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Abstract

Plankton play an important role in marine food webs, in biogeochemical cycling, and in moderating Earth’s climate. Their

possible responses to climate change are of broad scientific and social interest; yet observations are sparse, and mechanistic and

statistical methods yield diverging predictions. Here, we evaluate a statistical learning method using output from a 21st Century

marine ecosystem model as a ‘ground truth’. The model is sampled to mimic historical ocean observations, and Generalised

Additive Models (GAMs) are used to predict the simulated plankton biogeography in space and time. Predictive skill varies

across test cases, and between functional groups, and errors are more attributable to spatiotemporal sampling bias than to

sample size. Overall, the GAMs yield poor end-of-century predictions. Given that statistical methods are unable to capture

changes in relationships between variables over time, we advise caution in their application and interpretation, particularly

when modelling complex, dynamic systems.
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Key Points:8

• We build a correlative species distribution model to predict the global plankton9

biogeography of a trait-based ecosystem model10

• Predictive skill varies across test cases, with functional group, and spatiotempo-11

rally, with poor end-of-century performance12

• Key sources of uncertainty are traced to sampling biases in observations, and the13

temporal variability in target-predictor relationships14
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Abstract15

[ Plankton play an important role in marine food webs, in biogeochemical cycling, and16

in Earth’s climate; yet observations are sparse, and predictions of how they might re-17

spond to climate change vary. Correlative species distribution models (SDM’s) have been18

applied to predicting biogeography based on relationships to observed environmental vari-19

ables. To investigate sources of uncertainty, we use a correlative SDM to predict the plank-20

ton biogeography of a 21st Century marine ecosystem model (Darwin). Darwin output21

is sampled to mimic historical ocean observations, and the SDM is trained using gen-22

eralised additive models. We find that predictive skill varies across test cases, and be-23

tween functional groups, with errors that are more attributable to spatiotemporal sam-24

pling bias than sample size. End-of-century predictions are poor, limited by changes in25

target-predictor relationships over time. Our findings illustrate the fundamental chal-26

lenges faced by empirical models in using limited observational data to predict complex,27

dynamic systems. ]28

Plain Language Summary29

[ Marine plankton communities play a central role within Earth’s climate system,30

with important processes often divided among different ‘functional groups’. Changes in31

the relative abundance of these groups can therefore impact on ecosystem function. How-32

ever, the oceans are vast, and samples are sparse, so global distributions are not well known.33

Statistical species distribution models (SDM’s) have been developed that predict global34

distributions based on their relationships with observed environmental variables. They35

appear to perform well at summarising present-day distributions, and are increasingly36

being used to predict ecosystem changes throughout the 21st century. But it is not guar-37

anteed that such models remain valid over time. Rather than wait 100 years to find out,38

we applied a statistical SDM to a complex virtual ocean, and trained it using virtual ob-39

servations that match real-world ocean samples. This allows us to jump forward to the40

end-of-century to test the accuracy of our predictions. The SDM performed well at qual-41

itatively predicting ‘present day’ plankton distributions but yielded poor end-of-century42

predictions. Our case study emphasises both the importance of environmental variable43

selection, and of changes in the underlying relationships between environmental variables44

and plankton distributions, in terms of model validity over time. ]45

1 Introduction46

Plankton underpin global ocean food webs and fisheries, mediate marine biogeo-47

chemical cycles, and affect climate (Fenchel, 1988; Falkowski et al., 2008; Marinov et al.,48

2008; Guidi et al., 2016; Hutchinson, 1961). Their global biogeography interacts with the49

ocean’s inventory of nutrient elements, and its capacity to sequester CO2 (Cermeño et50

al., 2008; Guidi et al., 2009; Fuhrman, 2009; Falkowski et al., 1998). Understanding present51

and possible future biogeographic patterns of plankton communities is therefore a key52

component of marine microbial research. These biogeographic patterns are affected by53

numerous environmental factors, including supplies of nutrients and light, ambient tem-54

perature, grazing pressure, physical circulation and water column structure, and the sea-55

sonality and variability of these drivers (Tittensor et al., 2010; Rutherford et al., 1999;56

Graff et al., 2016). Despite substantial efforts by observational oceanographers e.g. (Lombard57

et al., 2019), the vastness of the global ocean and the challenges of measuring complex58

microscopic plankton communities makes data-limitation inevitable.59

Species distribution models (SDMs) (sometimes interchangeably referred to as eco-60

logical niche models) have been widely used to predict biogeographic distributions and61

fundamental niche parameters in terrestrial ecosystems, and have seen a recent surge of62

popularity in marine ecosystem context (Flombaum et al., 2020; Righetti et al., 2019;63

Benedetti et al., 2021; Melo-Merino et al., 2020). While mechanistic variants exists, the64
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most popular implementations of SDM seek to identify the relationships between known65

geographic distributions of species’ and sets of environmental variables. These relation-66

ships that are typically used by SDM developers to characterise biogeography in terms67

of where a species could, or could not, occur (Melo-Merino et al., 2020). Correlations are68

extracted using a variety of empirical methods, from classical statistics to bleeding-edge69

machine-learning (ML), or a hybridised ensemble thereof. For example, one might seek70

to characterise the relationships between measures of plankton concentrations (e.g. cell71

counts, gene markers or biomass) and simultaneously measured environmental factors72

(e.g. temperature, Chl-a, nutrient concentrations). The fitted model can then be used73

together with satellite or large synthesis database measurements to make diagnostic pre-74

dictions of plankton. When the resulting SDM performs well relative to the measured75

datasets, predictions of species presence/absence or concentrations are then scaled glob-76

ally, e.g. see (Tang & Cassar, 2019; Barton et al., 2013; Irwin et al., 2012; Agusti et al.,77

2019).78

However, a series of assumptions and uncertainties are incorporated into correla-79

tive SDMs, many of which go unchallenged or inadequately addressed by SDM devel-80

opers. While an exhaustive overview of these assumptions and uncertainties is beyond81

the scope of the current work (see (Wiens et al., 2009) for a thorough assessment), some82

are especially pertinent to marine microbial biogeography. For example, we cannot be83

certain that the environmental variables included in the model are a true and complete84

reflection of species’ niche requirements’, or whether some excluded or as-yet-unmeasured85

dimensions might better account for the observed distributions. Additionally, it is dif-86

ficult to separate correlation from causation in such complex, dynamic and highly-coupled87

systems. Our model might highlight sea surface temperature (SST) as the primary driver88

of abundance; yet it remains possible that separate factors coupled to SST – perhaps un-89

derwater solar radiation penetration or nutrient supply rates – are instead more directly90

linked to abundance. Thus, in this scenario, and adopting the terminology of (Holder91

& Gnanadesikan, 2021), the relationship between SST and abundance might be described92

as ”apparent” while the relationship between underwater solar radiation and abundance93

as ”intrinsic”. This disconnect between cause and effect can be further complicated by94

trade-offs in the choice of empirical model used to build the SDM, see e.g. the inverse95

relationship between predictive skill and interpretability in machine learning models (Carvalho96

et al., 2019).97

There is a growing body of research that builds correlative SDMs on a variety of98

statistical and machine learning models, and uses them to predict global plankton bio-99

geography from sparse observational data, both in the present day, and many decades100

into the future, e.g. (Righetti et al., 2019; Ibarbalz et al., 2019; Flombaum et al., 2020;101

Benedetti et al., 2021). Some of the results generated by such models have been highly102

novel and surprising, and have diverged significantly from those generated using other103

methodological approaches, such as trait-based mechanistic models e.g. (Ward et al., 2014;104

Dutkiewicz et al., 2009, 2014; Cabré et al., 2015). This is particularly true of predict-105

ing end-of-century distributions. For instance, the neural-network-derived correlative SDM106

developed in (Flombaum et al., 2020) predicts an increase in picophytoplankton biomass107

in the future subtropical oceans, in direct contrast to mechanistic ecosystem models in108

e.g. (Dutkiewicz et al., 2013; Marinov et al., 2010). While it is not possible to comment109

on which particular modelling regime best approximates the global oceans of 2100, iden-110

tifying and addressing potential sources of error would be beneficial for improving ac-111

curacy and guiding interpretation.112

Thus, the goal of the current work is to investigate the effects of known assump-113

tions and uncertainties that are ’baked into’ correlative SDMs, at a time when their us-114

age is seeing an explosion of interest. To achieve this, we set up an idealised testbed to115

assess the predictive capabilities of an SDM built on Generalised Additive Models (GAMs)116

(Hastie & Tibshirani, 1986) using the output from a mechanistic global scale ecosystem117
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model, the ‘Darwin’ model (Dutkiewicz et al., 2021), as a ‘ground truth’. To explore the118

effect of spatiotemporal biases in real-word observational datasets, Darwin model out-119

puts are sampled in space and time to mimic historical ocean measurements, and also120

randomly. The resulting SDM is then evaluated in its ability to capture the virtual ocean’s121

emergent biogeography in the present day ‘spatial predictions’ and by the end-of-century122

‘temporal predictions’. Our experiment is thus designed to generate insights into the fun-123

damental limitations of correlative SDMs, applied in the current context, as a function124

their core assumptions and uncertainties.125

At the outset, we stress that our intention here is not to raise a false dichotomy126

whereby one particular methodological approach is pitted against another to decide a127

‘winner’. Nor are we making any claim as to the accuracy of the Darwin model in its abil-128

ity to faithfully predict plankton abundance and diversity in the real ocean. Rather, the129

following case study is designed to assess how a correlative SDM might fare in predict-130

ing a complex but well-understood microbial ecosystem (see e.g. (Dutkiewicz et al., 2020))131

embedded in a dynamic, self-consistent model of the Earth’s ocean through time.132

2 Materials & Methods133

We performed a suite of tests using a widely applied implementation of GAMs (Servén134

& Brummitt, 2018) as our SDM and the Darwin model, a dynamic marine microbial ecosys-135

tem model coupled to an Earth system model ((Dutkiewicz et al., 2021), (Sokolov, 2005)).136

Our decision to use GAMs as the empirical framework underlying our correlative SDM137

was informed by the work of (Righetti et al., 2019), who demonstrated that GAMs per-138

form comparably to Random Forest and Generalised Linear Models in a range of rele-139

vant predictive tasks, while offering a higher degree of both interpretability and flexi-140

bility. Additionally, GAMs are of intermediate complexity between classical statistical141

regression models, and more sophisticated machine learning methods, which arguably142

makes them both accessible and potentially attractive to a wide range of researchers. Nonethe-143

less, we note that we could have selected any one of a wide variety of statistical or ma-144

chine learning algorithms, each with their own unique pros and cons.145

To train the GAMs, we sample the Darwin model at the same places and times as146

in a large ocean measurement dataset used for similar purposes (Martiny & Flombaum,147

2020). The resulting GAMs SDM is then used to predict Darwin model plankton bio-148

geography. To quantify how spatiotemporal bias in the training dataset affects predic-149

tive skill, we train an additional set of GAMs using a dataset of the same size, but sam-150

pled uniformly randomly across the virtual ocean’s surface, and uniformly randomly over151

the same period of time. To quantify the effect of training set sample size on predictive152

skill, we generate 54 additional random-sample training sets, in 18 different sample sizes.153

We evaluate the ability of the SDM to predict the global biogeography of the different154

plankton functional groups in the simulation, both during the 22-year period over which155

measurements were taken (i.e. spatial extrapolation), and during the last 22 years of the156

21st century (i.e. both spatial and temporal extrapolation).157

2.1 Numerical Model Simulation158

The Darwin model ecosystem used here includes 51 plankton populations across159

7 functional groups (2 prokaryotes (pro), 2 pico-eukaryotes (pico), 5 coccolithophores (cocco),160

5 diazotrophs (diazo), 11 diatoms (diatom), 10 mixotrophic dinoflagellates (dino) and161

16 zooplankton (zoo)). Individual populations correspond to different size classes within162

functional groups, with all size classes covering a range of 0.6−2425 µm equivalent spher-163

ical diameter. Functional groups have distinct allometric relationships for growth, graz-164

ing, and sinking parameters (see (Dutkiewicz et al., 2020)). The model ecosystem is em-165

bedded within the Massachusetts Institute of Technology Integrated Global System Model166

(IGSM) (Prinn, 2013; Sokolov, 2005) which includes modules for the physics, chemistry,167
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and biogeochemistry of the atmosphere, land and ocean. The ocean component has a168

2◦×2.5◦ resolution grid and 22 vertical layers (10m thickness at surface to 500m at bot-169

tom). The simulation is forced with observed greenhouse gas emissions from 1860−1990170

and then with a high emissions scenario that is analogous to the IPCC’s Representative171

Concentration Pathway 8.5, from 1990− 2110. This perturbation results in ∼3◦C sea172

surface temperature warming by 2100, sea ice retreat, increased stratification, and an173

altered overturning circulation. The IGSM has been used to examine changes in marine174

biogeochemstry and ecology in previous studies (e.g. (Dutkiewicz et al., 2013) but with175

a simpler version of the ecosystem model. The current more complex ecosystem has also176

been used in previous studies, but only for the present day’s ocean (Dutkiewicz et al.,177

2021; Sonnewald et al., 2020; Kuhn et al., 2019). This model and previous model val-178

idation for the present day demonstrates that the output compares well with observa-179

tions along both axes of size and functional type (e.g. (Dutkiewicz et al., 2021, 2020)).180

2.2 Ecosystem and Environmental Variables181

Surface-level plankton abundance data and environmental parameters were extracted182

from Darwin simulation outputs, where surface in this context refers to the 10m thick183

surface grid box. The ecosystem data contains 51 separate plankton biomasses, arranged184

into seven functional groups (as described above). A number of environmental variables185

have frequently been integrated into correlative SDMs to predict abundance and diver-186

sity, and have thus been included here. They are: sea surface temperature (SST), pho-187

tosynthetically active radiation (PAR), phosphate (PO4), nitrate (NO3), silicate (Si) and188

iron (Fe). We sampled both the plankton abundance data and the environmental pre-189

dictor variables from the 3586 spatiotemporal cells that encompass the representative190

ocean measurement coordinates, and from the 3586 randomly selected spatiotemporal191

cells. Note that the model simulation used for the current analysis nominally starts in192

1991 and extends to 2100. As such, we sample the model output from the beginning of193

1991 to the end of 2012 and consider this as a substitute to 1987−2008 in this context.194

This is justified because the Darwin model’s internal variability does not match real-world195

interannual variability in terms of timing, though does capture the magnitudes (e.g. there196

are El Niño events, but these do not occur in the same years as the real ocean). To val-197

idate predictions, we also consider whole-ocean surface data over the same period, and198

for the final 22 years of the simulation, from 2079 − 2100.199

2.3 Building the Correlative SDM200

Although GAMs have considerable flexibility in how their core components are se-201

lected, we used the standard ‘LinearGAM’ model of the freely available PyGAM pack-202

age (Servén & Brummitt, 2018). LinearGAM incorporates a Gaussian distribution func-203

tion with an identity link function, and fits predictor functions using penalised B-splines.204

In combination, these components impose smoothness to prevent over-fitting, and en-205

able the automatic fitting of nonlinear relationships. For an initial set of results, we set206

the number of permitted splines to 20 for each predictor variable. We note that our re-207

sults are not sensitive to the choice of this parameter (see ‘Model Comparison & Sen-208

sitivity Tests’). At the outset, we attempted to resolve and make predictions for indi-209

vidual plankton tracers, but the resulting models proved to be highly unstable, so we in-210

stead choose to proceed by summing the abundance data for each functional group, and211

training GAMs accordingly. The resulting partial dependency plots were examined for212

unexpected behaviours, or any clear indications of over or under-fitting. The resulting213

GAMs SDM was then used to make predictions for the global surface ocean plankton214

biomasses during 1987-2008 and 2079-2100.215
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2.4 Model Comparison & Sensitivity Tests216

We define presence/absence as modelled biomass being above/below a cutoff thresh-217

old (10−5 mmol C/m3), but find that patterns in the resulting predictions are not sen-218

sitive to the choice of this threshold (Table S4).219

The R2 value of the GAMs predictions against the ‘ground-truth’ simulation val-220

ues is given as R2 = 1 − SSres/SStot, where SSres is the residual sum of squares and221

SStot is the total sum of squares. While R2 is a widely-used statistic in regression anal-222

yses, it does not by itself provide a complete picture of goodness of fit. We therefore also223

examine the mean and median relative differences, defined here as Xme = (meanpredicted−224

meanactual)/meanactual and X̃md = (medianpredicted − medianactual)/medianactual,225

as an indicator of bias. We also consider the false positive and false negative fractions,226

i.e. the fraction of grid cells where the GAMs incorrectly predict, respectively, present227

and absent biomass. Finally, we performed the above analyses with the logarithm of biomass228

concentrations and found that our results were not sensitive to this choice. Overall, we229

found that coccolithophores yielded the median performance in terms of goodness of fit230

with respect to spatial extrapolations. As such, this group is featured in the main body231

of this work, while results for the other six functional groups are reported in the sup-232

plements.233

GAM sensitivity was investigated by varying the number of splines used in perform-234

ing the fits; first by halving to 10, and then doubling to 40. While the resulting partial235

dependency plots revealed a clear change to the smoothness of the fit, as expected, we236

found that the resulting statistics were not appreciably impacted. To investigate the ef-237

fect of sample size on the overall predictive power of the GAMs, we vary the number of238

randomly-sampled cells from a minimum of 100 (reducing to 63 ocean cells), to a max-239

imum of 20, 000 (reducing to 11, 557 ocean cells), using 18 different test cases. Each sam-240

ple size test case consists of three independent random samples, with the mean value be-241

ing reported along with the standard deviation (Figure 4).242

We also performed a range of simpler correlation analyses, to build a broader pic-243

ture of the emergent relationships between functional group biomass and predictors. These244

act as a visual aid to better understand how these relationships might change in time245

and space, and as a basic cross-reference for GAMs-derived partial dependence plots of246

the training sets. We first calculate the Pearson’s Correlation Coefficient (ρ) for each func-247

tional group-predictor pair, and the Spearman’s Rank Correlation Coefficient (ρs). Re-248

spectively, these popular methods detect the strength of linear associations between vari-249

ables, and the strength of correlation in monotonic relationships. A commonly used method250

for addressing skew or capturing scaling relationships is the log-transform, which we ap-251

ply to all datasets before recalculating ρ. However, this method of broadly applying a252

single transformation is not optimal. A more robust approach would be to examine the253

distribution of each target-predictor relationship individually, before an appropriate trans-254

formation is selected. Nonetheless, even this more optimal method runs the risk prop-255

agating transformation uncertainty into the resulting confidence interval.256

With these limitations in mind, we also determine correlations using the more re-257

cent distance correlations method of (Székely et al., 2007). This technique captures the258

strength of both linear and nonlinear associations and avoids the need to make assump-259

tions about variable distributions or linearity. We plot the correlation matrices for the260

main 3586 cell test cases, both measurements-derived and randomly-sampled, in 1987-261

2008, and at the same locations in 2079-2100. We explore the effect of sample size on262

the derived correlations by increasing the number of randomly-sampled cells to 12, 894,263

and finally to 25, 683 cells.264
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3 Results265

3.1 Spatial Predictions266

We first describe the results of predicting plankton biogeography during the his-267

torical measurement period (1987 − 2008) (Figure 1). We find that predictive ability268

varies considerably across functional groups. There are fewer instances of our SDM in-269

correctly predicting presence (false positive) or absence (false negative) biomass for prokary-270

otes, picophytoplankton and coccolithophores (16−19% of all location-month pairs) than271

for diatoms, diazotrophs, and dinoflagellates (26−31%), with zooplankton in between272

(21%). Where biomass is present and is predicted as such, the SDM’s predictive abil-273

ity for biomass concentration also varies substantially between functional groups (Fig-274

ure 2); the SDM accounts for as much as 71% of the variance in biomass (diazotrophs)275

and as little as 41% (zooplankton). These patterns are reflected also in the mean rela-276

tive differences and the balanced accuracy.277

Patterns of overprediction of biomass occurs across most of the oceans. For prokary-278

otes, picoeukaryotes, dinoflagellates and zooplankton, this is especially evident in the Arc-279

tic (see Figures (c) of S1, S2, S5, S6). For these groups, we also see consistent underpre-280

diction in most of the Indian Ocean and in the Eastern Equatorial Pacific. Meanwhile,281

diatoms are substantially overpredicted in most of the mid- and high-latitudes in the North-282

ern Hemisphere but perform relatively well in the subtropics (Figure S4(c)). Diazotrophs283

yield the best overall performance, with only a small amount of overprediction in the sub-284

tropical Atlantic, and overprediction in the transition zone latitudes poleward of the sub-285

tropics (Figure S3(c)).286

In general the SDM shows a tendency to overestimate biomass in the spatial pre-287

dictions regime. Overestimation ranges between 9−21% on average (picoeukaryotes and288

zooplankton, respectively), with a median overprediction of ≥16%. Despite this, there289

are some notable instances in the current context where the model performs well. Spa-290

tial predictions for coccolithophores, prokaryotes and diazotrophs all yield R2 values that291

range between 0.62 and 0.71 (Figures 1(e), S1(e), S5(e)). Diazotrophs fare particularly292

well in this regime, with a mean overprediction of 10%, an R2 of 0.71, and the best vi-293

sual, qualitative match of biogeography overall (although we note that the median over-294

prediction in this case is a substantial 194%) (Figures S3(c) and S3(e)). On the whole,295

the SDM trained on data from historical measurement locations appear to be able to re-296

produce qualitative biogeographic patterns from spatial predictions well, but quantita-297

tive performance is variable, with a broad tendency towards overprediction. Notably, the298

greatest predictive errors more often occur in the undersampled regions of the ocean, such299

as the Arctic and Indian Oceans, but are by no means confined to these regions. For in-300

stance in the highly sampled North Atlantic predictions for diatoms and diazotrophs was301

also poor.302

3.2 Temporal Predictions303

The SDM’s predictive ability is substantially reduced when extrapolating to the304

future ocean (see Figures 1 and 2). Rates of false positives and negatives in presence/absence305

do not uniformly change across functional groups: the cosmopolitan groups whose ranges306

expand poleward experience the least overall change, increasing by between 3% and 11%307

in prokaryotes, dinoflagellates and coccolithophores, with a decrease of 5% for picophy-308

toplankton. The SDM’s ability to correctly predict presence/absence is further reduced309

for the groups with a more confined biogeography, increasing by between 14% and 23%310

for diazotrophs, zooplankton and diatoms. We see a substantial increase in false nega-311

tive occurrences for diatoms (to 29%), the group whose biogeographic range contracts312

most. Where biomass is present and is predicted as such, the SDM’s predictive ability313

was reduced for all functional groups. In most cases, this reduction is substantial, with314

the fraction of variance accounted for by the SDM reducing by between 17 and 50%, such315
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that the prediction for zooplankton is worse than just assuming a globally uniform con-316

stant biomass (i.e. R2 < 0). We see a marked increased in mean relative differences com-317

pared to the ‘spatial’ predictions, accompanied by a reduction in balanced accuracy for318

all groups besides diatoms (Figure 2).319

Diatoms are the only group for which the fraction of variance accounted for does320

not decrease substantially, only from R2 = 0.59 to R2 = 0.56 (Figure S4). Thus, the321

predictive ability for diatom biomass where it is present is not greatly reduced, despite322

the SDM’s substantial overprediction of the contraction of diatoms’ biogeography. This323

is not sensitive to varying the absence/presence cut-off value by an order or magnitude324

in either direction (Table S1).325

Spatial patterns of prediction errors of coccolithophores, prokaryotes, picoeukary-326

otes, dinoflagellates and zooplankton are largely similar to those for the historical pe-327

riod, except the North Atlantic is now underpredicted for all groups besides diazotrophs328

(Figures 1, S1, S2, S4, S5, S6). Diatom biomass is notably underpredicted in the South-329

ern Ocean and Northern Atlantic (Figure S4). Meanwhile, diazotroph biomass is notably330

overpredicted throughout the Atlantic Ocean, the Arctic, bands of the subtropical Pa-331

cific and Indian Ocean (Figure S3). Excluding diatoms, the overall tendency towards over-332

prediction is exacerbated for all groups, increasing by 57% for prokaryotes, picoeukary-333

otes, coccolithophores, and dinoflagellates, by 20% for zooplankton, and by 49% for di-334

azotrophs. Median overpredictions also increase for all groups besides diatoms.335

3.3 Model Trained on Randomised Locations336

Here we compared the above results with those produced when the GAMs SDM337

was trained on randomly sampled datasets (Figure 2). Interestingly, the broad spatial338

patterns of where overprediction and underprediction occurs do not change much when339

training the SDM on randomly distributed data, as opposed to the ocean observation340

locations (Figures S8 and S9). Nonetheless, predictive abilities increase, biases are re-341

duced, and balanced accuracy increases in both the spatial and temporal cases (Figure342

2). The fraction of variance accounted for by the SDM increases by 2−19% when us-343

ing random data to predict historical biogeography, but increase from 5−46% when us-344

ing random data to predict future biogeography. The most notable differences are for345

prokaryotic, picoeukaryotic, and zooplankton biomass in the future case. The magnitude346

of the biases also decreases – average biases are within 3−4% in the historical case us-347

ing random data. The median bias for all groups is still that of overprediction, with most348

groups in the range of ≥17% compared to ≥30% for measurements-derived predictions.349

Diatoms and diazotrophs have a markedly higher bias in both measurements-derived and350

random cases, of ≥194% and ≥162%, and ≥65% and ≥35%. In the future case, using351

random data reduces biases for all groups, though does not eliminate them. We also found352

that the predictive ability of the SDM was only weakly dependent on sample size (where353

sample size here refers to the number of grid cell-month pairs that are sampled)(Figure354

4), with predictive ability appearing to plateau with increasing sample size.355

The results using random training datasets suggest that historical measurement356

biases reduce the predictive ability of the SDM more than the sample size of the train-357

ing dataset. Predictive ability can be improved by subsampling or weighting one’s train-358

ing dataset to reduce biases in space and time, although the coarse resolution of the Dar-359

win model – and thus reduced variability as a result of correlated observations – rela-360

tive to the real ocean may contribute to this plateauing effect.361
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(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) Mean coccolithophore surface biomass (1987 - 2008) from the Darwin
model. Red points indicate spatial location of training set datapoints, derived from ocean
measurement data. (b) As per 1(a) for the years 2079 - 2100. (c) Relative (percent) dif-
ference between mean diatom surface biomass from the Darwin model and the GAMs
(1987 - 2008) (d) As per 1(c) for the years 2079 - 2100. For direct visual comparison, we
first calculate the 5th and 95th percentile of the relative di↵erence values for both the
spatial and temporal predictions, then scale symmetrically to whichever of these values is
the greatest, in either direction. (e) Hexagonally binned scatterplot of GAMs predictions
vs Darwin model for grid cells in Figure 1(c), showing density of observations via colour-
bar on the right. Top inset shows fraction of data above the presence/absence threshold
(10�5 mmol C/m3) for both (green), one (pink), or neither (red) of the statistical and
numerical models. Bottom inset shows the R2, the relative di↵erence of the means (X̄me),
and the relative di↵erence of the medians (X̃md). (f) As per 1(e) but for grid cells in
1(d). See Supplemental Materials for other functional groups.
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Figure 1: (a) Mean coccolithophore surface biomass (1987 - 2008) from the Darwin
model. Red points indicate spatial location of training set datapoints, derived from ocean
measurement data. (b) As per 1(a) for the years 2079 - 2100. (c) Relative (percent) dif-
ference between mean coccolithophore surface biomass from the Darwin model and the
GAMs SDM (1987 - 2008) (d) As per 1(c) for the years 2079 - 2100. For direct visual
comparison, we first calculate the 5th and 95th percentile of the relative difference val-
ues for both the spatial and temporal predictions, then scale symmetrically to whichever
of these values is the greatest, in either direction. (e) Hexagonally binned scatterplot
of 1987-2008 GAMs SDM predictions vs 1987-2008 Darwin model. Colorbar shows log-
scaled density of observations. Top inset: Fraction of data above the presence/absence
threshold (10−5 mmol C/m3)(green box), GAMs SDM below threshold (left, light red),
Darwin below threshold (bottom, light red), both below threshold (dark red). Bottom
inset: The R2, relative difference of the means (X̄me), and relative difference of the me-
dians (X̃md). (f) As per 1(e) but for 2079-2100. See Supplemental Materials for other
functional groups.
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Figure 2: Comparing Darwin model ‘true’ biomasses with GAMs SDM predictions
for each functional group in 1987-2008 (historical) and 2079-2100 (future), and from
measurements-derived and randomly-sampled training sets. Top to Bottom: (a) Relative
differences of the means, given by (GAMsmean −Darwinmean)/Darwinmean.
(b) Balanced accuracy, given by (sensitivity + specificity)/2. (c) R2

362

4 Discussion363

Broadly, our GAMs-driven correlative SDM demonstrates capability in qualitatively364

capturing large-scale spatial patterns of plankton biogeography, but struggles to make365

robust quantitative predictions. This is particularly evident when the model is trained366

on historical ocean measurement data, and used to predict future plankton biogeogra-367

phy as a response to climate change. The emergent relationships between predictor vari-368

ables and plankton abundances change spatially, seasonally and over the longer term.369

This is demonstrated by the variable nature of the partial dependence plots (Figure 3(a)−370

(b) and Figures S10 and S11), and by the change in correlation strengths identified by371

each of the independent methods used in generating the correlation matrices (Figure 3(c)−372

(f) and Figure S12). The correlation matrices offer an especially powerful visual demon-373

stration of these points; we clearly see the change in apparent relationships between biomass374

and environmental predictors in the measurements-derived sample space, assessed over375

the same period of time one hundred years into the future (Figure 3(c) and 3(d)). It’s376
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Figure 3: Changing Relationships: (a) Partial dependence plots of coccolithophore
biomass (mmol C/m3) as a function of each predictor, centred around the median (PO4,
NO3, Fe, Si in mmol X/m3, SST in ◦C, SSS in PSU, PAR in E/m2/day). Plotted using
data from 3586 Darwin surface ocean cells at measurements-derived locations spanning
1987-2008 (dashed red line) and at the same locations from 2079-2100 (blue line). Grey
lines indicate 95% confidence interval for the 1987-2008 case. (b) As per 3(a), but using
data from 3586 randomly sampled cells. (c) Correlation heatmap for the measurements-
derived training set, 1987-2008, generated using the distance correlations method of
(Székely et al., 2007). (d) Difference between correlation strengths derived in 3(b) and
those found at the same locations from 2079-2100. (e) and (f) As per 3(c) and 3(d), but
for the equivalently-sized, randomly-sampled training set.

important to note that we should expect these differences to be exaggerated in the real377

world, where the system is significantly more complex.378

Additionally, our results also demonstrate how spatial sampling bias can signifi-379

cantly alter the patterns of apparent relationships between environmental predictors and380

plankton biomass. The association strengths identified in the measurements-derived sam-381

ple vary considerably from those found in the random sample of equivalent size (see Fig-382

ure 3(c) vs. 3(e)). Importantly, this finding is robust across a range of sample sizes, where383

almost identical patterns of correlations are seen in the 3586 cell case as in the 25, 683384

cell case, as well as across several methods of deriving correlations (see Figure S12). Nonethe-385

less, the spatial patterns of over and under-prediction derived from the GAMs SDM are386

not merely the result of spatiotemporal measurement biases. We see remarkable agree-387

ment in these broad qualitative patterns between the predictions generated from measurements-388

derived and random samples ((c) and (d) of Figures 1, and S1−6, and Figures S8 and389

S9). Ocean measurement biases may explain some element of the tendency towards over-390

estimation of historical biogeography/abundances; perhaps because measurements have391

more often been made in places with higher than average abundances. In all cases, train-392

ing the statistical model on a non-biased dataset reduces the severity of over and under-393
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Figure 4: R2 of GAMs SDM model prediction as a function of sample size. Points are
the mean R2 value for coccolithophore predictions from three independent randomly-
generated training sets for each of the 18 sample sizes, ranging from N=63 to N=11,557.
Shading is the standard deviation.

prediction, especially for spatial predictions (Figure S8(e) and S9(e)). But the same broad394

biogeographic patterns remain, indicating that the SDM is failing to effectively capture395

changes over time, despite its relatively robust performance according to the broad brush396

strokes of summary statistics (Figure S4(e) and S4(f)).397

The fraction of variance that the SDM can account for saturates with sample size398

well below 100%, perhaps implying a potential ceiling on predictive ability. Nonetheless,399

a number of optimisations could be implemented to improve predictive skill; potentially400

in the SDM developed for the current case study, but certainly in real-world applications.401

First, we note that an unrepresentative training set presence/absence ratio compared to402

the population can lead to an unreliable representation of presence/absence in the re-403

sulting predictions. To avoid this possibility, researchers working with real observational404

data will sometimes employ resampling techniques (e.g. (Wei & Dunbrack, 2013)) to ac-405

count for this effect. By contrast, our experimental design permitted us the unusual op-406

portunity of testing our outcomes alongside a range of representative, randomly-sampled407

datasets spanning the surface ocean. These unbiased samples are representative of the408

presence/absence ratios of the population, and thus act as a control for our observations-409

derived test case. Given the broadly similar patterns of over and underprediction found410

across test cases, we do not employ resampling techniques here, but we encourage their411

application in real-world settings.412

Related also to the more flexible nature of our study in comparison to correlative413

SDMs built from real-world observations, is the manner in which we approach training,414

validation and testing datasets. In some cases, machine learning practitioners working415

with real-world data, and their associated limitations, might reserve a proportion of the416
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training set for model validation, as well as an independent, but similarly-distributed,417

dataset for performance testing. A validation set allows for optimisation via the fine-tuning418

of model parameters, and for the avoidance of over-fitting, while the test set permits eval-419

uation of model skill. Here, we use whole-ocean Darwin Model output as our test set for420

evaluating overall performance. Given model response to sensitivity tests, and GAM’s421

natural robustness to over-fitting as a result of predictor function regularisation, we do422

not explicitly employ a validation set. Model skill could be improved with parameter fine-423

tuning, especially in the spatial predictions test case. But it is less clear whether fine-424

tuning for performance using a training set sampled from the Darwin Model ocean of425

1987-2008 would improve end-of-century predictions, for reasons that we will return to426

as this discussion progresses. Additionally, we speculate that our decision to train the427

GAMs SDM using the entire measurements-derived sample might itself yield improve-428

ments relative to splitting the samples into training, testing and validation subsamples.429

The median overestimations of the GAMs SDM compared to the Darwin ‘ground430

truth’, even when using randomly sampled training data, also implies that these predicted431

abundance distributions are less skewed than the Darwin model distributions, which are,432

in turn, less skewed than distributions in the the real ocean. That is not to say, however,433

that all correlative SDMs will yield equivalent outcomes, regardless of the empirical mod-434

els at their cores. Recent work by (Rudy et al., 2017) demonstrates that empirical meth-435

ods can reliably extract the underlying mechanistic equations that govern a dynamical436

system. Similarly, (Holder & Gnanadesikan, 2021) evaluate random forest (RF) and neu-437

ral network ensembles (NNE) in their ability to resolve the underlying intrinsic relation-438

ships between plankton biomass and environmental predictors, from the apparent rela-439

tionships in the data. They demonstrate variability in predictive skill across different em-440

pirical test cases, and find that NNE’s yield overall superior performance; particularly441

in the case where plankton growth rates respond rapidly to environmental change, as might442

be expected in many real-world ocean environments. These hybrid methods represent443

a potential step toward building more skillful and descriptive models.444

Although improvements to overall predictive skill might be made through model445

optimisation techniques, we argue here that the assumptions and uncertainties inherent446

to correlative SDMs apply fundamental limits to their utility. For instance, although we447

might feasibly achieve a better fit to the training data, questions still remain as to whether448

the environmental data included in the model reflect the true and complete niche require-449

ments of the target species’. Even if we were to overcome this issue, using environmen-450

tal correlates of distribution to predict abundance elsewhere in space and time implies451

that the distributions in the training data are at equilibrium, such that the niche is ’fully452

occupied’. This may not be the case, as an otherwise suitable niche for a given species453

might have experienced some recent perturbation that temporarily reduces its equilib-454

rium population density.455

Empirical methods that extract the intrinsic drivers of plankton abundance and456

distribution (as derived in laboratory settings) might also yield considerable improve-457

ments to predictive capabilities of correlative SDMs. If factors such as spatiotemporal458

sampling bias and spatial autocorrelation in ocean measurements can also be accounted459

for, predictive skill might be greatly improved, especially in spatial extrapolations. How-460

ever, appreciable improvements to multidecadel predictions of how plankton communi-461

ties might respond to climate change would still not be guaranteed; we cannot assume462

that a specie’s niche envelope is fixed and immutable over time. This is clearly demon-463

strated in our results; but we should expect the predictive skill of correlative SDMs ap-464

plied to real world data to yield poorer results still. For instance, there are many more465

degrees of freedom in real-world interactions between plankton individuals, communi-466

ties, and the wider ecosystem and environment. In addition to the controlling influence467

of e.g. nutrient supply rate, physical transport processes and level of top down pressure,468

plankton are also able to adapt genetically, epigenetically and plastically to change. With469
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their short generation times and high biodiversity, we might expect that even intrinsic470

relationships could change over the course of a century. This is especially likely in such471

a dynamic, randomly-perturbed, and far-from-equilibrium environment, where conditions472

are ideal for unpredictable emergent phenomena to arise. By contrast, all such elements473

within the Darwin Model are simplified by design, and intrinsic relationships are held474

steady over time, such that the spatiotemporal variability in apparent relationships seen475

here are the product of many fewer sources of complexity, right down to how climate change476

proceeds (a known quantity in the Darwin Model, and yet another significant source of477

uncertainty in the real world).478

We focus here on deriving our SDM using a statistical learning model that, for rea-479

sons outlined in Materials & Methods, we believe makes for an excellent case study. Our480

investigation has allowed us to better clarify the strengths and limitations of such an ap-481

proach, as applied in the current context. Owing to the complexity and ever-changing482

nature of the system, some of these limitations could be fundamental and unavoidable,483

particularly when extrapolating far beyond the training regime.484

Methodologically, the broader approach we have presented of applying an empir-485

ical model to output from a numerical model may be useful for addressing a number of486

additional questions. These might include evaluating how best to empirically model whole-487

ecosystem properties, such as diversity, from observations, or assessing where and when488

to make new observations to maximise information content about global plankton bio-489

geography. But, as our results here have demonstrated and reinforced, it is important490

to be aware of the strengths and limitations of this approach, especially when dealing491

with a high degree of complexity over time.492

5 Conclusion493

In summary, our results suggest that correlative SDMs like the one developed here494

can be powerful tools for extrapolating from sparse measurement sets to capture the qual-495

itative spatial patterns of plankton biomass in the present-day ocean. However, their pre-496

dictions are especially sensitive to the spatiotemporal bias in historical measurements,497

and can tend towards overprediction if not properly accounted for. In addition, such mod-498

els demonstrably struggle to predict future plankton biomass because the spatial and tem-499

poral complexity of the physical, chemical and biological interactions that characterise500

the system give rise to a variability that cannot be accurately predicted decades ahead501

of time from correlations in contemporary data. The changes in relationship between en-502

vironmental variables and the plankton abundances demonstrated in the current work503

could be greatly exaggerated in correlative SDMs that tackle the significantly more com-504

plex task of predicting real-world plankton biogeography using sparse observational data.505
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Introduction This document accompanies the above mentioned manuscript, wherein

we explore the performance of a correlative species distribution model in predicting the

plankton biogeography, using the Darwin model as a ‘ground-truthed’ virtual environ-

ment. The analyses used to generate the following results are described in the Materi-

als and Methods section of the main text.

Figures S1 to S6 is a complete set of figures, equivalent to Figure (1) in the main

text, for all remaining plankton functional groups included in this study.

Figure S7 shows the true/false positives (TP, FP) and true/false negatives (TN,

FN) from the GAMs predictions for all functional groups in the four different scenarios:

GAMs trained on measurements-derived datapoints versus random datapoints, and spatial-

only predictions (historical) versus end-of-century predictions (future). Note that the for-

mat of this figure is best understood as a bar plot visualisation of a confidence matrix,

such that TP + FP + TN + FN = 1.

Figures S8 and S9 are the relative difference maps between Darwin model ”true”

values and the GAMs SDM predictions for all functional groups, in the historical period

(1987-2008) and by end-of-century (2079-2100).
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Figure S10 is the partial dependence plots for all functional groups besides Coc-

colithophores, which are given in the main text. GAMs trained on data within 3586 Dar-

win surface cells, from the 1987-2008 period, and the 2079-2100 period. These demon-

strate how relationships between each predictor variable and the target variable (plank-

ton biomass) change over time, for each functional group.

Figure S11 is equivalent to S10, but for 3586 randomly-distributed cells.

Figure S12 shows the correlations between predictors and functional group biomass

within measurement-derived and randomly-distributed samples, of varying sizes, histor-

ical and future. Several methods are used for comparison: Distance Correlations, Pear-

son’s Correlation Coefficient (ρ), calculated after data are transformed via natural log

(ρln), Spearman’s Rank Correlation Coefficient (ρs.

Figure S13 shows the distribution of randomly-selected datapoints (the ocean ob-

servation analogue points are included in Figure 1a in the main text).

Table S1 Summary data for a range of sensitivity tests done on varied random sam-

ple sizes, from number of cells N=63 to N=11,557, and in predicting both historical and

future biogeography.

Table S2 Summary of results for the predictions generated from the main 3586 cell

testcases.

Table S3 Proportion of the functional group biomass measurements that were be-

low the absence cut-off, for the 3586 cell training sets.

Table S4 Summary data for a range of sensitivity tests done on how varying presence-

absence cut-off by a factory of ten in either direction affects results.

The raw Darwin model output used for this work is available at http://www.dataverse

.harvard.edu/dataverse/.

The processed surface (top 10m) ocean ecosystem and physical data for the years

1991-2012 (which we consider equivalent to 1987-2008, for reasons explained in Meth-

ods and Materials) and 2079-2100, will also be made publicly available via Harvard Data-

verse.
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Finally, should the manuscript be accepted, DOIs for all associated code and data

will be provided.
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(a) (b)

(c) (d)

(e) (f)

Figure S1: Same as Figure 1 for Prokaryotes.
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Figure S1: (a) Mean prokaryote surface biomass (1987 - 2008) from the Darwin model.

(b) As per S1(a) for the years 2079 - 2100. (c) Relative (percent) difference between

mean diatom surface biomass from the Darwin model and the GAMs (1987 - 2008) (d)

As per S1(c) for the years 2079 - 2100. (e) Hexagonally binned scatterplot of 1987-2008

GAMs predictions vs 1987-2008 Darwin model. Colorbar shows log-scaled density of

observations. Top inset: Fraction of data above the presence/absence threshold (10−5

mmol C/m3)(green box), GAMs below threshold (left, light red), Darwin below thresh-

old (bottom, light red), both below threshold (dark red). Bottom inset: The R2, relative

difference of the means (X̄me), and relative difference of the medians (X̃md). (f) As per

S1(e) but for 2079-2100.
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(a) (b)

(c) (d)

(e) (f)

Figure S2: Same as Figure 1 for Picoeukaryotes.
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Figure S2: Picoeukaryotes, layout as per Figure S1.
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(a) (b)

(c) (d)

(e) (f)

Figure S3: Same as Figure 1 for Diazotrophs.
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Figure S3: Diazotrophs, layout as per Figure S1.
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(a) (b)

(c) (d)

(e) (f)

Figure S4: Same as Figure 1 for Diatoms.
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Figure S4: Diatoms, layout as per Figure S1.
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(a) (b)

(c) (d)

(e) (f)

Figure S5: Same as Figure 1 for Mixotrophic Dinoflagellates.
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Figure S5: Mixotrophic dinoflagellates, layout as per Figure S1.
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(a) (b)

(c) (d)

(e) (f)

Figure S6: Same as Figure 1 for Zooplankton.
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Figure S6: Zooplankton, layout as per Figure S1.
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Figure S7: True positive (blue), false positive (orange), false negative (yellow), and true

negative (purple), in terms of presence/absence above the cuto↵ biomass threshold, for

each functional group for historical and future predictions, with observations-derived and

random training sets. Note that the format of this figure is best understood as a bar plot

visualisation of a confidence matrix, such that TP + FP + TN + FN = 1.
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Figure S7: True positive (blue), false positive (orange), false negative (yellow), and true

negative (purple), in terms of presence/absence above the cutoff biomass threshold, for

each functional group for historical and future predictions, with observations-derived and

random training sets. Note that the format of this figure is best understood as a bar plot

visualisation of a confidence matrix, such that TP + FP + TN + FN = 1.
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(a) Pro (b) Pico (c) Cocco

(d) Diazo (e) Diatom (f) Dino

(g) Zoo

Figure S8: Relative (%) di↵erence in mean surface biomass (1987-2008) between the Dar-

win model and GAMs, where the latter has been trained on 3586 randomly-selected cells

(S11(a)).
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Figure S8: Relative (%) difference in mean surface biomass (1987-2008) between the Dar-

win model and GAMs, where the latter has been trained on 3586 randomly-selected cells

(S11(a)).
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(a) Pro (b) Pico (c) Cocco

(d) Diazo (e) Diatom (f) Dino

(g) Zoo

Figure S9: Relative (%) di↵erence in mean surface biomass (2079-2100) between the Dar-

win model and GAMs, where the latter has been trained on 3586 randomly-selected cells

(S11(a))
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Figure S9: Relative (%) difference in mean surface biomass (2079-2100) between the Dar-

win model and GAMs, where the latter has been trained on 3586 randomly-selected cells

(S11(a))
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Figure S10: Changing Relationships (models trained at ocean measurement locations):

Difference in partial dependence plots of plankton biomass for GAMs trained on data

from 1987-2008 (dashed red line) and from 2079-2100 (blue line), for each predictor (PO4,

NO3, Fe, Si in mmol X/m3, SST in ◦C, SSS in PSU , PAR in E/m2/day). From top to

bottom: (a) Pro, (b) Pico, (c) Diazo, (d) Diatom, (e) Dino, (f) Zoo.
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Figure S11: Changing Relationships (models trained at random locations): Difference in

partial dependence plots of plankton biomass for GAMs trained on data from 1987-2008

(dashed red line) and from 2079-2100 (blue line), for each predictor (PO4, NO3, Fe, Si

in mmol X/m3, SST in ◦C, SSS in PSU , PAR in E/m2/day). From top to bottom: (a)

Pro, (b) Pico, (c) Diazo, (d) Diatom, (e) Dino, (f) Zoo.
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Figure S12: Correlation Matrices: (a) Distance Correlations, 12,894 randomly-sampled

cells (1987-2008). (b) The difference between S12(a) and the same locations, 2079-2100.

(c) As per S12(a) for 25,683 cells. (d) As per S12(b) for 25,683 cells. (e) Pearson’s Cor-

relation Coefficients at ocean measurement locations, 3586 cells, 1987-2008. (f) As per

S12(e), 2079-2100. (g) As per S12(e) for random locations. (h) As per S12(g), 2079-2100.

(i) Pearson’s Correlation Coefficients of Log10 transformed data at ocean measurement

locations, 1987-2100, 3586 cells. (j) As per S12(i), 2079-2100. (k) As per S12(i), for ran-

dom sample. (l) As per S12(k), 2079-2100. (m) Spearman’s Rank correlation, from mea-

surements, 3586 cells, 1987-2008. (n) As per S12(m), 2079-2100. (o) As per S12(m), for

random locations. (p) As per S12(o), 2079-2100.
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Figure S13: Example of the sample distributions used for testing the e↵ect of sample size

on results. Shown are the three independent configurations of 3586 cell test cases.

summary_sizetests

group & no. cells GAMs absence Darwin absence Both presence Sensitivity Specificity Balanced Acc. Means Ratios Medians Ratios r-squared

1987-2008 cocco_63 78088 270362 1920351 0.90 0.59 0.74 -0.02 0.23 0.25

cocco_130 264221 270362 1772383 0.90 0.32 0.61 -0.01 0.07 0.41

cocco_262 242445 270362 1801160 0.91 0.37 0.64 -0.03 0.05 0.45

cocco_387 237705 270362 1795115 0.90 0.34 0.62 -0.03 0.06 0.53

cocco_506 235813 270362 1804463 0.91 0.37 0.64 -0.03 0.08 0.56

cocco_642 249108 270362 1806183 0.91 0.41 0.66 -0.02 0.1 0.57

cocco_951 214895 270362 1832190 0.91 0.44 0.68 -0.04 0.1 0.59

cocco_1273 215849 270362 1826321 0.91 0.41 0.66 -0.04 0.1 0.6

cocco_1914 218032 270362 1824663 0.91 0.41 0.66 -0.04 0.09 0.62

cocco_2576 220313 270362 1827632 0.91 0.43 0.67 -0.02 0.09 0.63

cocco_3189 237944 270362 1819557 0.92 0.44 0.68 -0.01 0.1 0.64

cocco_3823 235662 270362 1816323 0.91 0.42 0.67 -0.02 0.1 0.65

cocco_5105 238891 270362 1813581 0.91 0.42 0.67 -0.02 0.1 0.65

cocco_6385 235153 270362 1814256 0.91 0.41 0.66 -0.01 0.1 0.66

cocco_7694 235133 270362 1812618 0.91 0.40 0.66 -0.02 0.09 0.67

cocco_8987 239231 270362 1808001 0.91 0.40 0.65 -0.01 0.1 0.68

cocco_10278 238511 270362 1809469 0.91 0.40 0.66 -0.01 0.1 0.68

cocco_11557 240296 270362 1811764 0.91 0.41 0.66 -0.01 0.09 0.68

2079-2100 cocco_63 24345 143357 2066494 0.94 0.46 0.70 -0.03 0.2 0.13

cocco_130 254855 143357 1880659 0.96 0.22 0.59 -0.07 0.03 0.24

cocco_262 409770 143357 1722453 0.95 0.13 0.54 -0.12 -0.03 0.3

cocco_387 380840 143357 1750392 0.95 0.14 0.54 -0.05 0.07 0.38

cocco_506 363121 143357 1770250 0.95 0.15 0.55 -0.06 0.05 0.42

cocco_642 411339 143357 1731899 0.96 0.15 0.56 -0.08 0.03 0.43

cocco_951 287034 143357 1847036 0.95 0.19 0.57 -0.07 0.02 0.42

cocco_1273 288454 143357 1846416 0.95 0.19 0.57 -0.03 0.09 0.44

cocco_1914 297245 143357 1834847 0.95 0.18 0.56 -0.03 0.1 0.45

cocco_2576 325909 143357 1812718 0.96 0.18 0.57 -0.02 0.1 0.45

cocco_3189 347584 143357 1792247 0.96 0.17 0.56 -0.03 0.07 0.47

cocco_3823 362848 143357 1777020 0.96 0.17 0.56 -0.04 0.05 0.48

cocco_5105 357788 143357 1781900 0.96 0.17 0.56 -0.06 0.02 0.49

cocco_6385 344507 143357 1794904 0.96 0.17 0.56 -0.05 0.02 0.5

cocco_7694 340198 143357 1799150 0.96 0.18 0.57 -0.06 0.01 0.52

cocco_8987 337699 143357 1801904 0.96 0.18 0.57 -0.05 0.02 0.53

cocco_10278 341563 143357 1798800 0.96 0.18 0.57 -0.05 0.01 0.53

cocco_11557 338192 143357 1801954 0.96 0.18 0.57 -0.06 0 0.53

�1

Table S1: Testing Sample Size: The results from a range of sensitivity tests exploring the

e↵ect of sample size on GAMs performance when trained on random sample distributions

of varying cell size, as compared to the ‘true’ Darwin values.
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on results. Shown are the three independent configurations of 3586 cell test cases.
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Table S1: Testing Sample Size: The results from a range of sensitivity tests exploring the

effect of sample size on GAMs performance when trained on random sample distributions

of varying cell size, as compared to the ‘true’ Darwin values.
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summary_all

GAMs Absence Darwin Absence Both Presence Sensitivity Specificity Bal. Acc. Mean Ratio Med. Ratio r-squared

Obvs. Pro 289643 234332 1750622 0.91 0.18 0.54 0.1 0.18 0.63

1987-2008 Pico 233020 315132 1769297 0.89 0.40 0.65 0.09 0.18 0.49

Cocco 346786 270362 1724826 0.92 0.34 0.63 0.11 0.22 0.62

Diazo 740089 465617 1328257 0.90 0.42 0.66 0.1 1.94 0.71

Diatom 464219 434788 1434453 0.82 0.24 0.53 0.2 0.65 0.59

Dino 483597 448636 1450406 0.83 0.33 0.58 0.16 0.32 0.69

Zoo 377708 263891 1664984 0.90 0.22 0.56 0.21 0.5 0.41

Random Pro 249868 234332 1820431 0.92 0.33 0.62 -0.03 0.09 0.75

1987-2008 Pico 239126 315132 1793730 0.90 0.52 0.71 -0.01 0.1 0.63

Cocco 244842 270362 1807747 0.91 0.41 0.66 -0.01 0.12 0.64

Diazo 664359 465617 1363055 0.87 0.41 0.64 0.04 1.62 0.73

Diatom 463093 434788 1475506 0.84 0.32 0.58 0.02 0.35 0.78

Dino 430112 448636 1505060 0.84 0.37 0.61 0.03 0.29 0.71

Zoo 306205 263891 1737890 0.91 0.28 0.59 -0.03 0.21 0.59

Obvs. Pro 118442 121404 2004870 0.95 0.18 0.57 0.15 0.22 0.13

2079-2100 Pico 124381 158466 1964180 0.94 0.19 0.56 0.16 0.2 0.01

Cocco 308183 143357 1820087 0.95 0.16 0.55 0.17 0.36 0.45

Diazo 361561 316968 1653024 0.89 0.30 0.59 0.59 2.83 0.21

Diatom 823779 338479 1245015 0.89 0.22 0.56 -0.03 0.14 0.56

Dino 392510 357224 1574498 0.86 0.26 0.56 0.23 0.62 0.36

Zoo 378572 124043 1737890 0.94 0.05 0.49 0.41 0.78 -0.1

Random Pro 36486 121404 2071146 0.95 0.16 0.56 0.05 0.15 0.57

2079-2100 Pico 41648 158466 2027800 0.93 0.12 0.52 0.03 0.11 0.42

Cocco 344182 143357 1794021 0.95 0.17 0.56 0.01 0.16 0.5

Diazo 284328 316968 1747900 0.90 0.44 0.67 0.39 2.19 0.43

Diatom 936357 338479 1203113 0.94 0.27 0.60 0.02 0.39 0.74

Dino 433499 357224 1551800 0.87 0.28 0.57 0.05 0.47 0.52

Zoo 134244 124043 1965283 0.94 0.00 0.47 0.14 0.47 0.36

�1

Table S2: Summary of results for the predictions generated from the main 3586 cell test

cases. Note that the absence values are out of a total of 2,223,085 data points, and that

’Both presence’ refers to where both GAMs and Darwin predict presence.

Table 1

Pro Pico Cocco Diazo Diatom Dino Zoo

Obvs. 31 43 44 368 628 544 42

Random 309 438 359 680 661 678 380

�1

Table S3: Proportion of the functional group biomass measurements that were below the

absence cut-off, for the 3586 cell training sets.
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R2 X̄me X̃md

Darwin

removed

GAMs

removed

Cut

-o↵
1987

-2008

2079

-2100

1987

-2008

2079

-2100

1987

-2008

2079

-2100

1987

-2008

2079

-2100

1987

-2008

2079

-2100

0.64 0.13 0.16 0.17 0.22 0.23 0.15 0.03 0.13 0.05 Pro

0.49 0 0.09 0.17 0.19 0.22 0.12 0.06 0.11 0.06 Pico

0.62 0.45 0.11 0.19 0.23 0.41 0.1 0.04 0.16 0.14 Cocco

0.72 0.21 0.11 0.63 2.13 3.59 0.16 0.1 0.33 0.16 Diazo

0.59 0.57 0.22 -0.02 1.14 0.38 0.14 0.09 0.21 0.37 Diatom

0.69 0.35 0.18 0.27 0.38 0.82 0.16 0.11 0.22 0.18 Dino

10�6

0.39 -0.12 0.24 0.44 0.55 0.85 0.1 0.04 0.17 0.17 Zoo

0.63 0.13 0.1 0.15 0.18 0.22 0.11 0.05 0.13 0.05 Pro

0.49 0.01 0.09 0.16 0.18 0.2 0.14 0.07 0.10 0.06 Pico

0.62 0.45 0.11 0.17 0.22 0.36 0.12 0.06 0.16 0.14 Cocco

0.71 0.21 0.1 0.59 1.94 2.83 0.21 0.14 0.33 0.16 Diazo

0.59 0.56 0.2 -0.03 0.65 0.14 0.20 0.15 0.21 0.37 Diatom

0.69 0.36 0.16 0.23 0.32 0.62 0.20 0.16 0.22 0.18 Dino

10�5

0.41 -0.1 0.21 0.41 0.5 0.78 0.12 0.06 0.17 0.17 Zoo

0.62 0.13 0.09 0.14 0.16 0.21 0.15 0.05 0.13 0.05 Pro

0.49 0.02 0.08 0.14 0.17 0.19 0.16 0.07 0.10 0.05 Pico

0.62 0.46 0.1 0.15 0.21 0.3 0.15 0.06 0.16 0.14 Cocco

0.7 0.21 0.09 0.54 1.59 2.03 0.28 0.14 0.33 0.16 Diazo

0.59 0.53 0.17 -0.04 0.32 -0.1 0.26 0.15 0.21 0.37 Diatom

0.68 0.36 0.15 0.18 0.26 0.42 0.25 0.16 0.22 0.18 Dino

10�4

0.43 -0.09 0.19 0.38 0.46 0.72 0.14 0.06 0.17 0.17 Zoo

Table S4: Testing Cuto↵ Value Sensitivity: The results of a suite of tests designed to as-

sess the e↵ect of varying the absence cut-o↵ value from by a factor of ten on either side of

the 1e�5 value used for the main body of results.
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Table S4: Testing Cutoff Value Sensitivity: The results of a suite of tests designed to as-

sess the effect of varying the absence cut-off value from by a factor of ten on either side of

the 1e−5 value used for the main body of results.
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