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Abstract

Water resources planning often uses streamflow predictions made by hydrologic models. These simulated predictions have

systematic errors which limit their usefulness as input to water management models. To account for these errors, streamflow

predictions are bias-corrected through statistical methods which adjust model predictions based on comparisons to reference

datasets (such as observed streamflow). Existing bias-correction methods have several shortcomings when used to correct

spatially-distributed streamflow predictions. First, existing bias-correction methods destroy the spatio-temporal consistency of

the streamflow predictions, when these methods are applied independently at multiple sites across a river network. Second,

bias-correction techniques are usually built on simple, time-invariant mappings between reference and simulated streamflow

without accounting for the hydrologic processes which underpin the systematic errors. We describe improved bias-correction

techniques which account for the river network topology and which allow for corrections that are process-conditioned. Further,

we present a workflow that allows the user to select whether to apply these techniques separately or in conjunction. We evaluate

four different bias-correction methods implemented with our workflow in the Yakima River Basin in the Pacific Northwestern

United States. We find that all four methods reduce systematic bias in the simulated streamflow. The spatially-consistent

bias-correction methods produce spatially-distributed streamflow as well as bias-corrected incremental streamflow, which is

suitable for input to water management models. We also find that the process-conditioning methods improve the timing of the

corrected streamflow when conditioned on daily minimum temperature, which we use as a proxy for snowmelt processes
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ABSTRACT 12 

Water resources planning often uses streamflow predictions made by hydrologic models. 13 

These simulated predictions have systematic errors which limit their usefulness as input to 14 

water management models. To account for these errors, streamflow predictions are bias-15 

corrected through statistical methods which adjust model predictions based on comparisons 16 

to reference datasets (such as observed streamflow). Existing bias-correction methods have 17 

several shortcomings when used to correct spatially-distributed streamflow predictions. First, 18 

existing bias-correction methods destroy the spatio-temporal consistency of the streamflow 19 

predictions, when these methods are applied independently at multiple sites across a river 20 

network. Second, bias-correction techniques are usually built on time-invariant mappings 21 

between reference and simulated streamflow without accounting for the processes which 22 

underpin the systematic errors.  23 

We describe improved bias-correction techniques which account for the river network 24 

topology and allow for corrections that account for other processes. Further, we present a 25 

workflow that allows the user to select whether to apply these techniques separately or in 26 

conjunction. We evaluate four different bias-correction methods implemented with our 27 

workflow in the Yakima River Basin in the Northwestern United States. We find that all four 28 

methods reduce systematic bias in the simulated streamflow. The spatially-consistent bias-29 

correction methods produce spatially-distributed streamflow as well as bias-corrected 30 

incremental streamflow, which is suitable for input to water management models. We 31 

demonstrate how the spatially-consistent method avoids creating flows that are inconsistent 32 

between upstream and downstream locations, while performing similar to existing methods. 33 

We also find that conditioning on daily minimum temperature, which we use as a proxy for 34 

snowmelt processes, improves the timing of the corrected streamflow. 35 

SIGNIFICANCE STATEMENT 36 

To make streamflow predictions from hydrologic models more informative and useful for 37 

water resources management they are often post-processed by a statistical procedure known 38 

as bias-correction. In this work we develop and demonstrate bias-correction techniques which 39 

are specifically tailored to streamflow prediction. These new techniques will make modeled 40 

streamflow predictions more useful in complex river systems undergoing climate change. 41 

1. Introduction 42 
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The use of computational models of hydrologic systems has become a nearly ubiquitous 43 

way to forecast streamflow and plan for the allocation of water resources. However, these 44 

predictions are often biased, because they are subject to systematic errors in the model inputs, 45 

model parameter values, and process representations. Regardless of the source of these errors, 46 

which are often difficult to determine, the introduction of such biases in predictions degrades 47 

their quality. To address these biases, it is common to “bias-correct” or “post-process” these 48 

predictions through some statistical procedure (Chen et al. 2013; Guo et al. 2020; Hashino et 49 

al. 2007). These corrections are particularly important when simulated streamflow values are 50 

used as input to water resources models, in which specific streamflow and storage thresholds 51 

trigger water management decisions. We refer to these correction methods generally as “bias-52 

correction” techniques for simplicity, though they typically correct for the entire range of 53 

distributional errors rather than only for an overall bias in the mean. 54 

Bias-corrections are commonly applied at multiple steps and to multiple variables along 55 

the modeling chain (e.g. those described by Bosshard et al. 2013 and Wilby and Dessai 56 

2010), most often precipitation and temperature in atmospheric model output and streamflow 57 

in hydrologic model output. While these modeling chains are not all exactly alike, they do 58 

contain some commonalities that are relevant to this study (Figure 1). Depending on the 59 

spatial and/or temporal scale considerations a climate model (either a finer-scaled regional 60 

model or a coarser-scale global model) or a weather forecast model is used to generate 61 

meteorologic forcing data. This forcing data is often bias-corrected and possibly downscaled 62 

to a finer spatiotemporal resolution to drive the hydrologic model. Following running a 63 

hydrologic model the predicted streamflow is also commonly bias-corrected before being 64 

used in a water management model to make management decisions.  65 

66 
Figure 1. An example of the type of hydrologic modeling chain that we considered when 67 

developing our streamflow bias correction methods (step 4, highlighted in red).  68 
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 69 

Most studies in the bias-correction literature deal with the correction of atmospheric 70 

variables (corresponding to step 2 in figure 1), especially in the context of climate change 71 

studies (Cannon 2018; Maraun 2013; Pierce et al. 2015; Shi et al. 2008; Wood et al. 2004). 72 

Precipitation and temperature in particular are often bias-corrected before they are used as 73 

input to hydrologic models. Few studies explicitly discuss streamflow bias-correction (step 4 74 

in figure 1). Hashino et al. (2007) evaluated three bias-correction methods (multiplicative 75 

correction, regression method, and quantile mapping) to bias-correct ensemble streamflow 76 

forecasts for a single site on the Des Moines River in Iowa, USA. Hamlet et al. (2013) used a 77 

quantile mapping procedure to bias-correct streamflow estimates in a study of climate change 78 

impacts on the hydrology of the Columbia River basin in the Pacific Northwest. Their bias-79 

correction procedure was based on earlier work by Snover et al. (2003) and Wood et al. 80 

(2002) in which a monthly varying correction was calculated based on naturalized historical 81 

flows and model simulations for the same period. These same corrections were then applied 82 

to simulated flows under different climate scenarios. Farmer et al. (2018) used flow-duration-83 

curves to bias-correct simulated streamflow at ungauged locations. All these examples are 84 

concerned with bias-correcting streamflow projections at longer timescales (generally greater 85 

than a month, often over many years), which is the general type of application that we 86 

considered during our method development as well. There may be other considerations in 87 

bias-correcting short-term and real-time streamflow forecasts, which we will explore in the 88 

discussion.  89 

We focus on bias-correction methods for streamflow simulations and address two 90 

shortcomings found in the existing methods as used in the previously discussed studies. First, 91 

streamflow bias-correction methods that originate from the atmospheric science literature 92 

tend to assume that bias-corrections can be applied independently at multiple locations on a 93 

river network. In doing so, they ignore the upstream-downstream connection imposed by the 94 

river network (which we refer to as spatial consistency). Bias-correction at upstream and 95 

downstream sites treat the same parcels of water, that originated at the headwaters, in 96 

potentially different ways. This alters the relationships between streamflow at upstream and 97 

downstream sites and reduces the spatial-consistency of streamflow across a river network. 98 

As a result, incremental flows between sites along a river network, which are often used as 99 

input to water management models often become physically unrealistic, especially at shorter 100 
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time intervals (e.g. daily flows). For example, in the Missouri Headwaters Basin Study 101 

(Bureau of Reclamation and Montana Department of Natural Resources and Conservation 102 

2021), bias-corrected streamflow used as input to a water resources model was problematic, 103 

because bias-corrections were developed independently for more than 20 sites, many of 104 

which had overlapping watershed areas. The methods we propose in this paper address this 105 

problem directly. An unrelated problem, which we do not address, was that reference 106 

streamflow time series were based on multiple unrelated sources, which is often the case in 107 

studies encompassing large watersheds. In the absence of a robust alternative methodology, 108 

such as that described here, an ad hoc approach was developed to complete the Missouri 109 

Headwaters Basin Study. 110 

Second, many existing streamflow bias-correction methods assume stationarity in the 111 

underlying processes between the reference period, which is used to train the bias-correction 112 

method, and the application period, for example the end of the 21st century. This has been 113 

shown to be a particularly important problem in the context of climate change projections 114 

(Maraun 2016). Although some methods condition the bias-correction on time-of-year (for 115 

example, a different quantile mapping for each month), the underlying assumption is that the 116 

same quantile mapping is valid for the same time-of-year in the future. This can be 117 

problematic. For example, imagine that a hydrologic model performs poorly in simulating 118 

snow melt and that snow melt historically occurs during April. A monthly varying bias-119 

correction procedure would then indicate a large correction in April. However, under a 120 

warming climate, snow melt may occur earlier or seasonal snow may disappear altogether 121 

(Musselman et al. 2017; Livneh and Badger 2020). In this case, the bias-correction would 122 

still result in a large bias-correction in April. This is because, as pointed out by Vrac and 123 

Friederichs (2015), many bias-correction techniques are not able to change the timing (that is, 124 

for example the “rank-chronology” as determined by the Spearman correlation) of the 125 

corrected timeseries. While some multivariate bias-correction techniques do not strictly 126 

adhere to this limitation (François et al. 2020; Cannon 2018; Clark et al. 2004), shifts in 127 

timing are more of an indirect-effect rather than the primary purpose of the techniques, so 128 

they are not suitable for correcting streamflow predictions in a changing climate. These 129 

multivariate techniques which allow for shifts in timing usually aim to maintain or correct the 130 

covariance structure between locations. However, for bias-correcting streamflow this is not 131 

applicable because of the directional and tree-like structure of the river network topology. 132 

Correcting for covariance structures on a river network would allow corrections at 133 
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downstream sites to “propagate” up the river network, which we generally consider 134 

unphysical behavior. Similarly, models may have different biases under more extreme 135 

conditions which may become more prevalent in the future climate (Slater et al. 2021), 136 

thereby altering the cumulative distribution functions (CDFs) of simulated streamflow used 137 

to calculate corrections. Rather than assuming stationarity for the underlying CDFs, we 138 

would like to allow for non-stationarity in processes that are primarily responsible for the 139 

systematic biases (process-conditioning). 140 

We propose to preserve spatial consistency across the river network by bias-correcting 141 

only the independent portions of the flows, that is, we correct the local flow contribution 142 

from each individual sub-basin. Then, these locally bias-corrected flows can be re-aggregated 143 

by a routing model that integrates surface runoff and upstream flow, as is normally done to 144 

produce the total streamflow. Bias-correction of intervening flows automatically ensures 145 

spatial consistency of the flows between upstream and downstream sites. This approach 146 

requires estimation of local inflows at all locations, including sites for which we do not have 147 

reference flows (for example, streamflow measurements). 148 

To allow for non-stationarity in the bias-correction and to allow for process-conditioning, 149 

we propose to condition our bias-corrections with respect to another variable on which the 150 

simulated errors may depend. This idea was originally proposed by Bellprat et al. (2013) who 151 

suggested such a method might be useful for accounting for the role of soil moisture in the 152 

correction of air temperatures. However, to our knowledge the idea remains untested for 153 

streamflow bias-correction. 154 

We evaluate our implementation of these bias-correction techniques on the Yakima River 155 

Basin in the Pacific Northwestern United States and demonstrate their ability to better 156 

preserve spatial consistency by comparing them against an independent bias-correction 157 

technique. Further, we show how process-conditioning, while accounting for environmental 158 

factors such as the air temperature, can improve bias-corrections. In section 2 we describe our 159 

methodology, including both a description of the spatially-consistent bias-correction method 160 

as well as our method of incorporating process-awareness into bias-correction methods. We 161 

also outline details of the Yakima River Basin and data sources in section 2. In section 3 we 162 

present the results of each of our test cases. Following the results, we discuss the current state 163 

of our workflows and discuss future avenues for development in section 4. Finally, we 164 

summarize and provide concluding remarks in section 5. 165 
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2. Methods 166 

a. Study region and data 167 

We apply our bias-correction techniques to the Yakima River Basin in the Pacific 168 

Northwestern United States (figure 2). The Yakima River Basin is a 16 thousand square 169 

kilometer sub-basin of the Columbia River Basin located on the eastern slopes of the Cascade 170 

mountains in central Washington state. The Yakima River Basin has a strong gradient in 171 

hydroclimate from the headwaters to the outlet. The headwaters are characterized by the 172 

humid eastern slopes of the Cascade mountains and receive over 2500 mm of precipitation in 173 

an average year. The outlet at the confluence of the Yakima and Columbia Rivers is arid, 174 

receiving on average less than 250 mm of precipitation per year. This gradient in 175 

precipitation coincides with a large gradient in elevation, with the headwaters exceeding an 176 

elevation of 2000 meters and the outlet at just over 120 meters above mean sea level. Due to 177 

orographic effects in the headwaters, most of the precipitation falls as snow through the fall 178 

and winter months which drives a strong seasonal cycle in streamflow. 179 

 180 

Figure 2. Yakima River Basin map. Gauged sites are shown in red, and are labeled with 181 

their stream gauge abbreviations in panel a. The stream network topology, with gauged 182 

locations highlighted in red is shown in panel b.  183 

 184 
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For this study we used simulations covering the entire Columbia river basin as described 185 

by Chegwidden et al. (2019). In particular we use the runoff generated by the simulations at a 186 

daily timestep for the historical period covering water years 1980-2009, from the Variable 187 

Infiltration Capacity (VIC; Liang et al. 1994) model with the VIC-P1 parameter set 188 

(Chegwidden et al. 2019). The resulting runoff fields from the VIC simulations were 189 

arranged on a 1/16º latitude-longitude grid, however the approach we take for streamflow 190 

routing is based on a vector, or unstructured, river network mesh. To align the simulated 191 

runoff to the river network we then remapped the gridded 1/16º VIC output onto the 192 

Geospatial Fabric unstructured mesh (Viger and Bock 2014) using a weighted averaging 193 

scheme. The remapped runoff is then routed through the river network using the mizuRoute 194 

river routing model (Mizukami et al. 2016) to produce the raw simulated streamflow that is 195 

analyzed in this study. We used the impulse response function routing method from 196 

mizuRoute in this implementation, though in principle the kinematic wave tracking routing 197 

method should also work. Our bias-correction technique can be run on either gridded or 198 

unstructured domains, and we chose to use the unstructured domain because we had the 199 

mizuRoute setup for the Yakima River available on the unstructured mesh.  200 

Because neither VIC nor mizuRoute incorporates any land use or reservoir regulation 201 

components we use no regulation, no irrigation (NRNI) flows as our reference dataset instead 202 

of observations, which include the effects of human infrastructure (Pytlak et al. 2018). These 203 

NRNI flows were developed by the United States Army Corps of Engineers and the United 204 

States Bureau of Reclamation to produce flow estimates that are free of regulation and 205 

corrected for water withdrawals for irrigation. We used the NRNI flows to calculate the 206 

CDFs which are used to bias-correct the simulated flows. For all bias-corrections we use 207 

water years 1980-1991 to train the CDFs and 1992-2009 to apply the bias-corrections. Bias-208 

correction is performed at the daily timestep. 209 

 210 

Site Winter 

Average 

Daily Low 

Temp (ºC) 

Summer 

Average 

Daily High 

Temp (ºC) 

Winter Average 

Precipitation 

(mm/day) 

Summer 

Average 

Precipitation 

(mm/day) 

Upstream 

Area (km2) 

KEE -5.7 17.8 11.0 2.1 144 
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KAC -4.6 21.1 7.1 0.9 167 

EASW -6.5 20.5 6.8 1.0 679 

CLE -5.3 22.8 4.6 0.5 526 

YUMW -6.5 23.3 4.7 0.7 1304 

BUM -8.2 17.9 6.8 0.9 192 

AMRW -8.2 17.5 6.9 1.0 206 

CLFW -8.3 21.3 5.3 0.8 1228 

RIM -6.5 22.0 4.2 0.6 485 

NACW -7.7 25.2 2.2 0.4 2437 

UMTW -6.9 26.3 1.7 0.4 4135 

AUGW -5.5 28.5 1.4 0.4 525 

PARW -4.3 29.7 0.9 0.3 9592 

YGVW -3.2 30.0 0.8 0.3 13767 

KIOW -3.1 29.6 1.0 0.3 14444 

Table 1. Average meteorologic conditions at gauged sites which have reference NRNI 211 

streamflow 212 

 213 

b. Description of the bias-correction workflows 214 

The overall workflow for the bias-correction methods is shown in schematic form in 215 

figure 3. The workflow is split into two pieces, a preprocessing step and the bias-correction 216 

step. We built a reference implementation of this workflow in the software package, bmorph, 217 

which is freely available and open source (Bennett et al. 2021). For specifics of the input data 218 

requirements and configuration options see the bmorph documentation 219 

(https://bmorph.readthedocs.io).  220 

The preprocessing step depends on whether the chosen bias-correction method should 221 

enforce spatial consistency and whether the chosen bias-correction method should consider 222 

external variables through conditioning. If a spatially consistent method is selected the 223 

locations of the reference gauges must be mapped onto the river network topology, which is 224 
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then used to locate upstream and downstream gauges for each river reach, along with an 225 

interpolation factor which is used to provide regionalized bias-corrections at each river reach. 226 

If process conditioning on another variable is used the other variable must also be associated 227 

with the underlying river network and gauge sites. For example, the meteorological data used 228 

to force the hydrologic model may not be on the same spatial domain as the river routing 229 

model, and so a way of selecting the meteorologic data which is overlapping with each river 230 

reach is determined in this step. We expand on the implementation of these bias-correction 231 

options in sections 2b and 2c, respectively. If neither of these options are selected, as in most 232 

traditional streamflow bias-correction methods, the preprocessing step may be omitted. 233 

 234 

Figure 3. Schematic of the workflow for the bias-correction options implemented in this 235 

study. 236 

 237 

Once preprocessing is complete, the resulting data can be input into the bias-correction 238 

workflow. This workflow also has branches for performing spatially consistent bias-239 

correction and conditional bias-correction. The current implementation allows for these 240 
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options to be chosen independently, resulting in a flexible workflow that can be extended to 241 

add additional steps and/or options. For instance, we provide two underlying bias-correction 242 

techniques, the conditional bias-correction that we describe in section 2c and the Equidistant 243 

Cumulative Distribution Function method (EDCDFm; Li et al. 2010). In principle any 244 

number of other bias-correction techniques could be implemented independently of whether 245 

spatially consistent bias-correction is used. 246 

A post-processing technique similar to the one described in the PresRat method (Pierce et 247 

al. 2015) was used to preserve changes in the mean flow between the training period and the 248 

application period. Ours differs only in that it uses a rolling window (overlapping periods) of 249 

365 days rather than a strided window (non-overlapping periods). For clarity, because two 250 

methods of bias-correction were introduced in Pierce et al. (2015), the bias-correction 251 

technique that we mimic for our underlying implementation is applied in the time domain 252 

rather than the frequency domain. 253 

c. Spatially consistent bias-correction 254 

To implement a spatially consistent bias-correction technique for distributed streamflow 255 

predictions we have developed a regionalization technique which interpolates the target 256 

distribution between reference flow sites. A regionalization technique is required to perform 257 

bias-corrections for each local inflow, many of which do not have associated reference flows. 258 

The regionalization technique makes use of the topology of the river network by selecting 259 

target distributions which are nearby and interpolating between them as a function of some 260 

statistical measure (such as the correlation or a mean bias error). A schematic representation 261 

of this interpolation is shown in figure 4.  262 
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 263 

Figure 4. Schematic of interpolated bias-correction. Panel a shows a schematic of stream 264 

segments where upstream and downstream gauge sites are highlighted with a black outline. 265 

Intermediate stream segments are colored via a linear color gradient. Panel b shows how 266 

CDFs are interpolated along the stream network. The color gradient of the CDFs matches the 267 

interpolation as you go from the upstream gauge site to the downstream gauge site in panel a. 268 

 269 

When interpolating between gauged sites we use the formula: 270 

�̃�𝑖𝑛𝑡𝑒𝑟𝑝 = 𝛼 ⋅ 𝐵𝐶𝑢𝑝(𝑄𝑜𝑐
𝑢𝑝, 𝑄𝑚𝑐

𝑢𝑝 , 𝑄𝑚𝑝) + (1 − 𝛼) ⋅ 𝐵𝐶𝑑𝑜𝑤𝑛(𝑄𝑜𝑐
𝑑𝑜𝑤𝑛, 𝑄𝑚𝑐

𝑑𝑜𝑤𝑛, 𝑄𝑚𝑝) (1) 271 

where �̃�𝑖𝑛𝑡𝑒𝑟𝑝 is the bias-corrected streamflow for locations for which no reference flows 272 

are available, 𝐵𝐶𝑖 is the is the bias-correction function at either the upstream (𝑖 = 𝑢𝑝) or 273 

downstream (𝑖 = 𝑑𝑜𝑤𝑛) location, 𝑄𝑜𝑐 is the observed or reference data, 𝑄𝑚𝑐 represents the 274 

simulated streamflow values during the reference period, and 𝑄𝑚𝑝 the simulated streamflow 275 

that will be bias-corrected . The values for α are computed in the preprocessing step, which is 276 

also when the locations of the upstream and downstream gauge sites for each river reach are 277 

recorded (figure 4).  278 

The calculation of the α value can be done in a number of ways. For this study, we use 279 

the coefficient of determination ( ) between the streamflow at each intermediate site and the 280 

up/downstream simulated streamflow to determine the interpolation factor. Given an 281 

https://www.codecogs.com/eqnedit.php?latex=x_%7Bmc%7D#0
https://www.codecogs.com/eqnedit.php?latex=x_%7Bmp%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha#0
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upstream streamflow, 𝑄𝑢𝑝, and downstream streamflow, 𝑄𝑑𝑜𝑤𝑛, then the interpolation factor 282 

for an intermediate streamflow, 𝑄𝑖, is given by: 283 

α =
𝑟2(𝑄𝑖, 𝑄𝑢𝑝)

𝑟2(𝑄𝑖, 𝑄𝑢𝑝) + 𝑟2(𝑄𝑖, 𝑄𝑑𝑜𝑤𝑛)
(2) 284 

Two edge cases for computing the interpolation factor require special handling. When 285 

there are no gauge sites to select either up or down stream, we use gauges at other locations 286 

in the network that have the highest  value. When a site has multiple upstream gauge sites 287 

as tributaries, we similarly choose the site which has the highest  value of the available 288 

upstream sites. While we use the coefficient of determination as our method of interpolating 289 

between sites, it is possible to implement this approach for a wide array of appropriate 290 

measures of similarity. Our reference implementation in bmorph also includes options to 291 

regionalize based on spatial distance, Kullback-Leibler divergence (Cover and Thomas 292 

2006), and Kling-Gupta efficiency (Gupta et al. 2009), though we have not explored how 293 

these choices affect the resulting bias-corrections. 294 

To compute the bias-corrected local flows we take the ratio of the bias-corrected total 295 

flow and raw total flow, which results in a multiplier describing the relative change that 296 

should be applied to the local inflows. Given that 𝑄𝑖 is a total uncorrected streamflow, �̃�𝑖 is 297 

the bias-corrected total streamflow from equation 1, and 𝑞𝑖 is a local simulated streamflow, 298 

then we compute the bias-corrected local flow at each river reach as 299 

�̃�𝑖 = 𝑞𝑖 ⋅
�̃�𝑖

𝑄𝑖
(3) 300 

These corrected local flows are then re-routed through mizuRoute to produce a spatially-301 

consistent bias-corrected streamflow (SCBC). 302 

d. Conditional bias-correction 303 

We incorporate process information into the bias-correction scheme by modifying the 304 

EDCDFm algorithm (Li et al. 2010). The original EDCDFm equation is given as: 305 

�̃�𝑚𝑝 = 𝑄𝑚𝑝 + 𝐹𝑜𝑐
−1 (𝐹𝑚𝑝(𝑄𝑚𝑝)) − 𝐹𝑚𝑐

−1 (𝐹𝑚𝑝(𝑄𝑚𝑝)) (4) 306 

where 𝑄𝑚𝑝 is the modeled streamflow, 𝐹𝑜𝑐
−1is the inverse of the CDF of the observed or 307 

reference data, 𝐹𝑚𝑝 is the CDF of the modeled projection, 𝐹𝑚𝑐 is the CDF of the modeled data 308 

https://www.codecogs.com/eqnedit.php?latex=q%5E%7Bdown%7D#0
https://www.codecogs.com/eqnedit.php?latex=q%5E%7Bi%7D#0
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during the reference period, and �̃�𝑚𝑝 is the corrected modeled projection. This formulation is 309 

extended to condition on a two-dimensional (2-D) probability distribution function (PDF): 310 

�̃�𝑚𝑝 = 𝑄𝑚𝑝 + 𝐹𝑜𝑐
−1(𝐹𝑚𝑝(𝑄𝑚𝑝|𝑦𝑚𝑝)|𝑦𝑜𝑐) − 𝐹𝑚𝑐

−1(𝐹𝑚𝑝(𝑄𝑚𝑝|𝑦𝑚𝑝)𝑦𝑚𝑐) (5) 311 

where 𝑦𝑖 is the conditioning variable. To compute �̃�𝑚𝑝 we first calculate the 2-D PDF via 312 

a histogram estimator and then for each timestep at which we wish to correct, we compute the 313 

CDF conditioned on the value of 𝑦𝑖 for that timestep (figure 5). We refer to this method as 314 

conditional bias-correction (CBC). 315 

 316 

Figure 5. Schematic of conditional bias-correction (CBC). Panel a shows how 317 

conditioning on two-dimensional PDFs is computed. First, the PDFs are estimated from the 318 

data using histograms. In this example, we show the daily minimum temperature on the x-319 

axis and streamflow on the y-axis. The left sub-plot shows the calculated PDF for the raw 320 

model data, while the right sub-plot shows the reference data. Areas of high probability are 321 

shown in brighter colors. The line at 0 ℃ indicates the position of conditioning for the daily 322 

minimum temperature. Panel b shows the CDF functions for both the raw and reference data 323 

as conditioned at 0 ℃. 324 

 325 

For this study we use as 𝑦𝑖 the daily minimum temperature given by the forcing data 326 

which was used to run the VIC model and set the number of bins in our histogram estimator 327 

to be 100 in both dimensions, though these parameters are adjustable by the user. We use the 328 

daily minimum temperature because we hypothesize that there are snowmelt related biases in 329 

the late-spring and early-summer periods, as will be explored in the results. 330 

e. Evaluation Scenarios 331 

To evaluate the spatially consistent and conditional bias-correction methods in the 332 

Yakima River Basin, we compare the results of each of the combinations of the two new 333 

https://www.codecogs.com/eqnedit.php?latex=y_i#0
https://www.codecogs.com/eqnedit.php?latex=y_i#0
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methods against EDCDFm (Li et al. 2010). The four evaluation scenarios are detailed in 334 

Table 2. We refer to methods which use the blending as spatially consistent bias-correction 335 

(SCBC) techniques, while those that do not as independent bias-correction (IBC) techniques. 336 

Similarly, we denote methods which use the conditional bias-correction with C and those 337 

which do not condition as U (for univariate). In this case we refer to EDCDFm as IBC_U. By 338 

comparing each of the methods both independently and in conjunction we are better able to 339 

understand their impacts on bias-correction of streamflow. 340 

 Spatially consistent BC 

(using interpolation) 

Independent BC  

(no interpolation) 

Univariate BC SCBC_U IBC_U 

Conditional BC SCBC_C IBC_C 

Table 2. Combinations of methods used in the analysis. Both the blending and 341 

conditioning can be turned on and off independently, leading to four bias-correction methods. 342 

 343 

3. Results 344 

Our results are organized into three sections which evaluate different aspects of the bias-345 

correction process. In section 3a, we provide a general evaluation that compares the 346 

performance of the bias-correction methods across the Yakima River Basin. We show that all 347 

four correction methods can largely reduce the bias of the raw simulated streamflow, though 348 

some of their qualitative behaviors differ. In sections 3b and 3c, we further analyze these 349 

differences with respect to our two new methods. In section 3b, we show how conditioning 350 

on daily minimum temperatures improves the seasonal cycle of the bias-corrected streamflow 351 

as well as look at how the underlying probability distributions change with respect to the 352 

daily minimum temperature. In section 3c, we show how SCBC eliminates artifacts between 353 

river reaches. We also show how our SCBC method allows for finer grained analysis of bias-354 

correction on spatially distributed streamflow simulations. 355 

a. General evaluation 356 

In figure 6, we show the mean weekly hydrographs for all scenarios (including raw and 357 

NRNI flows) for the bias-corrected period at each of the gauged sites. For the northern sub-358 
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regions (KEE, KAC, EASW, CLE, YUMW, and BUM), we see general agreement between 359 

the raw flows and the NRNI flows. At some of the sites (notably CLE and BUM) we see 360 

improvements in timing with the conditional bias-correction methods. In the western portions 361 

of the catchment between UMTW and PARW (that is, at AMRW, CLFW, RIM, NACW, and 362 

AUGW) we see relative disagreement between methods. Generally, methods which were 363 

conditioned on daily minimum temperatures were better able to capture the falling limb of the 364 

summer streamflow, indicating resulting flows were corrected to better correspond with 365 

hydrologic processes associated with minimum temperature. At the downstream, mainstem 366 

sites (UMTW, YGVW, and KIOW) we see that the conditional bias-corrections were largely 367 

better at capturing the patterns of the NRNI streamflow. 368 

 369 

Figure 6. Mean weekly flows over the bias-corrected period for each of the scenarios 370 

arranged in approximate stream order (upper left as headwaters, lower right as outlet). 371 

 372 

Aggregating this into percent biases across both gauged sites and time (figure 7) we see 373 

that all methods are largely able to reduce the bias with respect to the raw simulations. The 374 

raw flows have a high bias of, on average, about 25%, while all other methods had biases of 375 

less than +/-5%. Additionally, the spread in the mean biases is reduced considerably for all 376 

bias-correction techniques. The IBC methods show about twice as much reduction in the 377 
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spread of biases as the SCBC methods, however the SCBC methods show better mean-bias 378 

reductions. 379 

 380 

Figure 7. Boxplots of total percent biases across all sites and all time during the bias-381 

correction period. The center marker denotes the median percent bias, the ranges of the boxes 382 

denote the interquartile range, and the whiskers extend to 1.5 times the interquartile range. 383 

The ideal value of 0 is shown as a black line across the figure. 384 

 385 

In addition to just the mean biases, water managers may also be interested in the annual 386 

flow volumes throughout the river network. We analyze how these biases are changed at all 387 

of the gauged sites for each bias-correction method in figure 8. Generally, we see that all of 388 

the bias-correction methods improve the average and spread of the bias in annual flow 389 

volumes. Differences between bias-correction methods are most apparent between IBC and 390 

SCBC methods in the headwaters. At headwaters sites (e.g. EASW, BUM, and CLFW) we 391 

generally see that IBC-based methods are better able to capture the annual flows, though 392 

SCBC still provides better volumes than the uncorrected-predictions. We speculate that this is 393 
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because of the way we select the upstream reference flows in the headwaters, as discussed in 394 

section 2c. At the downstream locations (PARW, YGVW, and KIOW) we see that all bias-395 

correction methods reduce the mean bias effectively, though the SCBC methods show higher 396 

variability in their ability to do so. 397 

 398 

Figure 8. Boxplots of the ratio between each scenario and raw annual flow volumes 399 

during the application period (1992-2009, N=18). To calculate data for these boxplots we 400 

divided the cumulative annual streamflow for each method (RAW, IBC_U, etc) by the 401 

cumulative annual streamflow from the reference NRNI dataset for each water year. Subplot 402 

l) at AUGW is cut off to make the comparison across subplots easier. The center marker of 403 

each boxplot denotes the median percent bias, the ranges of the boxes denote the interquartile 404 

range, and the whiskers extend to 1.5 times the interquartile range. The ideal value of 1 is 405 

highlighted as a black horizontal line across each of the subplots. 406 

b. Effect of conditioning on the seasonal cycle 407 

To understand the effect of introducing a secondary variable to the bias-correction 408 

methodology. we analyzed the improvement of simulated streamflow for conditional bias-409 
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correction methods (IBC_C and SCBC_C). From figure 6 we see that the conditioned bias-410 

correction methods are able to better match the timing of the falling limb of the hydrograph. 411 

To quantify this effect, we calculate the percent biases on a seasonal basis, as shown in figure 412 

9.  413 

Generally, we see that for the winter and summer months (figure 9 panels a and b, 414 

respectively) the conditioning on daily minimum temperature results in substantially reduced 415 

bias from the raw flows. In the case of the winter season, the unconditioned bias-corrections 416 

actually increased the flow biases. During the spring and fall seasons (figure 8 panels c and d, 417 

respectively) we see that the conditioned bias-correction methods perform similarly to the 418 

unconditioned variants. This is one indication that our choice in using the daily minimum 419 

temperature as a proxy for model bias was a reasonable choice. We further explore this 420 

choice in section 3c. While we could have chosen any number of other conditioning 421 

variables, we chose daily minimum temperatures based on the knowledge of the underlying 422 

hydrometeorology of the Yakima River Basin. In the discussion we expand on how we might 423 

be able to more systematically understand or derive processes or variables to condition on. 424 
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 425 

Figure 9. Boxplots of the percent bias for each of the seasons. Panel a shows the biases 426 

for all scenarios in winter months (DJF), panel b summer months (JJA), panel c spring 427 

months (MAM), and panel d fall months (SON). The center marker of each boxplot denotes 428 

the median percent bias, the ranges of the boxes denote the interquartile range, and the 429 

whiskers extend to 1.5 times the interquartile range. The ideal value of 0 is highlighted as a 430 

black horizontal line across each of the subplots. 431 

 432 

To better understand how the conditioning on daily minimum temperature impacted bias-433 

corrections we compute the reference CDFs across a range of values for the conditioning 434 

variable, daily minimum temperature, at basins in the headwaters (at EASW) and near the 435 

outlet along the mainstem (at YGVW) in figure 10. To do so, we first compute the joint 2-D 436 

PDFs and then marginalize on the values of 𝑇𝑚𝑖𝑛 at equally spaced quantiles across the 437 

distribution of 𝑇𝑚𝑖𝑛. For both sites we found that there were substantial differences in the 438 

CDFs for different daily minimum temperatures. At EASW all of the CDFs appear to be 439 
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unimodal, though the steepness and location of the median flow changes with different 440 

temperatures.  441 

However, at the downstream site (YGVW; figure 10 panel b), we see that the relative 442 

shapes of the CDFs change based on the daily minimum temperature. For both the low and 443 

high daily minimum temperatures the CDFs are generally steeper than the univariate 444 

equivalent and are still unimodal. However, the CDFs for the curves conditioned at 𝑇𝑚𝑖𝑛 =445 

4.7 𝐶∘  and 𝑇𝑚𝑖𝑛 = 8.6 𝐶∘  have a bimodal structure. This is because the daily minimum 446 

temperature occurs in an annual cycle and that values corresponds to two different times of 447 

year with much different streamflow signatures, for example in spring temperatures are 448 

warming and in fall when temperatures are cooling. This is in contrast to the high and low 449 

values, which only occur in the summer and winter months, respectively. We further explore 450 

this choice of conditioning variable in the supplementary information and discuss the 451 

implications of using a conditioning variable with a seasonal cycle in section 4. Figure 10 452 

also gives us a way of anticipating how process-conditioned bias-correction methods will 453 

behave in a warming climate. In future conditions where we expect temperatures to be higher, 454 

this method would end up using more of the CDFs from the red lines and less from the blue 455 

lines. 456 

 457 

Figure 10. Comparison of cumulative distribution functions (CDFs) for univariate bias-458 

correction (solid black line) and conditional bias-correction at several daily minimum 459 

temperatures (shaded blue to red lines). Panel a shows CDFs for a headwaters site (EASW) 460 

and panel b shows CDFs for a site on the mainstem of the Yakima River Basin near the outlet 461 

(YGVW). 462 
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c. Effect of spatially consistent bias-correction 463 

Thus far we have only looked at the bias-corrections at each gauge location 464 

independently, and though we have found that generally the SCBC-based methods are able to 465 

reduce systematic bias in the simulated streamflow, they are not quite as performant as the 466 

IBC methods. However, as discussed in the introduction, independently bias-corrected 467 

streamflow can result in inconsistent behaviors for local inflows while the spatially consistent 468 

method was designed to avoid these artifacts. 469 

Figure 11 shows the weekly incremental streamflow at three locations (KEE, NACW, and 470 

CLFW) on the Yakima River Basin. We determined the incremental streamflow (or local 471 

inflow) by subtracting the flows at the upstream gauged sites. We chose to aggregate to the 472 

weekly timescale to eliminate any artifacts of the transit time from upstream to downstream 473 

gauged locations for IBC. In all three locations we found periods for which the IBC method 474 

shows negative streamflow for at least a week, while SCBC maintains positive streamflow. It 475 

is worth noting that in all three cases these are not losing reaches and that the negative 476 

streamflow is purely an artifact of the bias-correction technique. This is most noticeable at 477 

NACW with the inflows from RIM and CLFW removed, where these artificial negative 478 

streamflow happen quite regularly and can be relatively large. While the resulting negative 479 

flows are less at the other two sites shown in figure 11, they are an artifact of the method and 480 

may cause errors in water management model simulations. 481 
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 482 

Figure 11. Comparison of streamflow with the streamflow from upstream gauged sites 483 

removed. 484 

 485 

In addition to providing incremental streamflow at the gauged locations the SCBC 486 

method provides bias-corrected streamflow along every river reach in the simulation domain, 487 

something that the IBC methods do not provide. We show these as mean changes from the 488 

raw streamflow in figures 12 (winter streamflow) and 13 (summer streamflow). These figures 489 

show the spatial structure of the bias-corrections across the network. For both periods we see 490 

large, spatially coherent differences between unconditional corrections (SCBC_U) and 491 

conditional corrections (SCBC_C). During the winter period (figure 12) we see that 492 

unconditional bias-correction (SCBC_U) (figure 12a) largely works to decrease streamflow, 493 

except in the furthest headwaters. For conditional corrections (SCBC_C, figure 12b) we see 494 

that the bias-correction tended to increase streamflow, particularly along the upper portion of 495 

the basin. There are some decreases in the tributaries which flow into the mainstem further 496 

downstream, though not as drastic as the unconditional corrections (SCBC_U). 497 
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 498 

Figure 12. Change in the streamflow at each river reach in the Yakima River Basin for 499 

both spatially consistent configurations during winter (DJF). 500 

 501 

The summer unconditional corrections (SCBC_U) (figure 13a) look similar to those in the 502 

winter (figure 12a), because the unconditional bias-correction is not able to modify the timing 503 

of the corrected streamflow. This can be seen in the annual corrections as well (figure S3, in 504 

the supplemental information). However, for conditional (SCBC_C) corrections in the 505 

summer (figure 13b) we see that there are drastic changes from the corrections of winter 506 

(figure 13b). During the summer SCBC_C almost universally decreases streamflow, with the 507 

exception of a few locations in the upper headwaters. The reduction in streamflow during the 508 

summer and increase in the winter from SCBC_C, particularly in the snowy headwaters, 509 

further demonstrates that conditionally bias-correcting on daily minimum temperatures can 510 

be a good proxy for errors in snow representation of the hydrologic model. 511 
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 512 

Figure 13. Change in the streamflow at each river reach in the Yakima River Basin for 513 

both spatially consistent configurations during summer (JJA). 514 

 515 

4. Discussion 516 

We have implemented and demonstrated two new techniques for bias-correcting 517 

distributed streamflow simulations. The first technique, spatially consistent bias-correction, 518 

allows for bias-correcting spatially distributed streamflow simulations explicitly, which 519 

maintains the relationships between gauged locations. The second technique, conditional 520 

bias-correction, allows for considering other variables during the bias-correction process by 521 

conditioning on a multidimensional probability distribution built on the streamflow as well as 522 

the other variables to be considered. We have shown that these methods can be developed in 523 

a modular and composable way (that is, we can arbitrarily choose to use spatially consistent 524 

methods and conditional methods independently) and have demonstrated their effects when 525 

applied separately as well as in conjunction. 526 
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The spatially consistent bias-correction method is built on a regionalization technique 527 

which interpolates between gauged locations where reference streamflow is available. The 528 

current implementation is based on interpolating between gauged locations based on the 529 

correlation coefficient, though other methods of interpolation could, in principle, be 530 

implemented in our framework. This method maintains spatial consistency by bias-correcting 531 

the local flows at each stream segment, and then aggregating them through a river routing 532 

model.  533 

Our implementation of spatially consistent bias-correction in the Yakima River Basin 534 

showed that correcting local streamflow directly and then rerouting it to recover the total 535 

bias-corrected streamflow has similar performance in reducing bias as independent bias-536 

correction. Further, it produces bias-corrected streamflow at every river reach in the domain, 537 

which can be used for other purposes, such as inputs into water management or other 538 

operational models (Bureau of Reclamation and Montana Department of Natural Resources 539 

and Conservation 2021). In addition to the benefits of producing bias-corrected local and total 540 

streamflow at all river reaches, this approach eliminates artifacts in the relationship between 541 

gauged locations that independent bias-correction can introduce. 542 

The conditional bias-correction method is currently built by computing discretized PDFs 543 

on streamflow and an additional conditioning variable via the histogram method. In this 544 

study, we chose to use the daily minimum temperature as the conditioning variable, as a 545 

proxy for snowmelt processes. We showed that conditioning on the daily minimum 546 

temperature was able to improve the timing of the bias-corrected streamflow in the Yakima 547 

River Basin. However, it remains an open question of how to choose the conditioning 548 

variable in general. While it is theoretically possible to include more variables to condition 549 

on, this becomes impractical quickly due to the curse of dimensionality, where the number of 550 

possible variable combinations grows exponentially faster than the amount of data, ultimately 551 

leading to empirically estimated PDFs which are very sparse, and thus noisy (Bellman 2010). 552 

We anticipate that additional pre-bias-correction analysis will need to be done on a region-553 

by-region basis to determine which dominant processes to correct for. 554 

In this study we were primarily interested in bias-correcting streamflow values over 555 

multiple years. However, streamflow bias correction is also routinely applied over shorter 556 

(hourly to monthly) timescales, for example as part of real-time forecasting operations.. 557 

While we have not evaluated the performance of our methods at these shorter timescales, we 558 
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note that quantile mapping based techniques are used in these applications as well. Because 559 

of this, we hypothesize that the process-conditioned bias-correction technique could translate 560 

well to shorter-scale applications, particularly by conditioning on the initial state of the 561 

hydrologic model, which is often a large source of error in the forecasts. However, we 562 

anticipate that modifications would be needed to ensure that these approaches could be 563 

transferred without unanticipated consequences.  564 

5. Conclusions 565 

Our results from implementing two modular and composable streamflow bias-correction 566 

techniques show how bias-correction techniques, which are designed with streamflow in 567 

mind, can make improvements over existing methods. Our simple regionalization technique 568 

based on interpolating between gauged locations provides spatially distributed (and spatially 569 

consistent) bias-corrections, while still maintaining performance close to the performance of 570 

bias-corrections that are tuned at each individual gauge location independently. We also show 571 

that correcting on daily minimum temperatures via conditional bias-correction can improve 572 

the timing of the bias-corrected streamflow over the unconditioned bias-corrections across 573 

seasons in the Yakima River Basin. The choice of the specific conditioning variable in the 574 

conditional bias correction method is flexible and can be based on locally dominant 575 

processes. 576 

Reducing bias in simulated streamflow is critical when it is used as input to a water 577 

resources model for the purpose of evaluating scenarios for long-term water management and 578 

planning. Federal agencies such as the Bureau of Reclamation rely on these techniques to 579 

study how scenarios of future hydrology may impact existing reservoir operations, for 580 

example. These studies may inform future investments in infrastructure or modifications to 581 

operations. Refinement of bias-correction techniques may help reduce uncertainty in planning 582 

scenarios, thereby saving costs in structural or non-structural modifications that may be based 583 

on over-conservative planning to compensate for future uncertainty. Currently, water 584 

managers rely on ad hoc approaches to developing local inflows based on streamflow 585 

simulations and simply live with the concept that bias-correction techniques cannot address 586 

changing streamflow timing. Alternative methods, such as the SCBC_C method described 587 

here are critical steps toward reducing uncertainties in planning scenarios. 588 
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By demonstrating two approaches to bias-correcting streamflow simulations we find that 589 

improvements can be made to the previously used methods that are generally taken from 590 

bias-correcting climate and atmospheric models. By designing correction techniques which 591 

target distributed streamflow simulations we can design new bias-correction methods which 592 

perform well. However, these initial implementations were often built around the simplest 593 

possible method. Improving the way which interpolation between gauged locations, handling 594 

headwaters which flow into the mainstem, and allowing for conditioning on multiple 595 

variables may improve these methods further. 596 

The results of our bias-correction techniques are based on our initial workflow 597 

implementation. We have developed a python package, bmorph, which includes the 598 

implementation that was used for this analysis (Bennett et al. 2021). It also includes the setup 599 

for the Yakima River Basin as analyzed here as a tutorial dataset. The code and data for 600 

running this analysis is also available at doi:10.5281/zenodo.5348461. We have designed 601 

bmorph in a way that allows it to be modular and extensible, making it easy to build on the 602 

initial implementations that we have described here.  603 
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