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Abstract

Previous studies have attempted to unravel possible connections between leading decadal to multidecadal climate modes in the

North Atlantic and North Pacific ocean basins, the Atlantic Multidecadal Variability in the North Atlantic, and the Pacific

Decadal Oscillation and Victoria Mode in the North Pacific. We use newly available climate model data and apply improvements

to existing methods to rexamine relationships among the different modes. Our main tool is the Multi-Model Large Ensemble

Archive, which includes 270 ensemble members and allows for isolation of the forced and internal components of climate

variability. Our results suggest that any internal connections between these modes are indistinguishable from random noise.

Further, external forcing is shown to affect each region in similar ways, suggesting that climate change could be an indirect link

between the two basins, and can confound the interpretation of he relationship between the basins.
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Modeling Center CCCma CESM CSIRO GFDL GFDL MPI UKMO (Obs.)

Initialization Method Macro/Micro Micro Macro Micro Macro Macro —–
# of Ensemble Members 50 39 30 20 30 100 —–
Latitude Resolution (grid points) 2.75° (64) <1° (192) 1.85° (96) 2° (90) 2° (90) 1.875° (96) 1° (180)
Longitude Resolution (grid points) 2.8125° (128) 1.25° (288) 1.875° (192) 2.5° (144) 2.5° (144) 1.875° (192) 1° (360)
Start Year 1950 1920 1850 1920 1950 1850 1870
PI Length 296 years 319 years 500 years 200 years 200 years 281 years —–

Table S1. Details of the six large ensembles from the MMLEA and observations used in this study, adapted
from Deser et al. (2020) and from the MMLEA data webpage.
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atlantic-and-north-pacific-basins

Supplemental Figure 1. Cross-correlation matrix of HADISST observed linearly-detrended filtered climate
pattern time series. All possible cross-correlations between each of the three EOF modes in each basin are
shown. From left to right: NA-EOF1, NA-EOF2, and NA-EOF3. From top to bottom: NP-EOF1, NP-
EOF2, and NP-EOF3. Black lines represent statistical significance thresholds generated using the peak test,
while green lines represent the cross-correlations for the corresponding modes. Lags correspond to the NA
(NP) mode leading for positive (negative) lags.
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Supplemental Figure 2. The effect linear detrending has on observed EOFs in the NP. For observations
where no detrending occurs, A) and C) show the first EOF spatial pattern and time series respectively. B)
and D) show the same but for the second EOF. For linearly detrended observations, E) and G) show the
first EOF spatial pattern and time series respectively, while F) and H) show the same for the second EOF. I)
shows the time series from C) (linearly detrended) and H) together to show their similarity (93% correlation,
significant at the 99% threshold). The red curves are the same time series, while the blue curve in I) is
equivalent to the time series in C) but with the linear slope removed.

Hosted file

image4.emf available at https://authorea.com/users/529866/articles/597210-no-internal-

connections-detected-between-leading-decadal-to-multidecadal-climate-modes-in-north-

atlantic-and-north-pacific-basins

Supplemental Figure 3. EOF spatial patterns. From top to bottom: HADISST (observations), CANESM2,
CESM, CSIRO MK36, GFDL CM3, GFDL ESM2M, and MPI (six MMLEA models). From left to right:
NA-EOF1, NP-EOF1, NP-EOF2, and NP-EOF3. MMLEA patterns are internal (full minus ensemble mean)
composite means (EOF analysis is performed on each member, and then the resulting EOFs are averaged
across all members). Color scale is dimensionless, following standard EOF output.
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Abstract 30 

Previous studies have attempted to unravel possible connections between leading decadal 31 

to multidecadal climate modes in the North Atlantic and North Pacific ocean basins, the Atlantic 32 

Multidecadal Variability in the North Atlantic, and the Pacific Decadal Oscillation and Victoria 33 

Mode in the North Pacific. We use newly available climate model data and apply improvements 34 

to existing methods to rexamine relationships among the different modes. Our main tool is the 35 

Multi-Model Large Ensemble Archive, which includes 270 ensemble members and allows for 36 

isolation of the forced and internal components of climate variability. Our results suggest that 37 

any internal connections between these modes are indistinguishable from random noise. Further, 38 

external forcing is shown to affect each region in similar ways, suggesting that climate change 39 

could be an indirect link between the two basins, and can confound the interpretation of he 40 

relationship between the basins. 41 

Plain Language Summary 42 

We examine possible connections between climate patterns in the North Atlantic and 43 

North Pacific oceans. New climate model data and improved statistical methods allow us to build 44 

on previous research of these links. In contrast to previous studies, no natural connections are 45 

detected. However, global warming is shown to affect each region in similar ways, suggesting 46 

that climate change could be an indirect link between the two basins. 47 

 48 

Introduction 49 

 Climate modes are considered to be the leading source of internal climate variability, 50 

affecting weather and climate patterns across the globe. These long-distance effects are 51 

sometimes referred to as teleconnections and are driven by atmospheric bridges (Alexander et al. 52 

2002, Liu and Alexander 2007). Sea-surface temperature (SST) variability associated with a 53 

particular climate mode is coupled to the atmosphere, allowing the mode to change the overlying 54 

atmospheric circulation. This signal is then transported through the atmosphere to other regions, 55 

where the variability influences the ocean in a distant location, potentially imprinting on or even 56 

exciting a different climate mode there (e.g. Liu and Alexander 2007, Dommenget and Latif 57 

2008). The magnitude of control a climate mode has on another region can also vary in time, 58 

adding another dimension to potential interactions and making them more difficult to identify 59 

(Raible et al. 2014). The possibility of climate mode interactions must be considered to fully 60 

understand the sources of internal climate variability. 61 

 62 

Here, we focus on potential interactions between decadal to multidecadal climate modes 63 

in the North Atlantic (NA) and North Pacific (NP) ocean basins. In the NA, low-frequency 64 

variability is captured via the Atlantic Multidecadal Oscillation (AMO) or Atlantic Multidecadal 65 

Variability (AMV) (Enfield et al. 2001). In the NP, two modes are commonly used to capture the 66 

low-frequency variability. The Pacific Decadal Oscillation (Mantua et al. 1997) and the Victoria 67 

Mode (VM) (Bond et al. 2003) or North Pacific Gyre Oscillation (NPGO) (Di Lorenzo et al. 68 

2008) are the two leading modes of decadal and multidecadal variability respectively. Many 69 

other methods of capturing variability in these basins have since been developed (Eden and Jung 70 

2001, Salinger et al. 2001, Martin et al. 2019, Nigam et al. 2020, etc.), although convention has 71 

maintained scientific usage of the AMV and PDO as the dominant low-frequency modes. 72 
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Despite their extensive usage, these modes, especially the AMV, may not adequately isolate and 73 

capture a single source of internal variability (Marini and Frankignoul 2014; Wills et al. 2018; 74 

O’Reilly et al. 2019, etc.). Representing multidecadal variability with relatively short observed 75 

periods (order of 100 years) is also challenging, especially when low-pass filtering is applied 76 

(Cane et al. 2017). Assuming oscillatory variability, only one or two full cycles may be observed 77 

(Mann et al. 2021). This reduces the effective degrees of freedom and subsequently requires care 78 

to be taken during statistical analysis, especially regarding significance testing. 79 

 80 

 Several previous studies have worked on the NA-NP relationship, all of which suggest 81 

that the two basins have some statistical relationship with each other. Both d’Orgeville and 82 

Peltier (2007) and Zhang and Delworth (2007) relate the first two Empirical Orthogonal 83 

Functions or Principal Components (EOFs or PCs, hereafter referred to as EOFs) of NP SSTs to 84 

a metric for the AMV (d’Orgeville and Peltier use the first EOF of NA SSTs, while Zhang and 85 

Delworth use NA area mean SSTs), although they utilize those EOFs in different ways. 86 

d’Orgeville and Peltier combine them and then isolate the 20 year (analogous to the PDO) and 60 87 

year (analogous to the VM) period wavelets and conclude that there is a singular source driving 88 

variability in each region, while Zhang and Delworth use the two EOFs and conclude that the 89 

Atlantic Meridional Overturning Current (AMOC) drives the AMV, which in turn drives the 90 

PDO/VM through atmospheric teleconnections. Wu et al. (2011) use the first two EOFs of each 91 

basin and finds a statistically significant link. Marini and Frankignoul (2014) use several 92 

methods attempting to deconstruct the origin of the AMV, such as dynamical filtering and 93 

removing trends in various manners. Their analysis includes a comparison of the AMV and 94 

PDO, where they come to a similar conclusion as previous studies. Nigam et al. (2020) uses 95 

global rotated empirical orthogonal functions (EOFs) to represent all major global modes, and 96 

their modes most similar to the AMV and PDO also support a relationship existing. An et al. 97 

(2021) use ensemble pacemaker experiments to suggest that multidecadal Pacific variability is 98 

generated by AMO forcing and local air-sea interactions. These studies use the student's t-test for 99 

significance thresholds, with Wu et al. (2011) also using customized bootstrap methods. All of 100 

these studies are in agreement that a modest but statistically significant correlation exists with the 101 

AMV leading the PDO by 12-14 years.  102 

 103 

 Here we will build upon those previous examples using a novel dataset, the Multi-Model 104 

Large Ensemble Archive (MMLEA), and improve on existing methods, such as significance 105 

testing and mode definitions. Using these tools, we reanalyze the potential relationships between 106 

low-frequency climate variability in the NA and NP ocean basins. Our results challenge previous 107 

findings, suggesting that a relationship is not statistically significant. We also focus on the role 108 

that external forcing plays in the inter-basin relationship and find that it may be a confounding 109 

factor. 110 

 111 

Data 112 

 For SST observational data, we use the UK Met Office’s Hadley Centre Sea Ice and SST 113 

data set (HADISST) (Rayner et al. 2003). Data is linearly detrended at each grid point, and we 114 

use 151 years of monthly data from 1870-2020. We repeat our analysis with other common SST 115 

datasets and find no qualitative differences. 116 

 117 
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 Our primary tool is the new Multi-Model Large Ensemble Archive (MMLEA) (Deser et 118 

al. 2020). Necessary output is currently available for six ensembles included in the MMLEA 119 

(each hereafter as CANESM2, CESM, CSIRO-MK36, GFDL-CM3, GFDL-ESM2M, and MPI). 120 

Each ensemble contains at least 20 members for a total of 269 members (50, 39, 30, 20, 30, and 121 

100 respetively). All MMLEA members are from the CMIP5 era and use historical forcing. Data 122 

from each member is cut off at the year 2020 to match the observed period. We also use each 123 

member’s corresponding pre-industrial control run (PI), which are separate from the MMLEA. 124 

One advantage of large ensembles is their capability to extract the forced signal from each 125 

member by subtracting the ensemble mean (Kay et al. 2015). More details on the MMLEA are 126 

provided in Table S1 (adapted from Deser et al. 2020). 127 

 128 

Mode Definitions 129 

 Our mode definitions for each basin loosely follow the conventions for the AMV, PDO, 130 

and VM (Enfield et al. 2001, Mantua et al. 1997, and Bond et al. 2003 respectively). Instead of 131 

applying unique methods (EOF analysis for the NP, regional area mean for the NA) to each 132 

basin, we apply EOF analysis to each basin in an attempt to better capture individual modes of 133 

variability. We compute the first three EOFs over the NP region of 20°N-65°N, 120°E-100°W 134 

and the first EOF over the NA region of 0°N-65°N, 120°W-0°. We also compute further EOFs 135 

for the NA, however these do not have as clear of a physical interpretation and do not affect our 136 

results in any meaningful way. They are not included except in Supplemental Figure 1, which 137 

shows a matrix of  relationships between the first three EOFs of each basin, with no significant 138 

relationships involving any NA EOFs except the first. Figure 1 shows the spatial patterns of 139 

these EOF modes in the first row, while the second row shows the corresponding time series. 140 

NA-EOF1 represents the AMV, characterized by a tripole spatial pattern and a predominantly 141 

multi-decadal time series. NP-EOF1 represents the PDO, characterized by a dipole spatial pattern 142 

with warming (cooling) in the central NP and cooling (warming) along the eastern boundary, 143 

along with a mostly decadal time series. NP-EOF3 represents the VM, also characterized by a 144 

dipole pattern offset to the west from the PDO’s, as well as a mostly decadal time series. 145 

 146 

 A major challenge in understanding climate mode drivers is separating internal variability 147 

from externally forced variability. This is typically achieved by removing the estimated forced 148 

trend. MMLEA data is detrended by removing the ensemble mean, following Deser et al. (2020). 149 

We define full variability (hereafter full) as the unmodified output of each member of the 150 

MMLEA, and we define internal variability as the full minus the ensemble mean. Observations 151 

are detrended linearly at each grid point, following convention. Figure 2 shows the effects of 152 

linear detrending on the EOF analysis in the NP. When no detrending occurs, the first EOF 153 

captures the externally forced global warming signal based on its uniform warming pattern, 154 

while the second EOF is clearly the PDO. Linear detrending causes the PDO to become the first 155 

EOF, while the second EOF still resembles the externally forced signal. Comparing the time 156 

series of these two apparent global warming signals reveals that they are remarkably similar. The 157 

second EOF of linearly detrended NP SSTs resembles the non-linear features of the global 158 

warming signal. Similar results exist for the NA (not shown). Other more complex detrending 159 

methods exist and offer different interpretations about what is forced versus what is internal, 160 

especially in the Atlantic (e.g. Frankignoul et al. 2017, Qin et al 2020). However, these 161 

differences in forced signals are not substantial enough to affect our results qualitatively. 162 

 163 
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Note that the composite mean and the ensemble mean are distinct and computed 164 

differently, namely in the order of operations because EOF analysis is a non-linear computation. 165 

Here, the composite mean is defined as EOF analysis being done first, followed by averaging of 166 

the EOFs. In contrast, the ensemble mean is where averaging is done first, and then EOF analysis 167 

is performed on the averaged SSTs. Physically, the ensemble mean represents the externally 168 

forced signal in each model, while the composite mean represents the average internal modes 169 

across all members. 170 

 171 

 All time series are normalized and smoothed with a 10-year low-pass Lanczos filter to 172 

focus on decadal to multi-decadal variability, following classical methods.  173 

 174 

 175 

176 
Figure 1. EOF modes and normality analysis of observed HadISST linearly-detrended North Atlantic and North Pacific SSTs. 177 
From left to right: NA-EOF1, NP-EOF1, NP-EOF2, and NP-EOF3. The percentage at the top of each column represents the 178 
variance explained by each EOF. NA-EOF1 is analogous to the AMV, NP-EOF1 to the PDO, and NP-EOF3 to the VM. NP-179 
EOF2 is analogous to the non-linear global warming signal (more detail in text). Rows from top to bottom: 1) Spatial patterns of 180 
each EOF mode. Red (blue) corresponds to warming (cooling) when time series is positive (negative). 2) Filtered time series of 181 
each EOF mode. 3) Probability distribution of each time series are shown with shaded green curves; corresponding standard 182 
normal distributions are shown with black curves. 4) Quantile-quantile plots with data shown in blue points. A standard normal 183 
distribution is shown in red for comparison. Three quantitative assessments of normality are also applied: 1) The Shapiro-Wilk 184 
Test (SW). The corresponding p-value is listed, with p-values greater than 0.05 (95% confidence) implying a normal distribution. 185 
2) D’Agostino’s K-Squared Test (K^2). The corresponding p-value is listed, with p-values greater than 0.05 (95% confidence) 186 
implying a normal distribution. 3) The Anderson-Darling Test (AD). The first value is the resulting measure of normality, and the 187 
second value is the 95% critical value for the AD test. If the first value is smaller than the critical value, the distribution can be 188 
assumed to be normal. All tests should be considered equally in determining whether or not to assume a normal distribution. 189 

Normality of Modes 190 

 To determine whether standard parametric statistics can be used or not, the normality of 191 

our time series must be assessed first. While non-Gaussian parametric statistics exist, Gaussian 192 

assumptions are common with geophysical time series analysis and are used by the previous 193 

studies on the NA-NP inter-basin relationships (d’Orgeville and Peltier, 2007, Zhang and 194 

Delworth 2007, Wu et al. 2011, Marini and Frankignoul 2014, and Nigam et al. 2020).  195 

 196 
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 We test the four modes’ filtered time series with five normality tests as recommended by 197 

Yap and Sim (2011) and Ghasemi and Zahediasl (2012). Two are qualitative assessments: a 198 

histogram with a standard normal curve fitted to the data (Figures 1I-L), and a quantile-quantile 199 

plot (Figures 1M-P). Three are quantitative: the Shapiro-Wilk test (SW), the D’Agostino 200 

skewness test (K^2), and the Anderson-Darling test (AD) (shown as text in Figures 1M-P). Only 201 

NP-EOF3 passes more than a single quantitative test. The combination of all tests generally 202 

suggests that only NP-EOF3 of the filtered time series can be described as normal, so Gaussian 203 

assumptions cannot be made for analysis of mode relationships. Therefore, non-parametric 204 

statistics are required for significance testing. 205 

 206 

Significance Testing 207 

 We use a non-parametric bootstrapping method for significance testing. Our primary 208 

statistical tool is cross-correlation, so we build this method to evaluate the significance of a given 209 

“real” cross-correlation. We create sets of random white-noise time series by shuffling each 210 

observed unfiltered time series 1000 times. We also used sets of AR1 red noise (Katz 1982) and 211 

quantile-mapped sets (Maraun 2013) and found no qualitative differences in our results. Each 212 

random time series is filtered, and each possible pair of modes between each basin is cross-213 

correlated for the entire random set. These 1000 cross-correlations are then used to compute 95% 214 

significance thresholds for the corresponding observed cross-correlation. This method is similar 215 

to the bootstrap used by Wu et al. (2011), although our method differs slightly. Wu et al. (2011) 216 

calculate the 95th percentile at each specific lag in their cross correlation (hereafter the “point 217 

test”).  218 

 219 

 Their interest, however, is not on a particular lag, but instead of the peaks of the cross-220 

correlation that are above the significance threshold. The specific lag at which these peaks 221 

occurred was unimportant - whether it occurred with 0 year lag or 30 years lag, their conclusions 222 

would remain the same. By definition, their statistical test requires that a particular lag be of 223 

interest, meaning that the lag at which the peaks occur is important, contrary to their conclusions. 224 

This can be viewed as an a priori test with an a posteriori conclusion, which suggests their 225 

significance thresholds may not be appropriate. 226 

 227 

 Alternatively, a “peak test” can be used. Instead of calculating the significance thresholds 228 

at each lag, we choose the maximum value of each random cross-correlation to compute the 229 

thresholds from. The result is that at 95% confidence, 5% of random cross-correlations have any 230 

points that are significant when using the peak test, while ~50% have significant points when 231 

using the point test. This shows that using an improper significance test can result in many 232 

spurious significant points on any given cross-correlation. All significance thresholds shown here 233 

are computed using the peak test. 234 

 235 

 236 
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 237 
Figure 2. The  effect linear detrending has on observed EOFs in the NP. For observations where no detrending occurs, A) and C) 238 
show the first EOF spatial pattern and time series respectively. B) and D) show the same but for the second EOF. For linearly 239 
detrended observations, E) and G) show the first EOF spatial pattern and time series respectively, while F) and H) show the same 240 
for the second EOF. I) shows the time series from C) (linearly detrended) and H) together to show their similarity (93% 241 
correlation, significant at the 99% threshold). The red curves are the same time series, while the blue curve in I) is equivalent to 242 
the time series in C) but with the linear slope removed. 243 

 244 
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 245 
 246 
Figure 3. EOF variance explained of MMLEA ensemble members. Top row form left to right: NA-EOF1 and NP-EOF1. Bottom 247 
row form left to right: NP-EOF2 and NP-EOF3. Black lines represent observed values. Colors correspond to models as follows: 248 
dark red (CANESM2), orange (CESM), gold (CSIRO MK36), green (GFDL CM3),  blue (GFDL ESM2M), and purple (MPI). 249 
For each model, two sub-columns are shown: the full, or total, variability on the left and the internal variability on the right. Each 250 
circle/star represents a single member. Xs represent pre-industrial control values. 251 

Results: Model Assessment 252 

 Here, we want to assess how realistic the simulated modes are relative to the observed, 253 

including how much of the observed variability can be explained by forcing and internal 254 

variability. One way we can analyze this is to compare the fraction of explained variance for 255 

each EOF to the corresponding value for observations, as shown in Figure . EOF 1 in each basin 256 

shows some inter-model spread, but the observed value falls within the internal range for each 257 

model. For both basins, EOF 1 generally explains between 30-40% variance, while EOF 2 258 

explains 15-20%, and EOF 3 around 10-15%. In some cases for each member, the full variability 259 

explains more variance than its corresponding internal variability. This can be attributed to the 260 

external forcing that is present in the full but not the internal. Generally, the internal variability 261 

should agree with the observations better than the full variability, although both appear relatively 262 

similar to the observed values. The MMLEA looks qualitatively similar enough to observations 263 

for this metric to proceed. 264 

 265 

 We also assess the realism of the MMLE subjectively by looking at the EOF spatial 266 

patterns. Supplemental Figure 2 shows the observed EOFs and the composite mean EOFs for 267 

each model. The MMLEA NA EOFs all roughly share a similar tripole spatial pattern to the 268 

observed first NA-EOF. The magnitude of the gradients across all ensembles differs from the 269 

observations, however. Extending from the Gulf Stream region, the MMLEA models generally 270 

show an opposite trend to the rest of the basin (cooling in the Gulf Stream region when the rest 271 

of the basin is warming), whereas the observations show uniform warming or cooling. In the NP, 272 

NP-EOF1 shows good agreement, all showing the classic PDO pattern. The second observed 273 
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EOF differs significantly from those in the MMLEA. The observed pattern shows uniform 274 

warming or cooling across the entire basin, while the third observed EOF shows a typical VM 275 

pattern. The MMLEA appears to skip over the uniform warming/cooling spatial pattern, showing 276 

only the PDO as EOF1 and the VM as EOF2 in most members. One possible explanation for this 277 

is that the observed EOF2 represents non-linear features of external forcing, which would 278 

successfully be removed in an MMLEA model by subtracting the ensemble mean, but not in 279 

observations through the linear detrending method. It is interesting that this is different in the 280 

Atlantic and Pacific, suggesting that method for removal of the forced signal is basin dependent.  281 

Generally, the MMLEA members do show internal modes similar to the observed modes (when 282 

comparing observed NP-EOF3 to MMLEA NP-EOF2), suggesting that the models simulate 283 

variability realistically enough to analyze potential mode interactions. 284 

 285 

 286 

 287 
Figure 4. Cross-correlations of NA-NP mode relationships. From left to right: AMV (NA-EOF1) vs. PDO (NP-EOF1) 288 
relationship, AMV vs. NP-EOF2 relationship, and AMV vs. VM  (NP-EOF3) relationship. From top to bottom: Observations 289 
with no detrending, CESM-LE (from MMLEA) full variability, CESM-LE ensemble mean, Observations with linear detrending, 290 
CESM-LE internal variability, and CESM pre-industrial control variability. Black horizontal lines are 95% statistical significance  291 
thresholds as calculated by the “peak” test. Vertical ticks show where cross-correlations are significant. For positive (negative) 292 
lags, the NA (NP) mode leads. All othe MMLEA large ensembles show qualitatively similar results. 293 
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 294 
Figure 5. Cross-correlations of MMLEA internal only NA-NP mode relationships. From left to right: AMV (NA-EOF1) vs. PDO 295 
(NP-EOF1) relationship, AMV vs. NP-EOF 2, and AMV vs. VM. Black horizontal lines are 95% statistical significance 296 
thresholds as calculated by the “peak” test. Vertical ticks show where cross-correlations are significant. For positive (negative) 297 
lags, the NA (NP) mode leads. 269 MMLEA members are utilized for a total of 807 relationships. Only 11 (<2%) have 298 
statistically significant points. 299 

Results: Relationship Analysis 300 

Figure 4 shows a series of NA-NP relationships from observations and the CESM Large 301 

Ensemble (CESM-LE), one of the MMLEA ensembles. The top row shows the non-detrended 302 

(or full) observed EOF cross-correlations. Without detrending, the first EOF of each basin 303 

captures the global warming or externally forced signal. The signal in each basin is clearly 304 

connected, with significant points along a peak at 0 lag. This can be interpreted as global 305 

warming affecting each basin in a very similar way. The other relationships, which capture the 306 

internal modes in the NP, show no statistically significant connection. 307 

 308 

The next row shows the relationships for full members of the CESM-LE. Again, most of 309 

these relationships show a peak near 0 lag for all three relationships. This suggests that external 310 

forcing affects all of the first three NP EOFs, such that a nearly significant peak appears near 0 311 

lag for most members. When this global warming signal is shown by itself as the ensemble mean 312 

in the third row, the same connection as in the observed forced signals appears, with the forced 313 

signal in each basin being significantly correlated. Note that the ensemble mean EOFs 2 and 3 do 314 

not have a physical meaning and can be neglected. Also, averaging across all ensemble members 315 

may mutually cancel out polarized clusters of members, so caution must be used when 316 

computing ensemble means (Bellucci et al. 2017). 317 

 318 
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So far, we have shown that the combined internal and forced relationships are statistically 319 

significant, particularly only the forced relationships. Rows four through six analyze only the 320 

internal relationships to determine whether connections between the internal modes exist or not. 321 

Row four shows the linearly detrended observed relationships. The AMV-PDO relationship 322 

(hereafter all relationships referred to as AMV-PDO, AMV-VM, etc.) shows similar results as 323 

Wu et al. (2011), Marini and Frankignoul (2014), and Nigam et al. (2020), and both the AMV-324 

PDO and AMV-NP-EOF2 show similar results as d’Orgeville and Peltier (2007) and Zhang and 325 

Delworth (2007). However, we show different significance thresholds as per the peak test. The 326 

sign of the correlation and the precise lag at which the maximum correlation occurs may slightly 327 

vary from study to study due to differing methods, particularly the sign of the EOF output and 328 

filter used. Linear detrending is also not ideal for removing the observed forced signal 329 

(Frankignoul et al. 2017), which may allow the forced signal to remain and cause a spurious 330 

higher correlation as seen in AMV-NP-EOF2. 331 

 332 

To account for the inadequacy of linear detrending, the MMLEA internal relationships and the 333 

CESM PI are shown in rows five and six respectively. Only one of these 120 members show a 334 

significant relationship, suggesting that any internal connection between the NA and NP basins is 335 

indistinguishable from random noise. All other MMLEA ensembles show qualitatively similar 336 

results. Figure 5 shows the internal relationships for all six MMLEA ensembles analyzed, with 337 

only 11 out of 807 (<2%) relationships having any statistically significant points. The same 338 

concept of external forcing driving significant relationships appears in all of the ensembles, 339 

despite their various differences. 340 

 341 

Discussion 342 

 Our results suggest that, for the NA and NP basins, an internal connection between the 343 

two does not need consideration as a potential source of variability. These findings may also 344 

have broader implications regarding the roles of external forcing and internal variability as 345 

drivers of climate modes. Present theories on climate mode drivers focus on varying roles for the 346 

ocean, atmosphere, internal variability, and external forcing (e.g. Clement et al. 2015, Newman 347 

et al. 2016, Wills et al. 2018, Zhang et al. 2018, O’Reilly et al. 2019, Zhang et al. 2019, etc.). 348 

External forcing is particularly challenging, due to the direct/linear and indirect/non-linear 349 

effects on climate variability (Frankignoul et al. 2017, Li et al. 2020). Additionally, there is 350 

debate about the role and importance of these internal modes in an increasingly forced global 351 

climate (Ting et al. 2009, DelSole et al. 2011, Haustein et al. 2019, Mann et al. 2020, etc.).  352 

 353 

Additionally, our results suggest that traditional observed AMV and PDO definitions 354 

contain at least some external forcing. Care must be taken when using these mode definitions to 355 

properly remove the forced signal so as to isolate the internal variability. However, this is a 356 

challenging task outside of the realm of large ensembles. Tools such as the MMLEA will be vital 357 

in making progress toward isolating the forced response in observations, as they can possibly 358 

average out various model differences and provide a closer analog to the observed forced signal. 359 

These modeling tools are especially useful due to the relatively short observed period, which 360 

may not be sufficient to adequately observe variability on multi-decadal timescales, such as those 361 

studied here. 362 

 363 

Finally, our findings do not rule out other regions or modes driving variability in the NA 364 

and NP. Other mode relationships have been shown to exist, such as how ENSO helps drive the 365 
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PDO (Newman et al. 2003). Further work can include a complex matrix of potential relationships 366 

between global modes as in Shin et al. (2010) or using global EOFs such as Nigam et al. (2020). 367 

Methods presented here can assist in a thorough decomposition of sources of variability in a 368 

particular region. This can lead to better understanding of variability drivers, which can 369 

ultimately result in improved climate models and more accurate climate forecasts.  370 
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