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Abstract

Observational data from the past century show a weakening trend in summer monsoon over the Indian subcontinent. This

is possibly attributed to the reduced land–sea contrast resulting from the Indian Ocean warming under the rapid increase of

greenhouse gases in the atmosphere. In contrast, speleothem records indicate that the Indian summer monsoon was stronger

during the last interglacial (LIG) warm period than it is today. Using climate model simulations, we show that orbital forcing

effect during the LIG, as well as related ocean feedbacks, led to warming in the Eurasian continent and cooling in the Indian

Ocean basin. This amplified the land–sea contrast in the region and intensified the Indian summer monsoon. Although the LIG

is often portrayed as a potential analogue of future climate, our study shows that the Indian monsoon responded differently to

the LIG warming period than it does to current climate warming.
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Key Points: 17 

• Paleo proxy data and the model simulations indicate an intensified Indian summer 18 
monsoon during the last interglacial. 19 

• Orbital forcing during the last interglacial increased the hemispheric thermal gradient and 20 
enhanced the land-sea contrast in South Asia. 21 

• The Indian summer monsoon during the last interglacial was further amplified by 22 
feedbacks in the equatorial Indian Ocean and Pacific Ocean.  23 
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Abstract 24 

Observational data from the past century show a weakening trend in summer monsoon over the 25 
Indian subcontinent. This is possibly attributed to the reduced land–sea contrast resulting from 26 
the Indian Ocean warming under the rapid increase of greenhouse gases in the atmosphere. In 27 
contrast, speleothem records indicate that the Indian summer monsoon was stronger during the 28 
last interglacial (LIG) warm period than it is today. Using climate model simulations, we show 29 
that orbital forcing effect during the LIG, as well as related ocean feedbacks, led to warming in 30 
the Eurasian continent and cooling in the Indian Ocean basin. This amplified the land–sea 31 
contrast in the region and intensified the Indian summer monsoon. Although the LIG is often 32 
portrayed as a potential analogue of future climate, our study shows that the Indian monsoon 33 
responded differently to the LIG warming period than it does to current climate warming. 34 

Plain Language Summary 35 

One way to understand the future climate changes is to learn from the past warm periods. In this 36 
case the Last Interglacial (LIG) is often referred as a potential analogue. However, the 37 
paleoclimate proxy data such as the speleothem records show a stronger Indian summer 38 
monsoon (ISM) in the LIG, in contrast to an observed weakening trend in ISM in past century. In 39 
this study we use the climate model simulations to explain why the opposite changes happened 40 
in ISM during LIG and current global warming. The warming in the LIG was caused by changed 41 
distribution of solar radiation over the earth, which is different to the current warming resulted 42 
from increased Greenhouse Gas concentration in the atmosphere. The changes in Indian 43 
monsoon are mainly determined by the land-sea contrast in the region. Due to its special 44 
geographical location, i.e., north-south orientations of land-sea distribution, the solar radiation 45 
changes in LIG enhanced the land-sea contrast and thus intensified the summer monsoon. We 46 
suggest that although the LIG is often portrayed as a potential analogue for future climate 47 
change, the analogy does not hold in the Indian monsoon region. 48 

1 Introduction 49 

As one of the most powerful tropical monsoon climate systems in the world, the Indian summer 50 
monsoon (ISM) can bring moisture from the Indian Ocean towards the continent, resulting in 51 
heavy precipitation (Buckley et al., 2014). Even small changes in precipitation over the Indian 52 
subcontinent could have significant consequences for agricultural production and socio-53 
economic development (Gadgil & Kumar, 2006; Singh et al., 2014; Vittal et al., 2020). Previous 54 
studies have shown that changes to the ISM are highly sensitive to global warming (Kitoh et al., 55 
2013). The frequency of moderate precipitation events and the strength of summer monsoon over 56 
the Indian subcontinent have exhibited a significant weakening trend over the past century 57 
(Goswami et al., 2006; Li & Zeng, 2002). Meanwhile, global warming has caused sea surface 58 
temperature (SST) in the tropical eastern Indian Ocean to rise, which has resulted in a weakening 59 
of the land–sea thermal gradient and reduced Indian summer monsoon precipitation (Dinezio et 60 
al., 2020; Ramesh & Goswami, 2007; Roxy et al., 2015). Climate models participating in the 61 
fifth Climate Model Intercomparison Project (CMIP5) show a large uncertainty in their 62 
projections of the Indian monsoon system (Saha et al., 2014). It has been suggested that past 63 
warm climates could be used as a potential analogue to understand future climate changes. As 64 
part of CMIP, the Paleoclimate Model Intercomparison Project (PMIP) aims to evaluate the 65 
ability of CMIP6 models to reproduce past climate by comparing with paleoclimate proxy-data 66 
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records and to further our understanding of regional responses to a warmer climate, such as 67 
changes in the Indian monsoon (Harrison et al., 2015; Hirabayashi et al., 2013).  68 

The most recent warm period is the last interglacial (LIG), which lasted from 129 to 116 69 
thousand years (ka) before present. During the LIG, the geographical setting and concentration 70 
of greenhouse gases (GHGs) in the atmosphere were almost the same as in the present day. The 71 
main difference was the incoming solar radiation caused by changes in the Earth’s orbit. The 72 
global mean surface air temperature was ~2 ℃ higher than in the CMIP6 piControl for 1850 CE 73 
(PI) (Hoffman et al., 2017; Turney et al., 2020), and surface temperatures in the northern middle 74 
and high latitudes were about 2–5 ℃ higher (Turney & Jones, 2010). These global and 75 
hemispheric warming features are similar to projections of future global warming (Otto-Bliesner 76 
et al., 2017). The signal of long-term precipitation changes in the Indian monsoon have been 77 
mostly recorded in marine sediments and cave deposits (Cai et al., 2015; Cheng et al., 2016; 78 
Midhun et al., 2018). The δ18O signal recorded in stalagmites is one of the most important water 79 
tracers, but it has given conflicting results regarding changes in Asian monsoon precipitation. 80 
Previous studies have combined stalagmite δ18O, δ44Ca, and elemental ratios (e.g., Mg/Ca, Sr/Ca, 81 
and Ba/Ca) and shown that the ISM was unstable during the LIG (Magiera et al., 2019). Some 82 
other proxy records also showed varied changes in the Asian monsoon (Wang et al., 2008). One 83 
reason for this is that the variation in δ18O is affected by large-scale atmospheric dynamics more 84 
than by regional precipitation (Li, 2018; Tan, 2014). 85 

The LIG has been one of the main target periods in PMIP since PMIP3 (Masa et al., 2018). 86 
Multiple model ensembles show that there is a significant warming in almost all continents 87 
during boreal summer (Lunt et al., 2013; Nikolova et al., 2013; Pedersen et al., 2017). The 88 
increased Indian summer monsoon precipitation observed during the LIG contrasts with the 89 
decreased Indian summer monsoon precipitation projected under continuous global warming 90 
(Turner & Annamalai, 2012). Scussolini et al.(2019) note that the significant increase of Indian 91 
summer monsoon precipitation during the LIG period is consistent with the increase of cloud 92 
cover and surface cooling. However, there is still a large gap in our understanding of the 93 
dynamics of Indian summer monsoon precipitation during the LIG period compared with the 94 
Holocene and the present (Han et al., 2019; Lechleitner et al., 2017; Sinha et al., 2015). Current 95 
global warming has provided an important impetus to study climatology at higher global 96 
temperatures. Understanding the dynamics of ISM precipitation during the LIG will also provide 97 
a strong scientific basis for predicting spatiotemporal changes in the Indian climate.  98 

Here we use simulations from the global coupled climate model EC-Earth3 and analyze climatic 99 
changes in the ISM region by comparing with a PI control experiment. We find that due to the 100 
effect of orbital forcing, Indian summer monsoon precipitation during the LIG increased 101 
significantly over the west coast of the Western Ghats and the southern Higher Himalayas but 102 
decreased over the equatorial eastern Indian Ocean. These changes in Indian summer monsoon 103 
precipitation resulted primarily from enhancement of the hemispheric thermal contrast by 104 
changes in orbital forcing, which amplified the land–sea contrast. Meanwhile, the thermal 105 
imbalance between the Northern and Southern hemispheres led to an SST anomaly in the Pacific 106 
Ocean, which influenced the SST in the eastern Indian Ocean through ocean–atmosphere 107 
interactions, enhanced the land–sea contrast over the region, and further intensified the ISM 108 
precipitation over the Indian continent.   109 

 110 
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2 Model simulations and methods 111 

2.1 EC-Earth model and setup 112 

In this study, we use the PMIP4/CMIP6 simulations of the last interglacial and preindustrial 113 
period performed by EC-Earth3-LR (Zhang et al., 2021) . EC-Earth is a fully coupled Earth 114 
system model that is developed by a European consortium of around 30 research institutions and 115 
is widely used in various studies on climate change (Hazeleger et al., 2010, 2012). The 116 
atmospheric component of EC-Earth3 is the Integrated Forecasting System  model (cycle 36r4) 117 
of the European Center for Medium-Range Weather Forecasts (ECMWF), which contains the 118 
land surface Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (Balsamo et 119 
al., 2009). The ocean model is the Nucleus for European Modeling of the Ocean (NEMO; 120 
Madec, 2008), coupled with the dynamic–thermodynamic sea-ice model Louvain-la-Neuve 121 
version 3 (LIM3; Vancoppenolle et al., 2012). Atmospheric-land and ocean-sea-ice components 122 
are coupled through the Ocean, Atmosphere, Sea Ice, Soil coupler (Craig et al., 2017). The 123 
horizontal resolution of the atmosphere and land is 125 km with 62 vertical layers in the 124 
atmosphere; the ocean model, NEMO, has a horizontal resolution of 110 km with 75 vertical 125 
layers.  126 

We have run the lig127k and piControl simulations following the PMIP4/CMIP6 protocol 127 
(Kageyama et al., 2018). The piControl and lig127k have the same boundary conditions expected 128 
for the orbital forcing and GHGs. A detailed description of the piControl and lig127k simulations 129 
with EC-Earth3-LR is given in Zhang et al. (2021). The orbital forcing is calculated internally in 130 
the model. The orbital parameters are set for 1850 CE in the piControl run and for 127 ka before 131 
present in the lig127k run (the present day is set as 1950 CE in the orbital parameter calculation). 132 
The CO2, CH4, and N2O concentrations in the atmosphere are 284.3 ppm, 808.2 ppb, and 283 133 
ppb in the piControl run and 275 ppm, 586 ppb, and 255 ppb in the lig127k run. The lig127k 134 
simulation starts from the PI initial conditions and has a spin-up time of about 200 years. The 135 
simulation is run for 200 years after reaching equilibrium (i.e., when the global mean 136 
temperature trend is less than 0.05 K per century). We use 200 years of data for the analysis.  137 

2.2 Statistical methods and indices 138 

To investigate changes to the Indian summer monsoon during the LIG, we use a unified 139 
dynamical normalized seasonality (DNS) monsoon index defined by Li & Zeng (2002). This 140 
index represents the intensity of the monsoon based on the wind field rather than precipitation. It 141 
has been shown that this index represents the seasonal cycle and interannual variability of the 142 
monsoon over various areas well, especially in Asia (Wang et al., 2008). The index has also been 143 
adopted by the National Oceanic and Atmospheric Administration (http://www.cpc. 144 
noaa.gov/products/Global_Monsoons/Asian_Monsoons).  145 

The DNS index is given by 146 

 𝛿#$ =
||𝑽(𝒘𝒊𝒏𝒕𝒆𝒓 −	𝑽𝒏𝒎||

||𝑽(||
，  (1) 

 𝑽( = (𝑽(𝒘𝒊𝒏𝒕𝒆𝒓 + 𝑽(𝒔𝒖𝒎𝒎𝒆𝒓)/2， (2) 
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where 𝑽(𝒘𝒊𝒏𝒕𝒆𝒓	 and 		𝑽(𝒔𝒖𝒎𝒎𝒆𝒓 are the climatological winter and summer reference state wind 147 
vectors and 𝑽𝒏𝒎is the wind vector in a given month. Here, January represents winter and July 148 
represents summer. The norm ||A|| is defined as 149 

 ||𝐴|| = (∬;	|A|
2 dS)1/2，  (3) 

where S denotes the domain of integration. In calculations at a point (i, j), 150 

 
||𝐴=,?|| ≈ ∆𝑆[(D𝐴=EF,?G D + 4D𝐴=,?G D + D𝐴=IF,?G D) cos𝜑?
																+	D𝐴=,?EFG D cos𝜑?EF + D𝐴=,?IFG D cos𝜑?IF]

F/G

， (4) 

where ∆𝑆 = 𝑎∆𝜑∆𝜆/4, 𝜑? is the latitude at the point (i, j), ∆𝜑 and ∆𝜆 are resolutions in the 151 
meridional and zonal directions, respectively, and	𝑎 is the mean radius of the Earth (Li & Zeng, 152 
2000). 153 

We compute the DNS monsoon index using the monthly mean wind field at 850 hPa from the PI 154 
and LIG simulations. 155 

 156 

3 Paleo proxy evidence for an intensified Indian summer monsoon during the LIG 157 

Paleo proxy records indicate that South Asia was wetter during the LIG than in the PI period, 158 
mainly because of differences in orbital forcing and higher Northern Hemisphere summer 159 
insolation (Liu et al., 2020; Scussolini et al., 2019). Speleothem records from Bittoo cave 160 
(Khatayat et al., 2016) and Mawmluh cave (Magiera et al., 2019) both show more depleted 161 
oxygen isotopes during Marine Isotope Stage 5e (MIS-5e) than before or after (Fig. 1). Bittoo 162 
cave is situated on the edge of the ISM region in northern India (30°47′ 25′′N, 77°46′ 35′′E) and 163 
receives ~80% of its annual precipitation during the monsoonal months of June–September 164 
(Khatayat et al., 2016). Mawmluh cave is located in northeastern India (25°15′44′′N, 165 
91°52′54′′E) and gets 75% of its precipitation during the ISM. The main moisture source for 166 
monsoonal precipitation at both cave sites is the Bay of Bengal. Orographic lifting due to the 167 
Meghalaya Plateau and strong southeasterly flow over central India leads to extreme monsoon 168 
precipitation in this part of the ISM region, especially in northeast India (Magiera et al., 2019). 169 
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 170 

Figure 1. Proxy time-series of δ18O from Bittoo Cave (BT-2.3: black, BT-5: black/orange) and 171 
Mawmluh Cave (MAW-3: blue). Data presented in ‰ relative to VPDB (Vienna Pee Dee 172 
Belemnite) standard. LIG/MIS-5e is shaded in grey. 173 

Magiera et al. (2019) also investigated other proxies besides δ18O. Using a combination of δ18O, 174 
δ44Ca, and elemental measurements, the authors concluded that the wettest period was between 175 
135 and 100 ka before present, corresponding to the LIG/MIS-5e. The decrease in oxygen 176 
isotopes found in the speleothem at both Bittoo cave and Mawmluh cave suggests a stronger 177 
ISM with a more remote moisture source than the periods before and after the LIG. Proxy-record 178 
evidence of increased monsoon precipitation has also been found for the East Asian summer 179 
monsoon, suggesting that the two monsoon systems have a coupled response to changes in 180 
orbital forcing (Liu et al., 2020; Scussolini et al., 2019). 181 

 182 

4 Enhanced land–sea contrast due to orbital forcing 183 

 184 

Figure 2. Differences between the LIG and PI periods (LIG minus PI, the same in other figures) 185 
in (a) zonal mean TOA insolation and (b) surface temperature, averaged over 50oE–100oE. 186 

Differences in the Earth’s orbital parameters (the perihelion, obliquity, and eccentricity) during 187 
the LIG led to differences in the seasonal and latitudinal distribution of solar radiation received 188 
at the top of the atmosphere (TOA) compared with PI conditions (Berger & Loutre, 1991; Otto-189 
Bliesner et al., 2017). The incoming solar radiation received by the Northern Hemisphere 190 
(calculated as the zonal mean over 0°N–90°N) increased by 20.8 W/m2 from June to September 191 



Confidential manuscript submitted to Geophysical Research Letters 
 

 

(JJAS) during the LIG period, which is 7.1% more than that during the PI period (Fig. 2a). The 192 
increase in insolation was larger in the Northern Hemisphere than in the Southern Hemisphere, 193 
leading to an even larger hemispheric thermal gradient. This contrasts with the current global 194 
warming situation, where the growth rate of atmospheric internal energy in the Southern 195 
Hemisphere is higher than in the Northern Hemisphere (Chen et al., 2020).  196 

Increased solar radiation at the TOA directly affects the amount of heat reaching the surface and 197 
changes the surface energy budget. With increased incoming solar radiation in summer, the 198 
warming amplitude over land is larger than that over the ocean and this land–sea contrast triggers 199 
the onset of the monsoon. During the LIG, the orbital forcing induced surface warming over both 200 
land and ocean, but the warming amplitude was larger over the land than over the ocean (Fig. 201 
2b). The surface temperature of West Asia increased by ~3.6 °C in JJAS, whereas the surface 202 
temperature of the northern Indian Ocean increased by only 0.6°C (Fig. 2b). We calculate the 203 
land–sea contrast by taking the temperature difference between the Eurasian continent (10°N–204 
90°N, 50°E–100°E) and the Indian Ocean (30°S–10°N and 50°E–100°E). The land–sea contrast 205 
in the PI period was 10.4 °C over the Indian monsoon region, but during the LIG it was ~3 °C 206 
larger. In other words, the land–sea contrast was enhanced by ~28% during the LIG compared 207 
with the PI period.  208 

An increase in the land–sea thermal contrast should enhance the monsoon and lead to more 209 
monsoon precipitation (Chou, 2003; Wu et al., 2012). Previous studies have shown an increase in 210 
precipitation in the Indian subcontinent during the LIG period, indicating an enhanced monsoon 211 
(Magiera et al., 2019; Montoya et al., 2000). Here we quantify the differences in the intensity of 212 
the ISM between the LIG and PI periods using the DNS method proposed by Li & Zeng (2002). 213 
The DNS index indicates that the average intensity of the ISM during the LIG was 38% larger 214 
than during the PI period (not shown).  215 

In summary, during the LIG, the land–sea thermal contrast was 28% larger than during the PI 216 
period and the DNS monsoon index was 38% larger. The enhancement of the monsoon and 217 
land–sea contrast resulted directly from the differences in insolation. We show below that other 218 
indirect impacts further amplified the land–sea contrast and monsoon intensity. 219 

 220 
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5 Local response to orbital forcing 221 

 222 

Figure 3. Differences between the LIG and PI periods in (a) precipitation and (b) vertical 223 
circulation averaged over 60°E–100°E.  224 

Turner & Annamalai (2012) note that under current GHGs forcing, although the increased land–225 
sea contrast and water vapor should theoretically exacerbate monsoon precipitation, 226 
observational results do not provide any cogent evidence for such a positive trend, and even 227 
suggest a negative trend. This phenomenon may be related to the complex dynamical feedbacks 228 
within the tropical Indo-Pacific region. In contrast, during the LIG warm period, there was a 229 
significant increase of ~28% in Indian summer monsoon precipitation compared with the PI 230 
period. The major changes in precipitation were prominent in three areas: increased precipitation 231 
on the south side of the Himalayas and on the west side of the Western Ghats, and reduced 232 
precipitation over the equatorial eastern Indian Ocean (Figure 3a). 233 

The changes in the vertical circulation (Fig. 3b) correspond well to the changes in Indian 234 
monsoon precipitation (Fig. 3a). Two prominent local Hadley circulations resemble a "Double-235 
Wall" structure. The ascending air flow near 10°N and 30°N is within the Indian subcontinent 236 
and corresponds to the high precipitation centers shown in Fig. 3a. The descending branch is 237 
located in the equatorial region around 10°S–5°N and corresponds to the reduced precipitation in 238 
the equatorial eastern Indian Ocean. This suggests that the monsoonal flow carried water vapor 239 
northward from the Indian Ocean, resulting in strong convection when the topographic barrier 240 
was reached. The relationship between the precipitation anomaly pattern and the topography 241 
emphasizes the influence of topography and the vertical atmospheric motion on precipitation 242 
(Bookhagen & Burbank, 2006; Sudharsan et al., 2020). External forcing, such as the orbital 243 
forcing during the LIG, could have resulted in an anomalous near-surface cyclone over the 244 
Tibetan Plateau (see Fig. 5a in next section), leading to anomalous upward flow. This might have 245 
strengthened the ISM and been conducive to the transport of water vapor from the Bay of Bengal 246 
and the Arabian Sea to the Indian subcontinent. The external forcing might also have further 247 
amplified the "pumping" effect over the Tibetan Plateau in summer (Wu et al., 2015). 248 
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6 Ocean feedbacks and remote forcing from the Pacific 249 

 250 

Figure 4. Correlation between the DNS index and the Indian Ocean SST in JJAS during the LIG 251 
period. The correlation is calculated using 100 years of data from the EC-Earth3-LR LIG 252 
simulation. The stippled area indicates statistical significance at the 0.05 level. 253 

 254 

Saji et al. (1999) showed that the tropical Indian Ocean SST has an important influence on the 255 
Indian summer monsoon. Figure 4 shows the correlation between the intensity of the Indian 256 
summer monsoon (as measured by the DNS index) and the tropical Indian Ocean SST in the LIG 257 
period. The conventional monsoon index based on precipitation is primarily statistical, whereas 258 
the DNS method, by taking the wind field into account, is more strongly grounded in 259 
atmospheric dynamics and describes regional circulations more clearly and accurately (Li et al., 260 
2010; Zhang et al., 2018). Figure 4 shows that there was a statistically significant correlation 261 
between the equatorial Indian Ocean SST and the DNS index during the LIG. The correlation 262 
exhibits a dipole pattern, with negative correlations in the eastern part of the equatorial Indian 263 
Ocean and positive correlations in the western part. 264 

This correlation pattern resembles the SST differences between the LIG and PI periods (Fig. 5a). 265 
During the LIG, there was a cold tongue in the eastern equatorial Indian Ocean, with the largest 266 
part lying in the Southern Hemisphere. The increased insolation during the LIG (Fig. 2a) did not 267 
prevent the formation of this cold tongue and the strong seasonal hemispheric thermal contrast. 268 
The cooling might have been associated with the enhancement of the Indian summer monsoon, 269 
as shown in Fig. 5a. Bollasina & Ming (2013) showed that the spatial expansion of the Indian 270 
Ocean SST mode can affect ocean convection through the modulation of the atmospheric 271 
meridional circulation. Such an SST pattern increased the meridional SST gradient in the 272 
equatorial Indian Ocean during the LIG. The air on the west side was warmed and rose up 273 
whereas on the east side it was cooled and sunk down, thus strengthening the anomalous easterly 274 
winds at the surface of the equatorial Indian Ocean. 275 
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 276 

Figure 5. Differences between the LIG and PI periods in (a) 850 hPa wind (vectors), sea surface 277 
temperature (shading), and (b) ocean subsurface temperature, averaged over 10°S–5°N. The 278 
green line in (b) indicates the thermocline (represented by 23°C  isotherm) during the LIG, and 279 
the black line indicates the thermocline in the PI period. 280 

Furthermore, the Pacific Ocean can establish a connection with the tropical Indian Ocean 281 
through atmospheric circulation (Terray et al., 2021; Tokinaga et al., 2012), which can contribute 282 
to the generation of anomalous easterly winds. In addition to the hemispheric thermal contrast in 283 
the Indian Ocean in JJAS, there was a strong SST gradient between the northern and southern 284 
Pacific Ocean (Fig. 5a). As the SST increased in the North Pacific, the air mass warmed and 285 
sunk over the cold SST in the South Pacific, creating a meridional Hadley Circulation over the 286 
Pacific Ocean (not shown). Due to the leftward geostrophic deflection in the Southern 287 
Hemisphere, the downdrafts were deflected westward over the sea surface, forming anomalous 288 
easterly winds over the equatorial western Pacific and Indo-Pacific Warm Pool. According to 289 
ocean–atmosphere coupling theory (Bjerknes, 1969), the upwelling of the equatorial eastern 290 
Indian Ocean was enhanced under the action of the anomalous easterly winds. As the 291 
thermocline became shallower (deeper) in the equatorial eastern (western) Indian Ocean, the SST 292 
formed a dipole corresponding to the "warm West and cold East" pattern (Figure 5b). In addition, 293 
with the expansion of the SST cooling area in the equatorial eastern Indian Ocean, the land–sea 294 
thermal gradient in South Asia was further increased, which had a positive feedback effect on the 295 
Indian summer monsoon precipitation. 296 
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7 Conclusions 297 

Based on the EC-Earth3-LR model, this work explored whether the LIG could act as a potential 298 
analogue of the Indian monsoon system under global warming. Warming in the LIG was caused 299 
by different external forcing to current global warming; GHGs are the main external forcing of 300 
current warming, whereas orbital forcing drove the hemispheric thermal contrast during the LIG. 301 
We found that the Indian summer monsoon was intensified by the orbital forcing during the LIG, 302 
which is in contrast to the weakening of the monsoon that has occurred under GHGs forcing. We 303 
discussed the physical mechanisms behind the enhanced Indian summer monsoon from two 304 
perspectives: the direct effect of the land–sea contrast and the further amplification through 305 
ocean feedbacks. 306 

The direct effect of orbital forcing during the LIG enhanced the land–sea contrast in the Indian 307 
monsoon region by imposing a stronger hemispheric thermal gradient. The enhanced monsoon 308 
flow facilitated the “pumping effect" around the Tibetan Plateau and brought more water vapor 309 
from the Indian Ocean to the Indian subcontinent. Meanwhile, two anomalous meridional Hadley 310 
circulation structures were formed through topographic uplift, leading to increased precipitation 311 
on the coast of the Western Ghats and on the south side of the Himalayas, and a significant 312 
decrease in precipitation in the equatorial eastern Indian Ocean. Furthermore, the hemispheric 313 
thermal contrast formed anomalous easterly winds in the equatorial eastern Indian Ocean. A 314 
similar mechanism in the western Pacific resulted in anomalous easterly winds, which further 315 
enhanced the easterly winds in the eastern Indian Ocean. The weakened westerly winds led to a 316 
shallower thermocline in the equatorial eastern Indian Ocean and the subsequent upwelling 317 
enlarged the cooling area of the sea surface. A cooler eastern Indian Ocean further increased the 318 
thermal gradient between the Eurasian continent and the northern Indian Ocean, thus enhancing 319 
the Indian summer monsoon. The results indicate that during the LIG, the different insolation 320 
from today caused by orbital forcing enhanced the Indian summer monsoon, and this effect was 321 
further amplified by the ocean feedbacks in the eastern Indian Ocean and the western Pacific. 322 

In summary, unlike the weakening of the monsoon caused by GHGs warming, the warming 323 
during the LIG enhanced the interhemispheric thermal gradient, which strengthened the Indian 324 
summer monsoon. This mechanism is specific to the Indian monsoon, where the land–sea 325 
contrast is in the north–south direction. The hemispheric thermal contrast may not affect the 326 
West African monsoon or the East Asian monsoon, where the land–sea contrast is in the west–327 
east direction. We expect that the mechanisms behind the response of the Indian summer 328 
monsoon to orbital forcing during the LIG revealed in this paper will be of substantial and 329 
practical value for understanding past climate variability in South Asia and for interpreting future 330 
climate change. 331 
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