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Abstract

Floodplain inundation links river and land systems through significant water, sediment, and nutrient exchanges. However, these

two-way interactions between land and river are currently missing in most Earth System Models. In this study, we introduced

the two-way hydrological coupling between the land component, ELM, and the river component, MOSART, in Energy Exascale

Earth System Model (E3SM) to study the impacts of floodplain inundation on land and river processes. We calibrated the river

channel geometry and developed a new data-driven inundation scheme to improve the simulation of inundation dynamics in

E3SM. The new inundation scheme captures 96% of the spatial variation of inundation area in a satellite inundation product

at global scale, in contrast with 7% when the default inundation scheme of E3SM was used. Global simulations including

the new inundation scheme performed at resolution with and without two-way land-river coupling were used to quantify the

impact of coupling. Comparisons show that two-way coupling modifies the water and energy cycle in 20% of the global land

cells. Specifically, riverine inundation is reduced by two-way coupling, but inland inundation is intensified. Wetter periods are

more impacted by the two-way coupling at the global scale, while regions with different climates exhibit different sensitivities.

The two-way exchange of water between the land and river components of E3SM provides the foundation for enabling two-way

coupling of land-river sediment and biogeochemical fluxes. These capabilities will be used to improve understanding of the

interactions between water and biogeochemical cycles and their response to human perturbations.
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Key Points: 

• A novel inundation scheme trained against satellite inundation data demonstrates 

excellent skill in simulating global inundation dynamics. 

• A new land river two-way coupling in an Earth System Model is used to study the 

impacts of floodplain inundations on land/river processes. 

• Water cycle processes are more sensitive to land river two-way coupling in relatively 

drier regions and during wetter periods. 
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Abstract 1 

Floodplain inundation links river and land systems through significant water, sediment, 2 

and nutrient exchanges. However, these two-way interactions between land and river are 3 

currently missing in most Earth System Models. In this study, we introduced the two-way 4 

hydrological coupling between the land component, ELM, and the river component, MOSART, 5 

in Energy Exascale Earth System Model (E3SM) to study the impacts of floodplain inundation 6 

on land and river processes. We calibrated the river channel geometry and developed a new data-7 

driven inundation scheme to improve the simulation of inundation dynamics in E3SM. The new 8 

inundation scheme captures 96% of the spatial variation of inundation area in a satellite 9 

inundation product at global scale, in contrast with 7% when the default inundation scheme of 10 

E3SM was used. Global simulations including the new inundation scheme performed at 11 

0.5° × 0.5° resolution with and without two-way land-river coupling were used to quantify the 12 

impact of coupling. Comparisons show that two-way coupling modifies the water and energy 13 

cycle in 20% of the global land cells. Specifically, riverine inundation is reduced by two-way 14 

coupling, but inland inundation is intensified. Wetter periods are more impacted by the two-way 15 

coupling at the global scale, while regions with different climates exhibit different sensitivities. 16 

The two-way exchange of water between the land and river components of E3SM provides the 17 

foundation for enabling two-way coupling of land-river sediment and biogeochemical fluxes. 18 

These capabilities will be used to improve understanding of the interactions between water and 19 

biogeochemical cycles and their response to human perturbations.  20 

Plain Language Summary 21 

Floodplains are inundated when the river channel capacity cannot accommodate the flood 22 

water. A significant volume of inundated water can infiltrate into the soil in the floodplain during 23 
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flooding periods, which may have impacts on the land hydrological processes. However, the land 24 

components of current Earth System Models (ESMs) do not include the infiltration of inundated 25 

water in the floodplain during flooding. In this study, we developed a new inundation scheme 26 

that allows for the infiltration of inundated water in the floodplain. The new scheme shows good 27 

performance when compared with a satellite-based inundation product. Our results show that 28 

both water and energy cycle in the land surface are impacted at global scale when inundated 29 

water is allowed to infiltrate in the floodplain. Such impacts are larger during wetter periods and 30 

show clear regional pattern. This study highlights the critical role of floodplain in Earth system, 31 

which should be included in ESMs to represent land-river interactions. 32 

Keywords: Floodplain inundation dynamics; Earth System Model; Land-river 33 

interactions; Surface-subsurface interactions; Satellite data 34 

 35 

  36 
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1. Introduction 37 

Floodplain inundation is a critical process controlling water and biogeochemical cycles at 38 

the land-river interface (Scott et al., 2019; Talbot et al., 2018; Tockner and Stanford, 2002). 39 

During flood periods, there exist significant exchanges of water (Decharme et al., 2012), 40 

sediments (Rudorff et al., 2018), and nutrients (Tockner et al., 1999) between river and land. 41 

Specifically, periodic flooding replenishes the soil on the floodplain, provides nutrients for 42 

vegetation, and creates habitats for animals. In the coastal areas, flooding in tidal rivers can add 43 

saline water to the floodplain and regional groundwater due to the seawater and freshwater 44 

interactions (Yabusaki et al., 2020).  45 

Two-way coupling of land and river components in Earth System Models (ESMs) is 46 

necessary to accurately simulate the impacts of floodplain inundation on water and 47 

biogeochemical cycles. Simple macroscale inundation schemes have been coupled to global river 48 

routing models to simulate floodplain inundation dynamics (de Paiva et al., 2013; Decharme et 49 

al., 2008; Getirana et al., 2012; Luo et al., 2017; Yamazaki et al., 2011), and including such 50 

schemes has improved skill in predicting streamflow (Decharme et al., 2012; Yamazaki et al., 51 

2011). Macroscale inundation schemes model floodplain as an impervious reservoir that stores 52 

the inundated water when water in the river exceeds the channel capacity. The inundated water 53 

stored in the floodplain is released back to the river when the volume of water in the river is 54 

below channel capacity. However, the land, river, and ocean components of most ESMs are one-55 

way coupled such that the runoff generated by the land model is transported to oceans through 56 

river network (Golaz et al., 2019; Jolley and Wheater, 1997) and the floodplain inundation does 57 

not influence the land surface processes. Recently, two-way land-river coupling at global 58 

(Decharme et al., 2012) and regional scales (Dadson et al., 2010; Getirana et al., 2021) has 59 
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shown significant impacts of floodplain inundation on land processes. Decharme et al. (2012) 60 

coupled a floodplain inundation scheme (Decharme et al., 2008) with a Land Surface Model 61 

(LSM), and their simulations at global scale showed that two-way coupling increased 62 

evapotranspiration (ET) and improved the streamflow simulation. Decharme et al. (2019) further 63 

reported higher ET with a drop of global inundation extents and an increase of soil moisture due 64 

to two-way coupling. Dadson et al. (2010) evaluated the effects of two-way coupling on ET at 65 

the Niger inland delta. Although infiltration on the floodplain is not implemented in their study, 66 

ET was found to increase significantly due to the open water ET from the inundation water, 67 

suggesting the importance of including two-way coupling for understanding land-atmosphere 68 

coupling. Simulation by Getirana et al. (2021) that included infiltration of floodplain water 69 

showed a significant increase of soil moisture and ET, a decrease in surface temperature, and 70 

improved simulated streamflow, which are consistent with the global study of Decharme et al. 71 

(2019). Over the tropical regions, including the water exchange on floodplain through infiltration 72 

was found to be critical to improve the water cycle and land surface flux simulation (Miguez-73 

Macho and Fan, 2012; Schrapffer et al., 2020). Additionally, Chaney et al. (2020) showed an 74 

increase in the spatial heterogeneity of ET and soil moisture in a two-way coupled simulation at 75 

high spatial resolution (~1km). 76 

The simulation of floodplain inundation in the coarse-scale (~100km) river component of 77 

current generation ESMs requires parameterization of fine-scale topography. To simulate the 78 

dynamics of the inundated area, a relationship between flood water volume and inundated area is 79 

required. In current large scale land models (Luo et al., 2017; Yamazaki et al., 2011), this 80 

relationship is usually represented by a simple 2-D elevation profile (Figure 1a) based on sub-81 

kilometer topography data (Figure 1b) by assuming that inundation always occurs from lower to 82 
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higher elevation. Although some studies have demonstrated satisfactory performance of the sub-83 

grid topography schemes in capturing basin-averaged inundation dynamics (Decharme et al., 84 

2012; Getirana et al., 2012; Mao et al., 2019; Yamazaki et al., 2011), the simulated spatial 85 

variation of inundated area at global scale remains highly uncertain (Mao et al., 2019). This is 86 

because by ignoring the hydrologic connectivity, the use of elevation profile in coarse resolution 87 

ESMs with structured mesh can result in unrealistic inundated areas that comprise of spatially 88 

disconnected flooded regions within a grid cell (see an example in Figure 1c). Another scheme to 89 

predict inundation area is the Height Above Nearest Drainage (HAND) methodology (Afshari et 90 

al., 2018; Maidment, 2017; Zheng et al., 2018). The HAND data, which is typically derived from 91 

high-resolution (e.g., 10m) DEM, aims to capture the role of river network (Liu et al., 2018). 92 

While the HAND approaches accurately capture the hydraulic connectivity for regional scale 93 

simulations in which multiple rivers are resolved in a grid cell, it may not be suitable for coarse-94 

scale ESM simulations as only one single major river is resolved within a grid cell (Wu et al., 95 

2011).  96 
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 97 
Figure 1. (a) The 2-D elevation profile of a grid cell (2.75°𝑆, 55.25°𝑊) in the Amazon basin 98 
used in Luo et al. (2017) derived from the cumulative density function of 90m HydroSHEDS 99 
DEM shown in (b). The blue dashed line in (a) denotes the elevation of water needed to inundate 100 
40% of the grid cell. (c) Elevation profiles along the transect shown by the black line between 101 
two red cross signs in (b), and the blue shaded areas represent areas below the inundated 102 
elevation (blue dashed line) in (b).  103 

 104 

In this work, we implemented two-way hydrological coupling for the land and river 105 

components of the Energy Exascale Earth System Model (E3SM; Golaz et al., 2019) to address 106 

the following questions: 107 

1. How does two-way coupling impact water and energy cycle compared to one-way 108 

coupling? 109 

2. What are the spatial and temporal patterns of the impacts of two-way coupling? 110 

Specifically, which regions and periods are more sensitive to two-way coupling? 111 

The default inundation scheme of the river component of E3SM, Model for Scale Adaptive River 112 

Transport in (MOSART), uses the elevation profile approach. We developed a novel inundation 113 

scheme for MOSART based on a log-linear relationship between the river flow volume and 114 
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floodplain inundation area. Satellite-based inundation products can be used for model calibration 115 

and validation for inundation dynamics due to their growing availability and global coverage (Di 116 

Baldassarre et al., 2011; Huang et al., 2014; Papa et al., 2010; Pekel et al., 2016; Prigent et al., 117 

2001; Prigent et al., 2007; Schroeder et al., 2015; Wu et al., 2019).  118 

In section 2, we present a brief description of the land and river components of E3SM, 119 

the two-way hydrological coupling scheme, simulation setup, evaluation datasets, model 120 

calibration procedure, and the novel inundation scheme. The calibration of river geometry and 121 

parameter estimation for the novel inundation scheme are presented in Section 3. Evaluation of 122 

the simulated river discharge and inundation fraction is presented in Section 4.  In Section 5, the 123 

impacts of two-way coupling on land water and energy cycle are presented, followed by the 124 

discussion and conclusion in section 6. 125 

 126 

2. Methods and data 127 

2.1 Hydrologic processes in E3SM land and river components 128 

E3SM is a fully coupled ESM that includes models for the atmosphere, land, ocean, land 129 

ice, sea ice, and river components. A detailed description of the hydrologic and biogeochemical 130 

models in E3SM version 1 are provided in Golaz et al. (2019) and Burrows et al. (2020), 131 

respectively. In this study, only the E3SM Land Model (ELM) and the river model (MOSART) 132 

are used. 133 

ELM-v1 (Bisht et al., 2018; Drewniak, 2019; Liang et al., 2019) was developed based on 134 

the Community Land Model 4.5 (CLM4.5; Oleson et al., 2013). The hydrology part of ELM is 135 

equivalent to CLM4.5 that parameterizes canopy water, snow, surface and sub-surface runoff, 136 
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soil water dynamics. Readers are referred to Oleson et al. (2013) for a detailed technical 137 

description of the hydrological processes in ELM.  138 

MOSART is a physically-based river routing model that simulates transport of water 139 

from hillslopes to the river outlet through a subnetwork and a main channel (Li et al., 2013). The 140 

current one-way coupled macroscale inundation scheme in MOSART predicts floodplain 141 

inundation when the total water volume exceeds the channel storage capacity, and the excess 142 

water is transferred from the channel to inundate the floodplain. When the total water volume is 143 

less than the main channel storage capacity, there is an exchange of water from the floodplain 144 

back to the channel. Given this scheme is one-way coupled, the floodplain water is not lost to the 145 

atmosphere through evaporation or to the land through infiltration. The inundation fraction, 𝑓!" , 146 

is given by: 147 

 𝑓!" = 𝐹(𝑉#$), Eq.(1) 

where 𝑉#$ denotes the volume of water that is in excess of the main channel capacity and 𝑭 148 

represents the relationship between 𝑉#$ and 𝑓!" derived from the sub-grid topography (SGT), for 149 

example, with the elevation profile (Figure 1a). A detailed description of the default inundation 150 

scheme in E3SM, hereafter referred as MOSART-SGT, is provided in Luo et al. (2017). 151 

 152 

2.2 Two-way hydrological coupling scheme 153 

Similar to the one-way coupling of ELM-MOSART, in the new two-way coupling 154 

MOSART receives total runoff from ELM, routes the runoff in the river channel, and simulates 155 

floodplain inundation. Unlike the one-way coupling scheme, in the two-way coupling scheme 156 

MOSART sends the fraction and volume of inundated water to ELM, which then simulates the 157 

infiltration of the inundated water into the soil column. The maximum soil infiltration capacity 158 
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(𝑞%&!',)*$) is used to estimated floodplain infiltration in the two-way coupling scheme, which is 159 

formulated as: 160 

 𝑞%&!',)*$ = (1 − 𝑓+*,)Θ%-#𝑘+*, , Eq.(2) 

where 𝑓+*, is the fractional saturated area, Θ%-# is an ice impedance factor, and 𝑘+*, represents 161 

the saturated hydraulic conductivity. ELM calculates the infiltration of inundated water using an 162 

approach similar to the infiltration of surface water storage in the soil column (Oleson et al. 163 

(2013)) that is given as  164 

 𝑞%&!',!" = 𝑚𝑖𝑛:𝑓!" × 𝑞%&!',)*$	,
𝑉!"
∆𝑡 ,

𝑆*
∆𝑡> 

Eq.(3a) 

 𝑆* = 𝑓!" × (𝜃+*, − 𝜃-./) Eq.(3b) 

where 𝑉!" represents floodplain inundation volume, 𝑞%&!',)*$ is the maximum soil infiltration 165 

capacity described in Eq (2), 𝑆* is the available capacity in the soil for infiltration in the 166 

floodplain, ∆𝑡 is the time step, 𝜃+*, is the saturated soil moisture in the topsoil layer, and 𝜃-./ is 167 

the soil moisture. The coupling scheme does not allow floodwater to infiltrate when the soil is 168 

saturated. The use of 𝑓!" in Eq (3b) ensures floodplain infiltration only occurs in the fraction of 169 

soil that is inundated. The total volume of infiltration on the floodplain over the model coupling 170 

timestep is sent to MOSART to update the inundation volume at the beginning of the next 171 

MOSART time step.   172 

 173 

2.3 Model setup 174 

ELM and MOSART global simulations were performed at a spatial resolution of 175 

0.5° × 0.5° for 1981-2010. The simulations used the 3-hourly 0.5° × 0.5° Global Soil Wetness 176 

Project version 1 (GSWP3v1) atmospheric forcing dataset, which has been dynamically 177 

downscaled and bias-corrected based on the reanalysis data (Compo et al., 2011). Lawrence et al. 178 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

11 
 

(2019) found better model performance in GSWP3v1-based simulations than simulations driven 179 

by other atmospheric forcing datasets. The time step for ELM and MOSART is 30 min and 60 180 

min, respectively, and the model coupling time step is 180 min. MOSART uses sub-cycling and 181 

the local time step size is chosen to ensure numerical stability. The default 0.5° × 0.5° ELM 182 

surface dataset was used in this study. The topographic parameters (i.e., flow direction, river 183 

length, slope, etc.) of MOSART were generated using the Dominant River Tracing (DRT) 184 

algorithm (Wu et al., 2012). Land cover and water depth were used to estimate Manning's 185 

roughness coefficients for the hillslope, subnetwork, and main channel (Getirana et al., 2012). 186 

The elevation profile for the default inundation scheme in MOSART was developed from the 187 

90m-resolution DEM from Hydrological Data and Maps Based on Shuttle Elevation Derivatives 188 

at Multiple Scales (HydroSHEDS; Lehner et al., 2008). 189 

Four sets of simulations were performed in this study, as listed in Table 1, to evaluate the 190 

impact of coupling scheme as well as the new inundation scheme. First, a MOSART-only 191 

simulation forced by a pre-built 3-hourly 0.05° runoff dataset (DLND-MOSART-1way) was 192 

performed to calibrate the river geometry (i.e., channel depth and channel width, see section 2.5). 193 

The pre-built runoff dataset was developed for a long-term global flood analysis called Global 194 

Reach-level Flood Reanalysis (Yang et al., 2021) using the Variable Infiltration Capacity Model 195 

(VIC) land surface model that is calibrated and bias-corrected (Lin et al., 2019) against machine-196 

learning derived global runoff characteristics (Beck et al., 2015). The GRFR runoff dataset was 197 

very well validated against >14,000 river gauges globally (Yang et al., 2021). The calibrated 198 

river channel geometry was then used in the next two ELM-MOSART simulations with two-way 199 

and one-way coupling, respectively. These simulations used the newly developed inundation 200 

scheme (described in section 2.6) to investigate the impact of model coupling on the simulated 201 
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water and energy cycles. A fourth configuration, ELM-MOSART-SGT-1way, was performed 202 

with one-way coupling using the elevation profile based inundation scheme of Luo et al. (2017) 203 

and the calibrated parameters of Mao et al. (2019). The fourth simulation was used as a 204 

benchmark for evaluating the new inundation scheme.  205 

Table 1. Simulation configurations. 206 
# Configurations Coupling scheme Inundation scheme 
1 DLND-MOSART-1way One-way No inundation 
2 ELM-MOSART-LLR-2way Two-way Log-Linear Regression 
3 ELM-MOSART-LLR-1way One-way Log-Linear Regression 
4 ELM-MOSART-SGT-1way One-way Sub-Grid Topography 

 207 

2.4 Evaluation data 208 

In this study, we calibrated and validated the simulated streamflow and inundation using 209 

the Global Stream Indices and Metadata (GSIM; Do et al., 2018; Gudmundsson et al., 2018) and 210 

the Global Inundation Extent from Multi-Satellites (GIEMS; Papa et al., 2010; Prigent et al., 211 

2001; Prigent et al., 2007; Prigent et al., 2012), respectively. The GSIM dataset includes 212 

monthly, seasonal, and yearly streamflow estimated from daily streamflow measurements of 213 

~35,000 gauges worldwide. In this study, we only used the monthly streamflow GSIM data. The 214 

GSIM gauges had different temporal coverages within the simulation period. We used the first 215 

two-third of the available data during the simulation period at each gauge for model calibration 216 

and the remaining one-third of the data for model validation.  217 

GIEMS is a 0.25° × 0.25° monthly inundation dataset based on multiple satellite 218 

observations that does not separately identify lakes, reservoirs, and irrigated agriculture from the 219 

river inundated areas. The modified GIEMS data (Mao et al., 2019) for only river inundation 220 

areas was developed by excluding the water bodies that were identified by the Global Lakes and 221 

Wetland Database (GLWD; Lehner and Döll, 2004) and the Monthly Irrigated and Rainfed Crop 222 
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Areas (MIRCA2000) products (Portmann et al., 2010). The modified GIEMS dataset was 223 

upscaled to 0.5° × 0.5° for model calibration and evaluation. Monthly GIEMS from 1993-2002 224 

was selected for model training, and 2003-2007 was used for model evaluation.  225 

We evaluated our model at both global and basin scale. Three basins with different 226 

climate characteristics were used in this study to perform evaluation at basin scale: Mackenzie 227 

(cold region), Mississippi (subtropical region), and Amazon (tropical region). 228 

 229 

2.5 Channel geometry calibration 230 

River geometry is a critical factor in river routing models (Yamazaki et al., 2014) and 231 

inundation schemes (Decharme et al., 2012). In this study, river channel geometry was calibrated 232 

by minimizing errors in the simulated streamflow compared against observed streamflow at the 233 

basin scale for 268 major river basins using level 3 basins dataset of Linke et al. (2019). Due to 234 

the coarse resolution of MOSART, basins that only have GSIM gauges with contributing area 235 

less than 100,000 km2 were not chosen for use in calibration. Based on this criterion, 59 of 268 236 

basins have at least one qualified GSIM gauge, which in total covers 45% of the land surface, 237 

excluding antarctica. When multiple GSIM gauges are present within a basin, the gauge with the 238 

largest contributing area was selected. The shape of the river channel cross-section is assumed to 239 

be rectangular, and the channel width and depth were calibrated with the following equation as 240 

proposed in Andreadis et al. (2013): 241 

 𝑤 = 𝑎0𝑄1.3, Eq.(4) 

 𝑑 = 𝑎4𝑄1.5, Eq.(5) 

where 𝑄 represents the 2-year return period daily streamflow, and 𝑎0 and 𝑎4 are curve fitting 242 

parameters. The 95% confidence intervals for the parameters 𝑎0 and 𝑎4 are [2.6, 20.2] and 243 
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[0.12, 0.63], respectively. The 𝑄 for each grid cell is estimated by aggregating daily runoff from 244 

the corresponding upstream cells. A set of 5 values for both 𝑎0 and 𝑎4 were sampled uniformly 245 

based on the suggested 95% confidence interval for each parameter, which resulted in a total of 246 

25 parameter sets of river width and depth for the calibration simulations.  247 

The metric of Normalized Root Mean Square Error (NRMSE) was used to evaluate the 248 

performance of the model during calibration and is given as 249 

 𝑁𝑅𝑀𝑆𝐸 = 	
1
𝑦I
× J

∑ (𝑦% − 𝑦L%)6&
%78

𝑛 , Eq.(6) 

where 𝑦% and 𝑦L% denote the observed and simulated streamflow in the i-th month, 𝑦I is the 250 

averaged observed streamflow, and 𝑛 is the total number of months used for model calibration. 251 

The values of 𝑎0 and 𝑎4 for each basin were selected from the set of 25 parameters that 252 

produced the smallest streamflow NRMSE during the calibration period. Basins without a gauge 253 

for model calibration were assigned median parameters values ( 𝑎0 = 7.2 and 𝑎4 = 0.27) as 254 

proposed by Andreadis et al. (2013).  255 

 256 

2.6 A novel inundation scheme 257 

Uncertainties and biases in the inundation scheme may lead to larger uncertainties in simulating 258 

both land and river processes in the two-way coupled land-river model. A novel inundation 259 

scheme is implemented in E3SM to simulate floodplain inundation dynamics more accurately as 260 

compared to the default inundation scheme of E3SM. Specifically, there exists a log-linear 261 

relationship between the satellite-based inundation fraction and simulated total volume according 262 

to our preliminary results (see Text S1). Therefore, we developed a new inundation scheme that 263 
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estimates the floodplain inundation fraction (𝑓!") using the log-linear regression (LLR) when the 264 

total volume exceeds the channel capacity (𝑆-9) and the relationship is given by 265 

 𝑓!" = M
0,																																											𝑖𝑓	𝑉#$ = 0		
𝑎 × log(𝑉#$ + 𝑆-9) + 𝑏,			𝑖𝑓	𝑉#$ > 0		 

Eq.(7) 

where 𝑉#$ represents the excess volume in the river channel, and 𝑎 and 𝑏 are parameters. 266 

MOSART with the new inundation scheme is hereafter referred as MOSART-LLR. Once the 267 

inundation fraction is calculated from Eq (7), the excess height (ℎ#) can be estimated by 268 

assuming water depths in the floodplain and over the channel bank top are the same (see Figure 269 

2): 270 

 ℎ# =
:!"

!#$;!%&
, Eq. (8) 

 𝑓-9 =
0×'
=

, Eq. (9) 

where 𝑓-9 is the channel fractional area, 𝑤 is the river width, 𝑙 is the river length, and 𝐴 271 

represents the grid cell area. Next, the floodplain inundation volume (𝑉!") can be separated from 272 

the excess volume with following equation: 273 

 𝑉!" = ℎ# × (𝑓!" − 𝑓-9), Eq. (10) 

 And the channel volume (𝑉-9) is updated by: 274 

 𝑉-9 = ℎ# × 𝑓-9 + 𝑆-9, 
Eq. (11) 

The procedures to calibrate the slope and intercept parameters 𝑎 and 𝑏 in the log-linear 275 

relationship of Eq. (7) are described below: 276 

1. Estimate the LLR parameters a and b at each grid cell using the DLND-MOSART-1way 277 

simulated total volume and the GIEMS inundation fraction. The estimated LLR 278 
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parameters are used as initial guess for subsequent ELM-MOSART-LLR-2way 279 

simulations. 280 

2. Perform ELM-MOSART-LLR-2way simulation using the LLR parameter values 281 

obtained from the i-th iteration.  282 

3. Estimate the i+1-th LLR parameter values using the total volume from the i-th ELM-283 

MOSART-LLR-2way simulation and the GIEMS inundation fraction.  284 

4. Perform ELM-MOSART-LLR-2way with the i+1-th LLR parameter values. If the 285 

averaged NRMSE of the global inundation fraction between the i+1-th and the i-th 286 

simulations is greater than 0.01, repeat step 2 to step 4. 287 

The LLR parameter values obtained after the above procedures were also used in the ELM-288 

MOSART-LLR-1way simulation to exclude the impacts of parameter values when evaluating 289 

differences between the two-way coupled and one-way coupled simulations.  290 

 291 
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 292 
Figure 2. Conceptual examples of excess height ( ) on floodplain in log-linear inundation 293 
scheme. Subplot (a) represents a channel with depressions nearby, and subplot (b) represents a 294 
channel with smooth floodplain. The left panels show the reality, while the right panels show 295 
how the inundation volume and excess height are modelled in the log-linear inundation scheme. 296 
The blue, red, and green solid lines denote the water levels in different flooding scenarios, which 297 
result in inundation fraction 𝑓!",8, 𝑓!",6, and 𝑓!",6, respectively. 𝑉!",8, 𝑉!",6, and 𝑉!",5 are the 298 
associated inundation volume in the floodplain, and ℎ#,8, ℎ#,6, and ℎ#,5 are the corresponding 299 
excess height based on the log-linear inundation scheme.  300 
 301 

3. Model calibration 302 

3.1 River channel geometry 303 

The monthly scale correlation coefficients between the simulated and observed 304 

streamflow at the GSIM stations are greater than 0.6 for all the calibrated basins (Figure 3a), 305 

suggesting a satisfactory performance of MOSART in simulating streamflow after river channel 306 

geometry calibration. Over some major basins (e.g., Amazon, Mississippi, Yangtze, Mackenzie, 307 

etc.), the skill of MOSART is excellent with correlation coefficient greater than 0.9. The 308 

calibrated river width (Figure 3a) and depth (Figure 3b) shows similar spatial variability as 309 

compared to other global studies (Decharme et al., 2012; Yamazaki et al., 2011). Note that Mao 310 

et al. (2019) calibrated the river channel geometry for MOSART-SGT by minimizing errors in 311 

the simulated basin averaged inundation fraction, resulting in unrealistic shallow river depths for 312 

the Amazon and Yangtze River basins, and low spatial variability at global scale (Figure S3). By 313 

separating the calibration of river channel geometry from the calibration of the inundation 314 

process, we estimate a more realistic river width and depth (Figure 3).  315 

he
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 316 
Figure 3. River channel geometry for (a) river width and (b) river depth calibrated using 317 
observed streamflow. The color of the circles in subplot (a) shows the correlation coefficient 318 
between the best calibrated simulated streamflow and the observed streamflow from GSIM at 319 
each gauge for the validation period. The location of the circle denotes the GSIM gauge location, 320 
and the red line delineates the corresponding basin boundary.  321 
 322 

3.2 Log-linear inundation parameters 323 

Estimation of the LLR parameters for ELM-MOSART-LLR-2way required four 324 

calibration iterations for the NRMSE of average inundation fraction to change by less than 0.01 325 

between the last two iterations. The LLR yielded correlation coefficients between the simulated 326 

total volume and observed inundation fraction greater than 0.8 during the calibration period over 327 

the wet regions, such as the Amazon basin, lower Mississippi basin, Southern Asia (Figure S2). 328 
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The performance of LLR is satisfactory, with correlation coefficients around 0.5 over the high 329 

latitude of the Northern Hemisphere.   330 

The default inundation scheme for some grid cells requires unrealistically large 331 

floodplain volume that is 1-2 orders of magnitude larger than the channel capacity to yield even 332 

the minimum observed inundation fraction of GIEMS (Figure 4). This unrealistic volume-area 333 

relationship results from the assumption of elevation profile approach that assumes all the lower 334 

elevation locations need to be filled before a higher elevation location is inundated. However, a 335 

higher elevation location can be inundated before all lower elevation locations are flooded due to 336 

the flow path connectivity in a grid cell at coarse resolution (Figure 1c). The new inundation 337 

scheme requires that the floodplain volume needed to produce the minimum observed inundation 338 

fraction is of the same magnitude as the channel capacity (Figure 4), implying a more realistic 339 

relationship. The excess height in Figure 4 is related to the inundation fraction through Eq (8) in 340 

LLR scheme. For the default inundation scheme, the excess height can be estimated by inserting 341 

the inundation fraction in the elevation profile. 342 

The floodplain volume and excess height relationship is not always monotonic in LLR 343 

scheme (Figure 4b). For example, an increase in the inundation volume can lead to an initial 344 

decrease of excess height when the inundation volume flood water spills over the bank to fill the 345 

depression or natural levee (from blue line to red line in Figure 2a). This is because a small 346 

volume increase leads to a significant increase of inundation fraction. After the inundation 347 

volume exceeds the threshold (e.g., the depression is filled up), the excess height increases as the 348 

inundation volume increases (red line to green line in Figure 2a). However, the use of elevation 349 

profile in the default inundation scheme ignores flow path connectivity, leading to a 350 

monotonically increasing relationship between excess height and inundation volume.  351 
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 352 
Figure 4. The relationship between the floodplain excess height and floodplain inundation 353 
volume. Subplot (a) and (b) show the relationships from two example grid cells located at 354 
(3.75°𝑆, 104.75°𝐸) and (3.75°𝑁, 51.75°𝑊), respectively. Excess height is estimated from the 355 
inundation volume and inundation fraction using Eq (8) for the new inundation scheme (solid 356 
line), and the elevation profile for the default inundation scheme (dashed line). The red squares, 357 
blue circles, and green triangles represent the minimum, mean and maximum inundation fraction 358 
from the GIEMS dataset, respectively.  359 
 360 

4. Model evaluation 361 

4.1 Discharge 362 

Using the calibrated river channel geometry and calibrated LLR inundation scheme, 363 

ELM-MOSART-LLR-2way shows a reasonably good skill of simulating streamflow seasonality 364 

(Figure 5) and interannual variability for 15 selected major basins, with correlation coefficients 365 

larger than 0.8	(Table 2). The Congo River basin is an exception showing a lower, but still a 366 

satisfactory model performance with correlation coefficient equal to 0.6. The simulated 367 

streamflow captures the observed seasonal cycle, but model biases still exist in a few basins 368 

(Figure 5). Table 2 summarizes the location of the GSIM stations that were used for evaluation 369 

along with other model evaluation metrics. The lower Nash-Sutcliffe efficiency (NSE) that less 370 

than 0.5 for Mackenzie, Volga, Lena, Kolyma, Murray-Darling, Irrawaddy, and Congo basin 371 
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indicate larger biases in the simulated streamflow. Those biases can result from uncertainty in 372 

the ELM-generated runoff  because of 1) a lack of accounting for water management (Voisin et 373 

al., 2013); 2) atmosphere forcing uncertainty (Li et al., 2015); 3) surface and subsurface runoff 374 

parameters uncertainty (Huang et al., 2013); and 4) poor representation of snowmelt dynamics 375 

(Toure et al., 2018).  376 

 377 
Figure 5. Comparison of observed and simulated river streamflow seasonality at 15 selected 378 
major basins. Streamflow simulated using one-way and two-way coupling are shown in solid red 379 
and dashed blue lines.  380 

 381 

ELM-MOSART-LLR-1way simulated streamflow seasonality at the 15 major basins is 382 

essentially identical to that of ELM-MOSART-LLR-2way (Figure 5), suggesting that two-way 383 

coupling does not impact the long-term streamflow seasonality of large basins. While the mean 384 

relative change for all months between two-way coupling and one-way coupling is small, the 385 
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variability of the relative change for certain months in several basins can be large (Figure S4), 386 

for example, winter periods for Mackenzie and Godavari.   387 

 388 
Table 2. Evaluation of streamflow over 15 selected major basins. 389 

Basin Lon Lat Area (𝒌𝒎𝟐) Period 𝝆 NSE NRMSE 
Mackenzie -133.75 67.46 1636728 1981-2010 0.88 0.45 0.57 
Mississippi -90.913 32.32 2913233 1981-2008 0.83 0.64 0.31 

Orinoco -63.60 8.15 829958 1981-1989 0.94 0.87 0.25 
Amazon -55.51 -1.95 4681666 1981-1998 0.93 0.8 0.18 
Danube 28.72 45.22 762765 1981-2010 0.85 0.54 0.44 
Volga 44.59 48.81 1360000 1981-2010 0.88 0.46 1.33 

Ob 66.53 66.57 3041498 1981-2010 0.88 0.76 0.53 
Godavari 81.66 17.25 305764 1981-2010 0.90 0.76 1.07 
Yangtze 117.62 30.77 1694590 1981-1988 0.93 0.75 0.21 
Yenisey 86.5 67.48 2440000 1981-2010 0.81 0.49 0.68 

Lena 126.80 72.37 2442336 1981-2002 0.89 -0.06 0.83 
Kolyma 158.72 68.73 418515 1981-2008 0.81 0.38 0.86 
Murray 142.76 -34.60 242715 1981-2010 0.85 0.28 3.4 

Irrawaddy 96.10 21.98 117900 1981-1988 0.89 0.21 0.63 
Congo 15.30 -4.30 3631314 1981-2010 0.59 0.32 0.35 

Note: 𝜌 is correlation coefficient, NSE represents Nash-Sutcliffe efficiency, and NRMSE is the normalized 
root mean square error. 

 390 

4.2 Inundation  391 

Compared to the default SGT inundation scheme, the new LLR inundation scheme in 392 

MOSART significantly improves the simulated inundation dynamics at global scales (Figure 6). 393 

The ELM-MOSART-LLR-2way simulated inundation explains about 96% of the spatial 394 

variation of GIEMS during the validation period (𝑅6 = 0.96 in Figure 6c inset), which is 395 

substantially superior to that of the default inundation scheme used in ELM-MOSART-SGT-396 

1way (𝑅6 = 0.07 in Figure 6b inset). Furthermore, the new inundation scheme is able to capture 397 

the temporal variation of the GIEMS inundation with global spatial correlation coefficient larger 398 

than 0.7 for each month during the validation period (Figure S5). We acknowledge that Mao et 399 

al. (2019) performed model calibration using atmospheric forcing of Qian et al. (2006) instead of 400 
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GSWP3 that is used in ELM-MOSART-SGT-1way. However, the biases of simulated inundation 401 

fraction remains significant when the atmospheric forcing of Qian et al. (2006) is used in ELM-402 

MOSART-SGT-1way (Figure S6). 403 

 404 
Figure 6. (a) Monthly average GIEMS inundated fraction from 2003 to 2007. (b) and (c) are the 405 
model biases (simulation - GIEMS) for ELM-MOSART-SGT-1way and ELM-MOSART-LLR-406 
2way, respectively. The insets in (b) and (c) are the cell-to-cell comparison of simulated 407 
inundated fraction (X-axis) with the GIEMS inundated fraction (Y-axis).  408 

 409 
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The default inundation scheme underestimates the observed inundation significantly even 410 

with an unrealistically shallow river depths, especially over the Amazon rainforest, South and 411 

Southeast Asia, and partial high latitude of the Northern Hemisphere (Figure 6b). The model 412 

biases are reduced with the new inundation scheme (Figure 5c), though some regions show a 413 

slightly overestimation of the inundation. Overall, the averaged global inundated area during the 414 

validation period for GIEMS, ELM-MOSART-LLR-2way, and ELM-MOSART-SGT-1way are 415 

2.31 × 10?	[𝑘𝑚6], 2.46 × 10?	[𝑘𝑚6], and 1.54 × 10?	[𝑘𝑚6], respectively.  416 

The new inundation scheme captures the seasonal variation of the basin-averaged 417 

inundation fraction better than the default inundation scheme over the Mississippi and Amazon 418 

basin (higher correlation in Figure 7a). Although the default inundation scheme shows a better 419 

correlation with the GIEMS data at Mackenzie, it underestimates the temporal variance. 420 

Additionally, the default inundation scheme fails to capture the spatial distribution of inundation 421 

fraction for Mackenzie, with a low spatial correlation coefficient of 0.05 (Figure 7c). The 422 

performance of the default inundation scheme is relatively better for Mississippi and Amazon 423 

with spatial correlation coefficients of 0.48 and 0.70, respectively (Figure 7c). The spatial 424 

distribution of the inundation fraction is improved with the new inundation scheme significantly, 425 

with spatial correlation coefficients higher than 0.97 for all three presented basins (Figure 7d).  426 
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 427 
Figure 7. Simulated inundation fraction for Mackenzie (top row), Mississippi (middle row), and 428 
Amazon (bottom row) basins. (a) Monthly basin average fractional inundation for the validation 429 
period (2003 – 2007). (b), (c), and (d) show the spatial distribution of mean inundation fraction 430 
for GIEMS, default inundation scheme, and new inundation scheme, respectively.  431 
 432 

5. Impacts of two-way coupling on land and river processes  433 

5.1 Impacts on the water cycle 434 

The two-way hydrological coupling of ELM and MOSART affects the global water 435 

cycle. In the two-way coupled simulation, the total infiltration increases as the floodplain 436 

inundated water infiltrates in the land during the flooding period (Figure 8a), representing the 437 

driver for the changes of other processes. Since the high latitude of the Northern Hemisphere has 438 

broader inundation extents (Figure 6a) due to wetter soil (Figure S7), more areas can be affected 439 

by two-way coupling through the infiltration from the inundated water. For example, 50% of the 440 

inundated cells (i.e., 𝑓!" > 0.01) distributed above 40oN based on GIEMS inundation dataset. 441 
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The increased infiltration leads to an increase in soil moisture (Figure 8b) and a shallower water 442 

table (Figure 8c) through soil water movements over the affected areas. The higher soil moisture 443 

in the two-way coupled simulations causes larger surface runoff (Figure 8d) as precipitation and 444 

snowmelt have less available pore space to infiltrate in the soil. Higher water table also leads to 445 

an increased subsurface runoff (Figure 8e). Additionally, the surface water fraction increases 446 

with the two-way coupling (Figure 8f) and the increase is mainly distributed in the high latitude 447 

of the Northern Hemisphere, where the surface water area is more sensitive to the change of 448 

surface hydrological processes due to frozen soil (Avis et al., 2011; Woo and Winter, 1993). 449 

 450 
Figure 8. Absolute mean 30-year difference between the ELM-MOSART-LLR-2way simulation 451 
and the ELM-MOSART-LLR-1way simulation of (a) infiltration, (b). top layer soil moisture, (c) 452 
water table, (d) surface runoff, (e) subsurface runoff, and (d) surface water fraction. 453 
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In the two-way coupled simulation, the river loses water to land through the floodplain 454 

infiltration, but it also receives more runoff (Figure 8d and e), which results in a change of 455 

streamflow dynamics. Specifically, two-way coupling reduces the variability of daily discharge 456 

by decreasing the maximum daily discharge (Figure 9a), while simultaneously increasing the 457 

minimum daily discharge (Figure 9b). The reduction in daily streamflow variability implies that 458 

floodplain plays a critical role in mitigating extreme events like flooding. For example, the 30-459 

year averaged annual maximum floodplain inundation is lowered in the two-way coupling 460 

simulation (Figure 9c). The averaged floodplain inundation also decreases, except in some areas 461 

over the Northern high latitude (Figure 9d). On average, the global total floodplain inundation 462 

area decreased by 3.3% during our simulation period due to two-way coupling. Table 3 provides 463 

a summary of the number of affected cells at the global scale for various variables of interest.  464 

 465 
Figure 9. Ratio of the 30-year mean between the ELM-MOSART-LLR-2way simulation and the 466 
ELM-MOSART-LLR-1way simulation of (a) daily maximum discharge, (b). daily minimum 467 
discharge, (c) daily maximum floodplain inundation, (d) floodplain inundation. 468 
 469 
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At global scale, changes in annual runoff averaged over the grid cells affected by two-470 

way coupling are greater during years with higher annual total runoff (Figure 10a), suggesting an 471 

increase of interannual variability. The larger changes of total runoff in two-way coupling 472 

simulations are caused by higher infiltration on the floodplain (Figure 10b) due to larger 473 

inundation during wetter years (Figure 10c). Indeed, the more inundation water infiltrated into 474 

the soil, the more runoff will be generated attributed to a shallower water table depth and higher 475 

soil wetness. Additionally, the changes in total runoff are dominated by the changes in 476 

subsurface runoff, which account for ~92% of the changes in total runoff. Although a similar 477 

pattern for the impacts of two-way coupling on total runoff are found at basin scale (Figure S8), 478 

regional differences in the changes of surface and subsurface runoff due to different climate 479 

characteristics are noticeable (Figure S9). For example, both the Mississippi River basin and the 480 

Amazon River basin have negligible changes of the surface runoff, whereas the Mackenzie River 481 

Basin has comparable changes of surface and subsurface runoff (Figure S8). The difference in 482 

Mackenzie River Basin is because of high latitude basins are characterized with lower baseflow 483 

index (Beck et al., 2013), hence, the surface runoff can be more sensitive to two-way coupling 484 

than other areas.   485 
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 486 
Figure 10. (a) Annual time series of total runoff, surface runoff changes, subsurface runoff 487 
changes, and total runoff changes between the ELM-MOSART-LLR-2way simulation (R2way) 488 
and the ELM-MOSART-LLR-1way simulation (R1way) averaged over the affected cells at global 489 
scale. Annual total runoff is from the ELM-MOSART-LLR-1way simulation. Subplot (b) shows 490 
relationship between floodplain infiltration volume and change of total runoff, and (c) shows the 491 
relationship between floodplain infiltration volume and fractional inundation from ELM-492 
MOSART-LLR-2way simulation. 𝜌 is the corresponding correlation coefficient.  493 
 494 

Two-way coupling reduces daily streamflow variability but increases the interannual 495 

runoff variability globally (Figure 9 and 10). The effects of two-way coupling may also differ 496 

spatially. Here we find that areas with lower annual runoff (e.g., less than 500	[𝑚𝑚 𝑦𝑟]⁄ )	have 497 

larger changes in infiltration due to two-way coupling (Figure 11a), resulting in larger changes in 498 

total runoff (Figure 11b). Although the wetter regions tend to have larger inundation extents than 499 
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the drier regions, the infiltration capacity may constrain the floodplain infiltration such that the 500 

inundated water cannot infiltrate when the top layer soil is saturated (Eq (3b)). Both the number 501 

of affected cells and the change of infiltration and runoff decrease along with the increase of 502 

annual total runoff. This suggests that relatively drier regions are more sensitive to two-way 503 

coupling than wetter regions in terms of the water cycle, therefore, land-river interactions 504 

through the floodplain reduces spatial variability of runoff over the inundated areas.  505 

 506 
 507 

Figure 11. Relationship between the average annual total runoff and (a) change of average 508 
annual infiltration, and (b) change of average annual total runoff between the ELM-MOSART-509 
LLR-2way simulation (I2way and R2way) and the ELM-MOSART-LLR-1way simulation (I1way and 510 
R1way). Only grid cells that are impacted by the inundation are presented in the density scatter 511 
plot. 512 
 513 

5.2 Impacts on energy cycle 514 

The subsurface thermal dynamics in ELM are impacted due to the changes of soil 515 

moisture in the two-way coupled simulations. Increased soil moisture with two-way coupling 516 

leads to a higher soil heat capacity that consequently modifies the soil temperature (Figure 12a). 517 

The Northern high latitudes show an increase in soil temperature, while other regions with 518 

changes in soil temperature show a decrease trend as compared to the one-way coupled 519 

simulation. The spatial pattern of surface soil temperature change is attributed to the changes in 520 
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the annual average soil temperature (Figure 13). Specifically, floodplain inundation results in 521 

warmer soil for grid cells with annual soil temperature lower than about 8 °𝐶; otherwise, the soil 522 

becomes cooler on average. Changes of surface temperature affect the growing season length 523 

(GSL), which is defined as the number of days between the first 5-day period with average 524 

temperatures above 5°C to the first 5-day period with temperatures below 5°C here. While the 525 

average annual soil temperature is warmer in the two-way coupling simulation in cold regions 526 

(Figure S10), the GSL can be shorter (Figure 12b). The reason for the shorter GSL with two-way 527 

coupling is that more energy is needed to heat up the wetter soil with higher heat capacity during 528 

the transition from the freezing season to the thawing season (see May to June of 2001 in Figure 529 

14a). However, the GSL of warmer areas is not affected by two-way coupling as only the hot 530 

months are cooled (Figure 14b).  531 

 The partitioning of net radiation is modified by two-way coupling as well, with a higher 532 

latent heat flux (Figure 12c) and lower sensible heat flux (Figure 12d) compared to the one-way 533 

simulation. However, many modifications on energy cycle due to two-way coupling are currently 534 

omitted in our implementation, such as energy exchange between land and river, estimating 535 

surface albedo with floodplain inundation, and including ET from inundated water. Thus, all the 536 

changes in the surface heat fluxes are driven by the changes in soil moisture. Notably, the latent 537 

heat fluxes over the tropical regions are not sensitive to the change of soil moisture (Figure 12c) 538 

because ET is not water limited for these regions (Brum et al., 2018; Xu et al., 2019).  539 
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 540 
Figure 12. Impacts of land river two-way coupling on (a) soil temperature at 10 cm, (b) growing 541 
season length, (c) latent heat flux, and (d) sensible heat flux in ELM. Subplots (a) and (b) show 542 
the maximum changes of soil temperature and growing season length from 30 years for each grid 543 
cell, respectively, between ELM-MOSART-LLR-2way and ELM-MOSART-LLR-1way. For 544 
subplots (c) and (d), the ratio of 30-year means between the ELM-MOSART-LLR-2way 545 
simulation and the ELM-MOSART-LLR-1way simulation is used. 546 
 547 

 548 
Figure 13. Relationship between the annual soil temperature at 10cm and the changes of annual 549 
soil temperature at 10cm between the ELM-MOSART-LLR-2way simulation and the ELM-550 
MOSART-LLR-1way simulation. Only grid cells that are impacted by the inundation are 551 
presented in the density scatter plot. 552 
 553 
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 554 
Figure 14. Daily temperature comparison between the ELM-MOSART-LLR-2way simulation 555 
and the ELM-MOSART-LLR-1way simulation for 2001 at two grid cells. The black solid line 556 
denotes the freezing temperature, i.e., 0℃. Subplot (a) is from Lat: 66.75, Lon: 150.25, and 557 
subplot (b) is from Lat: -37.25, Lon: -66.75. 558 
 559 

Table 3. Percentage of global cells that are affected by two-way coupling. 560 

Variable % of cells affected % of cells with 
significant increase 

% of cells with 
significant decrease 

Infiltration 23.7 6.9 0.2 
Soil moisture 16.2 2.9 0.0 
Water table 14.1 2.8 0.1 

Surface runoff 20.5 4.7 0.1 
Subsurface runoff 21.72 6.6 1.5 

Surface water fraction 27.6 8.0 0.2 
Max daily discharge 25.4 0.7 2.4 
Min daily discharge 20.5 5.0 1.4 

Soil temperature 11.4 1.7 1.8 
Latent heat flux 10.1 1.2 0.0 

Sensible heat flux 10.8 0.2 1.5 
Note: A cell with relative change larger than 0.1% or less than -0.1% are counted as affected. The relative change 
larger than 5% are counted as significant increase, and less than -5% are counted as significant decrease. For the 
soil temperature, absolute change is used instead. The cells with absolute change larger than 0.1℃  or less than -
0.1℃ are counted as affected. 1℃ and -1℃ are used as criteria for significant increase and decrease for the soil 
temperature, respectively.  
 561 

6.  Conclusion and discussion 562 

In this study, we developed two-way hydrological coupling between the land and river 563 

components of E3SM. The default inundation scheme in the river component of E3SM was 564 
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inadequate in capturing the observed spatial variability of floodplain inundation, thus, we 565 

developed a novel data-driven inundation scheme that is able to capture 96% of the spatial 566 

variance of a satellite-based observational dataset. We calibrated river geometry parameters for 567 

MOSART and parameters for the new inundation scheme and performed ELM-MOSART 568 

coupled simulations with one-way and two-way model coupling to investigate the sensitivity of 569 

land/river processes to land-river coupling. Our comparisons reveal significant changes in the 570 

land processes at the global scale, with two-way coupling producing wetter soil, more runoff, 571 

and higher surface water fraction. Two-way coupling also has impacts on river processes, as 572 

evidenced by the lower peak annual streamflow and the higher minimum annual streamflow 573 

because of the infiltration of flood water into the floodplain soil and hence, the influence on 574 

runoff. While riverine inundation is mitigated by two-way coupling during flooding periods, 575 

inland inundation is more extensive. Overall, the water cycle at about 20% of the global areas are 576 

influenced by the two-way hydrological coupling.  577 

The water cycle shows different sensitivities to two-way coupling in regions with 578 

different climate characteristics. At global scale, our results suggest that wetter periods (e.g., 579 

years with runoff higher than the long-term annual runoff) and relatively drier regions (e.g., 580 

annual runoff less than 500	[𝑚𝑚 𝑦𝑟⁄ ]) exhibit higher sensitivity to land river two-way coupling. 581 

Larger changes in runoff are observed during wetter periods because the water table and soil 582 

moisture are more affected by the infiltration of inundation water, which is larger in the wetter 583 

periods than in the drier periods. However, the relatively drier regions are more affected by two-584 

way coupling than wetter regions, where the inundation infiltration may be constrained by the 585 

lower infiltration capacity of the soil (Eq (3b)). In contrast, the floodplain soil of relatively drier 586 
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regions is capable of absorbing most of the inundation water, therefore, leading to larger changes 587 

in the water cycle by modifying the daily and interannual variability of streamflow and runoff. 588 

The energy cycle is modified by the land river two-way hydrological coupling as well. 589 

Since only hydrological exchange is implemented between land and river in our implementation, 590 

two-way coupling has negligible effect on the surface net radiation (not shown here). 591 

Nonetheless, partitioning of the surface net radiation is different in the two-way coupling 592 

simulation with higher latent heat flux and lower sensible heat flux. The higher latent heat flux is 593 

mainly driven by the change of soil moisture (Hou et al., 2012), which has an important control 594 

on ET in water-limited regions (Jung et al., 2010). We note that ET from open water in river and 595 

floodplain inundation, which will lead to more changes in the surface heat fluxes (Dadson et al., 596 

2010), are not included in the current two-way coupling implementation. A future study will 597 

include ELM-MOSART simulations with an active atmosphere model to investigate of the 598 

impacts of floodplain on land-atmosphere interaction.  599 

The newly developed inundation scheme and land river two-way hydrological coupling 600 

are not without shortcomings and limitations. First, the new inundation scheme is not process-601 

based but data driven that relies on accurate flood inundation satellite dataset for training. 602 

Satellite inundation data products have considerable uncertainty associated with detection of 603 

small flooded areas (Prigent et al., 2007), presence of clouds (Policelli et al., 2017; Revilla-604 

Romero et al., 2015), and densely vegetated areas (Wu et al., 2019). Second, given that 605 

inundation only occurs along the main river channels in MOSART, it is critical to accurately 606 

represent the river networks for inundation simulations. Thus, using a single main channel river 607 

network (Wu et al. (2011) at relatively coarse resolution (e.g. 0.5 degree) would introduce 608 

additional source of uncertainty for inundation estimation in this study. Third, the current 609 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

36 
 

coupling scheme adds the floodplain infiltrated water within the entire coarse-scale grid cell, 610 

which can be unrealistic as the inundated area usually occupies only a very small fraction of the 611 

grid cell area. However, infiltration of the inundated water only within a soil column of 612 

floodplain is not supported by the current version of ELM, as hydrological processes are 613 

represented by a single soil column within each grid cell. A more realistic surface and subsurface 614 

interactions in two-way coupling scheme are warranted with the subgrid topographic land unit 615 

model setup that will be available in a future version of ELM (Tesfa et al., 2020). Lastly, ELM 616 

and MOSART separately estimate inland inundation (i.e., wetland inundation) and floodplain 617 

inundation with different inundation schemes. Therefore, it remains challenging to evaluate the 618 

total inundations with different components (e.g., land, river), as different inundations often 619 

occur concurrently.   620 

In summary, we implemented a land river two-way hydrological coupling scheme in 621 

E3SM to understand changes in the land and river processes due to riverine inundation. Our 622 

results show considerable impacts of riverine inundation on land and river hydrological 623 

processes as well as partitioning of surface energy fluxes, which may have further impacts on the 624 

water and energy cycle through land-atmosphere interactions. River and land hydrological 625 

processes could be more resilient to climate change as two-way land-river interactions in the 626 

floodplains tend to reduce the variability of hydrological processes at global scale, but future 627 

investigations are needed using fully coupled E3SM simulations. Lastly, this study provides the 628 

necessary first step for representing thermal, sediments, salinity, nutrients exchanges between 629 

river and land to better understand the impacts of floodplain inundation on the biogeochemical 630 

cycle. 631 

 632 
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