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Abstract

The need for and the use of different data assimilation techniques to improve the quality of streamflow forecast is now well

established. In this paper, the goal is to demonstrate the power of a new class of methods known as the Forward Sensitivity

Method (FSM) which is based on the temporal evolution of model sensitivities with respect to the control variables consisting

of initial conditions and parameters. FSM operates in two phases: The first phase provides a simple algorithm for placing

observations at or near where the square of forward sensitivities attains their maximum values. Using only this selected subset

of observations in a weighted least squares method, the second phase then provides an estimate of the unknown elements of the

control variables. In this paper, FSM based assimilation is applied to a simple class of two parameter model in a medium-sized

agriculture dominant watershed lying in the Krishna River Basin, India. Four assimilation scenarios were tested to determine

the effect of assimilating only sensitive observations as well as the impact of temporally evolving initial condition sensitivity.

Sensitivity results showed that observations during the monsoon time alone are enough for assimilation purposes, which has

helped in reducing the computational time greatly. Assimilation and forecast results also indicated that the scenarios which

assimilated only sensitive observations are better in estimating daily streamflow. From the obtained results, it is concluded

that FSM based assimilation has significant potential to improve the streamflow simulations, especially in places where data

availability remains a major challenge.
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Key Points:

• The potential of assimilating only sensitive soil moisture observations on
streamflow forecast was demonstrated using a novel FSM method

• Impact of temporally evolving sensitivity of initial condition on hydrolog-
ical model performance during assimilation was determined

• The majority of the estimated sensitive soil moisture observations were
predominantly from the monsoon season

• The sensitivity based soil moisture assimilation was effective up to 45 lead
days during streamflow forecast

Abstract

The need for and the use of different data assimilation techniques to improve
the quality of streamflow forecast is now well established. In this paper, the goal
is to demonstrate the power of a new class of methods known as the Forward
Sensitivity Method (FSM) which is based on the temporal evolution of model
sensitivities with respect to the control variables consisting of initial conditions
and parameters. FSM operates in two phases: The first phase provides a sim-
ple algorithm for placing observations at or near where the square of forward
sensitivities attains their maximum values. Using only this selected subset of ob-
servations in a weighted least squares method, the second phase then provides
an estimate of the unknown elements of the control variables. In this paper,
FSM based assimilation is applied to a simple class of two parameter model in a
medium-sized agriculture dominant watershed lying in the Krishna River Basin,
India. Four assimilation scenarios were tested to determine the effect of assim-
ilating only sensitive observations as well as the impact of temporally evolving
initial condition sensitivity. Sensitivity results showed that observations during
the monsoon time alone are enough for assimilation purposes, which has helped
in reducing the computational time greatly. Assimilation and forecast results
also indicated that the scenarios which assimilated only sensitive observations
are better in estimating daily streamflow. From the obtained results, it is con-
cluded that FSM based assimilation has significant potential to improve the
streamflow simulations, especially in places where data availability remains a
major challenge.

1 Introduction
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Within the parlance of Hydrology, forecasting streamflow plays a vital role in
water resource management. Based on the temporal scale, streamflow forecast-
ing can be broadly classified into two categories: short-term and long-term
forecasts. Short-term forecasting at hourly and daily scale is critical for flood
warning, mitigation (Gül et al., 2010; Rogelis & Werner, 2018), and disaster
management (Roulin, 2007). Long-term forecasting at monthly and seasonal
scales is extensively utilized in reservoir monitoring (Rezaie-Balf et al., 2019),
design of hydraulic structures (Lowe, 2006), and irrigation practices (Droogers
& Bastiaanssen, 2002). However, uncertainty in hydrological predictions is still
a serious concern that needs to be addressed before planning and management
activities. These uncertainties may arise due to the error in the forcing variables
(e.g., rainfall and temperature data), the model’s inherent structural error (pa-
rameters and boundary conditions), and improper initial condition (Alvarado-
Montero et al., 2017). While the quality of the input data such as the rainfall
rate and temperature can be improved by deploying better observation systems,
errors in model control variables consisting of the initial and boundary condi-
tions and parameters can be corrected using the well-established tools from the
theory of dynamic data assimilation (DDA) (Lewis et al., 2006; Lakshmivara-
han et al., 2017). In this paper, the goal is to demonstrate the power of a new
class of method called forward sensitivity method (FSM) (Lakshmivarahan &
Lewis, 2010) for assimilating data into a simple conceptual two parameter model
(TPM) (Xiong & Guo, 1999) in the analysis of streamflow.

DDA is the process of combining a model of a process of interest in the analysis
with a finite set of relevant but noisy observations of the same process. Ex-
isting literature on DDA can be broadly classified into three classes. First is
a class of sequential methods known as Kalman filtering (Kalman, 1960) and
many if its extensions (Puente & Bras 1987; Evensen, 1994; Whitaker & Hamill,
2002; Sakov et al., 2012). This class of methods rests on the basic principle of
best, linear unbiased estimation (BLUE), where best is in the sense minimum
variance. While Kalman filter-based methods (KF) provide a natural frame-
work for sequential dynamic data assimilation, their excessive computational
requirements essentially prevented the use of this class of methods to large scale
problems by operational centers around the globe. To mitigate the excessive
computational demands of the classical Kalman filtering, Evensen in 1994 intro-
duced an ensemble version of Kalman filtering (also known as EnKF). While the
quality of this class of Monte-Carlo methods critically depends on the number
of ensemble members, its ease of implementation combined with the fact that
it does not require the development of adjoint dynamics has been responsible
for its widespread use by the leading forecast centers across the world (Sabater
et al., 2007; Leisenring & Moradkhani, 2011; Zhu et al., 2012; Pathiraja et al.,
2016; Patil & Ramsankaran 2018). Although EnKF improved the model per-
formance greatly, it explicitly assumed that the distribution of the ensembles
is Gaussian in nature. By doing so it eliminates the importance of extreme
events like flood and droughts which is of high importance in hydrological field
(Carsten Montzka, 2012). To circumvent this problem, Particle filter (PF), a
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non-Gaussian, non-linear filtering approach was introduced to the field of hy-
drology by Moradkhani et al., (2005). Although PF served as an alternative to
EnKF, the computational demand to generate particles is high and its imple-
mentation become more difficult when combined with complex models. Refer to
chapters 27 to 30 in Lewis et al., (2006) for a detailed analysis on various aspects
of analytic approximations including the first-order or extended Kalman filter,
second-order filters and ensemble based (also known as reduced rank) filters,
and their computational requirements.

The second is a class of variational methods for assimilating noisy observations
into the deterministic models and has come to be known as the four-dimensional
variational method (4-D VAR) and it was widely used in the hydrological field
(Seo et al., 2009; Lee et al., 2012; Cioaca et al., 2013, Alvarado-Montero et al.,
2017; Oubanas et al., 2018). This off-line method has deep roots in optimal
control theory and was developed by Le Dimet & Talagrand (1986). Concep-
tually, 4-D VAR is a two-stage process. The first stage computes the so called
adjoint gradient of an objective function which is the weighted sum of squared
errors between the model forecast and the observations. This is accomplished by
developing the adjoint dynamics that run backward in time. Once the gradient
is made available, it is then used in one of many known algorithms - gradient,
conjugate gradient, or quasi-Newton method, (Refer to Chapter 10-12 in Lewis
et al., 2006) to move towards the minimum. These two steps are then repeated
until a suitable convergence criterion is satisfied. Refer to chapters 22 to 26 in
Lewis et al., (2006) for more details. However, the limitation of these conven-
tional variational approaches lies in the complexity to establish a stable adjoin
model. Further, the efficiency and accuracy of the assimilation solely depend
on the quality and the number of observations considered during assimilation
(Cioaca et al., 2013).

Thanks to the vast improvements in the sensor and communication technologies
– radars, satellites, to name a few, it is now possible to sense various field vari-
ables with ever increasing spatio-temporal frequency resulting in large volumes
of data with a side effect of increased temporal and spatial correlation in the
observed data. This implies more data does not mean more information. Fur-
ther, assimilating large volumes of correlated data requires excessive computing
power and time. Therefore, it becomes imperative to assess the efficiency and
impact of assimilating only necessary observations during assimilation.

The third class of methods is based on the evolution of sensitivity of the model
forecast with respect to the elements of the control variable consisting of initial,
boundary conditions, and parameters and has come to be known as the forward
sensitivity method (Lakshmivarahan & Lewis 2010; Tromble et al., 2016; Laksh-
mivarahan et al., 2017). While this method is philosophically aligned with the
4-D VAR, it does not require the backward adjoint model but requires running
the sensitivity dynamics simultaneously forward with the model dynamics. This
method has twin advantages. While the first two methods - 4-D VAR and en-
semble filtering methods, described above are silent on the important question of
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placement of observations, FSM based methodology suggests a simple algorithm
for placement of observations: place the observations at or near those temporal
locations where the square of the forward sensitivity attains their maximum
values (Lakshmivarahan et al., 2020). This decision phase does not require the
knowledge of observations. Once the number and locations of the observations
are known, the data assimilation problem (using only this subset of observations
at the chosen locations) can be solved using the generalized or weighted least
squares method. Refer to Tromble et al. (2016), Lewis et al. (2016) and Lewis
et al. (2020).

Against this backdrop, a review of the literature on the applications of data
assimilation in hydrology is provided. Over the last two decades, data assimi-
lation has been performed in various hydrological models ranging from simple
conceptual lumped models to complex process-based distributed models. The
efficacy of the assimilation in improving the hydrological variables (streamflow,
soil moisture, and evapotranspiration) varied considerably from marginal to
significant improvement. Particularly, in many studies, the efficiency of assimi-
lating observations into a complex model is not easy and often showed marginal
improvement compared to the simple models. For instance, Han et al., (2012)
performed soil moisture assimilation in a complex SWAT model and the perfor-
mance in simulating the streamflow was limited by the rainfall-runoff mechanism
where the peak and low flows were not captured due to the incorrect precipita-
tion. Similarly, Pan et al., (2008), assimilated SEBS observations in distributed
VIC model. From the result, it was clear that the assimilation performance has
optimally improved the evapotranspiration (ET) estimates but failed to update
other prognostic variables such as soil moisture and streamflow. On the contrary,
Xiong et al., (2019), performed EnKF assimilation in a simple lumped Two Pa-
rameter Model and showed significant improvement in the streamflow and ET
predictions. Likewise, Leach et al., (2018) performed dual state-parameter as-
similation on four models and concluded that the simpler conceptual GR4J-SR
model outperformed others in improving the model simulations. Recently, Loizu
et al., (2018) compared the assimilation efficiency between a less parameterized
simple MISDc model with a physics based TOPLATS model. From the results,
it was concluded that the improvement due to surface soil moisture assimilation
is similar in both models. Based on these studies, it can be concluded that the
simple conceptual models have strong potential to improve the simulation of hy-
drological variables during assimilation. Further, performing assimilation in a
simple model can reduce the computational time greatly without compromising
forecast quality.

Among the different variables in the hydrological field, soil moisture performs
an important role in the partitioning of precipitation into overland and un-
derground flows. It is now well understood that in performing hydrological
simulations, the initial soil wetness condition prior to a rainfall event is highly
significant during runoff generation. Because of this reason, soil moisture is con-
sidered as one of the important variables by the hydrological community and soil
moisture assimilation had gained increasing importance over others (Kumar et
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al., 2009; Sahoo et al., 2013; Alvarez-Garreton et al., 2015; Massari et al., 2015;
Meng et al., 2017; Naz et al., 2018). Satellite-based soil moisture observations
in particular have been extensively used for assimilation purposes (Gevaert et
al., 2018; Massari et al., 2018; Patil & Ramsankaran, 2018). Over the years,
various satellite soil moisture observations were made available which include
Soil Moisture and Ocean Salinity mission (SMOS), Soil Moisture Active Pas-
sive (SMAP), Advanced Microwave Scanning Radiometer (AMSRE), Advanced
Scatterometer (ASCAT), etc. ASCAT soil moisture which is obtained from an
active microwave sensor has high spatio-temporal resolution and better accu-
racy (low RFI value) (Wagner et al., 2013). Also, ASCAT level 2 product was
the first to deliver the data on a near real-time basis (Clement Albergel et al.,
2012), which is operational till date.

In view of the limitations identified in sequential and variational assimilation
methods, in this study a new assimilation strategy is proposed using the FSM to
effectively assimilate only the sensitive soil moisture observations for streamflow
predictions. For demonstration, few real case experiments are carried out in a
moderately sized agriculture dominant watershed in India using a conceptual
TPM hydrological model. The study addresses two main research questions: 1)
Can the sensitivity based soil moisture assimilation help in improving hydrolog-
ical simulations and forecast accuracy? and 2) How does the performance of
hydrological predictions vary with different time window frames during varia-
tional assimilation? To address these two questions, four scenarios are adopted
in this study and the performance of these assimilation scenarios are evaluated
using five evaluation criteria namely Kling Gupta Efficiency (KGE), Percentage
Bias (PBias), Root Mean Square Error (RMSE), Peak Flow Criteria (PFC), and
Low Flow Criteria (LFC). For the forecasting purpose, only the scenarios whose
streamflow performance showing KGE more than 0.8 during the assimilation
phase are adopted. In the forecasting phase, the performance of FSM is then
evaluated with nine different lead times in the future.

The remainder of this article is organized as follows: Section 2 explains the
governing equations and derivation of the FSM, Section 3 briefs about the de-
scription of the model, data used, and study area adopted in this study. Later,
Section 4 describes the methodological framework, different scenarios adopted
during assimilation. Section 5 discusses the results of the proposed FSM as-
similation during the assimilation phase and forecast phase. Finally, Section
6 summarizes the study and concludes the results with some recommendations
for future work.

2 Forward Sensitivity Method: An overview

In this section, an overview of the FSM is provided for a) placement of observa-
tions and b) assimilating the observations into the model. For more details of
FSM, refer to Lakshmivarahan & Lewis (2010), Lakshmivarahan et al. (2017),
and Lakshmivarahan et al. (2020). For a comprehensive introduction to data
assimilation refer to Lewis et al., (2006).
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Let 𝑦(𝑘) � R𝑛 denotes a n-dimensional, real vector representing the state of a
deterministic, non-linear dynamic model given by

𝑦(𝑘 + 1) = 𝑓(𝑦(𝑘), 𝛼) (1)

where � 𝜖 R𝑝 is a real vector of parameters and 𝑓 ∶ ℝ𝑛 Xℝ𝑝 → ℝ𝑛 defines the
vector field of the dynamics, with 𝑦(0)� ℝ𝑛 as the initial condition. The solution
𝑦(𝑘) = 𝑦 (𝑘, 𝑦𝑜, 𝛼) depends on 𝑦𝑜 and 𝛼. Since, 𝑦𝑜 and 𝛼 control the evolution
of the solution to Equation 1, together they are called the Control Vector (CV)
where 𝐶𝑉 = (𝑦𝑜

𝑇 , 𝛼𝑇 )𝑇 � ℝ𝑛+𝑝.

It is assumed that this model is faithful to the process being modelled and
the control vector is not known in advance. The main goal is to estimate this
unknown control vector. To this end, it is assumed that we have access to a
finite set of observations, 𝑧(𝑘)given by

𝑧(𝑘) = ℎ (𝑦(𝑘)) + 𝜂(𝑘) (2)

where 𝑦(𝑘) is the unknown true state of the process, and ℎ ∶ ℝ𝑛 → ℝ𝑚 is a
function otherwise known as observation operator that relates the model state
to the observation. If the states are directly observable, then ℎ(𝑦) = 𝑦, that
is, h is the identity function. 𝜂(𝑘) in Equation 2 is the unavoidable additive
observation noise and it is assumed that 𝜂(𝑘) is temporally uncorrelated with

𝐸 (𝜂(𝑘)) = 0, 𝑐𝑜𝑣 (𝜂(𝑘)) = 𝑅m 𝑥𝑛, and

cov (𝜂 (𝑘1) , 𝜂 (𝑘2)) = 0 𝑓𝑜𝑟 𝑘1 ≠ 𝑘2 (3)

where the matrix R is known and is symmetric and positive definite. The inverse
problem of interest may be stated as follows: given a finite set

𝑆 = {𝑧 (𝑘𝑖) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑁} (4)

of noisy observation, our goal is to estimate the unknown control vector. While
there are number of methods to solve this problem (Lewis et al., 2006), in this
work we concentrate on solving this problem using the FSM as described in
Lakshmivarahan & Lewis, (2010) and Lakshmivarahan et al. (2017). Define

𝑈(𝑘) = 𝜕𝑦(𝑘)
𝜕𝑦(0) = [ 𝜕𝑦𝑖(𝑘)

𝜕𝑦𝑗(0) ] � Rn 𝑥𝑛 (5)

is the n x n matrix of forward sensitivities of the solution y(k) at time k with
respect to the initial condition 𝑦(0). Similarly, let

𝑉 (𝑘) = 𝜕𝑦(𝑘)
𝜕𝛼 = [ 𝜕𝑦𝑖(𝑘)

𝜕𝛼𝑗
] � Rn x 𝑝 (6)

be n x p matrix of sensitivities of y(k) with respect to 𝛼. By direct differentiation
of the model Equation 1 with respect to 𝑦(0), we get a linear, time-varying
difference equation

𝑈(𝑘 + 1) = 𝐷𝑓(𝑘).U(𝑘) (7)

where
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𝐷𝑓(𝑘) = 𝜕𝑓(𝑘)
𝜕𝑦(𝑘) = [ 𝜕𝑓𝑖(𝑘)

𝜕𝑦𝑗(𝑘) ] 𝜖 Rm 𝑥𝑛 (8)

is the model Jacobian evaluated along the solution 𝑦(𝑘), with U(0) = In, the
identity matrix as its initial condition. Likewise, by differentiating the model
Equation 1 with respect to the parameter 𝛼, we get

𝑉 (𝑘 + 1) = 𝐷𝑓(𝑘)𝑉 (𝑘) + 𝐷𝛼
𝑓 (𝑘) (9)

where

𝐷𝛼
𝑓 (𝑘) = 𝜕𝑓(𝑘)

𝜕𝛼 = [ 𝜕𝑓𝑖(𝑘)
𝜕𝛼𝑗

] 𝜖 Rm 𝑥𝑝 (10)

is the model Jacobian with respect to the parameter 𝛼 and V(0) = 0, the zero
matrix as the initial condition. The first step is to solve the model Equation 1
and sensitivity Equations 7 and 9 simultaneously so that we have 𝑦(𝑘), 𝑈(𝑘),
and 𝑉 (𝑘) for k≥0.

2.1 Placement of observations

From the definition of 𝑈(𝑘) it follows that the jth column of 𝑈𝑗(𝑘) is the sen-
sitivity of the solution vector 𝑦(𝑘) with respect to the jth component 𝑦𝑗(0) of
the initial condition. Likewise,𝑉𝑗(𝑘) is the jth column of 𝑉 (𝑘) denotes the sen-
sitivity of the solution vector 𝑦(𝑘) with respect to the jth component 𝛼𝑗 of the
parameter vector �.

Following Lakshmivarahan et al. (2020), for placing the observations, we suggest
a couple of strategies. The first approach is to plot the square of the norm of
each column of the U and V matrices separately and locate the observations
where these are maximum. We plot the square since the sensitivity can be both
positive and negative, but its square is always positive. The second way would
be to plot the sum of the squares of the elements of the matrices U in one plot
and the sum of the squares of the elements of V in another plot and place the
observations where these plots achieve the maximum value. These strategies
ensure that the observability Gramian is positive definite there by ensuring a
unique local minimum (Lakshmivarahan et al. 2020). In this study, the second
strategy is adopted where CV � ℝ𝑛+𝑝 has n+p unknown components and we can
place the (n + p) observations when the sum of the square of the norm of the
n column vector, 𝑈𝑗(𝑘) of 𝑈(𝑘) and p column vector,𝑉𝑗(𝑘) of 𝑉 (𝑘) attain their
maximum value when added together. Once the placement problem is solved,
we can move on to assimilate these (n + p) observations into the model using
FSM.

2.2 FSM method for data assimilation

Let CV be the unknown true control and let CV be the current operating point
from which model forecast is generated. Thus

𝛿𝐶𝑉 = CV − 𝐶𝑉 = (�y𝑜
𝑇 , ��𝑇 )𝑇 � ℝ𝑛+𝑝 (11)
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be the error in the control. Recall that our goal is to estimate this error �CV.
This initial control error induces an error 𝛿𝑦(𝑘) in the solution 𝑦(𝑘) given by

𝛿𝑦(𝑘) = 𝑦(𝑘) − 𝑦(𝑘) (12)

Using the definition of 𝑈(𝑘) and 𝑉 (𝑘), from first principles(Lakshmivarahan &
Lewis, 2010) it follows that

𝛿𝑦(𝑘) = 𝑈(𝑘)𝛿𝑦0 + 𝑉 (𝑘)𝛿𝛼 (13)

Now consider the difference between an observation 𝑧(𝑘) and it’s model coun-
terpart

𝑒(𝑘) = 𝑧(𝑘) − ℎ (𝑦(𝑘)) = ℎ (𝑦(𝑘)) − ℎ (𝑦(𝑘)) + 𝜂(𝑘) (14)

called the innovation or forecast error. Expressing 𝑦(𝑘) = 𝑦(𝑘) + 𝛿𝑦(𝑘) using
Equation 12 and expanding ℎ (𝑦(𝑘)) in the first-order Taylor series, we get

ℎ (𝑦(𝑘)) = ℎ (𝑦(𝑘)) + 𝐷𝑦(ℎ)𝛿𝑦(𝑘) (15)

where

𝐷ℎ(𝑘) = 𝜕ℎ(𝑦(𝑘))
𝜕𝑦(𝑘) = [ 𝜕ℎ𝑖(𝑦(𝑘))

𝜕𝑦𝑗(𝑘) ] 𝜖 Rm 𝑥𝑛 (16)

is the Jacobian of h. Now substituting Equation 15 in 14 and simplifying, it
follows

𝑒(𝑘) = 𝐷ℎ(𝑘) [𝑈(𝑘)𝛿𝑦0 + 𝑉 (𝑘)𝛿𝛼] (17)

Now substituting Equation 13 in 17, we get after simplifying

𝑒(𝑘) = 𝐻(𝑘) �CV (18)

where

𝐻(𝑘) = [𝐻1(𝑘) 𝐻2(𝑘)] 𝜖 Rm 𝑥𝑛+𝑝

𝐻1(𝑘) = 𝐷ℎ(𝑘) 𝑈(𝑘)𝜖 Rm 𝑥𝑛

𝐻2(𝑘) = 𝐷ℎ(𝑘) 𝑉 (𝑘)𝜖 Rm x 𝑝and

𝛿𝐶𝑉 = [𝛿𝑦0
𝛿𝛼 ] (19)

Recall that there are N ≥ n + p observations at times 𝑘1, 𝑘2, .. , 𝑘𝑁 and the
structure of Equation 18 is additive in k. Consequently, combining the forecast
errors at these N observations times, we get a linear relation connecting the sum
of forecast errors and the unknown 𝛿𝑒 as

𝐸 = H �CV (20)

where 𝐸 = ∑𝑘 𝑒(𝑘)𝜖 R𝑚 and 𝐻 = ∑𝑘 𝐻(𝑘)𝜖 Rm 𝑥𝑛+𝑝. We can readily solve
Equation 20 using the standard weighted least square method refer to chapter
5 of Lewis et al., (2006) to obtain.
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𝛿CVLS = (𝐻𝑇 𝑅−1𝐻) 𝐻𝑇 𝑅−1𝐸 (21)

3 Study area and data used

3.1 Study area

Marol watershed of Krishna river basin, India was selected as the study area.
The watershed encompasses a total area of 5092 km2 up to the Marol gauging
station that extends from 74° 48’ E to 75° 36’ E and 14° 5’ N to 15° 7’ N. Figure
1 shows the geographic location of the study site and ASCAT soil moisture
observation grids. The major river flowing here is Varada and it has a total
length of 188 km. The terrain is moderately flat and lies on the leeward side of
Western Ghats. The Western Ghats is a long mountain range, which extends
across the southern peninsula of India. The monsoon (rainfall) season extends
from the first week of June till November and the catchment receives an average
rainfall of over 1500 mm annually. Agriculture covers more than 75% of land
use followed by deciduous forest (Patil & Ramsankaran, 2017). According to
FAO, soil texture is mostly dominated by clay loam and sandy clay loam
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Figure 1: Study area map showing the location of ASCAT surface soil moisture
observation points, stream gauging station, and stream networks of the Marol
watershed.

3.2 Data used

Details of the input forcing data, soil moisture observations, and streamflow
gauge data used for model simulations, assimilation and validation are given in
Table 1. Among the input forcing data, humidity, wind speed and solar radia-
tion for estimation of potential evapotranspiration were obtained from NCEP-
Climate Forecast System Reanalysis data (Dile & Srinivasan, 2014; Fuka et al.,
2014; Saha et al., 2010). Minimum and maximum temperature at 1˚×1˚ spa-
tial resolution were obtained from India Metrological Department (IMD) (Pai
et al., 2014). Daily rainfall data was obtained from Karnataka State Natural
Disaster Monitoring Centre (KSNDMC) at the taluk (local administrative unit)
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level. A total of 11 years of data from January 2000 till December 2011 were
used for the study. Data from the beginning of the year 2000 up to May 2007
was used for training the model except the year 2005. It shall be noted that the
year 2005 was not considered because of the poor quality of the dataset.

For assimilation purposes, ASCAT level 2 surface soil moisture data was pro-
cured for the period June 2007 till December 2011. This data was obtained
from EUMETSAT mounted on the Metop platform. For determining the obser-
vation error rate, ‘sm_noise’ flag data was used in the study. For validation of
the model during open-loop and assimilation simulations, Central Water Com-
mission (CWC), Government of India, gauge streamflow data at Marol gauging
station was used. It shall be noted that all the data were obtained on a daily
scale.

Table 1: Description of the dataset used for the current study.

Dataset Purpose Spatial
Resolution

Unit

Humidity, Wind
speed and Solar
radiation

Model forcing ˚ × 0.25˚ (-), (m/sec)
and (˚c)

Temperature ˚ × 1˚ (˚c)
Rainfall Point (mm/day)
Surface soil
moisture

Assimilation ˚ (relative
percentage)

Streamflow Validation Point (cumecs)

4 Methodology

The following section gives a brief description of the model, steps involved in
the preparation of profile soil moisture observation, and sensitivity based assim-
ilation runs. An overall schematic representation of the FSM based assimilation
in the TPM is presented in Figure 2. The methodology is divided into four
stages. First stage deals with the preparation of profile level soil moisture data
that can be directly used for assimilation purposes. The second stage details
the estimation of model sensitivities and the identification of sensitive observa-
tions for assimilation purpose. The third stage involves the actual assimilation
of soil moisture into the model by correcting the control variables. Finally, the
last stage deals with the estimation and forecasting of profile soil moisture and
streamflow for different lead times.
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Figure 2: Schematic of the overall FSM assimilation framework used for stream-
flow and profile soil moisture forecasting

4.1 Two Parameter Model

TPM is a conceptual, lumped, water balance model. It was originally developed
by Xiong & Guo, (1999). The two main inputs for running the model are
Precipitation (P) and Potential Evapotranspiration (PET). The model estimate
Actual Evapotranspiration (AET) based on the ratio of P and PET as shown
in Equation 22

AET(𝑘) = 𝐶 . PET(𝑘) tanh ( 𝑃(𝑘)
𝑃𝐸𝑇 (𝑘) ) (22)

where C is the first model parameter that specifies the variations in the evapo-
transpiration over a catchment area. Streamflow (Q) from a catchment is then
estimated from the Soil Moisture (SM) content available over the area as given
in Equation 23.

𝑄(𝑘) = 𝑆𝑀(𝑘) tanh ( 𝑆𝑀(𝑘)
SC ) (23)
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Here SC is the second model parameter and it reflects the amount of water
storage capacity over the catchment. The details of the model parameters, their
ranges, and units are presented in Table 2. The amount of soil moisture available
at each time step is given by SM(𝑘) = 𝑆𝑀(𝑘 − 1) + 𝑃(𝑘) − 𝐴𝐸𝑇 (𝑘). Hence,
Equation 23 becomes

𝑄(𝑘) = [SM(𝑘 − 1) + 𝑃(𝑘) − 𝐴𝐸𝑇 (𝑘)] tanh (SM(𝑘−1)+𝑃(𝑘)−𝐴𝐸𝑇 (𝑘)
SC ) (24)

The soil moisture at the end of each time step is then updated as shown in
Equation 25

‘ SM(𝑘) = 𝑆𝑀(𝑘 − 1) + 𝑃(𝑘) − 𝐴𝐸𝑇 (𝑘) − 𝑄(𝑘) (25)

Table 2: Nominal range of the Two Parameter Model.

Parameter Description Range (Unit)
C Evapotranspiration parameter 0.2 to 2 (-)
SC Water storage capacity 100 – 2000 (mm)

4.2 Preparation of profile soil moisture observation

The raw ASCAT observation obtained cannot be used directly for assimilation
purposes because it does not exactly represent the soil moisture that is simulated
by the model. This section describes the steps involved in the preparation of
soil moisture observation prior to assimilation.

4.2.1 Pre-processing of ASCAT data

ASCAT H111 product provided at 12.5km swath geometry was first masked to
the bounding boundary of the study area. The surface soil moisture observations
and corresponding ‘sm_noise’ data representing the error in the observation are
then interpolated using the Thiessen polygon method and weighted averaged to
the whole basin.

4.2.2 Surface to profile soil moisture

ASCAT soil moisture product derived in swath geometry represents only the
top 5 cm of the soil layer while the model simulates the soil water storage at
the profile level. Therefore, the data needs to be converted to the profile level
before assimilating into the model. Over the years, several studies have been
conducted to convert the surface to profile soil moisture (Houser et al., 1998;
Sabater et al., 2007; Tobin et al., 2017) and exponential filter stands out over
others due to its applicability in different soil types and land cover. Though it
was initially proposed for ERS Scatterometer by Wagner et al., (1999), it was
later applied for other soil moisture datasets (Albergel et al., 2008; Brocca et al.,
2012; Wang et al., 2017) and the resultant profile soil moisture estimate showed
good agreement with the in-situ observations.

The soil water index (SWI) estimated by the exponential filter (Equation 26)

13



represents the moisture condition at the root zone level transferred from the
surface soil moisture time series. The water level at the bottom layer is filled
based on the antecedent soil conditions at the top layer. The model reasonably
assumes an exponential relationship between the two layers with more recent
events showing a higher contribution to the SWI value than the previous one.

SWI (𝑘𝑛) = ∑𝑛
𝑖 SSM(𝑘𝑖).𝑒

−(𝑘𝑛−𝑘𝑖)
𝑇

∑𝑛
𝑖 𝑒

−(𝑘𝑛−𝑘𝑖)
𝑇

𝑘𝑖 ≤ 𝑘𝑛 (26)

here SWI (𝑘𝑛) is the soil water index estimated at the time 𝑘𝑛 and value usually
ranges between 0 and 1, SSM (𝑘𝑖) is the remotely sensed surface soil moisture
at the time 𝑘𝑖 and T is the only parameter in this model representing the
characteristics time length (in days). T takes into account the depth of the
second layer and physical properties of the soil such as hydraulic property and
pseudo diffusivity. Due to the exponential weightage function, more significance
will be given to the recent observations. That is, SSM observed on the day 𝑘𝑛
receives more weight than the observation at the time 𝑘𝑛−1. Usually, the value of
T is determined using the field measurements or assumed meaningfully. Based
on the previous study by Albergel et al., (2008) and the absence of field data in
the current study T was assumed a value of 10 days.

4.2.3 Bias correction

The soil moisture thus obtained still shows the climatological difference with
the model simulated soil moisture due to the differences in their representation.
Therefore, it is essential to do bias correction prior to assimilation. Although a
higher-order approach (CDF) is available, in this study, SWI-ASCAT was bias-
corrected using a mean-variance method (Kumar et al., 2012; Massari et al.,
2015) to match the model simulated profile soil moisture time series as shown in
Equation 27. This is because, for a limited time span of 4 years, construction of
CDF would be suboptimal and rescaling through a simpler method has proved
sufficient (Lievens et al., 2015). The Mean-variance approach is regarded as the
second-order moment correction as it shifts the overall mean of the observation
to match the model time series. Then, it normalizes the obtained data based
on the ratio of respective standard deviations.

SMscaled = SMASCAT + (SMmodel − SMmodel) . 𝜎ASCAT
𝜎model

(27)

4.3 First-order sensitivity equations

The obtained bias-corrected profile soil moisture observation is comparable with
the model simulated soil moisture and can be used for assimilation purposes
directly without the use of an observation operator (h). Therefore, in Equation
17, the Jacobian of h with respect to the model function becomes an identity
matrix (i.e. 𝐷𝑦(ℎ) = 𝐼). In addition, the model parameters C and SC and
the initial condition So are the three driving control variables in the sensitivity
vector. Successively, Equation 17 becomes
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(28)

where 𝑈(𝑘) = [ 𝜕𝑆𝑀(𝑘)
𝜕𝑆𝑜

]
𝑘=0

= 1 ,𝑉1(𝑘) = [ 𝜕𝑆𝑀(𝑘)
𝜕𝐶 ]

𝑘=0
and 𝑉2(𝑘) =

[ 𝜕𝑆𝑀(𝑘)
𝜕𝑆𝐶 ]

𝑘=0
= 0

On solving the first-order derivative of the model with respect to the control
variables we get Equations 29-31.

𝑈(𝑘) = 𝑈(𝑘 − 1) [1 − 𝑡𝑎𝑛ℎ ( Nr
SC) + Nr

SC x (1 − 𝑡𝑎𝑛ℎ ( Nr
SC)2)] (29)

𝑉1(𝑘) = [𝑉1(𝑘 − 1) − 𝑃𝐸𝑇 (𝑘) tanh ( 𝑃(𝑘)
PET(𝑘) )] [1 − 𝑡𝑎𝑛ℎ ( Nr

SC) + Nr
SC (1 − 𝑡𝑎𝑛ℎ ( Nr

SC)2)]
(30)

𝑉2(𝑘) = 𝑉2(𝑘−1) [1 − 𝑡𝑎𝑛ℎ ( Nr
SC) + Nr

SC (1 − 𝑡𝑎𝑛ℎ ( Nr
SC)2)]+ [( Nr

SC)2 (1 − 𝑡𝑎𝑛ℎ ( Nr
SC)2)]

(31)

where Nr = SM(𝑘 − 1) + 𝑃(𝑘) − 𝐴𝐸𝑇 (𝑘).
Following Equation 20, the obtained sensitivity vector 𝐻(𝑘) = [𝑈(𝑘) 𝑉1(𝑘) 𝑉2(𝑘)]
was used as the driving force to perturb the control vector 𝛿𝑒 = [𝛿𝑆0 𝛿𝐶 �S𝐶]𝑇

such that the new control vector after few iterations renders forecast error (𝐸)
purely random.

4.4 Assimilation of sensitive observations

4.4.1 Calibration and assimilation phase

For initializing the assimilation in the first iteration, the model parameters
and the initial condition (i.e. control vector) can be assumed meaningfully or
through using calibrated values. For this purpose, the model was calibrated
from 1st January 2000 to 31st May 2007 with KGE as the evaluation criteria.
Later, assimilation was performed for the four monsoon years from 1st June
2007 to 30th June 2011 to estimate streamflow. To understand the effect of
assimilating only sensitive soil moisture observations and to determine the im-
pact of temporally evolving sensitivity of initial condition during assimilation,
four different assimilation scenarios were adopted in this study. Further, the
simulations from each scenario were compared against the open-loop simulation
(model run without assimilation) to assess their performance in hydrological
simulations. Description of the adopted four scenarios is as follows:

Scenario 1: Assimilation of all the observations considering the whole time
period from 1st June 2007 till 30th June 2011.

Scenario 2: Assimilation of only the sensitive observations considering the whole
time period from 1st June 2007 till 30th June 2011.
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Scenario 3: Assimilation of all the observations considering an annual time
window at a time.

Scenario 4: Assimilation of only the sensitive observations considering an annual
time window at a time.

In the 2nd and 4th scenarios, a threshold value (Th) was determined to differen-
tiate sensitive and non-sensitive observations as shown in Equation 32. The ob-
servations are considered to be sensitive in nature for those time steps when the
cumulative sensitivity (i.e.𝑈(𝑘)2+ 𝑉 1(𝑘)2+ 𝑉 2(𝑘)2 ) is more than this threshold
value. That is, for a given time step when 𝑈(𝑘)2 + 𝑉 1(𝑘)2 + 𝑉 2(𝑘)2 ≥ 𝑇 ℎ then
the corresponding soil moisture observation SM(𝑘) was classified as sensitive
observation

𝑇 ℎ = 𝐴 ∗ ∑𝑁
𝑘=1(𝑈(𝑘)2+ 𝑉 1(𝑘)2+ 𝑉 2(𝑘)2)

𝑁 (32)

here N is the length of the time window taken. For the 2nd and 4th scenarios, the
N value is 1491 and 365 respectively. ‘A’ is the first assimilation parameter and
the value of the A was assumed to range between 0.1 and 2.5. For a minimum
value of A, Th will be at least greater than 10 percent of the mean cumulative
sensitivity. Also, the sum of the squared sensitive value was adopted because
the magnitude of each sensitivity is more important than nature (sign) of the
sensitivity. In addition, to determine the impact of initial condition sensitivity
during assimilation different time window frames were adopted. Especially, in
scenarios 3 and 4, assimilation was performed four times separately considering
one year at a time. The soil moisture simulated at the end of each year was
used as the antecedent soil moisture (initial condition) for the subsequent year.

The ‘sm_noise’ flag procured along with ASCAT observation ranges between
0.05 and 0.15 values during the assimilation phase. However, this data does not
represent the observation error variance (R) as in Equation 21 correctly. This
is because the ASCAT soil moisture represents moisture at the surface level in
the relative percentage unit. Whereas, the final soil moisture used for assim-
ilation is a bias-corrected product at the profile level. Moreover, considering
the error induced during surface to profile conversion and in bias correction,
observation error variance will vary more than the observed ‘sm_noise’ value.
Loizu et al., (2018) and Massari et al., (2015) stated that the calibration of the
observational error is necessary for each catchment area and model structure
when ground validation is impossible and this might improve the performance
of assimilation optimally. Therefore, ‘R’ (refer to Equation 21) was taken as
the second assimilation parameter. Considering the ‘sm_noise’ flag range and
possible error caused during the data preparation, the error variance value of
the final observation was assumed to range between 0.05 and 0.35 representing
a 5 to 35 percent error rate.

To assess the performance of the streamflow simulations during open-loop and
four assimilation scenarios, RMSE, PBIAS, and KGE performance criteria were
determined. Among these, KGE was used as the objective function to determine
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the assimilation parameters (A and R). This is because, KGE takes into account
three components to determine the differences between model simulations and
observations namely, variability error, bias error, and linear correlation (Gupta
et al., 2009) as shown in Equation 33.

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (SDsim
SDobs

− 1)2 + ( 𝜇sim
𝜇obs

− 1)2
(33)

where r is the linear correlation, SDsim and SDobs are the standard deviations
and 𝜇sim and 𝜇obs are the mean of the model simulations and observations
respectively. KGE value greater than 0.5 is considered a good model perfor-
mance (Knoben et. al., 2019). Along with streamflow, the estimated profile
soil moisture was also analyzed to understand the model behavior during FSM
assimilation to know specifically how the corrected soil moisture state controls
the streamflow estimates.

The assimilation process was performed repeatedly for different pairs of A and
R values. For each pair, control variables were perturbed (corrected) up to
ten iterations and the corresponding KGE value of streamflow simulation was
recorded. Finally, the assimilation parameter combination for which the stream-
flow simulation showed the best agreement with the observation (i.e. highest
KGE) was taken as the ‘base simulation’. It should be noted that since 1st and
3rd scenarios use all the soil moisture observations for assimilation, the above
process was performed with only one assimilation parameter R.

4.4.2 Forecast phase

To understand the post assimilation effect on the model behavior, the model
was made to run in forecast mode without any further assimilation. For this
purpose, streamflow forecasting was performed with nine different lead times
(1,2,7,15,30,45,60,75 and 90 days). Out of the four assimilation scenarios
adopted, those scenarios whose streamflow performance with KGE value more
than 0.8 during the assimilation phase were only analyzed in the forecasting
phase. The forecasting phase extends from 1st July 2011 to 31st December
2011 and it has a total of 95-forecasting simulations within this period for
each shortlisted scenario. During forecasting, the model and the assimilation
parameters obtained at the end of the assimilation phase were used with
no further change. The first forecasting period starts from 1st July 2011
till 29th September 2011(90 days). During this period, the control variables
obtained at the end of 30th June 2011 were taken and only precipitation and
potential evapotranspiration were used to run the model. Similarly, the second
forecasting period starts from 2nd July 2011 and ends on 30th September 2011.
The control variables obtained at the end of 1st July 2011 were used. The same
procedure was repeated 95 times till the end of the forecasting phase. Likewise,
profile soil moisture was also forecasted 95 times during the forecasting period
for each shortlisted scenario. Therefore, at the end of all the analyses, there
were 95 profile soil moisture and streamflow forecasts with nine different lead
times for each shortlisted scenario.
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Similar to the performance assessment during assimilation, forecasting ability
for profile soil moisture and streamflow simulations was assessed using RMSE
and PBIAS. In addition, to determine the nature and distribution of streamflow
during the forecast, peak flow criteria and low flow criteria were also determined
following Coulibaly et al.,(2001) and Samuel et al., (2014).

PFC = (∑PL
𝑖=1(𝑋𝑂𝑏𝑠,𝑖− 𝑋𝑆𝑖𝑚,𝑖)2𝑋2

𝑂𝑏𝑠,𝑖)
1
4

(∑Ti
𝑖=1 𝑋𝑂𝑏𝑠,𝑖)

1
2

(34)

LFC = (∑TL
𝑖=1(𝑋𝑂𝑏𝑠,𝑖− 𝑋𝑆𝑖𝑚,𝑖)2𝑋2

𝑂𝑏𝑠,𝑖)
1
4

(∑Ti
𝑖=1 𝑋𝑂𝑏𝑠,𝑖)

1
2

(35)

where PL is the number of peak flows greater than 33.3% observed flows and
TL is the number of low flows less than 66.6% observed flows taken during the
forecasting phase.𝑋𝑆𝑖𝑚,𝑖 and 𝑋𝑂𝑏𝑠,𝑖 are the forecasted and observed streamflow.
A PFC or LFC equal to 0 represents a perfect fit.

5 Results and Discussions

5.1 Sensitivity results

The sensitivity evolution of the control variables for all the four tested scenarios
was derived using Equations 29, 30 and 31 on the calibrated model. The details
of model calibration are explained in Section 5.2. The assimilation parameters
of ‘base simulation’ obtained (i.e., the streamflow simulation having the best
agreement with the observation) are given in Table A1. For illustration purposes,
the sensitivity plots (U1, V1 and V2) representing the best iteration run during
the ‘base simulation’ are displayed in Figures 3(a-d). To see the nature of
changes in the sensitivity value during different iterations, supplementary plots
are presented in Figure A1 of Appendix A. From Figure A1 it is understood that
the iterations are identical and parallel in nature. Also, with each iteration, the
model values moved closer towards the streamflow observations.
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Figure 3: First-order sensitivity evolution of the soil moisture with respect to
a) initial condition: U, b) parameter ‘C’: V1, c) Parameter ‘SC’: V2, and d)
cumulative sensitivity (U12+V12+V22)

The sensitivity of the initial condition (Figure 3a) for the 1st and 2nd scenar-
ios shows a constant decreasing trend throughout the assimilation phase. This
shows that the effect of the initial condition deteriorates with time. Whereas in
the 3rd and 4th scenarios, since the time window considered was annual, sensi-
tivity ‘U’ resets to 1 and shows relatively a higher value at the beginning of each
monsoon season. It can also be noted that the sensitivity decays mainly during
the beginning of each monsoon period (June to October) and remains constant
throughout the rest of the year for all four scenarios. This is because U(k) is
mainly dependent on U(k-1) as observed from Equation 29. Therefore, during
the non-monsoon time when the soil moisture remained negligible and constant,
the decay rate in the sensitivity has also remained the same. On the contrary,
parameters C and SC showed more sensitivity (Figures 3b and 3c) during the
monsoon period and decay rapidly during the non-monsoon period (December
to April). Though sensitivity V1 shows a negative value due to the (- PET ×
tanh(.)) term in Equation 30, it contributes more to the cumulative sensitivity
(Figure 3d) compared to other sensitivities due to its higher magnitude. This
shows that magnitude of the sensitivity is more important than the direction
(sign) of the sensitivity. Further, it is revealed that evapotranspiration plays
a major role in model dynamics. The derived cumulative sensitivity (Figure
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3d) was used to obtain the sensitive observations required for assimilation in
the 2nd and 4th scenarios. Th value represented by the horizontal dashed line
differentiates the sensitive and non-sensitive observations. Parameter A equal
to 0.75 (for scenario 2) and 0.35 (for scenario 4 during all assimilation years)
yielded the best KGE value in streamflow simulations during the assimilation
phase. During those time steps, when the cumulative sensitive value lies above
this threshold line (i.e. A times the mean cumulative sensitivity), then those
soil moisture observations were considered as sensitive in nature.

Figure 4: Identification of the sensitive observations during a) scenario 2 and
b) scenario 4 selected for assimilation purpose after analyzing the cumulative
sensitivity plot

Figure 4 shows the sensitive observations obtained for the 2nd and 4th scenarios.
In the 2nd scenario (Figure 4a), only 558 observations were classified as sensitive
out of 1491 observations that account for just 37.42 percent. Likewise, in the 4th
scenario (Figure 4b), 891 observations were found sensitive accounting for only
59.75 percent of the total observations available during the assimilation phase.
Since the threshold value in the 4th scenario is relatively low compared to the
2nd scenario, more observations were classified as sensitive in the 4th scenario. In
both these scenarios (Figure 4), it can be noticed that the sensitive observations
were predominantly from the monsoon period of the year. In addition, it is
understood that the starting period of the monsoon season is more sensitive
than the ending period (late November) and this is correctly reflected during
the determination of cumulative sensitive (Figure 3d).

5.2 Calibration and assimilation results
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To initialize the assimilation processes, the model was calibrated in a determin-
istic mode for different model parameter space (C and SC) with KGE as the
deciding criteria. For this purpose, data of six years from January 2000 to May
2006 (except 2005) were considered to train the model as stated in Section 3.2.
For the parameter set C and SC equal to 0.9 and 648 respectively, the model
rendered the best streamflow simulation with KGE equal to 0.668. Also, the
RMSE and PBias were estimated to be 119.73 cumecs and 24.596 mm respec-
tively. The soil moisture simulated at the end of the calibration period was used
as the initial condition during the assimilation phase. With these parameter sets
and initial condition, all four assimilation scenarios were carried out. To visual-
ize the impact of sensitivity based assimilation, time-series plots (Figures 5a-c)
of the model simulations under different assimilation scenarios were compared
against the open-loop simulations. Figure 5a represents the weighted average
precipitation value (P) observed in the study area and Figures 5b and 5c show
the time series simulation of profile soil moisture and streamflow respectively
during the assimilation and open-loop case.

Figure 5: Time series plot of a) rainfall b) profile soil moisture and c) streamflow
for open-loop and four FSM assimilation runs.

From Figure 5b it is observed that the overall trend of the simulated profile soil
moisture showed better agreement with the observations during all the assimila-
tion runs as compared to the open-loop simulation. However, the soil moisture
decays slowly during the end of each monsoon due to the model’s inherent er-
ror and this led to the overestimation of soil moisture during the non-monsoon
period. This, in turn, affects the streamflow estimates during the non-monsoon
period. Similarly, from Figure 5c, it is clear that the streamflow simulation
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during all the four assimilation runs was in better agreement with the observa-
tions than the open-loop simulation. Though the model overpredicts slightly
during low flows in the non-monsoon period, the overall performance has signif-
icantly improved, especially during the peak flows in the monsoon period. To
further evaluate the performance of the assimilation results, different evaluation
indices were calculated for profile soil moisture and streamflow simulations, and
the results were plotted as a bar chart as shown in Figures 6(a-c) and 7(a-c)
respectively.

Figure 6: Performance measures of the estimated profile soil moisture for open-
loop simulation and four assimilation scenarios representing a) KGE, b) RMSE
and c) PBIAS values.

From profile soil moisture simulation results (Figure 6), it is understood that the
performance of all the four assimilation scenarios was superior to the open-loop
performance. Though marginal improvement is seen while assimilating only
sensitive observations, the effect on soil moisture estimate is significant when
all the observations were used during 1st scenario. This is obvious as the profile
soil moisture is bound to perform better when ingested with all the available
observations. The soil moisture results of the 1st scenario showed a significant
improvement where the KGE value has doubled from 0.335 to 0.717 and PBIAS
value got diminished from -40.18 percent to just -0.95 percent.
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Figure 7: Performance measures of the estimated streamflow for open-loop sim-
ulation and four assimilation scenarios representing a) KGE, b) RMSE and c)
PBIAS values.

From streamflow simulation results (Figure 7), it is clear that all four assimila-
tion scenarios showed improvement against the open-loop case. Especially, 2nd
and 4th scenarios gave the best results with KGE values (Figure 7a) equal to
0.824 and 0.814 respectively. This shows that the effect of assimilation is more
profound when only sensitive observations were used. Similarly, the RMSE value
(Figure 7b) reduced greatly from 119.73 cumecs during open-loop to 82.226 and
77.936 cumecs during the 2nd and 4th scenarios respectively. Also, PBias value
(Figure 7c) contracted by more than 4 times from 24.59 percent during open-loop
to just 3.56 percent in the 2nd scenario and 7.54 percent in the 4th scenario. The
profile soil moisture results (Figure 6) and streamflow results (Figure 7) showed
contrary behavior because the profile soil moisture estimate is not translated
properly to streamflow estimate. From Figure 7, especially when comparing
either scenario 1 and 3 or scenario 2 and 4, it is clear that the effect of ini-
tial condition sensitivity on model performance was marginal compared to the
model parameters sensitivity, which is obvious because the magnitude of the
sensitivities as shown in Figures 3a-c showed a similar trend.

From these results (Figures 6 and 7), it can be concluded that the FSM based soil
moisture assimilation has a significant impact on the hydrological simulations.
It is also proved that with less than 40 percent of data used for assimilation,
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it is possible to have better hydrological predictions. The computational time
has also reduced from 12 hours while assimilating all the observations to just
5 hours when assimilating only sensitive observations when using a 3GHz com-
puter processor speed. Also, all the sensitive observations obtained were from
the monsoon period of the year and this justifies the proper temporal placement
of observations for effective assimilation. The 2nd and 4th scenarios that showed
better streamflow estimates with a KGE value of more than 0.8 were used in
the forecasting phase to check for its forecasting capability.

5.3 Forecasting results

To assess the forecasting ability of the FSM based soil moisture assimilation,
streamflow was forecasted 95 times (between 1st July to 31st December 2011)
with nine different lead times. For this purpose, only the 2nd and 4th scenarios
were adopted for this analysis. Here, along with streamflow, profile soil moisture
was also forecasted to understand how the effect of FSM assimilation translated
from profile soil moisture forecast to streamflow forecast.

5.3.1 Soil moisture forecast

To analyze the trend between open-loop case and assimilation scenarios, the time
series plot for the first forecasting run from 1st July 2011 till 29th September
2011 is presented in Figures 8(a-b) as an illustration. From Figure 8a, it is
seen that the performance of the soil moisture forecast was better during the
2nd scenario than the 4th scenario and open-loop simulations. Further, a clear
under biased trend is observed in all the three soil moisture forecast. This
is because the main objective during the assimilation phase was to improve
the streamflow estimates and accordingly the model’s control variables were
corrected to match the streamflow distribution rather than soil moisture. Also,
from Figure 8a we can see that the magnitude of the soil moisture reduced
after assimilation such that the corresponding streamflow value in Figure 8b
(for both the scenarios) moved closer towards the streamflow observation. Yet,
the differences between the soil moisture observation and model simulations
after assimilation have diminished and showed improvement. Figures 8(a-b)
represents only one forecast run and it may not be a correct representation of
all the hydrological forecast. Therefore, to assess the overall performance during
all the 95-forecasting runs, the mean value of each of the evaluation criteria was
evaluated and plotted as a point plot in Figures 9(a-f). Among them, Figures
9a and 9b represent the mean statistics of soil moisture forecast results.

The soil moisture forecast results reveal that the assimilation showed improve-
ment during both 2nd and 4th scenarios against open-loop performance. In
particular, the PBias and RMSE values reduced significantly up to 14 and 75
lead days for the 4th scenario and 2nd scenario respectively. Note that the 4th
scenario performed poorer than open-loop during the 1st forecast simulation
(see Figure 8a). This justifies the importance of considering the mean of 95
simulations. Also, the forecast results (Figures 9a and b) for both assimilation
scenarios performed better only during the shorter lead time. Later, it diverges
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and performed poorly for longer lead times. This is partially because the noise
in the input data is not filtered out properly to forecast the profile soil moisture
due to the model’s inherent structural error.

Figure 8: Time series plot of the first 90 lead days forecast model
run showing a) profile soil moisture and b) streamflow from July
1-2011 to September-29-2011.

5.3.2 Streamflow forecast

Figure 8b displays the first streamflow forecast up to 90-days lead time. It
reveals that the overall performance of the assimilation is in better agreement
with the observations. When compared to the open-loop simulation, assimila-
tion scenarios have better captured the overall distribution of the streamflow.
Especially, the 4th scenario is showing better performance during the peak flows
as compared to the 2nd scenario.

Figures 9c and 9d represent the mean PBias and RMSE results of the streamflow
respectively. As concluded from the time series plots (refer to Figure 8b), we can
see that the performances of both the assimilation forecasts were much superior
than the open-loop forecast. Further, to understand the effect of assimilation
during the peak and low flows, mean PFC and LFC were evaluated for all the
lead times and plotted in Figures 9e and 9f. It should be noted that the PFC
and LFC value closer to 0 implies the forecast is more accurate like PBias and
RMSE.

The assimilation scenarios have well captured the extreme events during the
streamflow forecast and the effect is prominent till the 45-days lead time. But,
for a longer lead time (60 to 90 days) assimilation performances are no better
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than the open-loop results.

Figure 9: Mean values of PBIAS, RMSE, PFC, and LFC evaluated
for 95 simulations of a-b) profile soil moisture, and c-f) streamflow
forecasts represented for nine different lead times.

On the contrary, the overall performance of the assimilation scenarios for stream-
flow forecast (Figures 9c-f) was poor during the shorter lead times (1 to 45 days)
and performed better during the longer lead time (60 to 90 days). In particular,
the 2nd scenario showed better results compared to the 4th scenario in all evalu-
ation criteria. This is because, unlike sequential assimilation, FSM assimilation
tries to correct the model trajectory to match the peaks and low flows of the
observations within the assumed time window. Since, in this study, the time
window considered was annual for the 4th scenario and four years for the 2nd
scenario, control variables are optimized to perform better for longer lead times
in the 2nd scenario.

6 Summary and Conclusions

The study proposed a new class of assimilation of soil moisture into a concep-
tual hydrological model using the FSM approach. FSM uses the sensitivity of
the model solution to identify and subset the sensitive observations that have
a stronger impact on the estimates of initial condition and model parameters.
To evaluate its efficiency, the model is again ingested with all the soil moisture
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observations to check for its performance. Also, the study analyzed the impact
of temporally evolving sensitivity of initial condition by adopting different time
window frames during assimilation. Subsequently, four scenarios were adopted
in this study for estimation and forecasting of profile soil moisture and stream-
flow. For this purpose, KGE, PBias and RMSE were evaluated. Later, to check
the performance of streamflow forecasts during peak flows, PFC and LFC were
determined.

From the results, it was concluded that during assimilation, the scenarios that
assimilated only sensitive observations (2nd and 4th) performed best with the
KGE value showing more than 0.8 for the streamflow simulations. Specifically,
with less than 30 percent of the observations used in the 2nd scenario, it showed
the best performance than the open-loop and other assimilation scenarios. This
proves that sensitivity based assimilation has a strong impact on improving hy-
drological simulations such as streamflow. Moreover, FSM assimilation helped
in understanding the decisive placement of the observation during assimilation.
For instance, from the time evolution of the sensitivity, it was clear that the
observations during the monsoon time alone can contribute much during the
assimilation. This has reduced the huge burden on the use of all observations
during the assimilation with much less computational time (i.e. 12 hours of
computational time when all the observations were assimilated, whereas it was
only 5 hours while assimilating only sensitive observations using a 3GHz com-
puter processor speed). However, the impact of adopting different time window
frames is negligible. It is understandable because the sensitivity results showed
that the parameter sensitivity had a strong influence on the profile streamflow
simulations than the initial condition. Profile soil moisture simulation showed
a better estimate during all the assimilation scenarios when compared against
the open-loop case. Especially, the best result was observed when all the obser-
vations were assimilated during the 1st scenario. During the forecasting phase,
the 2nd and 4th scenarios showed only marginal improvement up to 75 and 14
lead days respectively. Comparatively, the soil moisture performance is only
marginal, unlike streamflow results. This is because, in this study, the model
was trained to accurately estimate streamflow during the assimilation phase,
which might have degraded the performance of the soil moisture forecast. On
the other hand, streamflow simulation showed significant improvement during
all the assimilation scenarios when compared with the open-loop case. Also, dur-
ing the forecasting phase, the streamflow forecast showed better performance
for 2nd and 4th scenarios than the open-loop run up to 45 lead days but for the
longer lead times (60 to 90 days), the improvement was only marginal. However,
the overall performance of the assimilation scenarios during the streamflow fore-
cast was better for the longer lead times than the shorter lead times. This is
because during assimilation the model trajectory is smoothened to reduce the
sum of squared difference considering the whole time window.

With new satellite missions being launched, the amount of data is expected to
increase by orders of magnitude. In such a scenario, the FSM based strategy
would play a vital role in the optimal selection of appropriate observations dur-
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ing the assimilation process and the researchers can gain insight on when and
what to assimilate with the reduced computational burden. Although the cur-
rent work identified and effectively assimilated sensitive observations in the time
domain, further research is needed to extend this work by including spatial het-
erogeneity using distributed hydrological models to identify spatially sensitive
locations. Once identified, the observations from only these sensitive locations
can be leveraged to enhance assimilation efficiency, especially in regions where
data availability remains a challenge.
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Appendix A

Table A1 shows the calibrated assimilation parameter values of the ‘base simula-
tion’ run. For scenarios 3 and 4, four separate values represent the assimilation
performance during each year taken successively four times.

Table A1: Calibrated parameter values of the base simulation run for all the
four assimilation scenarios.

Scenario Year R A
1 2007 -2011 0.25 -
2 2007 -2011 0.335 0.75
3 2007- 2008 0.35 -

2008- 2009 0.05
2009 - 2010 0.075
2010 - 2011 0.05

4 2007- 2008 0.325 0.35
2008- 2009 0.05 0.35
2009 - 2010 0.065 0.35
2010 - 2011 0.35 0.35

Figure A1 shows the different iterations of the ‘base simulation’ run. The first
column represents the sensitivity during the 1st scenario, the second column
represents the 2nd scenario, the third column represents the 3rd scenario, and
the last column represents the 4th scenario.

35



Figure A1: Evolution of sensitivity of initial condition:(U), parameter C: (V1),
and parameter SC: (V2) displaying different iterations for the base simulation
run
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