grid reference downwelling surface longwave and shortwave ra-489

diative fluxes as a function of column thermodynamic state. To add simulation skill, these490

must match the fine-grid fluxes much more closely than do the coarse-grid parameter-491

ized fluxes (whose typical biases are shown in Fig. 2), i.e. within a few W/m2 or a time-492

mean relative error of a few percent at each location.493

Indeed, both NNs and RFs skillfully predict the time-mean downwelling longwave494

and shortwave surface radiation. Fig. 9 shows that both methods have comparable small495

global-time-mean biases of under 2 W/m2 and low spatial pattern RMSEs in total (long-496

wave plus shortwave) downward radiation over the test data from the nudged training497

run. Both schemes perform comparably well with a small global-mean bias and similar498

RMS pattern errors. The NN has a stronger zonal-mean component to the pattern er-499
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Figure 9. Difference between total surface downward radiative flux from offline ML and fine-

grid reference, averaged over 50 test times randomly sampled from the last nine days of nudged

training run.

ror, overestimating downwelling shortwave flux over the subtropical South Atlantic and500

Pacific Oceans and underestimating it over Antarctica.501

6 Forecast skill and mean biases502

The purpose of our ML is to make prognostic (free-running) weather and climate503

simulations more closely resemble the reference fine-grid simulation. For prognostic sim-504

ulations, the nudging tendencies of T and q, and optionally u and v, are replaced by their505

ML versions (either RFs or NNs), and the ML-predicted downwelling shortwave and long-506

wave radiation are used to force the land surface. In this online application, the correc-507

tive ML is fully interactive with the rest of the climate model.508

In prognostic simulations, the surface precipitation is calculated from the atmo-509

spheric column humidity budget, truncated at a minimum value of zero:510

P = P p − 〈∆QML
q 〉

P+ = max(P, 0) (3)

Here P is the ML-corrected budget-based precipitation, calculated as the physics pre-511

cipitation plus the column drying from the ML humidity nudging tendency. P may be512

negative if the ML implies enough column moistening. Enforcing the positivity of sur-513

face precipitation creates an artificial source P− = P+ − P = max(−P, 0) of surface514

precipitation that is not in the atmospheric moisture budget and hence does not have515

to be balanced by evaporation. In global (and land) mean, this source is small – approx-516

imately 0.1 mm/d.517
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Metric Units Base Tq TqR TquvR TquvR TqR

no-ML RF RF RF NN NN

Z500 RMSE 3–7d fcst m 64 62 62 60 60 62

T850 RMSE 3–7d fcst K 3.1 2.9 2.8 2.9 2.7 2.7

Prec bias land-time-mean mm/day 1.1 0.8 0.1 0.4 0.0 0.0

Prec RMSE time-mean mm/day 3.7 2.7 2.5 2.6 2.5 2.6

T200 RMSE time-mean K 3.4 3.2 3.1 5.1 3.9 3.1

Table 2. Prognostic weather and climate metrics (details in text) with selected training/ML

methodologies. The best results for each metric are bolded. Weather forecast RMSE is based on

the average of four initializations; the standard deviation of the mean is about 3 m for 500 hPa

height and less than 0.1 K for 850 hPa temperature for all model versions.

Our ideal ML-corrected model would improve weather forecast skill at lead times518

up to a week or more vs. the baseline, have reduced time-mean biases of key climate met-519

rics such as precipitation patterns and temperature throughout the atmosphere, and run520

stably for an indefinite period of time from any plausible initial condition given any bound-521

ary forcings. However, with our ML approach, we find trade-offs between weather and522

mean-state skill, especially for upper tropospheric temperature. Prognostic stability also523

shaped our approach, e.g. in guiding our choice of NN regularization coefficients.524

Table 2 shows the sensitivity of some key error metrics to choices of training and525

ML methodology. It compares the no-ML baseline to RF configurations with just tem-526

perature and humidity correction (Tq), added surface radiation correction (TqR), and527

added wind correction (TquvR). It also includes NN versions of the final two configu-528

rations.529

The first two metrics (500 hPa height and 850 hPa temperature RMSE vs. the fine-530

grid reference) measure weather forecasting skill. They are based on the average skill over531

days 3–7 of a set of four 10-day forecasts, initialized from the coarsened fine-grid data532

on Days 5, 13, 21 and 29 (Fig. 10). The tabulated sample means and the standard de-533

viations of the mean given in the caption for these metrics are estimated from this 4-member534

set.535
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Figure 10. RMSE of 500 hPa height and 850 hPa temperature for baseline and three prog-

nostic ML-corrected configurations in the first 10 days of four forecasts initialized every 8 days.

Lines shows the mean, and shading shows the range of results across these forecasts.

For 500 hPa height RMSE, ML correction of temperature and humidity adds marginal536

skill (3%) over the baseline and wind corrections adds another 3% increment to that. This537

finding is in the same direction as WM21 found for nudge-to-observations. For 850 hPa538

temperature RMSE, RF correction of temperature and humidity adds 7% forecast skill,539

the radiation correction makes a slight additional improvement, while wind correction540

has little impact. NNs slightly outperform RFs on this metric, though the difference may541

not be statistically significant.542

The remaining three metrics are based on time-mean biases from the last 30 days543

of 40-day prognostic simulations. The chosen variables are global-mean land-surface pre-544

cipitation bias, the RMS pattern error of maps of precipitation (see also Fig. 11) and545

200 hPa temperature (see also Fig. 13a,d). Two of these metrics focus on precipitation,546

which was a practical motivation for this work. Note that our ML does not directly tar-547

get precipitation, so it is not guaranteed to improve these metrics. The third is a mea-548

sure of upper-tropospheric time-mean skill, which is important to a plausible simulation549

of the atmospheric general circulation and the movement and intensity of storm systems.550
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The baseline global-mean land-surface precipitation bias is reduced to zero for both551

NN configuration and nearly to zero by the TqR-RF configuration. This drastic improve-552

ment over the baseline is primarily due to the ML radiation correction, with help from553

the ML corrections to temperature and humidity tendencies. The RF wind tendency cor-554

rection slightly worsens this bias. Daily time series of this quantity show the baseline con-555

figuration has a large precipitation spin-up as it moistens the atmosphere over the first556

ten days, while the ML-corrected simulations exhibit much less spin-up. Thereafter, all557

simulations have daily fluctuations of up to ±0.2 mm/d with little further drift. We in-558

fer that the values of time-mean global-land-mean surface precipitation in Table 2 have559

less than ±0.1 mm/d of random uncertainty, so their differences are meaningful.560

The RMSE of the time-mean precipitation pattern is reduced nearly 30% from the561

baseline by inclusion of the ML temperature and humidity tendencies, with an additional562

3% improvement from the radiation correction, and no consistent impact from the ML563

wind tendencies.564

The final row in Table 2 shows the time-mean pattern RMSE in 200 hPa temper-565

ature. This proved decisive in our choice of optimal ML configuration. ML correction566

of temperature and humidity tendencies slightly reduced the baseline RMSE. Addition567

of the ML surface radiation correction decreased this RMSE slightly more. The ML wind568

tendency correction increased the time-mean 200 hPa temperature errors substantially,569

mostly at high latitudes (Fig. 13d). Yuval and O’Gorman (2021), using a coarsening ap-570

proach on an aquaplanet, also found that ML correction of subgrid vertical momentum571

fluxes had good offline skill but led to time-mean upper-tropospheric zonal wind drifts572

in prognostic simulations.573

Overall, this led us to select the neural net ML architecture TqR-NN as the op-574

timal choice. This configuration learns temperature and humidity nudging tendencies,575

but not wind tendencies, and includes a learned surface radiation correction. Like its ran-576

dom forest analogue, it improves on the baseline no-ML configuration in all five metrics,577

and it has smaller errors than the RF in time-mean 200 hPa temperature and land-surface578

precipitation. Except for the 200 hPa temperature, the NN and RF configurations that579

also include ML wind tendency correction increase 3–7 day forecast skill and are also com-580

petitive for time-mean biases, as found by WM21 for the RF configuration in the related581

nudge-to-observations application.582
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Figure 11. Maps of 30-day time-mean precipitation pattern difference from the fine-grid refer-

ence for prognostic simulations: (a) C48 baseline (b) TqR-RF, (c) TqR-NN; and (d) bar charts of

the land-mean, ocean-mean and global-mean precipitation biases for these three configurations.

6.1 ML corrections reduce time-mean precipitation bias583

Fig. 11a-c shows maps of the time-mean precipitation differences from the fine-grid584

reference (‘pattern errors’) of the C48 baseline without any ML correction, with RF-based585

corrective tendencies and surface downwelling radiation, and with NN-based corrective586

tendencies and surface downwelling radiation. RMSE is shown on these plots as an over-587

all global measure of pattern error. Both ML configurations reduce the precipitation RMSE588

by 30%, an even more substantial reduction than achieved by WM21 using the nudge-589

to-observations method. As found by WM21, the biggest reductions in precipitation er-590

ror are over the Himalaya, Andes, and central American mountains, but the precipita-591

tion errors are reduced over most land regions. We attribute the additional improvement592

mainly to our less biased radiative forcing of the land surface, which largely removes small593

but widespread wet biases over arid subtropical land regions (e.g. the Sahara Desert)594

found by WM21.595

Fig. 11d compares global-time-mean, land-time-mean, and ocean-time-mean pre-596

cipitation biases (vs. the fine-grid reference) for the three configurations shown in Figs.597

11a-c. The fine-grid reference has a 30-day average land surface precipitation of 2.3 mm/d.598
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The coarse-grid baseline has a 3.4 mm/d average, i.e. a 1.1 mm/d high bias over the ref-599

erence. Both the RF- and NN-based corrections largely remove this land surface precip-600

itation bias by shifting precipitation from land to ocean.601

6.1.1 Diurnal cycle of land surface precipitation602

Fig. 12 shows the time-mean diurnal cycle of land precipitation for the TqR-RF603

and TqR-NN model configurations, based on hourly-mean outputs binned by local so-604

lar time. The fine-grid reference has a pronounced diurnal cycle peaked in the late af-605

ternoon. This is a long-standing challenge for conventionally-parameterized global cli-606

mate models (Christopoulos & Schneider, 2021). Indeed, the diurnal cycle of the C48607

baseline simulation is rather irregular, with realistic timing but only half as large a land608

surface precipitation (as measured by its first Fourier harmonic). The NN and RF re-609

alistically increase the diurnal cycle amplitude but undesirably shift the timing of max-610

imum precipitation three hours earlier in the day; this result is unaffected by including611

wind correction (e.g. TquvR-NN). This is still an improvement over typical conventionally-612

parameterized global climate models, which on average have the diurnal rainfall peak613

over tropical land nearly six hours too early (Christopoulos & Schneider, 2021).614

6.2 Other systematic biases of the prognostic runs615

Our current version of the nudge-to-fine method does not automatically prevent616

mean-state drifts of global means or spatial patterns in ML-corrected prognostic runs.617

Fig. 13a-c compares time series of some global-mean variables in TqR-RF, TquvR-NN618

and TquvR-NN prognostic runs with the fine-grid reference and the baseline. This pro-619

vides a more holistic view of time-mean bias development throughout the troposphere620

than the metrics discussed so far. Overall, the TqR NN and RF configurations keep mean-621

state drifts of these variables smaller or comparable to the baseline configuration.622

RF-corrected runs are insensitive to different random RF realizations, so just one623

curve is shown. The NNs are more sensitive to their random seed. The color shadings624

show the range of results from using the NNs from the four individual random seeds. Ide-625

ally, the fine-grid reference would lie within the shaded regions.626

Drifts of global-mean 200hPa air temperature (Fig. 13a) vary significantly among627

the different baseline and ML-corrected runs. TqR-NN best matches the fine-grid ref-628
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Figure 12. Maps of 40-day land-mean precipitation diurnal cycle from the fine-grid reference

for the fine-grid reference, C48 baseline, TqR-RF and TqR-NN prognostic simulations.

erence; TqR-RF drifts slightly warm. TquvR-NN drifts cold at a rate comparable to the629

baseline model. WM21 reported drifts of comparable amplitude during the first month630

of year-long simulations using the nudge-to-observations method; those drifts stopped631

growing thereafter.632

Fig. 13d shows the 20–40 day zonal-mean 200 hPa temperature, after the global-633

mean drifts have nearly fully developed. All simulations have little bias in the tropics,634

but in the north polar region, the wind-corrected run (TquvR-NN) has developed a cold635

bias exceeding 10◦K, much larger than for the baseline and other ML configurations.636

The global-mean 850 hPa temperature (Fig. 13b) from both the TqR-NN and TquvR-637

NN prognostic runs drifts less from the fine-grid reference than does either the baseline638

or the RF-corrected run. For the global-mean precipitable water (Fig. 13c), all ML-corrected639

runs drift less than the baseline (which becomes significantly too moist). The drifts of640

the two NN simulations are comparable to the RF but of opposite sign.641
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Figure 13. Time series of global daily-mean (a) 200 hPa temperature; (b) 850 hPa tempera-

ture, and (c) precipitable water. (d) 20–40 day time-zonal-mean of 200 hPa temperature for three

prognostic ML configurations, the baseline coarse simulation and the fine-grid reference. For

TqR-NN and TquvR-NN, 4 NNs each were trained from different random seeds. The solid line

comes from using their ensemble-mean at each time step (as shown in other plots). The shading

indicates the range of predictions from prognostic runs using each NN individually.
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6.3 Optimality of 3-hour nudging timescale642

Appendix A3 discusses the sensitivity of prognostic simulations with and without643

wind nudging to a range of choices of nudging time scale τ from 1–12 hours. Precipita-644

tion biases are not highly sensitive to τ . For the preferred TqR-NN configuration, choos-645

ing τ = 3 hours minimizes zonal-time-mean upper-tropospheric temperature biases, nar-646

rowly besting τ = 6 hours. If wind nudging is also used, the longest τ , 12 hours, min-647

imizes these biases, but they are still larger than for the TqR-NN configuration with 3648

hour nudging.649

7 Discussion: Nudging tendencies and physical parameterization cor-650

rection651

Our nudge-to-fine ML approach has treated the nudging tendencies as a correction652

to the model physical parameterizations, predicted in each grid column using the ther-653

modynamic profiles and horizontal winds within that grid column. We argue that this654

ML assumption is far from perfect but is good enough to be useful.655

Formally, one can decompose the nudging tendency field ∆Qa of a scalar a(x, y, p, t)656

into contributions from fine-coarse differences in ‘physics’ and ‘dynamics’ (Appendix A4).657

The decomposition is approximate above orography. Here, the physics component ∆Qp
a658

is the fine-coarse difference in the apparent source of a, and the dynamics component659

∆Qd
a is due to the difference of the advection of a between the coarsened fine simulation660

and the nudged coarse simulation. We can compute ∆Qp
a directly in each coarse grid col-661

umn (see Appendix A4) and estimate ∆Qd
a as a residual ∆Qa −∆Qp

a.662

Since weather and climate respond most strongly to systematic forcing, we com-663

pare how similar time-mean nudging tendencies look to their physics components. We664

use humidity for illustration. Fig. 14a shows the column-integrated time-mean 〈∆Qq〉.665

Figs. 14b shows its physics component 〈∆Qp
q〉. The map of the total nudging tendency666

looks like a horizontally smoothed version of the physics nudging tendency.667

Fig. 14c shows the residual, interpreted as the dynamics nudging tendency 〈∆Qd
d〉.668

This has a very small global mean of about -0.01 mm/d, because it is associated with669

fine-coarse differences in resolved humidity advection, which has no global source or sink.670

It features sharp structures around maxima of the physics drying tendency, where more671

humidity is being condensed and removed as precipitation in the fine model than in the672
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Figure 14. Time-mean (a) total, (b) physics, and (c) dynamics column humidity nudging

tendencies from the C48 nudged training run, and (d) corresponding fine-coarse 500 hPa vertical

velocity differences.

coarse model. The associated latent heat release buoyantly drives more mid-tropospheric673

upward motion in the fine model than in the coarse model (Fig. 14d). This forms the674

upward branch of a Hadley-cell-like dynamical response of the nudged coarse model to675

the fine-coarse latent heating difference. There are also 〈∆Qp
q〉 signals where air flows676

across mountain ranges such as the Andes or Rockies. Comparison of Fig. 14c with Fig.677

14d suggests that these signals are also associated with time-mean fine-coarse vertical678

velocity differences, driven by better channeling of the airflow through the better-resolved679

topography of the fine model. Near mountains and ITCZs, the dynamical component680

of the humidity nudging tendency can be as large as the physics component, but over681

other parts of the globe it is much weaker. These results suggest that column-local pre-682

diction of the nudging tendencies may be a useful approximation in most locations.683
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8 Conclusions684

Following the nudge-to-observations corrective ML methodology of WM21, we have685

developed a nudge-to-fine approach that uses ML to make a coarse-grid global atmospheric686

model behave more similarly to a reference fine-grid model. Compared to a coarse-grid687

baseline model, nudge-to-fine ML can improve weather forecasts out to ten days, reduce688

time-mean precipitation biases by 30%, and reduce global time-mean errors relative to689

the reference model in other fields such as lower tropospheric temperature and precip-690

itable water.691

The ML is trained by nudging a coarse-grid (200 km) version of the FV3GFS model692

to a 40-day fine-grid (3 km) global simulation made using X-SHiELD, GFDL’s modified693

version of FV3GFS. Both simulations have 79 vertical model levels. The fine-grid out-694

put is coarsened in line to allow smaller data volumes. The nudging time scale is 3 hours.695

The ML is trained to predict the vertical profiles of nudging tendencies of temperature,696

humidity and (optionally) horizontal wind components on the coarse grid, using the col-697

umn state for features.698

Both the baseline and nudged-coarse simulations simulate too little cloud. During699

the day, this leads to strong radiative heating of land surfaces, resulting in excess latent700

and sensible heat fluxes. This bias is successfully corrected in the nudged-coarse simu-701

lations by overwriting the coarse-model downward radiative flux with the fine-grid re-702

sults. ML is used to predict the downward radiative fluxes from these fine-grid results703

for use in prognostic (forecast) simulations.704

The surface precipitation is also overwritten with fine-grid output for the nudged705

run. For prognostic simulations, the surface precipitation predicted by the physical pa-706

rameterizations is corrected by subtracting the machine-learned column integrated hu-707

midity nudging tendency. As with the nudge-to-observations approach, 40% of global708

precipitation comes from the humidity nudging. Correcting the surface radiative fluxes,709

a novel feature of this work, is key to obtaining forecasts with unbiased average land sur-710

face precipitation.711

We compared off-line and prognostic skill using random forests and neural nets for712

the ML of nudging tendencies and surface radiative fluxes. The offline skill of instanta-713

neous predictions of all four nudging tendencies (for T, q, u and v) predicted by both RFs714
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and NNs was modest (explained variance fractions of 0.1-0.4, depending on pressure),715

but both models accurately captured their time-mean distributions. We used a basket716

of five metrics of prognostic (online) skill, two measuring weather forecast skill and three717

measuring mean-state bias relative to the fine-grid reference, to choose an optimal ML718

configuration. This configuration uses a NN ensemble for temperature and humidity ten-719

dency correction, another NN ensemble for surface radiation, but no wind correction. Adding720

learned wind corrections improves 3–7 day 500 hPa forecast skill but induces substan-721

tial 200 hPa temperature biases in the following simulated month. Random forests give722

results that are almost as good as the optimal NN configuration.723

The training and machine learning employ a sophisticated cloud-based workflow724

that wraps the main components of FV3GFS in Python. While our open-source soft-725

ware for doing this necessarily confronts details of the FV3GFS, its overall structure and726

the conceptual basis of the nudge-to-fine corrective ML approach can transfer to other727

global weather and climate models.728

The results shown here only scratch the surface of how machine learning using coars-729

ened outputs from fine-grid real-geography global models could improve coarse grid mod-730

els. Nudge-to-fine corrective ML could be trained and tested using multi-year GSRM sim-731

ulations across a range of climates in order to improve coarse-grid climate-change sim-732

ulations. Within the nudge-to-fine framework, we are investigating numerous refinements733

to the coarsening, training and machine-learning procedures, including better use of en-734

ergy and momentum conservation constraints and new ML architectures that can im-735

prove offline skill while retaining online stability. Groups using more idealized settings736

such as aquaplanets are also making progress on these issues (Yuval & O’Gorman, 2020;737

Beucler et al., 2021). Perhaps within a decade, ML will replace complex and often in-738

accurate assumptions about subgrid variability in physical parameterizations, leading739

to more reliable global climate models with increased computational efficiency that bet-740

ter use the talents of skilled human model developers.741

Appendix A742

A1 Surface elevation correction due to pressure-level coarse-graining743

In each coarse grid column, p-coarsening will imply some virtual temperature pro-744

file Tv(p). Assuming hydrostatic balance in the coarse grid column, the heights of the745
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Figure A1. Surface elevation correction needed to maintain hydrostatic balance when p-

coarsening the 3 km atmospheric state to a 200 km grid and and conserving column mass.

coarse-grid levels can be found by downward integration of746

d(gz)

d log p
= −RdTv(p) (A1)

starting with an area-coarsened height of the top model interface at the known top in-747

terface pressure of pT . This implies some surface elevation zcs = zs+δzcs at the known748

coarsened surface pressure pcs = ps. Fig. A1 shows a map of the surface elevation cor-749

rection needed for coarsening the 3 km atmospheric state at one particular time to 200750

km resolution, which is strongly negative in coarse grid columns encompassing strong751

contrasts in fine-grid surface elevation, such as over the Himalayas and Andes.752

A2 Definition of explained variance fraction R2
753

Let f(x, y, p, t) be the truth and f̃(x, y, p, t) the prediction. Then R2 is given by754

R2(p) = 1− SSE(p)

SS(p)
. (A2)

The sum of squared errors is defined as755

SSE(p) =
∑
i

[
f(xi, yi, p, ti)− f̃(xi, yi, p, ti)

]2
A(xi, yi),

where A is the grid cell area and the index i ranges over all samples in the test data in756

which p < ps, the surface pressure. The total sum of squares is given by757

SS(p) =
∑
i

[
f(xi, yi, p, ti)− f̂(p)

]2
A(xi, yi),

where758

f̂(p) =

∑
i f(xi, yi, p, ti)A(xi, yi)∑

iA(xi, yi)

is the pressure-level global average over the test data.759
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A3 Sensitivity to nudging timescale760

We tested the sensitivity of our results to four choices of nudging timescale: τ =761

1, 3, 6, 12 hrs. The nudging tendencies are mildly sensitive to τ . For instance, the global-762

time-mean column drying over the 40-day nudged simulation ranged from 1.15 mm/d763

for τ = 1 hr to 0.79 mm/d for τ = 12 hr. With a long nudging timescale, the atmo-764

sphere moistens slightly (by 1% for τ = 12 hr). The physical parameterizations then765

make more precipitation and column drying, leaving less for the nudging tendencies to766

do.767

For each τ , we ran two 36-day prognostic simulations using the TqR-NN (no neu-768

ral net wind correction) and TquvR-NN (including neural net wind correction) method-769

ologies. Only a single random seed is trained and shown in each sensitivity test for each770

timescale. The τ = 1 hr wind-corrected simulation crashed after 13 days. The other771

simulations all maintained nearly unbiased land-surface precipitation, unlike the base-772

line simulation (Fig. A2).773

Fig. A3 shows zonal-time-mean cross-sections of temperature bias relative to the774

fine-grid reference. For all nudging timescales, the simulations without wind correction775

(row (a)) had smaller high latitude upper-tropospheric temperature biases than the wind-776

corrected simulations (row (b)). The simulations with wind correction were least biased777

at the longest tested nudging time scale of 12 hr. The simulations without wind correc-778

tion had minimum temperature biases for τ = 3 hr, closely followed by τ = 6 hr. We779

obtained similar sensitivities when using random forest learning. These results motivated780

us to use τ = 3 hrs and no wind nudging as our preferred choice for this paper.781

A4 Physics-dynamics decomposition of nudging tendency782

To decompose the nudging tendency of an advected scalar a, we start with the ad-783

vection equations for the nudged coarse model:784

∂an

∂t
+∇ · (vnan) = Qp

a + ∆Qa, (A3)

and the coarsened fine model:785

∂a

∂t
+∇ · (v a) = Qa. (A4)

By design, the state of the nudged run is forced to evolve similarly to the coarsened fine786

reference run, so an remains close (but not identical) to a and similarly for the veloc-787
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Figure A2. Prognostic run surface precipitation over land for nudging timescales of 1, 3, 6,

12 hrs, compared to the baseline physics and fine-grid model. Panels show (a) TqR-NN and (b)

TquvR-NN configurations.

a)

b)

Figure A3. Prognostic run time and zonal mean biases of the air temperature vertical profile

for nudging timescales of 1, 3, 6, 12 hrs as well as the baseline model. Note that the time mean

of the 1 hr nudging timescale in the TquvR-NN case was only taken over the first 13 days of its

prognostic run before it crashed; other runs are averaged over the full 36 days.
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ity components. Recall that Qp
a is the source of a due to the coarse-model physical pa-788

rameterizations. Qa is the apparent source of a for the coarsened fine-grid reference sim-789

ulation (Yanai et al., 1973). We computed Qa in each coarse grid column every 15 min-790

utes as a sum of contributions from the parameterized physical processes in the fine-grid791

model plus a vertical eddy flux convergence of a due to fine-grid vertical velocity per-792

turbations from the coarse-grid mean, plus any additional tendency due to nudging of793

the fine-grid run to an observational analysis. This coarsening is not exact in coarse-model794

pressure layers that are partly filled by fine-grid topography.795

Differencing Eqs. (A3) and (A4) and solving for ∆Qa, we obtain the decomposi-796

tion797

∆Qa = ∆Qp
a + ∆Qd

a. (A5)

Here the physics component is798

∆Qp
a = Qa −Qp

a, (A6)

The dynamics component is799

∆Qd
a =

∂

∂t
(a− an) +∇ · (v a)−∇ · (vnan), (A7)

It has advective and storage terms. The nudging keeps a−an small. Hence it also keeps800

the storage term small, especially in time-mean. The advective term is the difference of801

two flux convergences with zero global mean, and the storage term has near-zero global802

mean, so the dynamics component of the nudging tendency has a near-zero global mean.803
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