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Abstract

Single-column models (SCMs) are often used to evaluate model physics and aid parameterization development. However,

few studies have systematically compared the results obtained using 1D setups with those of their corresponding 3D models,

and examined what factors potentially impact their comparability. This paper addresses these questions. We focus on the

application of SCMs under idealized RCE conditions and use a multi-column model (MCM) setup as stepping stone for a 3D

model. We find that convective organization in the MCM depends at least as much on the convection scheme used as on other

mechanisms known to organize convection (e.g., radiative feedback). Moreover, convective organization emerges as a robust

factor affecting SCM-MCM comparability, with more aggregated states in 3D associated with larger behavior deviations from

the 1D counterpart. This is found across five convection schemes and applies to simulated mean states, linear responses to small

tendency perturbations, and adjustments to doubled-CO2 forcing. Applying a “model-as-truth” approach, we find that even

when convection is organized, behavior differences between pairs of schemes in the SCM are largely preserved in the MCM.

This indicates that when model physics produces accurate behavior in a 1D setup, it will be more likely to do so in a 3D setup.

We also demonstrate the practical value of linear responses by showing that they can accurately predict an SCM’s tropospheric

adjustment to doubled-CO2 forcing.
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Key Points:4

• Convective organization in large-scale simulations depends on convection scheme,5

sometimes more so than on radiative feedback6

• 1D and 3D behavior is very similar if convection is not organized in 3D7

• A convection scheme’s linear responses can be used to predict its tropospheric adjust-8

ments to doubled-CO2 forcing9
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Abstract10

Single-column models (SCMs) are often used to evaluate model physics and aid param-11

eterization development. However, few studies have systematically compared the results12

obtained using 1D setups with those of their corresponding 3D models, and examined what13

factors potentially impact their comparability. This paper addresses these questions. We14

focus on the application of SCMs under idealized RCE conditions and use a multi-column15

model (MCM) setup as stepping stone for a 3D model. We find that convective organi-16

zation in the MCM depends at least as much on the convection scheme used as on other17

mechanisms known to organize convection (e.g., radiative feedback). Moreover, convec-18

tive organization emerges as a robust factor affecting SCM-MCM comparability, with more19

aggregated states in 3D associated with larger behavior deviations from the 1D counter-20

part. This is found across five convection schemes and applies to simulated mean states,21

linear responses to small tendency perturbations, and adjustments to doubled-CO2 forcing.22

Applying a “model-as-truth” approach, we find that even when convection is organized, be-23

havior differences between pairs of schemes in the SCM are largely preserved in the MCM.24

This indicates that when model physics produces accurate behavior in a 1D setup, it will25

be more likely to do so in a 3D setup. We also demonstrate the practical value of linear26

responses by showing that they can accurately predict an SCM’s tropospheric adjustment27

to doubled-CO2 forcing.28

Plain Language Summary29

To study various climate processes, scientists often use 3D climate models, but these30

simulations use huge amounts of computing time and resources. One way to alleviate this31

problem is to use a single-column model, which is a 1D vertical column extracted from a 3D32

model. Although these 1D simulations are very efficient, we cannot always be sure that their33

results are comparable to those of their parent 3D model. In this study, we find that when34

clouds are randomly spread across the sky (when convection is disorganized), results of 1D35

and 3D simulations are very similar. However, when clouds are clustered into clumps (when36

convection is organized), we cannot always trust the results of 1D simulations as they tend37

to be different from those of 3D simulations. Nevertheless, we find that when two models38

show very different behavior in their 1D setup, they will tend to also behave differently in39

their 3D setup. This tells us that 1D simulations can still be useful. We also discover that40

the way a model responds when it is lightly tickled (perturbed) can be used to predict its41

responses to a situation where the amount of carbon dioxide in the atmosphere is suddenly42

doubled.43

1 Introduction44

One-dimensional, single-column models (SCMs) of the atmosphere are often used as a45

research tool to understand climate and climate change, as well as the behavior of model46

physics to inform parameterization development. Experiments conducted in SCMs are com-47

monly used as proxies to evaluate how parameterizations would perform at individual grid48

points in a 3D model (Randall et al., 1996). Other studies take an SCM to be a represen-49

tative 1D model of the whole atmosphere, starting from the classic study of Manabe and50

Wetherald (1967). However, few studies have attempted to directly evaluate to what extent51

understanding obtained with an SCM carries over to a 3D setup and identify what fac-52

tors potentially enter that may alter the conclusions. This paper addresses these questions.53

Specifically, we focus on the applicability of SCM tests under idealized radiative-convective54

equilibrium (RCE) conditions to the behavior of a 3D model also run in regional RCE.55

Commonly, an SCM is a single vertical column from a General Circulation Model56

(GCM), using the same physical parameterizations of the parent GCM to represent un-57

resolved subgrid-scale processes. Model dynamics are prescribed as boundary forcings58
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(Randall & Cripe, 1999). Since there is only one vertical column it is computationally very59

cheap to run an SCM. This offers great benefits to modelers, for example when exploration60

of a large parameter space is unfeasible in a full GCM (M. Zhang et al., 2016). Moreoever,61

the SCM allows model physics to be isolated and tested in controlled conditions. Hence,62

SCMs are often used as a tool to facilitate parameterization development. Outputs from63

an SCM can be compared with observational data or results from cloud-resolving models64

(CRMs) to evaluate the performance of a physics scheme. Early studies using SCMs in this65

way include Iacobellis and Somerville (1991) and Lee et al. (1997). SCMs have been used to66

study cloud and convective processes—a major source of uncertainty in climate predictions67

(Boucher et al., 2013)—including the representation of boundary layer clouds (Blossey et68

al., 2013; Dal Gesso & Neggers, 2018; M. Zhang et al., 2013; P. Zhu et al., 2005), the diur-69

nal cycle of shallow (Lenderink et al., 2004) and deep precipitating clouds (Guichard et al.,70

2004), various convective regimes (Petch et al., 2007), the evolution of tropical convection71

(Petch et al., 2014), tropical squall lines (Bechtold et al., 2000), the representation of shallow72

convection (Bogenschutz et al., 2012) and cloud microphysics (Gettelman et al., 2008). As73

research tools, SCMs have, for example, been employed for parameter sensitivity analysis74

of cloud properties (Guo et al., 2014) and to test the sensitivity of subgrid-scale physical75

processes to model vertical resolution (Lane et al., 2000).76

The lack of feedback between model physics and large-scale circulation is a key limita-77

tion of SCMs. For example, if forced only by estimated large-scale tendencies they can drift78

away from a realistic state in their temperature and humidity fields (M. Zhang et al., 2016).79

This can be overcome by, for example, driving the SCM with large-scale forcings derived80

from coarse-graining high-resolution model outputs (Christensen et al., 2018), or nudging to81

a target state (Dal Gesso & Neggers, 2018; Neggers et al., 2017; Randall & Cripe, 1999). An82

alternative approach utilizes SCMs in more idealized setups, where knowledge obtained in83

simpler contexts can hopefully inform more complex systems (Maher et al., 2019). Examples84

include parameterizing large-scale circulations using the weak temperature gradient (WTG;85

Sobel & Bretherton, 2000; H. Zhu & Sobel, 2012) or quasi-geostrophic (QG) approximations86

(Nie & Sobel, 2016).87

Another idealization extensively applied in both SCMs and atmospheric general circu-88

lation models (AGCMs) is to run model simulations in an RCE configuration (see Wing89

et al., 2018, for a comprehensive review). RCE is a statistical equilibrium state where net90

radiative cooling is balanced by net convective heating. There is no horizontal energy trans-91

port, and background vertical motion is assumed to be zero (w = 0), effectively eliminating92

large-scale dynamics. In the hierarchy of modeling approaches, a single-column RCE is the93

simplest representation of the climate system (Jeevanjee et al., 2017; Maher et al., 2019) and94

is often used to represent tropical regions as a whole (Ghan et al., 2000; Pakula & Stephens,95

2009; Wing et al., 2018). RCE has been extensively applied to study various aspects of96

the atmosphere, including to understand climate change, where it was, for example, used97

for early estimates of equilibrium climate sensitivity (ECS; Manabe & Wetherald, 1967;98

Ramanathan & Coakley, 1978).99

It has been argued that the linearized behavior in a single column near RCE could100

characterize physical processes sufficiently to replicate (i.e., parameterize) their impact on101

slowly varying tropical circulations at larger scales, based on the linear response function102

(LRF) framework (Kuang, 2010, 2018). Subsequent studies of SCMs taken from climate103

models have reported substantial discrepancies among their linearized behavior and depar-104

tures of their linear responses from explicit numerical simulations (Herman & Kuang, 2013;105

Hwong et al., 2021, henceforth H21), suggesting that such near-RCE behavior could be a106

valuable test of model physics. In general, however, RCE almost never occurs locally be-107

cause of the presence of large-scale circulations (w is not zero, or at least does not remain108

zero for a time sufficient for the local column to attain equilibrium). Therefore, one reason109

to question the relevance and validity of SCMs in RCE is that there is little to no ascent and110

descent or large-scale condensation in this 1D configuration but a fair amount of them in111
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reality. Even if a larger-scale domain is in regional RCE, the individual columns within this112

domain will usually experience large departures from local RCE. This begs the question: if113

we know an SCM behaves correctly near RCE according to some reference standard (based114

on e.g., a large-eddy simulation [LES] calculation, or observations collected at a field site),115

how helpful is this? If the most important errors in a 3D simulation only occur far away116

from local RCE, then SCM RCE tests could—although useful in principle—be unhelpful in117

practice.118

One interesting phenomenon emerging from numerical simulations of RCE in 3D mod-119

els, and relevant for our objectives, is the organization of convection. Under certain con-120

ditions, numerically simulated convection sometimes spontaneously organizes into distinct121

wet and dry regions. This can happen even under homogeneous boundary conditions and122

forcing, and has been observed in both cloud-system-resolving simulations (e.g., Holloway123

& Woolnough, 2016; Muller & Bony, 2015; Wing & Emanuel, 2014) and those in which124

convection is parameterized (e.g., Arnold & Randall, 2015; Becker & Stevens, 2014; Coppin125

& Bony, 2015; Hohenegger & Stevens, 2016; Reed et al., 2015). Coppin and Bony (2015)126

describe the emergence of convective organization in equilibrium conditions as an instability127

of the RCE state, and its potential causes have been investigated in various studies (Beucler128

& Cronin, 2016; Bretherton et al., 2005; Craig & Mack, 2013; Emanuel et al., 2014). In129

an RCE model intercomparison project (RCEMIP), Wing et al. (2020) showed that all 3D130

models in their study exhibit organization behavior, albeit to different degrees. Convective131

organization can also be observed in the real world, for example as squall lines (Bryan, 2005),132

the Madden-Julian Oscillation (MJO; Madden & Julian, 1994), and all the way up to the133

planetary scale where rain is organized into structures such as the Inter-Tropical Conver-134

gence Zone (ITCZ) and midlatitude rain bands. These planetary-scale organizations make135

the global humidity significantly less sensitive to model physics than it would be in a 1D136

or horizontally homogeneous situation (Sherwood & Meyer, 2006), again suggesting caution137

in the application of SCMs to represent heterogeneous domains. Given its association with138

interactions between clouds, moisture and large-scale circulation, there is reason to believe139

that convective organization might be an important factor to consider when comparing the140

results of 1D and 3D models.141

The overarching goal of this paper is to assess the utility of 1D simulations for a 3D142

world. We used a multi-column model (MCM) setup as a stepping stone for a 3D setup143

and evaluate the similarity between the SCM vs. MCM setups by comparing their mean144

states, linear responses to small tendency perturbations (the LRF method explored recently145

by H21), and adjustment responses to doubled-CO2 forcing. All experiments are conducted146

on five widely-used convection schemes. The specific objectives are:147

• To assess how informative SCM model-physics tests are about more realistic 3D sce-148

narios under RCE conditions, and the potential role of convective organization in149

modulating the comparability of 1D vs. 3D setups;150

• To determine if the LRF method can be used to predict doubled-CO2 responses, and151

if so, what are the implications for using it in an SCM vs. an MCM.152

This paper is organized as follows: the models and simulation details are described in Section153

2; the RCE mean state and organization patterns of the five convection schemes under differ-154

ent experimental configurations are presented in Section 3; the SCM and MCM responses to155

imposed tendency perturbations are compared in Section 4, and their adjustment responses156

to doubled-CO2 forcing are compared in Section 5; the conclusions from these experiments157

are presented in Section 6.158
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2 Methods159

2.1 Models and RCE Simulation160

We largely followed the procedures of H21 for our RCE simulations. All simulations were161

performed with the Weather Research and Forecasting (WRF) model (version 4.0.2). The162

single-column model version of WRF was used for the 1D simulations (Hacker & Angevine,163

2013). For the 3D simulations, the model was run in a multi-column model (MCM) setup164

with a square domain, with 20 grid points in both x and y directions and a horizontal165

resolution of 100 km. There are 74 vertical levels, with model top at around 6 hPa. Con-166

figurations were kept consistent between corresponding SCM and MCM runs, except for167

elements only applying to a 3D setup (sea surface temperature [SST] hot spot and water168

vapor homogenization, described below).169

The simulations were initialized with the same sounding at every grid point, using the170

initial profiles of Wing et al. (2018), which are based on a moist tropical sounding of Dunion171

(2011). There is no diurnal cycle and we simulate a non-rotating RCE with the coriolis172

parameter set to zero. We used an SST of 28°C for the experiments with uniform SST.173

Zonal and meridional winds were initialized with zero values and relaxed to zero throughout174

the simulations with a relaxation time constant of 3 h (except for experiments with imposed175

vertical wind shear, described below). Convection was kick-started by applying random low-176

level perturbations to the temperature field, although this does not appear to affect the RCE177

state. Surface fluxes were computed using a bulk aerodynamic formula with a fixed value178

of 0.001 for the heat and moisture exchange coefficients, and a constant near surface wind179

speed of 4.8 m s−1 to remove any wind-induced surface heat exchange effects (WISHE).180

In terms of physical parameterization, we tested five convection schemes: Kain-Fritsch181

(KFETA; Kain, 2004), New-Tiedtke (NTIEDTKE; C. Zhang & Wang, 2017), New-Simplied-182

Arakawa-Schubert (NSAS; Han & Pan, 2011), Betts-Miller-Janjic (BMJ; Betts, 1986; Betts183

& Miller, 1986; Janjić, 1994), and Zhang-McFarlane (CAMZM; G. Zhang & McFarlane,184

1995). We refer to H21 for a description of their main features. The Zhang-McFarlane185

scheme is additionally paired with the University of Washington shallow convection scheme186

(Park & Bretherton, 2009). All convection schemes were paired with the same planetary-187

boundary-layer (PBL) and microphysics schemes: the YSU PBL scheme (Hong et al., 2006)188

and the WSM6 microphysics scheme (Hong & Lim, 2006). We did not examine sensitivity to189

these schemes since H21 found them to play only a minor role in the RCE responses exam-190

ined. For the simulations with interactive radiation, the RRTMG longwave and shortwave191

schemes were used (Iacono et al., 2008), with a solar constant of 544 W m−2 and a fixed192

zenith angle of 37°, yielding a solar insolation of around 436 W m−2 to match equatorial193

conditions. For the simulations with fixed radiation, we prescribed a radiative cooling profile194

of −1.5 K day−1 from the surface to around 200 hPa and then linearly decreasing to zero195

at around 100 hPa and kept at zero above that (following Herman & Kuang, 2013). The196

relaxation inverse time constant is zero from surface to around 160 hPa and then increases197

linearly to 0.5 day−1 at and above 100 hPa.198

2.2 Convective Organization Configurations199

Our initial MCM experiments revealed that convective organization depends on the200

choice of convection scheme. For example, we found that certain schemes produced or-201

ganized convection (and others did not) even when radiative feedback was disabled. To202

remove potential confounding factors arising from varying degrees of organization across203

the schemes, we wanted the schemes to display relatively similar organization behavior (i.e.,204

all organized or all disorganized) for our analyses. To achieve this, we experimented with205

three mechanisms that have been shown in previous studies to have an impact on convective206

organization: an imposed SST hot spot, vertical wind shear, and water vapor homogeniza-207

tion. Each mechanism was paired with either idealized (described in the previous section) or208

interactive radiation. In total, eight experimental configurations were tested (Table 1). Note209
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that in doing so our motivation was not to provide physical explanations for the manifesta-210

tion of convective organization of the schemes under these configurations, but to establish211

a common baseline so that comparisons between the schemes can be made on the basis of212

relatively similar degrees of organization.213

Table 1. Experimental configurations for convective organization.

Configuration Simulation details

idealrad ctrl idealized radiation (same radiative cooling profile at every grid
point), control simulation

idealrad hotspot idealrad ctrl + SST hot spot at center of domain
idealrad windshear idealrad ctrl + vertical wind shear
idealrad qvhomo idealrad ctrl + water vapor homogenization above 2 km
intrad ctrl interactive radiation (RRTMG LW and SW schemes), control

simulation
intrad hotspot intrad ctrl + SST hot spot at center of domain
intrad windshear intrad ctrl + vertical wind shear
intrad qvhomo intrad ctrl + water vapor homogenization above 2 km

The first mechanism employed, which was to promote aggregation, was to conduct214

MCM experiments with an SST hot spot in the form of a circular warm pool at the center215

of the domain. Studies have shown that SST gradients have the effect of organizing convec-216

tion (e.g., Liu & Moncrieff, 2008; Shamekh et al., 2020; Tompkins, 2001). The hot spot has217

a gaussian surface with a half-width of around 400 km and covers around 10% of the domain218

area. The peak SST anomaly is 2 K, with the edge of the hot spot having approximately the219

same SST as in the control simulations (28°C). To homogenize convection across all schemes,220

we tested two mechanisms. First we followed the “strong shears” procedure of Tompkins221

(2001), which the authors found to disrupt the water vapor feedback responsible for convec-222

tive organization. The zonal winds were relaxed to a target profile with a relaxation time223

constant of 1 h. The target winds increase from 8 m s−1 at the lowest level to 12 m s−1 at224

around 1 km, and then reduce linearly to −10 m s−1 at around 12 km, increasing linearly225

thereafter to 0 at around 14.5 km. Second, in the water vapor homogenization experiments,226

we followed the procedures of Grabowski and Moncrieff (2004), where we removed moisture227

variations in the free troposphere (above 2 km) by applying a relaxation term to the water228

vapor equation as follows229 (
∂qv
∂t

)
relax

= −qv − qv
τ

(1)

where an overbar denotes the domain mean value at a given level and τ the relaxation time230

constant. We used a value of 1 day for τ . All simulations were run for 1,000 days for the231

SCM and 100 days for the MCM simulations. These simulations are henceforth referred to232

as the PreRCE runs.233

2.3 Forcing Experiments234

We ran two sets of forcing experiments to test the comparability between the SCM and235

MCM setups. In the first set of experiments, we probed the linear responses of the schemes236

in both setups using the LRF framework. According to this framework, the responses of a237

cumulus ensemble to small perturbations to its large-scale environment can be considered to238

be approximately linear even though convection involves many nonlinear processes (Kuang,239

2010). This linear assumption drastically simplifies the representation of convection, as the240
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behavior of a cumulus ensemble around a reference state can be approximated as241

dx

dt
= Mx (2)

where x is the anomalous state vector of temperature (T’) and moisture (q’) around a242

reference state (e.g., RCE), dx/dt is the corresponding anomalous tendency perturbations,243

and M is the LRF matrix. We followed the procedures of H21, which we briefly summarize244

here. We initialized the control runs of the eight configurations described in the previous245

section (Table 1) from their respective PreRCE states, maintaining the same experimental246

configurations to get the respective organization patterns. These simulations are referred to247

henceforth as the CTRL runs. The perturbation runs were initialized and run the same way,248

but additionally with small perturbations applied to the temperature (dT/dt) and moisture249

(dq/dt) tendencies in separate runs and at every timestep, until the models reached a new250

steady state. These simulations are referred to henceforth as the PerturbLRF runs. The251

perturbation profile takes the form of the sum of a delta and gaussian functions, following252

Equation 4 in Herman and Kuang (2013). For brevity a profile that peaks at pressure level253

p is referred to simply as “perturbation at p”. For this study, we selected a perturbation254

level of 850 hPa. The perturbation amplitudes are 0.5 K day−1 and 0.2 g kg−1 day−1 for255

temperature and moisture tendency perturbations, respectively. Positive and negative per-256

turbations were applied in separate runs. The steady state responses (T’ and q’) are the257

differences of the time-averaged temperature and moisture profiles between the PerturbLRF258

and CTRL runs. We averaged the responses of the positive and negative perturbation runs259

to obtain the final T’ and q’ profiles.260

In the second set of forcing experiments, we doubled the atmospheric CO2 concen-261

tration. This set of experiments was conducted with interactive radiation and fixed SST262

(28°C). We initialized the models from the PreRCE states of intrad ctrl but doubled the263

CO2 concentration from the default 379 ppm to 758 ppm and ran the experiments until a264

new equilibrium was reached. These simulations are referred to as the PerturbCO2 runs.265

The adjustment response of a variable resulting from this doubling of CO2 is the difference266

between its time-averaged profiles between the PerturbCO2 and CTRL runs of intrad ctrl.267

All experiments described above were run in both SCM and MCM setups and for the268

five convection schemes. The simulation periods of the CTRL, PerturbLRF and PerturbCO2269

experiments were 1,000 days for the SCM and 100 days for the MCM runs. Unless speci-270

fied otherwise, the equilibrium quantities presented in this paper are the averages over the271

final 700 days of the CTRL runs (and, where applicable, their corresponding PerturbLRF or272

PerturbCO2 runs) for the SCM and final 20 days (and averaged over the domain) for the273

MCM setup.274

Additionally, to verify the usefulness of the LRF method in predicting model responses275

to other types of forcings, we tested if the M−1 matrices can be used to predict the temper-276

ature and humidity responses to a doubling of CO2 in the atmosphere. We constructed the277

M−1 matrices of the five convection schemes, which show their steady state responses per278

unit perturbation (H21). To construct M−1, we applied small tendency perturbations at all279

model levels, successively and in separate runs. Rearranging Equation 2, we get x = M−1 dx
dt .280

In principle, we should be able to predict the temperature and moisture responses (x) to281

doubled CO2 by multiplying the M−1 matrices by the radiative forcing (dx/dt) resulting282

from the doubling of CO2. Given the resource intensity of these matrix runs, we conducted283

this part of the study only in the SCM setup.284

3 RCE Mean State and Convective Organization285

3.1 Convective Organization Across Schemes and Configurations286

We first investigate the organization patterns of the five convection schemes at RCE for287

the eight configurations listed in Table 1. The schemes reach RCE in the PreRCE runs latest288
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by around day 300 for the SCM and around day 60 for the MCM runs. In RCE, the radiative289

cooling rates largely balance the total surface heat fluxes and precipitation rates roughly290

equal the latent heat fluxes. In the MCM simulations, large-scale circulations develop and291

there are positive and negative vertical winds in the individual grids—indicating local RCE292

instability—but there are no net vertical motions over the whole domain (w = 0). Snapshots293

of the daily accumulated convective rain on the final day of the CTRL runs for simulations294

with idealized radiation are shown in Figure 1 and interactive radiation in Figure 2.295

Figure 1. Daily accumulated convective rain on day 100 of the MCM CTRL runs with idealized

radiation of (left–right) KFETA, NTIEDTKE, NSAS, BMJ and CAMZM for the (a–e) control

simulations, and simulations with imposed (f–j) SST hot spot, (k–o) vertical wind shear, (p–t)

water vapor homogenization.

Generally, simulations that organize tend to have clearer separations between the dry296

(subsidence) and moist (ascending motion) cells. The clusters of rainfall regions usually297

correspond to slightly higher latent heat fluxes. In simulations with more homogeneous298

convection, precipitation is more evenly spread out with no clear distinction between dry299

and wet cells, indicating that convection does not organize despite the presence of resolved300

circulations. As expected, simulations with idealized radiation tend to be more disorganized301
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Figure 2. As in Figure 1, but for simulations with interactive radiation.

compared to the ones with interactive radiation. However, there are a few notable excep-302

tions. NSAS and BMJ produce strong organization even in the case of prescribed uniform303

radiation (c and d in Figure 1). This is an interesting observation, as numerous studies have304

shown that radiative (especially longwave) feedback is a key factor in convective organiza-305

tion and homogenizing radiation typically leads to disaggregation (e.g., Arnold & Randall,306

2015; Coppin & Bony, 2015; Holloway & Woolnough, 2016; Muller & Held, 2012; Wing &307

Emanuel, 2014). A few studies have shown that convection can self-aggregate in the absence308

of interactive radiation if evaporation of precipitation is artificially suppressed (hence weak-309

ening cold pool feedback) (Holloway & Woolnough, 2016; Muller & Bony, 2015). This is a310

type of “moisture memory aggregation” as opposed to the more commonly known “radiative311

aggregation” (Muller & Bony, 2015). So it is possible that some form of moisture feedback312

is responsible for the organization of NSAS and BMJ under uniform radiative forcing. On313

the other end of the spectrum, NTIEDTKE and CAMZM appear to be fairly disorganized314

even in the presence of interactive radiation (b and e in Figure 2). We suspect this could315

be due to the fairly small domain size that we used (2000 × 2000 km). Larger domain sizes316

have been found to be more conducive to aggregation (Jeevanjee & Romps, 2013; Muller &317
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Held, 2012). In any case, these overall results suggest that the convection scheme can exert318

a stronger influence than interactive radiation in determining convective organization.319

Imposing an SST gradient tends to organize convection toward the location of the hot320

spot, although the effect again varies across the convection schemes, as well as between321

idealized and interactive radiation. The organization effect of SST hot spot is more promi-322

nent when interactive radiation is used. In the case of idealized radiation, convection is still323

largely disorganized despite the stronger convection observed at the location of the hot spot324

for KFETA, NTIEDTKE and CAMZM (f, g and j in Figure 1). The schemes also respond325

very differently to imposed wind shear forcing: this homogenizes convection for NSAS (m in326

Figures 1 and 2) and KFETA (Figure 2k), but increases organization in the case of BMJ (n in327

Figures 1 and 2) and NTIEDTKE (Figure 2l). This ambiguity has also been shown in other328

studies, which have found vertical wind shear to make organization either more (LeMone329

et al., 1998; Muller, 2013; Rotunno et al., 1988) or less likely (Abbot, 2014; Bretherton et330

al., 2005; Held et al., 1993; Tompkins, 2000). When organized by wind shear, the schemes331

tend to aggregate into band-like structures, reminiscent of squall lines observed in nature as332

well as CRM simulations (Muller, 2013). Lastly, homogenizing free tropospheric moisture333

is found to have a dramatic effect on convective organization, especially in the case of ide-334

alized radiation (p–t in Figure 1). By effectively disabling the feedback between convection335

and free-tropospheric moisture—which is critical for convective organization—this proce-336

dure causes convection to become disorganized across all schemes in the case of idealized337

radiation. In the case of interactive radiation, however, NSAS and, to a lesser degree, BMJ,338

still display organization behavior (r and s in Figure 2). This could be because when these339

two schemes were used the homogenization of water vapor was insufficient to overcome the340

fluctuations created by interaction between convection and the large-scale circulations.341

3.2 Quantifying the Degree of Organization342

To quantify the degree of organization in the MCM simulations, we use the spatial vari-343

ance of precipitable water scaled by its average value, averaged in time over the last 20 days344

of the CTRL runs, following one of the metrics used by Wing et al. (2020). We refer to this345

metric as orgpw. We also tested another metric, the subsidence fraction (Becker et al., 2017;346

Coppin & Bony, 2015; Wing et al., 2020), which is calculated as the fraction of domain area347

where the vertically integrated mass-weighted vertical wind is directed downward. There is348

a high correlation between the two metrics (r = 0.78). For simplicity we only report the349

results using orgpw.350

The time series (Figure 3) and mean values (Table 2) of orgpw largely agree with visual351

impressions of organization in Figures 1 and 2. For example, the NSAS and BMJ runs, which352

appeared more organized in the idealrad ctrl simulations, have comparatively higher353

orgpw values (Figure 3a). All simulations were initialized with the same disorganized state;354

some remain disaggregated, while others develop aggregation after 10–20 days (or later) and355

usually stabilize thereafter. NSAS and BMJ runs tend to organize sooner than those with356

the other schemes. NSAS runs also display oscillations in orgpw. All model runs stabilize357

by around day 60, except for BMJ in the intrad windshear configuration, which appears358

to stabilize only after day 90 (Figure 3g). Overall, convective organization does not appear359

to be binary but varies in a continuum depending on convection scheme and experimental360

configuration. This has also been found in previous studies (Holloway & Woolnough, 2016;361

Wing et al., 2020) and is probably due to the myriad physical mechanisms and feedbacks362

at play between the schemes and configurations.363

To recall, our aim was to find a configuration where all five schemes display relatively364

similar degrees of organization or disorganization in order to remove potential confounding365

factors in our analyses. Judging by their equilibrium orgpw values, intrad hotspot appears366

to lead to organization across all five schemes, while idealrad qvhomo consistently leads367

–10–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

to disorganization (d and f in Figure 3). We henceforth refer to these two configurations,368

respectively, as the all org and all disorg simulations.369

Figure 3. Time series of the degree of organization (orgpw) of the five convection schemes in

the eight experimental configurations for the PreRCE runs (100 days). Top row (a–d) shows results

with fixed radiation and four different configurations; bottom row (e–h) shows the same but with

interactive radiation.

Table 2. Mean equilibrium orgpw values for the convection schemes and experimental configura-

tions. The bolded rows are the all disorg and all org simulations. Units are kg m−2.

KFETA NTIEDTKE NSAS BMJ CAMZM

idealrad ctrl 0.042 0.01 1.688 0.445 0.044
idealrad hotspot 0.059 0.017 1.353 0.588 0.05
idealrad windshear 0.047 0.011 0.04 0.564 0.049
idealrad qvhomo 0.028 0.011 0.108 0.054 0.036
intrad ctrl 5.052 0.083 3.627 4.45 0.819
intrad hotspot 4.144 1.176 3.23 4.262 1.254
intrad windshear 0.021 3.758 0.04 6.398 0.741
intrad qvhomo 0.03 0.015 0.327 0.029 0.064

3.3 Mean State Temperature and Humidity Profiles370

Convective organization is known to significantly affect the atmospheric mean state371

(Wing & Cronin, 2016; Wing et al., 2017). Figure 4 shows the mean RCE temperature and372

relative humidity (RH) profiles of the MCM simulations averaged over the final 20 days of the373

CTRL runs. For temperature, we show the saturation equivalent potential temperature (θes)374

as this is more informative and shows the differences between the profiles better. For a given375

pressure there exists a unique and monotonic relationship between absolute temperature T376

and θes.377
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Figure 4. (a–e) Saturation equivalent potential temperature (θes) and (f–j) relative humidity

(RH) profiles at RCE of the five convection schemes for the eight experimental configurations in

the MCM setup. Profiles of simulations with idealized radiation are shown in solid curves and

interactive radiation in dashed curves.

More organized mean states are generally associated with a warmer and drier free tro-378

posphere, as expected (Bretherton et al., 2005; Muller & Held, 2012; Wing & Cronin, 2016).379

For example, simulations with interactive radiation, which are generally more organized than380

their corresponding simulations with the same scheme but prescribed radiation for the con-381

trol and SST hot spot simulations (idealrad ctrl vs. intrad ctrl, idealrad hotspot vs.382

intrad hotspot), correspondingly display higher θes and lower RH values in the free tro-383

posphere (the blue and orange dashed curves are warmer and drier than the corresponding384

solid curves in the individual panels of Figure 4). The warmer mean state when convection385

is organized is consistent with the fact that the increase in boundary-layer moisture in the386

convecting regions shifts the moist adiabat warmer there, and these warmer temperatures387

are then propagated to the entire domain through gravity waves (Bretherton et al., 2005;388

Muller & Held, 2012). The drier state caused by aggregation is brought on by the fact that389

the subsidence regions are much drier than anywhere in the runs with disorganized convec-390

tion, reducing the mean (Wing & Cronin, 2016; Wing et al., 2017). However, we note that391

a drier mean free troposphere is not always warmer in our simulations. The intrad qvhomo392

simulation for NSAS, for example, displays lower RH but a slightly cooler free troposphere393

compared to its corresponding idealrad qvhomo mean state (red solid and dashed curves394

of c and h in Figure 4). We further note that simulations with more organization also often395

exhibit strong temperature inversions near the cloud base level, which often coincide with396

kinks in the RH profiles and most frequently in simulations with interactive radiation (e.g.,397

the orange and blue dashed curves for KFETA and NSAS; a, c, f and h in Figure 4). These398

inversions are probably caused by the strong subsidence present in these highly organized399

simulations.400
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For the SCM simulations, their mean-state temperature and humidity profiles are very401

similar to those of their MCM counterparts in the cases where the MCM simulations are402

disorganized. The SCM-MCM mean-state discrepancy appears to widen with increasing403

organization in the MCM simulations. To illustrate this, we show the SCM-MCM pro-404

file differences for the all org and all disorg runs in Figure 5. The deviations between405

the SCM and MCM mean state profiles are significantly more pronounced for the all org406

runs (all schemes are organized in MCM). Nevertheless, we note that the mean-state differ-407

ences between the schemes are still on average larger than the SCM-MCM deviations for the408

all org case. The MCM simulations are consistently drier in the free troposphere than their409

corresponding SCMs, which is expected due to the general drying caused by aggregation410

in the MCM. The temperature differences are also larger for the all org case, albeit with411

inconsistent signs in the free troposphere. The MCM simulations are cooler at the near sur-412

face levels, but higher up they can be warmer (KFETA and NSAS) or cooler (NTIEDTKE,413

BMJ and CAMZM) than the SCMs. For the all disorg simulations, the SCM and MCM414

simulations display almost identical profiles, except for small differences in the upper tro-415

pospheric humidity for NSAS and BMJ. Overall, we can conclude that the organization416

propensity of a scheme under specific experimental configuration can significantly impact417

the comparability of its SCM and MCM mean state, with increasing organization associated418

with growing discrepancy of equilibrium temperature and humidity profiles between its 1D419

and 3D setups.420

Figure 5. Difference of the (a–e) θes and (f–j) RH profiles between the corresponding SCM and

MCM simulations for the five convection schemes. Red curves show the SCM-MCM differences of

the all org and blue curves the all disorg simulations.
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4 Response to Tendency Perturbations421

4.1 Comparison of SCM-MCM Perturbation Responses422

In this section we present the results from the tendency perturbation experiments.423

Recall that these are the profile responses to small, steady temperature or moisture tendency424

perturbations as per the linear response function framework of Kuang (2010). For a detailed425

description of the responses of the CRM used in Kuang (2010) and the five convection426

schemes in this study in an SCM setup we refer readers to H21. Here, we only note that427

many of the general trends of the CRM responses are observable in the SCM responses,428

though there is disagreement on some of them among the SCMs, and the SCM responses are429

consistently less smooth than the CRM’s, often exhibiting sharp twists and kinks, especially430

around the cloud base and freezing levels (H21).431

We again find that the responses are very similar between the SCM and MCM when con-432

vection is organized in the MCM, but diverge with increasing degree of MCM organization.433

This is true for all four perturbation quadrants: T response to dT/dt (T DT), q response to434

dT/dt (Q DT), T response to dq/dt (T DQ), and q response to dq/dt perturbations (Q DQ).435

To illustrate this we show the results for the all org and all disorg simulations (Figures436

6 and 7 for dT/dt and dq/dt perturbation, respectively). For the all disorg simulations437

(blue curves), the profiles are quite similar between the SCM and MCM setups, at times438

almost identical. By contrast, the SCM and MCM response profiles are often vastly different439

in both shape and magnitude for the all org simulations (red curves). This is most promi-440

nent for the schemes with the highest orgpw values (KFETA and BMJ) while the schemes441

with relatively low orgpw values (NTIEDTKE and CAMZM) differ by less. Additionally,442

the MCM responses often display massive kinks around the cloud base level that are sig-443

nificantly sharper than those of their SCM counterparts (dashed red curves in Figures 6444

and 7). These MCM kinks almost always coincide with strong inversions in the mean state445

temperature (described in previous section), which are also less pronounced in the SCM.446

This shows that the RCE mean state can affect the linear responses, as postulated by H21.447
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Figure 6. Comparison of the profiles of (a–e, k–o) temperature and (f–j, p–t) moisture responses

to temperature tendency perturbations for the (red) all org and (blue) all disorg simulations.

Solid curves are SCM and dashed curves MCM responses.
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Figure 7. As in Figure 6, but for responses to moisture tendency perturbations.

We quantify the effect of convective organization for all experimental configurations by448

fitting a linear mixed-effects (lme) statistical model. The fixed effects (independent predic-449

tors) are the orgpw values and the mean state temperature and RH difference between the450

SCM and MCM setups (∆Tscm−mcm and ∆RHscm−mcm). The dependent variable is the devi-451

ation of the SCM-MCM linear responses (SCM-MCM-deviation). The random effects are the452

five convection schemes and eight experimental configurations, which the lme model controls453

for by taking into account the random variability due to individual differences between them.454

We measure profile differences (SCM-MCM-deviation, ∆Tscm−mcm and ∆RHscm−mcm) by455

using a simple root-mean-square deviation (RMSD) between the profiles, normalized by456

their mean (NRMSD). We log-transformed orgpw and ∆RHscm−mcm as initial scatter plots457

revealed a nonlinear relationship between them and SCM-MCM-deviation. Results are pre-458

sented in Figure 8. We found a high correlation between orgpw and ∆RHscm−mcm (r = 0.89;459

Figure 8a), confirming an effect of convective organization on SCM-MCM mean state dif-460
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ference as described in the previous section. Note that due to this high correlation it is461

inappropriate to use both orgpw and ∆RHscm−mcm as independent predictors in the same462

lme model. We deem orgpw a more suitable predictor as a high RH difference between463

the SCM and MCM is likely a result of a highly aggregated MCM mean state. Our lme464

model confirms a strong effect of orgpw on SCM-MCM-deviation (p < 0.001; Figure 8b).465

Interestingly, we did not find an effect of ∆Tscm−mcm on SCM-MCM-deviation (p > 0.05).466

∆Tscm−mcm is also only moderately correlated with orgpw (r = 0.5), indicating a stronger467

influence of convective organization on mean state humidity than on temperature.468

Figure 8. Scatter plots of (a) log(orgpw) vs. log(∆RHscm−mcm), (b) log(orgpw) vs.

SCM-MCM-deviation. The black dashed line in (b) is the regression line from the fitted lme

model after all fixed and random effects are controlled for.

The results in this section suggest that in idealized and homogeneous conditions where469

convection is disorganized, the behavior of a 3D model in RCE is likely predictable from its470

1D counterpart. However, when convection is organized, multiple factors that complicate471

matters can come into play, and an SCM cannot automatically be expected to be able to472

accurately capture the behavior of a more realistic 3D setup. The strong correlation between473

the degree of organization in MCM and the SCM-MCM mean state RH difference shows that474

the drier mean state associated with highly aggregated conditions leads to a larger disparity475

between the humidity profiles of the two setups. These factors tend to then disrupt the476

comparability of behavior between 1D and 3D models.477

4.2 SCM-MCM Relative Difference478

So far we have shown that when convection is organized, the SCM and MCM responses479

to small tendency perturbations tend to become dissimilar. However, one important question480

remains about their relative comparability – can the relative difference between a pair of481

schemes in SCM predict anything meaningful about the difference between them in their482

corresponding MCM setup? Concretely, for the five convection schemes in our study—10483

unique pairs of scheme combination—if the difference between a given pair of schemes (e.g.,484

KFETA-NTIEDTKE) is larger in an SCM setup compared to another pair (e.g., KFETA-485

NSAS), will it also be larger in an MCM setup? In addressing this question, we invoke an486

approach akin to the “model-as-truth” concept (Herger et al., 2018), where we test whether487

an SCM-based model evaluation (selecting the model physics that gives an SCM closest to488

“truth”) would also provide better MCM results, even though the SCM and MCM results489

may not align perfectly, for example due to convective organization.490
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We use the response profiles of the all org and all disorg configurations for our491

analysis. In addition to the responses to perturbations at 850 hPa, we conducted an addi-492

tional set of experiments where we applied perturbations at 650 hPa for the all org and493

all disorg configurations to obtain more data points and improve statistical confidence.494

We measure the difference between the response profiles of a pair of schemes using the495

NRMSD metric mentioned in the previous section, referred to as SCM-pair-difference and496

MCM-pair-difference for the SCM and MCM setups respectively.497

For statistical analysis we again fit a lme model. The independent predictor is the498

SCM-pair-difference and the dependent variable the MCM-pair-difference. The random499

effects that we control for are the scheme pairs (10 combinations), perturbation levels (850500

and 650 hPa), and the quadrants (T DT, Q DT, T DQ and Q DQ). We fit two separate501

lme models for the all org and all disorg configurations (lme org and lme disorg).502

Each model includes 80 data points (10 scheme combinations × 2 perturbation levels × 4503

quadrants).504

Figure 9. Scatter plots of SCM vs. MCM pair differences for the (a) all org and (b) all disorg

simulations. The black dashed lines are the regression lines from the fitted lme models and the

p-values for SCM-pair-difference are annotated in the top left corners. The 95% confidence intervals

of the coefficient for SCM-pair-difference and the intercepts of the “quadrant” random effect are

shown for (c) lme org and (d) lme disorg. Intervals that do not overlap zero are significant at a

95% confidence level.

Figure 9 shows a summary of the analysis. As expected, for lme disorg there is a very505

high correlation between SCM-pair-difference and MCM-pair-difference (Figure 9b). There506
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is strong evidence of SCM-pair-difference as an effective predictor of MCM-pair-difference,507

after taking into account the variations of the random effects (p < 0.001; Figure 9d, 95%508

confidence interval of the coefficient for SCM-pair-difference does not overlap zero). The509

random effects do not have a significant impact on the outcome (Figure 9d; only the effects510

of “quadrant” are shown and not the other random effects as they all have zero intercepts).511

This is consistent with our results so far that show high SCM-MCM similarity when convec-512

tion is disorganized. For lme org, a faint linear relationship between SCM-pair-difference513

and MCM-pair-difference can still be observed, albeit substantially weaker (Figure 9a).514

The statistical analysis reveals there is evidence for using SCM-pair-difference to predict515

MCM-pair-difference (p = 0.004; Figure 9c, 95% confidence interval of the coefficient does516

not overlap zero). This implies that even when the responses do not match up perfectly517

between the SCM and MCM setups (e.g., as a result of organization in MCM), two schemes518

that are very different in a 1D setup can also be expected to be very different in a 3D519

setup. However, for lme org there is a non-negligible effect of the “quadrant” random effect520

(Figure 9c, 95% confidence interval of the intercepts of the four quadrants do not always521

overlap zero). Specifically, the Q DQ quadrant has a strong impact on the outcome (i.e.,522

considerable variance of the outcome comes from this quadrant), which skews the relation-523

ship between the SCM and MCM pairs. The unpredictability of moisture responses again524

points to the important role of moisture in convective organization: the interplay or feed-525

back between convection and moisture becomes more apparent and important in a 3D setup,526

thereby weakening the predictive power of the corresponding SCM.527

The results presented in this section extend the conclusions drawn in the previous528

section and suggest that, even in a more realistic scenario (i.e., when convection is organized),529

the SCM can still serve as a useful tool to investigate model physics. For example, we have530

a reference profile (e.g., responses of a “good” convection scheme), and the relative distance531

from this reference is a measure of the performance of a new convection scheme X. Our532

results here imply that if the difference between this reference profile and the profile of533

scheme X is large in an SCM setup (compared to an old scheme Y , for example), we can534

expect a correspondingly large difference between them in an MCM setup (which might be535

unavailable or impractical to calculate). However, this interpretation should be applied with536

caution when it concerns moisture responses.537

5 Response to Doubled-CO2 Forcing538

5.1 Comparison of MCM-SCM Response to Doubled CO2539

In this section we compare the SCM and MCM responses to doubled-CO2 forcing540

(2×CO2), with interactive radiation. The response profiles are computed as the time-541

averaged difference between the PerturbCO2 and CTRL experiments (described in Section542

2.3). Surface temperature is held constant, so the response computed here is the CO2543

adjustment responses (Sherwood et al., 2015). Results are shown in Figure 10. The response544

profiles of temperature (T’), relative humidity (RH’), cloud fraction (CLDFRA’) and545

radiative heating (Q’rad) are shown.546

Overall, the schemes respond quite differently in their SCM vs. MCM setups. The547

tropospheric temperature increases in all SCMs, but not all MCMs (the KFETA run cools548

in the free troposphere, Figure 10a). The net radiative heating rate responses (p–t in Fig-549

ure 10) are the atmospheric effective radiative forcing (AERF), which is analogous to the550

top-of-atmosphere (TOA) effective radiative forcing (ERF) following Boucher et al. (2013).551

The AERF shown here includes both the instantaneous (initial) atmospheric radiative forc-552

ing (ARF) to 2×CO2 forcing—generally a warming peaking in the lower troposphere and553

cooling in the upper troposphere (dashed curves in p–t in Figure 10; see also Iacono et al.,554

2008)—and adjustments due to cloud and other responses (a–o in Figure 10). In most cases,555

AERF and ARF are quite similar, indicating that the CO2 adjustments alter the instanta-556

neous forcings by only a small, albeit non-negligible, amount. The same has been found in557
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Figure 10. Responses of the five convection schemes to doubled-CO2 forcing for (a–e) temper-

ature, (f–j) relative humidity, (k–o) cloud fraction, and (p–t) radiative heating. Light blue curves

show the SCM responses and orange curves the MCM responses. Dashed curves in (p–t) show the

instantaneous (initial) radiative forcing.

previous studies for TOA effective radiative forcing, or ERF (Vial et al., 2013; Zelinka et558

al., 2013), but as far as we know, this is the first study that shows the vertical distribution559

of this forcing in terms of AERF. The general trend of radiative forcing (heating increases560

in lower- to mid-troposphere and decreases in the upper troposphere) can be observed in561

both SCM and MCM setups, but frequently with different forcing shapes. Sharp responses562

in clouds (CLDFRA’) and RH’ are often observed around the cloud base and freezing563

levels, albeit sometimes with inconsistent signs between the SCM and MCM setups (f–o in564

Figure 10). Notably, the MCMs tend to exhibit larger spikes compared to SCMs with the565

same scheme, in particular around the cloud base level in their T’ and RH’ (orange curves,566

a–j in Figure 10). These spikes are more noticeable for schemes that produce higher orgpw567

values in the intrad ctrl configuration (KFETA, NSAS and BMJ in Figure 3e) and are568

probably related to temperature inversions.569
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Nevertheless, similarities can sometimes be observed between the SCMs and MCMs,570

particularly for models that are more disorganized in their MCM setup. Specifically,571

NTIEDTKE and CAMZM display relatively homogeneous convective organization patterns572

in the intrad ctrl configuration (Figure 3e), and their 2×CO2 response profiles are also573

comparatively more similar between SCM and MCM. For NTIEDTKE—which produces the574

most disorganized convection amongst the schemes in intrad ctrl—the general shape and575

magnitude of T’ and RH’ are comparable between SCM and MCM (b and g in Figure 10).576

As for CLDFRA’, substantial low cloud changes tend to occur in the same direction and577

altitude in SCM and MCM, albeit with different magnitudes (Figure 10l). Some discrep-578

ancies are observed in the boundary layer heating (Q’rad), but the profiles are remarkably579

similar in the mid-troposphere (Figure 10q). For CAMZM—which is slightly more orga-580

nized than NTIEDTKE—similar shapes and magnitudes are observed in both setups for581

T’ and to a lesser extent RH’, but with the kinks around the cloud base level trending in582

opposite directions (e and j in Figure 10), again probably due to temperature inversion in583

the MCM. Changes in cloud fraction are quite similar, especially in the mid-troposphere,584

with the spike around the freezing level (600 hPa) captured in both SCM and MCM (Figure585

10o). The radiative heating responses are remarkably similar, with the big spike around586

the freezing level again represented in both setups, albeit with slightly different magnitudes587

(Figure 10t). By contrast, big disparities between the SCM and MCM setups are observed588

in the adjustment responses of the three other schemes, which are considerably more orga-589

nized in their MCM setups. Slight resemblance can sometimes be observed in the shapes of590

their T’, but not in magnitudes (NSAS and BMJ, c and d in Figure 10).591

Using a different forcing scenario, this section again highlights the role of convective592

organization in influencing SCM-MCM comparability. We find that the higher the aggrega-593

tion proclivity of a scheme, the less reliable its corresponding SCM results, although certain594

important features are sometimes preserved, e.g., general trend in radiative forcing and595

spikes in low cloud changes, which are noticeable in the SCM and accentuated in the MCM596

setup. Overall, we show the potential usefulness of SCMs in climate change research by597

demonstrating that in an idealized, relatively homogeneous scenario, an SCM can predict598

how a 3D model would respond to a doubling of CO2 in the atmosphere.599

5.2 Predicting Response to Doubled CO2 with M−1
600

In this section we test the feasibility of using the LRF method to predict model ad-601

justment responses to doubled-CO2 forcing, using the experiments described in Section 2.3.602

The aim is to verify the usefulness of the LRF method in a climate change scenario and603

explore the potential implications for SCM-MCM comparability.604

Recall that in the LRF framework (Equation 2), the matrices M−1 show the model re-605

sponses per unit perturbation, e.g., [K/(W m−2)] for temperature and [(g kg−1)/(W m−2)]606

for moisture responses. Figure 11 shows the M−1 matrices of the five convection schemes in607

the SCM setup for the intrad ctrl configuration. The x-axis is the perturbation level and608

y-axis the response level, so each column is the response profile per unit perturbation at a609

given level, and each row is the response at a given level as a function of where the pertur-610

bation is applied. Generally, the SCMs exhibit stronger responses near the perturbations611

(diagonal of the matrices), except for the BMJ scheme, which displays uniform responses612

across a broad range of perturbation levels (d and i in Figure 11). The non-local responses613

(off-diagonal) vary greatly across the five schemes, with the biggest disparities observed in614

the boundary layer. Negative responses are sometimes observed (e.g., for NSAS, c and h in615

Figure 11). Discontinuities in responses (horizontal stripes) are found consistently around616

the cloud base level and sometimes also the freezing level (BMJ and CAMZM).617

Note that the M−1 shown here are equivalent to those shown in Figures 4 and 5 of618

H21, except that here the SCMs have interactive radiation whereas in H21 radiation was619

fixed. Most of the above features are similar to those noted by H21, indicating that many620
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peculiarities of convection schemes are preserved when radiation is interactive, but not all.621

We note that a detailed investigation into the matrices of the individual schemes is beyond622

the scope of this study. Our intention is to see whether these LRF matrices can help predict623

CO2 adjustment responses.624

Figure 11. M−1 matrices of the (a–e) temperature and (f–j) moisture responses to heating

perturbations for the five convection schemes in an SCM setup.

As described in Section 2.3, we compute the LRF-predicted responses of the five schemes625

to doubled-CO2 forcing by multiplying their M−1 matrices by their respective 2×CO2 in-626

stantaneous radiative forcing vector (dashed light blue curves in p–t in Figure 10). This627

is a vector of heating and moistening, with the heating set equal to the radiative forcing628

and the moistening set to zero. Figure 12 shows a comparison of the model-simulated and629

LRF-predicted temperature and RH responses with the five schemes. Overall, the simu-630

lated and predicted profiles are strikingly similar, except for the BMJ scheme. Notably,631

the kinks around the cloud base level—for CAMZM also the freezing level—are reproduced632

in the predicted profiles. For BMJ, the predicted responses depart considerably from the633

simulation (d and i in Figure 12). The kinks around the cloud base and freezing levels are634

predicted, but often in opposite directions as in the simulated profiles. The BMJ simulated635

responses show a marked discontinuity around the freezing level (∼ 600 hPa), which might636

reflect threshold-related mechanisms embedded in the scheme to demarcate between shal-637

low and deep convection. This discontinuity is somewhat reproduced by the LRF-predicted638

responses, albeit with opposite trend above the freezing level for the temperature response.639

It is unclear what is the source of this discrepancy for BMJ. One potential explanation640

could be that a switch-like mechanism around the freezing level causes nonlinearity that641

disrupts its linearized behavior, leading to diverging responses between the simulation and642

prediction.643

To further test if the M−1 matrices constructed in an SCM setup can be used to644

predict the MCM responses to doubled CO2, we compared the simulated temperature and645

RH responses in MCM to the ones predicted by multiplying the SCM matrices with the646

MCM radiative forcing vector (dashed orange curves in p–t in Figure 10). Results (not647

shown) show that simulated and predicted profiles differ considerably for the schemes that648

are highly organized in MCM, as expected, whereas for the relatively disorganized schemes649

they are comparable.650
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Figure 12. Comparison of (solid) model-simulated and (dot-dashed) LRF-predicted (a–e) tem-

perature and (f–j) relative humidity responses to doubled-CO2 forcing for the five convection

schemes.

Our results confirm the relevance of the LRF framework in predicting model adjustment651

responses in a climate change scenario, thus substantiating our decision to use it as one of652

the tests in this study. We did not run the matrix simulations in the MCM setup due653

to resource constraints. However, our findings suggest that, under relatively homogeneous654

conditions, these expensive matrix simulations need only be run in an SCM setup, and the655

results can be used to predict the responses to various forcing scenarios in a more realistic656

3D setup with relative accuracy. For organized convection, on the other hand, this might657

not be the case. We have shown that the linear responses diverge between the SCM and658

MCM when convection is organized. In such cases, matrices constructed using an SCM659

cannot be reliably used to predict a model’s responses in a 3D scenario. It may be possible660

with further effort to find ways of better predicting 3D results using SCM linear responses,661

for example by adding a parameterization of a larger-scale environment (see Brenowitz et662

al., 2020) or by applying some forcing in the SCM, but this is deferred to future work.663

6 Conclusions664

The main objective of this paper is to investigate the relevance of single-column models665

(SCMs) in a radiative-convective equilibrium (RCE) setting for testing model physics and/or666

predicting model responses in a more realistic 3D setup, termed here “comparability”. We667

also explore the influence of convection schemes on convective organization and the role668

of convective organization in the aforementioned comparability. We use a 20 × 20 multi-669

column model (MCM) configuration with periodic boundary conditions and model columns670

matching the SCM as a stepping stone to a 3D setup, testing five widely-used convection671

schemes. We examine the behavior of both model setups by probing their responses to small672

tendency perturbations following the linear response function (LRF) framework of Kuang673
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(2010), as well as their adjustment responses to doubled-CO2 forcing. Four main conclusions674

can be drawn from our results:675

1. Convection schemes strongly influence convective organization, comparably to other676

factors known to organize convection such as interactive radiation.677

2. Convective organization in turn has a strong impact on SCM-MCM comparability,678

with more organization associated with less comparability.679

3. When convection is organized, differences in linear responses between schemes are680

nonetheless largely preserved between the SCM and MCM, albeit less so for moisture681

than for temperature responses.682

4. The LRF matrix of the SCMs can be used to predict their adjustment responses to683

doubled CO2, suggesting practical applications of the LRF method.684

Regarding conclusion (1), we find that even when a fixed horizontally homogeneous ra-685

diative cooling profile is imposed—thus denying the longwave radiative feedback which has686

been found to be key to aggregation in numerous studies—two schemes (NSAS and BMJ)687

still produce organization. In the same vein, two schemes (NTIEDTKE and CAMZM) pro-688

duce disorganized convection even with interactive radiation, perhaps because the limited689

domain size inhibits large-scale circulations. Vertical wind shear is found to have opposite690

effects depending on scheme: it homogenizes convection with KFETA and NSAS, but causes691

convection with NTIEDTKE and BMJ to become more organized, indicating that much is692

left to be understood about the effect of wind shear on aggregation, echoing the review by693

Wing et al. (2017). To obtain disorganized convection across all schemes required deploying694

horizontal moisture homogenization and fixing radiation, while to consistently obtain orga-695

nized convection required interactive radiation and an imposed SST hot spot. Our results696

thus show that for models that do not resolve convection explicitly, convection schemes ap-697

pear to have a bigger impact on aggregation than factors commonly accepted to organize698

convection (e.g., radiative feedback). It is difficult to untangle the root causes of these dif-699

ferences, as a range of processes can affect aggregation; explaining the variations in behavior700

identified here requires extensive sensitivity tests and probably intimate understanding of701

the schemes, which is beyond the scope of this study.702

Convective organization has been shown to impact extreme precipitation (Bao et al.,703

2017; Pendergrass et al., 2016) and tropical cyclones (Muller & Romps, 2018). Hence its704

proper representation in models is important, and our results show that there are still705

considerable uncertainties associated with it arising from parameterizations (see also Bador706

et al., 2018). Past studies have found that organization in global atmospheric models can707

be model-dependent (Wing et al., 2017; Wing, 2019; Wing et al., 2020), but we believe this708

is the first study to show this can be specifically attributed to convection schemes.709

Regarding conclusion (2), SCM-MCM comparability is strongly influenced by the or-710

ganization seen in the MCM: the more organized it is, the larger the divergence between711

SCM and MCM behavior as measured by their mean states, linear responses to small ten-712

dency perturbations and adjustments to doubled-CO2 forcing. On the other hand, when713

convection is disorganized in the MCM, these measures are very similar (at times indistin-714

guishable). Consistent with previous studies, we find that a more aggregated state is drier715

and frequently also warmer. This leads to a larger difference in the mean state profiles716

between the SCM and MCM setups and hence also their linear responses, as these responses717

are correlated with model mean state, as shown in Hwong et al. (2021). Schemes that718

are relatively more disorganized in their MCM setup also display more similar adjustment719

responses to doubled-CO2 forcing. This has important implications for the understanding720

of climate change, as SCMs are sometimes used to examine climate sensitivity (e.g., Kluft721

et al., 2019; Wing et al., 2020). Our findings on the influence of convective organization722

on SCM-MCM comparability have important implications for the use of SCM in an RCE723

setting. The lack of dynamical feedback in SCMs may cause them to behave differently724

from their corresponding full GCMs if interaction between model physics and large-scale725
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circulation is important, which is the case when convection is organized (Bretherton et al.,726

2005; Muller & Bony, 2015). Our findings suggest that when convection is organized, studies727

drawing conclusions from SCM experimentes need to be interpreted with prudence.728

Regarding (3), it could be argued that for an SCM test to be relevant to realistic models,729

if it yields similar results in an SCM with two different physics packages, then a similar test730

in the two corresponding MCMs should also produce relatively similar results (whether we731

can predict them or not). Our results (measuring similarity by a simple RMS distance732

metric) confirm this to a certain extent: in an organized state, a pair of schemes (e.g.,733

KFETA-NTIEDTKE) that produces more similar (but not necessarily identical) behavior734

in the SCM also does so in the MCM, compared to other pairs of schemes that are less similar735

in the SCM. As such, SCMs can be a useful tool in the development of parameterizations736

when we have an SCM verification standard: if a scheme produces behavior closer to the737

standard in an SCM setup, it will probably also perform better in a 3D setup. However, a few738

caveats must be noted. In contrast to disorganized cases, notable features of the responses739

are usually not preserved between the SCM and MCM when convection is organized, even740

though their averaged distances are similar. Hence, if these features (e.g., kinks around cloud741

base level) are important, the SCM is less useful. Further, our conclusion is less reliable742

when it concerns moisture responses. These responses tend to trend in more unpredictable743

directions between the SCM and MCM setups, probably because they are more affected by744

convective organization.745

Regarding the final conclusion, we tested the practical value of the LRF approach by746

examining whether it could predict the SCM adjustments responses to a doubling of CO2747

in the atmosphere. The answer is yes, except for the BMJ scheme whose matrix predicts748

adequate humidity but inaccurate temperature response, particularly above the freezing749

level. For the other schemes, prominent features are reproduced, such as spikes around750

the cloud base and freezing levels. Since the radiative forcing caused by different climate751

change agents can be estimated from radiative transfer calculations (Clough & Iacono, 1995;752

Collins et al., 2006), our results imply that the adjustment responses of different schemes753

to these agents can be compared by simple linear algebra calculations using their LRF754

matrices, without having to import different schemes into the same host model. This could755

potentially be helpful in climate change research, where parameterizations are a major756

contributor to intermodel spread in climate sensitivity predictions (e.g., Geoffroy et al.,757

2017; Ringer et al., 2014; Sherwood et al., 2014; Webb et al., 2013). Moreover, combined758

with conclusion (2), our results suggest that when convection is disorganized in MCM (hence759

high SCM-MCM comparability), the LRF matrices can be constructed using SCMs, thereby760

drastically reducing the computing overhead, yet still ensuring adequate representation of761

the parameterization behavior in a 3D setting.762

This study represents only a first step in exploring the extent to which atmospheric763

behavior in a small isolated column can be used to learn anything about the broader atmo-764

sphere. There is a long tradition of attempting this to better understand climate and to test765

process models, but little systematic exploration of behavior comparability. We acknowledge766

that our MCM setup is still relatively idealized, and may not be sufficiently representative767

of a realistic 3D RCE scenario. Additionally, the domain size (2000 × 2000 km) might not768

be large enough to allow more realistic circulations to form, potentially impeding certain769

feedback mechanisms. Also, we have only explored a limited set of tests and measures of770

success. The conclusions drawn here thus deserve further investigation using more realistic771

setups and other tests. Apart from convective organization, there may be other factors that772

contribute to the comparability of results in 1D vs. 3D setups. For results obtained in SCM773

in RCE to be more convincing, more research is needed to explore these factors so that they774

can be properly controlled for.775
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