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Abstract

Arctic sea ice has substantially changed over the past four decades, with a large decrease in sea-ice area and volume. The exact

causes of these changes are not entirely known. In our study, we make use of the Swedish Meteorological and Hydrological

Institute Large Ensemble (SMHI-LENS). This ensemble consists of 50 members realized with the EC-Earth3 global climate

model and covers the period 1970-2100. We apply the Liang-Kleeman information flow method to analyze the cause-effect

relationships between Arctic sea ice and its potential drivers. We show that recent and future changes in Arctic sea ice

are mainly driven by air and sea-surface temperatures and ocean heat transport. Conversely, changes in Arctic sea ice also

considerably impact temperature and ocean heat transport. Finally, we find a progressive decrease in the influence of sea-ice

area and volume on air temperature and ocean heat transport through the twenty-first century.
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Abstract15

Arctic sea ice has substantially changed over the past four decades, with a large decrease16

in sea-ice area and volume. The exact causes of these changes are not entirely known.17

In our study, we make use of the Swedish Meteorological and Hydrological Institute Large18

Ensemble (SMHI-LENS). This ensemble consists of 50 members realized with the EC-19

Earth3 global climate model and covers the period 1970-2100. We apply the Liang-Kleeman20

information flow method to analyze the cause-effect relationships between Arctic sea ice21

and its potential drivers. We show that recent and future changes in Arctic sea ice are22

mainly driven by air and sea-surface temperatures and ocean heat transport. Conversely,23

changes in Arctic sea ice also considerably impact temperature and ocean heat trans-24

port. Finally, we find a progressive decrease in the influence of sea-ice area and volume25

on air temperature and ocean heat transport through the twenty-first century.26

Plain Language Summary27

The Arctic has been warming at a larger rate than the rest of the world, result-28

ing in a substantial loss of sea ice since the late 1970s. This has had and will continue29

to have an impact on our climate and societies. The exact causes of the ongoing sea-ice30

loss are not entirely known, and understanding them is important in order to better pre-31

pare our societies to future climate changes. In our study, we apply a relatively novel32

approach that quantifies the cause-effect relationships between Arctic sea ice and its po-33

tential drivers. We make use of a large range of model simulations performed with the34

EC-Earth3 global climate model covering the period 1970-2100. We find that air tem-35

perature, sea-surface temperature and the transport of heat by the ocean are important36

drivers of the ongoing and future retreat of Arctic sea ice. Conversely, changes in Arc-37

tic sea ice also affect the three former quantities. Our study demonstrates the perfor-38

mance of causal inference methods in the quest of better understanding relationships be-39

tween climate variables. The geophysical and climate communities could greatly ben-40

efit from using these methods more intensively.41

1 Introduction42

Arctic sea ice has been retreating and thinning since the beginning of satellite ob-43

servations in the late 1970s. Arctic sea-ice area, defined as the total area of the Arctic44

Ocean covered by sea ice, has decreased by ∼ 2 million km2 (in annual mean) since 1979,45

with stronger loss in summer compared to winter (Onarheim et al., 2018; Stroeve & Notz,46

2018; IPCC, 2019). As sea ice has also been thinning (Lindsay & Schweiger, 2015; Kwok,47

2018), the annnual mean Arctic sea-ice volume has decreased by ∼ 12,000 km3 since 197948

(Schweiger et al., 2019). Model projections show a more or less rapid continuation of this49

ongoing process depending on the greenhouse gas emission scenario, with likely summer50

ice-free Arctic conditions (September Arctic sea-ice area lower than 1 million km2) oc-51

curring before 2050 (SIMIP Community, 2020; Arthun et al., 2021; Docquier & Koenigk,52

2021).53

Recent changes in Arctic sea ice have been linked to both anthropogenic global warm-54

ing (Notz & Stroeve, 2016) and climate internal variability (Swart et al., 2015). How-55

ever, the exact drivers influencing sea-ice loss and their respective contribution are not56

fully understood. Both atmospheric (Ding et al., 2017) and ocean (Carmack et al., 2015)57

processes play a role in Arctic sea-ice changes. Typically, changes in near-surface air tem-58

perature strongly control the variability in Arctic sea-ice area over short time scales (Olonscheck59

et al., 2019), while ocean heat transport has a stronger impact on longer time scales (Onarheim60

et al., 2015).61

The influence of atmospheric and ocean processes on Arctic sea ice is usually quan-62

tified via correlation and regression analyses, including or not a lag (Arthun et al., 2012;63
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Sando et al., 2014; Auclair & Tremblay, 2018). However, the presence of a correlation64

between one variable and another does not firmly demonstrate a causal influence between65

these variables. In order to identify such a causal link, causal inference frameworks can66

be used (Granger, 1969; Sugihara et al., 2012; Liang, 2014; Krakovska et al., 2018; Runge67

et al., 2019) and have been applied to climate studies (e.g. Mosedale et al. (2006); Deza68

et al. (2015); Tsonis et al. (2015); Kretschmer et al. (2016); Vannitsem and Ekelmans69

(2018); Harries and O’Kane (2021)). The Liang-Kleeman information flow method (Liang70

& Kleeman, 2005) is particularly interesting because it allows to identify the direction71

and magnitude of the cause-effect relationships between variables (Liang, 2014, 2021).72

This novel method has been successfully applied to several climate studies (Stips et al.,73

2016; Vannitsem et al., 2019) and constitutes an adequate framework to identify causal74

relationships between different climate variables.75

In our study, we use the Liang-Kleeman information flow method to analyze the76

influence of several potential climate drivers on Arctic sea-ice area and volume, as well77

as the reverse impact of sea-ice area and volume on these drivers. We make use of the78

Swedish Meteorological and Hydrological Institute Large Ensemble (SMHI-LENS) to per-79

form this analysis. We describe the data and methodology in Section 2, present our main80

results in Section 3, and provide our conclusions in Section 4.81

2 Data and Methods82

SMHI-LENS is one of the largest existing single-model large ensembles using the83

Coupled Model Intercomparison Project 6 (CMIP6; Eyring et al. (2016)) forcing scenar-84

ios. It consists of 50 members realized with the global climate model EC-Earth3 (Wyser85

et al., 2021). The atmosphere component, IFS cy36r4, has a horizontal resolution of ∼ 80 km,86

while the ocean component, NEMO3.6 (including the sea-ice model LIM3), has a hor-87

izontal resolution of ∼ 1 ◦. The 50 ensemble members were started in 1970 from 50 dif-88

ferent initial conditions using CMIP6 historical forcing and run until 2014. From 201589

until the end of the century, each member was run several times to take into account dif-90

ferent greenhouse gas emission scenarios based on the Shared Socioeconomic Pathways91

(SSP; O’Neill et al. (2016)). More details about the SMHI-LENS protocol can be found92

in Wyser et al. (2021). In our study, we use the 50 members of SMHI-LENS over the his-93

torical period (1970-2014) and over the two most extreme SSP scenarios (2015-2100),94

i.e. SSP1-1.9 and SSP5-8.5, corresponding to an increase in global mean near-surface tem-95

perature of less than 2◦C and ∼ 6◦C, respectively, between 1970 and 2100 (Wyser et al.,96

2021).97

From the model outputs, we compute Arctic sea-ice area (volume) based on the98

product of sea-ice concentration (sea-ice volume per area, respectively) in each grid point99

and grid-cell area, summed over all grid points north of 40◦N. We focus on sea-ice area100

and volume in March and September, as these are months of maximum and minimum101

sea-ice area, respectively. We also compute six quantities that constitute potential at-102

mospheric and ocean drivers of changes in Arctic sea ice: Arctic near-surface air tem-103

perature, Arctic sea-surface temperature (SST), total Arctic Ocean heat transport, ocean104

heat transport at 70◦N, atmospheric heat transport at 70◦N, and Arctic Oscillation In-105

dex (AOI). We take the annual mean for the first five quantities, and the winter (January-106

March) average for AOI. Arctic near-surface and sea-surface temperatures are spatially107

averaged north of 70◦N. Total Arctic Ocean heat transport is the sum of ocean heat trans-108

port through the four main Arctic gates (Barents Sea Opening, Fram Strait, Davis Strait,109

Bering Strait), which are computed via the product of ocean temperature and velocity110

integrated across depth and the corresponding transects, as in Docquier et al. (2021).111

Ocean and atmospheric heat transports at 70◦N are estimated based on the net down-112

ward surface heat flux and top-of-the atmosphere radiation, as in van der Linden et al.113

(2019). AOI is computed based on monthly mean 1000 hPa geopotential height anoma-114

lies from 20◦N to 90◦N, as in Zhang et al. (2021).115
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In the high-emission scenario (SSP5-8.5), the ensemble mean March sea-ice area116

and volume decrease by 62 % and 94 %, respectively, across the 131 years of model sim-117

ulation and the September sea ice completely disappears around 2060 (Figure 1a,b). This118

sea-ice loss is associated with an increase in Arctic near-surface temperature and SST119

of 18◦C and 7◦C, respectively (Figure 1c), an enhanced total Arctic Ocean heat trans-120

port of 180 TW (Figure 1d), and an increase in ocean heat transport at 70◦N of 1.2 PW121

(Figure 1e) at the end of the century compared to 1970. The atmospheric heat trans-122

port at 70◦N slightly decreases (-0.3 PW) across the twenty-first century (Figure 1e), and123

no significant change is detected for AOI due to large interannual variability (Figure 1f).124

In the low-emission scenario (SSP1-1.9), these changes are also apparent but with a much125

lower magnitude and a stabilization around the middle of the century (Figure S1). Es-126

pecially, Arctic sea ice is still present in September and the ensemble mean September127

sea-ice area stabilizes at 1.8 million km2 from around 2040 to 2100. Note that ocean heat128

transport at 70◦N in SSP1-1.9 first increases until around 2030 and then decreases to129

its 1970 values. In our study, we focus on SSP5-8.5 as the results between the two sce-130

narios are relatively consistent in terms of transfer of information, but we also discuss131

differences between scenarios if they exist.132

The absolute rate of information transfer from variable Xj to variable Xi is com-133

puted following Liang (2021):134

Tj→i =
1

detC
·

d∑
k=1

∆jkCk,di ·
Cij

Cii
, (1)

where C is the covariance matrix, d is the number of variables (d = 7 in our case), ∆ij135

are the cofactors of C, Ck,di is the sample covariance between all Xk and the Euler for-136

ward difference approximation of dXi/dt (t is time), Cij is the sample covariance between137

Xi and Xj , Cii is the sample variance of Xi. When Tj→i is statistically different from138

0, Xj has an influence on Xi, while if Tj→i = 0 there is no influence. Statistical signif-139

icance is computed via bootstrap resampling with replacement of all terms included in140

equation (1) using 1000 realizations.141

To assess the importance of the different cause-effect relationships, we compute the142

relative rate of information transfer from variable Xj to variable Xi following Liang (2021):143

τj→i =
Tj→i

Z
, (2)

where Z is the normalizer, computed as follows:144

Z =

∣∣∣∣dH∗idt
∣∣∣∣+

d∑
k=2

|Tk→i|+
∣∣∣∣dHnoise

i

dt

∣∣∣∣ , (3)

where the first term on the right-hand side is the influence of Xi on itself (self-influence),145

the second term represents the information flowing from all the Xk to Xi, and the last146

term is the effect of noise, computed following Liang (2021). When |τ | = 100 %, Xj has147

the maximum influence on Xi, while when |τ | = 0 %, Xj has no influence on Xi. As for148

Tj→i, statistical significance of τj→i is computed via bootstrap resampling with replace-149

ment of all terms included in equations (2) and (3) using 1000 realizations. For both Tj→i150

and τj→i, the 95% confidence interval is built based on the standard deviation of boot-151

strapped absolute and relative rates of information transfer, respectively, multiplied by152

1.96.153

We compute the transfer of information including the seven variables described above,154

where sea ice is either March sea-ice area, September sea-ice area, March sea-ice volume155

or September sea-ice volume. This allows to check the role of sea-ice seasonality and the156

effect of using sea-ice thickness information or not. Two different methods for comput-157

ing the rate of information transfer are used. In the first method, hereafter referred to158
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Figure 1. Time series of all considered variables for the 50 EC-Earth3 members (thin lines)

and the ensemble mean (dark thick lines) over 1970-2100 (historical CMIP6 run and SSP5-8.5

scenario). (a) March and September Arctic sea-ice area (SIA); (b) March and September Arc-

tic sea-ice volume (SIV); (c) annual mean Arctic near-surface temperature (T2m) and Arctic

sea-surface temperature (SST); (d) annual mean total Arctic Ocean heat transport (OHTA); (e)

annual mean poleward ocean and atmospheric heat transports at 70◦N (OHT70N and AHT70N );

(f) winter (JFM) Arctic Oscillation index (AOI).
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as ‘member analysis’, the rate of information transfer is computed for each member sep-159

arately. As the information flow method applies to stationary time series (see Support-160

ing Information), we detrend each quantity before computing the rate of information trans-161

fer by removing the ensemble mean for each model member (Figure S2). Due to the lim-162

ited amount of September sea ice after 2040 and as the two last decades show a strong163

acceleration in the reduction of March sea-ice area in the high-emission scenario (Fig-164

ure 1a), we limit our analysis to 1970-2040 for September (71 data points for each mem-165

ber) and 1970-2080 for March (111 data points for each member). We take the ensem-166

ble mean rate of information transfer and check the statistical significance via the Fisher’s167

method for multiple tests (Fisher (1992); Figure 2). In the second method, hereafter re-168

ferred to as ‘time analysis’, the rate of information transfer is computed for each range169

of five years separately (across the member space, resulting in 250 data points for each170

period of five years, except for the last period 2095-2100 including six years). The lat-171

ter method allows to check the time evolution of the rate of information transfer between172

variables (Figures 3-4). Having 50 ensemble members allows to reduce the uncertainty173

related to internal variability (Jahn et al., 2016) for the member analysis, and brings a174

sufficient number of data points for the time analysis.175

3 Results176

3.1 Member Analysis177

Figure 2 provides a summary of results from the member analysis as matrices of178

ensemble mean relative rate of information transfer and correlation coefficient between179

March / September sea-ice area and its potential drivers based on SSP5-8.5. The self-180

influence of variables (shown in the matrix diagonals) is the largest compared to other181

influences (|τ | ranging between 38 and 69 %), indicating a strong feedback loop (Figure 2a,c).182

Beside these self-influences, there is a two-way significant information transfer be-183

tween March sea-ice area on the one hand, and Arctic SST and Arctic Ocean heat trans-184

port on the other hand, as well as a significant influence of March sea-ice area on near-185

surface temperature (Figure 2a). These causal links are stronger from March sea-ice area186

to near-surface temperature (|τ | = 15 %), to SST (|τ | = 11 %), and to Arctic Ocean heat187

transport (|τ | = 11 %; first row in Figure 2a), than the reverse (first column in Figure 2a).188

This suggests that recent and future changes in March sea-ice area have a strong impact189

on Arctic temperatures (both at the sea surface and air surface) and ocean heat trans-190

port, probably via the ice-albedo feedback (Andry et al., 2017; Massonnet et al., 2018;191

Wunderling et al., 2020). Additionally, correlation coefficients are negative between March192

sea-ice area and Arctic near-surface temperature (R = -0.79), Arctic SST (R = -0.75),193

and Arctic Ocean heat transport (R = -0.59; Figure 2b). Thus, combining the relative194

rates of information transfer and correlation coefficients, we can infer that the ongoing195

decrease in March sea-ice area leads to larger SST, larger near-surface temperature and196

larger ocean heat transport in the Arctic. Although slightly weaker, a similar conclusion197

can be drawn for the influence of SST and ocean heat transport on March sea-ice area.198

By contrast with March, September sea-ice area has a significant influence only on199

near-surface temperature (but this is relatively reduced, i.e. |τ | = 5 %; Figure 2c). Also,200

while changes in March sea-ice area are mainly driven by changes in SST (|τ | = 9 %)201

and Arctic Ocean heat transport (|τ | = 8 %; Figure 2a), changes in September sea-ice202

area primarily come from changes in near-surface temperature (|τ | = 13 %; Figure 2c).203

Arctic sea-ice area is more than twice larger in March compared to September (Figure 1a),204

and sea ice is present in March in (or close to) regions where large increases in ocean heat205

transport and SST have been reported in the past years, such as the Barents Sea (Arthun206

et al., 2012), Laptev Sea (Polyakov et al., 2017), and Chukchi Sea (Serreze et al., 2019).207

Thus, the role of a warming ocean and enhanced ocean heat transport on sea ice is greater208

in March compared to September. As sea ice is much more confined to the central Arc-209
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tic in September, the primary driver of September sea-ice area decrease in the past years210

is the air temperature. Thus, these results support a winter ocean-driven influence and211

a summer atmospheric-led influence.212

Results from the member analysis are relatively similar for the weak greenhouse213

gas emission scenario (SSP1-1.9), with a larger influence of March sea-ice area on Arc-214

tic near-surface temperature and ocean heat transport than the reverse, a larger impact215

of the atmosphere (near-surface temperature) on sea-ice area in September than in March,216

and a stronger causal link from the ocean (SST) to sea-ice area in March (Figure S3).217

An exception in SSP1-1.9, compared to SSP5-8.5, is that there is no significant informa-218

tion transfer from ocean heat transport to March and September sea-ice area. When tak-219

ing sea-ice volume instead of sea-ice area, the influence of near-surface temperature and220

SST on March sea-ice volume becomes larger than the reverse in the two emission sce-221

narios (Figures S4a and S5a). This suggests that temperature changes at the surface of222

the ocean and above greatly affect sea-ice thickness. In September, near-surface temper-223

ature constitutes the largest driver of sea-ice volume, similar to sea-ice area, but dur-224

ing this month sea-ice volume also affects SST and Arctic Ocean heat transport (Fig-225

ures S4c and S5c), while it is not the case for sea-ice area (Figures 2c and S3c). Thus,226

changes in sea-ice thickness play an important role in driving changes in ocean temper-227

ature and heat transport.228

For the two scenarios, no causal influence is detected between sea-ice area and vol-229

ume in March and September on the one hand, and ocean and atmospheric heat trans-230

ports at 70◦N and AOI on the other hand. Interestingly, a significantly positive corre-231

lation appears between March sea-ice area and atmospheric heat transport at 70◦N (R232

= 0.23; Figure 2b), but no transfer of information exists (Figure 2a). This suggests that233

an external driver causes concomitant changes in sea-ice area and atmospheric heat trans-234

port, while these two quantities do not influence each other. The main suspect is SST235

as it influences both variables: an increase in SST leads to lower sea-ice area and lower236

atmospheric heat transport at 70◦N (Figure 2a,b). This further demonstrates that cor-237

relation does not mean causation and shows the strength of the Liang-Kleeman infor-238

mation flow method (Liang, 2014). For ocean heat transport at 70◦N, the absence of cor-239

relation and causal link with sea ice indicates an absence of connection at such latitude,240

as is the case for other climate models (Burgard & Notz, 2017; Docquier et al., 2019).241

3.2 Time Analysis242

Based on the previous member analysis (Section 3.1), near-surface temperature,243

SST and Arctic Ocean heat transport have an influence on Arctic sea ice, and conversely.244

For the time analysis, we focus on the cause-effect relationships between near-surface air245

temperature and Arctic Ocean heat transport on the one hand, and Arctic sea-ice area246

and volume on the other hand. We do not consider SST as this quantity is somewhat247

integrated into ocean heat transport and is thus redundant.248

The correlation coefficient between March Arctic sea-ice area and Arctic near-surface249

temperature stays relatively constant through the whole time period with large nega-250

tive values (R = -0.75 to -0.9; Figure 3a), in agreement with previous studies (e.g. Olonscheck251

et al. (2019)). The relative rate of information transfer from near-surface temperature252

to March sea-ice area shows a large five-year variability, with a peak in 1975-1979 (|τ | ≈253

25 %) and four additional five-year periods having a significant influence (Figure 3a). The254

number of periods with a significant rate of information transfer from March sea-ice area255

to near-surface temperature is twice more important (i.e. 11 periods) than the reverse256

influence (Figure 3a), which confirms previous results from the member analysis (Sec-257

tion 3.1). Additionally, no significant influence of March sea-ice area on near-surface tem-258

perature remains after 2050, while one five-year period shows an influence of tempera-259

ture on sea-ice area after 2050 (Figure 3a). In September, the rate of information trans-260
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fer from near-surface temperature to sea-ice area is generally larger than from sea-ice area261

to temperature, and peaks in 2025-2029 before decreasing (Figure S6a).262

As for the information transfer from March sea-ice area to near-surface tempera-263

ture, the rate of information transfer from March sea-ice area to Arctic Ocean heat trans-264

port generally decreases over time, with no significant influence after 2050 (Figure 3b).265

For the reverse transfer of information from ocean heat transport to Arctic sea-ice area,266

eight periods are significant, with four periods after 2050, but with relatively low val-267

ues (|τ | = 6-7 %). Year 2050 also marks a threshold after which the correlation coeffi-268

cient between March sea-ice area and ocean heat transport starts decreasing from R ≈269

-0.7 on average for 1970-2049 to R = -0.25 in 2095-2100 (Figure 3b). Thus, as sea-ice270

area becomes smaller, the two-way influence between sea-ice area and near-surface tem-271

perature and ocean heat transport becomes weaker. This is also the case in September272

with a decrease starting earlier on due to lower sea-ice area during that month (Figure S6b).273

Results are qualitatively similar in the low greenhouse gas emission scenario (Figures S7-274

S8).275

Contrarily to the rate of information transfer from near-surface temperature to March276

sea-ice area, the information transfer from near-surface temperature to March sea-ice vol-277

ume remains strong almost until the end of the century, with values of |τ | between ∼ 15278

and 35 % (Figure 4a). This means that the increase in air temperature leads to a de-279

crease in sea-ice volume until the end of the century. Changes in March sea-ice volume280

also influence changes in near-surface temperature, but with lower values of information281

transfer than the reverse influence and a progressive decrease across time (Figure 4a).282

In September, the information transfer is also generally larger from near-surface tem-283

perature to sea-ice volume than the reverse, except in the beginning of the model sim-284

ulation (1970-1999; Figure S9a).285

As for the March sea-ice area - ocean heat transport relationship, the correlation286

coefficient between March sea-ice volume and ocean heat transport decreases over time287

(Figure 4b). This coincides with a decrease over time in the influence of March sea-ice288

volume on ocean heat transport. The transfer of information from ocean heat transport289

to March sea-ice volume stays relatively low through the whole twenty-first century, with290

only three five-year periods showing a significant transfer of information (Figure 4b). Re-291

sults are qualitatively similar when considering September sea-ice volume (Figure S9b),292

as well as SSP1-1.9 scenario (Figures S10-S11).293

4 Conclusions and Perspectives294

In our study, we have applied the Liang-Kleeman information flow method to the295

analysis of causal influences between Arctic sea-ice area and volume and their potential296

drivers using SMHI-LENS (50 members simulated with EC-Earth3). We found that the297

recent and future changes in Arctic sea-ice area and volume are mainly driven by near-298

surface air temperature, sea-surface temperature and ocean heat transport, in agreement299

with previous studies (Onarheim et al., 2015; Olonscheck et al., 2019). Our results sup-300

port a winter-driven ocean influence on sea ice and a summer atmospheric-led influence.301

More surprisingly, the reverse influence of sea-ice area and volume on temperature and302

ocean heat transport also exists, and is sometimes larger than the reverse influence de-303

pending on the quantity (sea-ice area or volume) and the month of the year (March or304

September). This two-way influence indicates that the current decrease in Arctic sea-305

ice area and volume is not solely related to air temperature and, consequently to green-306

house gas emissions (Notz & Stroeve, 2016), but is also highly driven by feedback mech-307

anisms between sea ice, the atmosphere and the ocean (Pithan & Mauritsen, 2014; Goosse308

et al., 2018).309
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Our results also show a progressive loss of influence of sea-ice area and volume on310

air temperature and ocean heat transport through the twenty-first century on the one311

hand. This indicates that interactions between sea ice, the atmosphere and the ocean,312

especially the ice-albedo feedback (Wunderling et al., 2020), become weaker as sea-ice313

area decreases. On the other hand, the rate of information transfer from air tempera-314

ture to September Arctic sea-ice area and volume (in both March and September) re-315

mains more constant through time and relatively large. This suggests that changes in316

near-surface temperature have a long-lasting effect on September sea-ice area and March317

and September sea-ice volume. Identifying the dynamical mechanisms causing these dif-318

ferences in directional dependence across time should be addressed in the future. This319

could be achieved via an analysis of the exact processes by which sea ice melts and re-320

freezes, combined with the Liang-Kleeman information flow method.321
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Figure 2. Matrices of EC-Earth3 ensemble mean (a,c) relative rate of information transfer τ

(in absolute value; unit: %) and (b,d) correlation coefficient R between (a,b) March Arctic sea-ice

area (MSIA, 1970-2080), (c,d) September sea-ice area (SSIA, 1970-2040) and the six drivers for

which acronym definitions are provided in the caption of Figure 1, based on historical CMIP6 run

and SSP5-8.5 scenario. The highlighted elements are significant at the 5% level based on Fisher’s

method for multiple tests.
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Figure 3. Time evolution of relative rate of information transfer τ (in absolute value; left

axis) and correlation coefficient R (right axis) for each period of five years between 1970 and 2100

(historical CMIP6 run and SSP5-8.5 scenario), computed over the 50 EC-Earth3 members. (a)

Transfer of information from annual mean Arctic near-surface air temperature (T2m) to March

Arctic sea-ice area (MSIA) (red circles), from MSIA to T2m (blue circles), and correlation coeffi-

cient between T2m and MSIA (black crosses). (b) Transfer of information from annual mean total

Arctic Ocean heat transport (OHTA) to MSIA (red circles), from MSIA to OHTA (blue circles),

and correlation coefficient between OHTA and MSIA (black crosses). The error bars show the

95% confidence intervals for τ using bootstrap with replacement.
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Figure 4. Time evolution of relative rate of information transfer τ (in absolute value; left

axis) and correlation coefficient R (right axis) for each period of five years between 1970 and 2100

(historical CMIP6 run and SSP5-8.5 scenario), computed over the 50 EC-Earth3 members. (a)

Transfer of information from annual mean Arctic near-surface air temperature (T2m) to March

Arctic sea-ice volume (MSIV) (red circles), from MSIV to T2m (blue circles), and correlation

coefficient between T2m and MSIV (black crosses). (b) Transfer of information from annual mean

total Arctic Ocean heat transport (OHTA) to MSIV (red circles), from MSIV to OHTA (blue cir-

cles), and correlation coefficient between OHTA and MSIV (black crosses). The error bars show

the 95% confidence intervals for τ using bootstrap with replacement.
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Introduction

This supporting information contains additional methodological information (Support-

ing Methods), tables (Table S1) and figures (Figures S1-S11). Table S1 provides results of

information transfer from a two-dimensional stochastic linear system of equations to check

the effect of detrending data. Figure S1 shows the times series of all considered variables

based on SSP1-1.9 (same as Figure 1, except for the scenario). Figure S2 shows the time

series of detrended variables based on SSP5-8.5 (same as Figure 1 with ensemble mean

removal). Figures S3-S5 represent matrices of ensemble mean relative rate of informa-

tion transfer and correlation coefficient, similar to Figure 2, except that Figure S3 shows

results from SSP1-1.9 (instead of SSP5-8.5), Figure S4 shows sea-ice volume (instead of

sea-ice area), and Figure S5 shows sea-ice volume and SSP1-1.9 (instead of sea-ice area

and SSP5-8.5). Figures S6-S8 represent the time evolution of the relative rate of infor-

mation transfer between sea-ice area and air temperature / Arctic ocean heat transport,

similar to Figure 3, except that Figure S6 shows results with September sea-ice area (in-

stead of March sea-ice area), Figure S7 shows results from SSP1-1.9 (instead of SSP5-8.5),

and Figure S8 shows results with September sea-ice area and SSP1-1.9 (instead of March

sea-ice area and SSP5-8.5). Figures S9-S11 represent the time evolution of the relative

rate of information transfer between sea-ice volume and air temperature / Arctic ocean

heat transport, similar to Figure 4, except that Figure S9 shows results with September

sea-ice volume (instead of March sea-ice volume), Figure S10 shows results from SSP1-1.9

(instead of SSP5-8.5), and Figure S11 shows results with September sea-ice volume and

SSP1-1.9 (instead of March sea-ice volume and SSP5-8.5).
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Supporting Methods

As explained in the main text (Section 2), the information flow method applies to

stationary time series. We demonstrate this by computing the rate of information transfer

T2→1 from variable X2 to variable X1 (based on equation (1) in the main text), using the

two-dimensional stochastic linear system of equations from Liang (2014), to which we add

a constant linear function:

dX1 = (−X1 + 0.5X2 + c t) dt+ 0.1 dW1

dX2 = (−X2 + c t) dt+ 0.1 dW2, (1)

where t is time and varies between 0 and 100 with 100,000 time steps (∆t = 0.001), c is a

constant external forcing mimicking the effect of greenhouse gas emissions on temperature

and sea ice, W1 and W2 represent normal random noises (standard Wiener process). We

use eight values of c between 0 and 0.02 and compute the corresponding absolute rates

of information transfer T2→1 and T1→2 for both original values of X1 and X2 and linearly

detrended values of X1 and X2.

We solve the linear system (1) using the Euler-Maruyama method. Results are presented

in Table S1 and show that the rates of information transfer T2→1 and T1→2 increase with

c when original data are used. This suggests that the external forcing (greenhouse gas

emissions in our case study) influences the value of information transfer. On the contrary,

the rates of information transfer remain relatively unchanged with varying c when data

are detrended, so there is no influence of the external driver on the relationship between

X1 and X2, making results more robust.

August 25, 2021, 10:36am
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As strong negative trends in sea-ice area and sea-ice volume and positive trends in

temperature and ocean heat transport exist across the models simulations (1970-2100;

Figures 1 and S1), we need to detrend data in the member analysis. As detrending based

on regression strongly depends on the regression power (linear, quadratic, etc.) and we

dispose of 50 different members, we choose to remove the ensemble mean from the original

data in order to obtain stationary time series (Figure S2).
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Table S1. Absolute rate of information transfer computed from the linear system of equa-

tions (1) with eight different values of c. T2→1 and T2→1,d are the rates of information transfer

from X2 to X1 based on original and detrended values, respectively. T1→2 and T1→2,d are the

rates of information transfer from X1 to X2 based on original and detrended values, respectively.

c T2→1 T2→1,d T1→2 T1→2,d

0 0.1 0.16 0.01 0.02
0.001 0.19 0.12 0.05 0.02
0.002 0.34 0.13 0.24 0.01
0.003 0.39 0.14 0.38 0.02
0.004 0.43 0.14 0.49 0.03
0.005 0.46 0.14 0.55 0.01
0.01 0.55 0.15 0.7 0.01
0.02 0.55 0.15 0.76 0.03
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Figure S1. Time series of all considered variables for the 50 EC-Earth3 SMHI-LENS members (thin lines) and the ensemble

mean (dark thick lines) over 1970-2100 (historical CMIP6 run and SSP1-1.9 scenario). (a) March and September Arctic sea-ice area

(SIA); (b) March and September Arctic sea-ice volume (SIV); (c) annual mean Arctic near-surface temperature (T2m) and Arctic

sea-surface temperature (SST); (d) annual mean total Arctic Ocean heat transport (OHTA); (e) annual mean poleward ocean and

atmospheric heat transports at 70◦N (OHT70N and AHT70N ); (f) winter (JFM) Arctic Oscillation index (AOI).
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Figure S2. Time series of all considered detrended variables (same as Fig. 1 with ensemble mean removal) for the 50

EC-Earth3 SMHI-LENS members (thin lines) and the ensemble mean (dark thick lines) over 1970-2080 (historical CMIP6 run and

SSP5-8.5 scenario; 1970-2040 for September sea-ice area and volume). (a) March and September Arctic sea-ice area (SIA); (b)

March and September Arctic sea-ice volume (SIV); (c) annual mean Arctic near-surface temperature (T2m) and Arctic sea-surface

temperature (SST); (d) annual mean total Arctic Ocean heat transport (OHTA); (e) annual mean poleward ocean and atmospheric

heat transports at 70◦N (OHT70N and AHT70N ); (f) winter (JFM) Arctic Oscillation index (AOI).
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Figure S3. Matrices of EC-Earth3 ensemble mean (a,c) relative transfer of information τ (in absolute value; unit: %)

and (b,d) correlation coefficient R between (a,b) March Arctic sea-ice area (MSIA, 1970-2080), (c,d) September sea-ice area (SSIA,

1970-2040) and the six drivers for which acronym definitions are provided in the caption of Figure S1, based on historical CMIP6 run

and SSP1-1.9 scenario. The highlighted elements are significant at the 5% level based on Fisher’s method for multiple tests.
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Figure S4. Matrices of EC-Earth3 ensemble mean (a,c) relative rate of information transfer τ (in absolute value; unit: %) and

(b,d) correlation coefficient R between (a,b) March Arctic sea-ice volume (MSIV, 1970-2080), (c,d) September sea-ice volume (SSIV,

1970-2040) and the six drivers for which acronym definitions are provided in the caption of Figure S1, based on historical CMIP6 run

and SSP5-8.5 scenario. The highlighted elements are significant at the 5% level based on Fisher’s method for multiple tests.
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Figure S5. Matrices of EC-Earth3 ensemble mean (a,c) relative rate of information transfer τ (in absolute value; unit: %) and

(b,d) correlation coefficient R between (a,b) March Arctic sea-ice volume (MSIV, 1970-2080), (c,d) September sea-ice volume (SSIV,

1970-2040) and the six drivers for which acronym definitions are provided in the caption of Figure S1, based on historical CMIP6 run

and SSP1-1.9 scenario. The highlighted elements are significant at the 5% level based on Fisher’s method for multiple tests.

August 25, 2021, 10:36am



DOCQUIER ET AL.: CAUSAL LINKS - ARCTIC SEA ICE AND ITS DRIVERS X - 11

Figure S6. Time evolution of relative rate of information transfer τ (in absolute value; left

axis) and correlation coefficient R (right axis) for each period of five years between 1970 and 2100

(historical CMIP6 run and SSP5-8.5 scenario), computed over the 50 EC-Earth3 members. (a)

Transfer of information from annual mean Arctic near-surface air temperature (T2m) to Septem-

ber Arctic sea-ice area (SSIA) (red circles), from SSIA to T2m (blue circles), and correlation

coefficient between T2m and SSIA (black crosses). (b) Transfer of information from annual mean

total Arctic Ocean heat transport (OHTA) to SSIA (red circles), from SSIA to OHTA (blue cir-

cles), and correlation coefficient between OHTA and SSIA (black crosses). The error bars show

the 95% confidence intervals for τ using bootstrap with replacement.
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Figure S7. Time evolution of relative rate of information transfer τ (in absolute value; left

axis) and correlation coefficient R (right axis) for each period of five years between 1970 and

2100 (historical CMIP6 run and SSP1-1.9 scenario), computed over the 50 EC-Earth3 members.

(a) Transfer of information from annual mean Arctic near-surface air temperature (T2m) to

March Arctic sea-ice area (MSIA) (red circles), from MSIA to T2m (blue circles), and correlation

coefficient between T2m and MSIA (black crosses). (b) Transfer of information from annual mean

total Arctic Ocean heat transport (OHTA) to MSIA (red circles), from MSIA to OHTA (blue

circles), and correlation coefficient between OHTA and MSIA (black crosses). The error bars

show the 95% confidence intervals for τ using bootstrap with replacement.
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Figure S8. Time evolution of relative rate of information transfer τ (in absolute value; left

axis) and correlation coefficient R (right axis) for each period of five years between 1970 and 2100

(historical CMIP6 run and SSP1-1.9 scenario), computed over the 50 EC-Earth3 members. (a)

Transfer of information from annual mean Arctic near-surface air temperature (T2m) to Septem-

ber Arctic sea-ice area (SSIA) (red circles), from SSIA to T2m (blue circles), and correlation

coefficient between T2m and SSIA (black crosses). (b) Transfer of information from annual mean

total Arctic Ocean heat transport (OHTA) to SSIA (red circles), from SSIA to OHTA (blue cir-

cles), and correlation coefficient between OHTA and SSIA (black crosses). The error bars show

the 95% confidence intervals for τ using bootstrap with replacement.
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Figure S9. Time evolution of relative rate of information transfer τ (in absolute value; left

axis) and correlation coefficient R (right axis) for each period of five years between 1970 and

2100 (historical CMIP6 run and SSP5-8.5 scenario), computed over the 50 EC-Earth3 members.

(a) Transfer of information from annual mean Arctic near-surface air temperature (T2m) to

September Arctic sea-ice volume (SSIV) (red circles), from SSIV to T2m (blue circles), and

correlation coefficient between T2m and SSIV (black crosses). (b) Transfer of information from

annual mean total Arctic Ocean heat transport (OHTA) to SSIV (red circles), from SSIV to

OHTA (blue circles), and correlation coefficient between OHTA and SSIV (black crosses). The

error bars show the 95% confidence intervals for τ using bootstrap with replacement.
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Figure S10. Time evolution of relative rate of information transfer τ (in absolute value; left

axis) and correlation coefficient R (right axis) for each period of five years between 1970 and 2100

(historical CMIP6 run and SSP1-1.9 scenario), computed over the 50 EC-Earth3 members. (a)

Transfer of information from annual mean Arctic near-surface air temperature (T2m) to March

Arctic sea-ice volume (MSIV) (red circles), from MSIV to T2m (blue circles), and correlation

coefficient between T2m and MSIV (black crosses). (b) Transfer of information from annual

mean total Arctic Ocean heat transport (OHTA) to MSIV (red circles), from MSIV to OHTA

(blue circles), and correlation coefficient between OHTA and MSIV (black crosses). The error

bars show the 95% confidence intervals for τ using bootstrap with replacement.
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Figure S11. Time evolution of relative rate of information transfer τ (in absolute value; left

axis) and correlation coefficient R (right axis) for each period of five years between 1970 and

2100 (historical CMIP6 run and SSP1-1.9 scenario), computed over the 50 EC-Earth3 members.

(a) Transfer of information from annual mean Arctic near-surface air temperature (T2m) to

September Arctic sea-ice volume (SSIV) (red circles), from SSIV to T2m (blue circles), and

correlation coefficient between T2m and SSIV (black crosses). (b) Transfer of information from

annual mean total Arctic Ocean heat transport (OHTA) to SSIV (red circles), from SSIV to

OHTA (blue circles), and correlation coefficient between OHTA and SSIV (black crosses). The

error bars show the 95% confidence intervals for τ using bootstrap with replacement.
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