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Abstract

We evaluate terrestrial net ecosystem-atmosphere exchange (NEE) of CO2 from nine global inversion systems that inferred fluxes

from four CO2 observational sources. We use 98 flights in the central and eastern U.S. from the ACT-America aircraft mission

to conduct this sub-continental, seasonal-scale evaluation. We use Lagrangian particle dispersion modeling (FLEXPARTv10.4-

ERA-Interim) to compare observed and simulated regional biogenic CO2 mole fractions. We find a positive bias (modeled

CO2 > observed) in the summer and negative bias (modeled CO2 < observed) in dormant seasons across most flux products,

suggesting that the seasonal strength of CO2 NEE is underestimated in these inverse models. Fluxes inferred from OCO-2 v9

satellite land nadir/glint observations yield an error level that is similar to fluxes inferred from in-situ data. Large bias errors

are observed in the croplands and eastern forests. Future experiments are needed to determine if these seasonal biases are

associated with biases in net annual flux estimates.
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Key Points:23

• The seasonal amplitude of CO2 NEE in the central and eastern US is underesti-24

mated in most global inversion models.25

• This season bias is not significantly different between inversions using OCO-2 v926

LNLG and in situ observations.27

• Largest CO2 flux biases are observed in U.S. croplands and eastern forests.28
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Abstract29

We evaluate terrestrial net ecosystem-atmosphere exchange (NEE) of CO2 from nine global30

inversion systems that inferred fluxes from four CO2 observational sources. We use 9831

flights in the central and eastern U.S. from the ACT-America aircraft mission to con-32

duct this sub-continental, seasonal-scale evaluation. We use Lagrangian particle disper-33

sion modeling (FLEXPARTv10.4-ERA-Interim) to compare observed and simulated re-34

gional biogenic CO2 mole fractions. We find a positive bias (modeled CO2 > observed)35

in the summer and negative bias (modeled CO2 < observed) in dormant seasons across36

most flux products, suggesting that the seasonal strength of CO2 NEE is underestimated37

in these inverse models. Fluxes inferred from OCO-2 v9 satellite land nadir/glint obser-38

vations yield an error level that is similar to fluxes inferred from in-situ data. Large bias39

errors are observed in the croplands and eastern forests. Future experiments are needed40

to determine if these seasonal biases are associated with biases in net annual flux esti-41

mates.42

Plain Language Summary43

The quantification of terrestrial net ecosystem-atmosphere exchange (NEE) of CO244

is important to our understanding of the carbon cycle and constitutes an important con-45

tribution to the science which underpins climate policy. We use multi-season aircraft ob-46

servations to evaluate the estimates of seasonal, regional NEE of CO2 derived from both47

satellite and ground-based observations of atmospheric CO2 using nine different global48

data analysis systems. Our analysis focuses on terrestrial ecosystems in the central and49

eastern United States. We find that nearly every analysis model yields an underestimate50

of the seasonal strength of NEE of CO2 (net photosynthesis too weak in the summer;51

respiration too weak in the winter) regardless of the CO2 data source. Additional study52

is needed to determine both the cause of these seasonal biases, and the impact of this53

bias on annual net CO2 flux estimates.54

1 Introduction55

Accurate, spatially- and temporally- resolved carbon flux estimation is essential for56

improving climate projections and informing carbon management and policy (e.g., Arora57

et al., 2020; Millar et al., 2017). A thorough knowledge of the biological CO2 fluxes from58

a variety of ecosystems across different geographic locations facilitates total carbon flux59

estimation and the establishment of national and state implementation plans (e.g., Pan60

et al., 2011; Tan et al., 2015; J. B. Miller et al., 2020; Wang et al., 2020)(California’s Nat-61

ural and Working Lands (NWL) Implementation Plan:https://ww2.arb.ca.gov/our62

-work/programs/natural-and-working-lands) . Ecosystem carbon-stock inventories63

and terrestrial biogeochemical models are commonly used to provide biospheric carbon64

fluxes for policy planning (e.g., Tan et al., 2015)(California’s NWL Inventory:https://65

ww2.arb.ca.gov/nwl-inventory). Atmospheric inversion of CO2 mole fraction obser-66

vations to estimate biospheric CO2 fluxes is an important and complementary avenue67

for independent evaluation of ecosystem carbon flux estimates (e.g., Ciais et al., 2010;68

Chevallier, 2021). These methods have benefited from the expansion of long-term atmo-69

spheric observing systems including both ground-based, airborne and space-based plat-70

forms (Crisp et al., 2008; Andrews et al., 2014; Sweeney et al., 2015; Karion et al., 2020).71

An atmospheric inversion of CO2 mole fractions optimizes CO2 fluxes in such a way72

that simulated atmospheric CO2 mole fractions agree better with observations (e.g., Rayner73

et al., 2019). Gridded global CO2 fluxes are available from several multi-year atmospheric74

inversions, many of which are frequently updated to quantify CO2 surface fluxes (e.g.,75

CarbonTracker, https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/ or the Coper-76

nicus Atmosphere Monitoring Service, https://ads.atmosphere.copernicus.eu/cdsapp#77

!/dataset/cams-global-greenhouse-gas-inversion). The inversion models use prior78
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CO2 flux estimates of different source components, including fossil fuel, biosphere, fire,79

and ocean. In general, most global inversion systems optimize the magnitude of land bio-80

spheric and oceanic CO2 flux terms while leaving fossil fuel emissions “fixed” to derive81

the optimal solution.82

These CO2 flux inversions estimate fluxes across the globe with a variety of spa-83

tial resolutions. Accurate regional flux information has the potential to inform policy84

planning and carbon management. To date, regional flux estimates within global inver-85

sions have shown large differences (Peylin et al., 2013; Crowell et al., 2019). Rigorous86

evaluation of current CO2 flux inversion products in time and space is needed to improve87

atmospheric inversions to the point of being a sound, verified source of information to88

be used in regional carbon accounting.89

Aircraft field campaigns are well-suited for regional flux evaluation. Aircraft field90

campaigns have been deployed in many different regions to investigate CO2 NEE sur-91

face fluxes, including the CO2 Budget and Rectification Airborne study over temperate92

North America (COBRA) (Gerbig et al., 2003), the Arctic-Boreal Vulnerability Exper-93

iment in boreal North America (ABoVE) (C. E. Miller et al., 2019), and the Atmospheric94

Carbon and Transport-America Earth Venture Suborbital mission (ACT-America)(Davis95

et al., 2021). Several studies have been conducted to evaluate the global CO2 flux in-96

versions using independent aircraft CO2 measurements above the atmospheric bound-97

ary layer (ABL) and focus on a large domain, such as global or continental scale (Liu98

& Bowman, 2016; Chevallier et al., 2019; Gaubert et al., 2019; Liu et al., 2021). To date,99

few studies have been conducted to evaluate the seasonal and sub-continental estimates100

of the global CO2 flux inversions. ACT-America is the largest carbon-centric aircraft mis-101

sion conducted in any midlatitude, continental environment. The multi-seasonal ACT-102

America campaigns were held in the central and eastern United States (U.S.) during Sum-103

mer 2016, Winter 2017, Fall 2017, Spring 2018, and Summer 2019 (Davis et al., 2021;104

Wei et al., 2021). Over 1140 flight hours of data, roughly 45% of which were within ABL,105

were collected over the course of 121 research flights distributed across the central and106

eastern United States. The ACT-America flights sampled CO2 mole fractions from the107

ABL to the upper free troposphere and were oriented to capture synoptic weather pas-108

sages typical of each season and region (Pal et al., 2020; Wei et al., 2021). This multi-109

seasonal weather-oriented aircraft campaign provides a unique opportunity to assess in-110

verse estimates of regional CO2 NEE.111

Global CO2 flux inversions can be based on ground-based CO2 monitoring or satellite-112

based retrievals of the total column CO2 (XCO2) mole fractions. These observing sys-113

tems provide complementary temporal and spatial representativeness. The Orbiting Car-114

bon Observatory-2 (OCO-2) satellite was launched in July 2014 and was designed to quan-115

tify sources and sinks of CO2 across the globe (Eldering et al., 2017). The OCO-2 v9 model116

intercomparison project (MIP)(Peiro et al., 2021) produced a suite of multiyear (2015-117

2019) gridded global CO2 flux inversion products, including the NEE of CO2. The OCO-118

2 v9 MIP includes 10 global CO2 data assimilation systems and is designed to assim-119

ilate both CO2 in-situ data and the OCO-2 v9 column CO2 data individually or collec-120

tively. We take advantage of the large spatial coverage and multi-seasonal sampling of121

ACT-America to evaluate the OCO-2 v9 MIP CO2 NEE of temperate North America122

by comparing observed ABL CO2 mole fractions to the corresponding simulated CO2123

mole fractions using the series of OCO-2 v9 MIP CO2 flux inversion products. We ap-124

ply two evaluation metrics to quantify the errors in CO2 NEE from commonly-used global125

CO2 inversion systems (applied in the OCO-2 v9 MIP) with respect to the independent126

airborne observations at sub-continental and ecoregional scales. The results are presented127

in Section 3, after the description of our data and methods in Section 2. The discussions128

and conclusion are shown in Section 4.129
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2 Data and methods130

2.1 CO2 NEE flux inversion products131

OCO-2 v9 MIP released a suite of ten gridded CO2 flux inversion products at the132

global scale encompassing the years 2015-2018. The different inversion systems are stan-133

dardized in the sense that they are required to assimilate the same four sets of atmospheric134

observations and use the same fossil fuel CO2 emissions as part of the inversion system135

inputs. The ten global CO2 data assimilation systems are described by Peiro et al. (2021);136

Zhang et al. (2021) and some additional information are given in Text S1. The four ob-137

servational data sources include the CO2 mole fraction measurements from 1) in situ data138

(IS) compiled in the GLOBALVIEW+ 5.0 (Cooperative Global Atmospheric Data In-139

tegration Project, 2019) and NRT v5.1 (CarbonTracker Team, 2019) ObsPack products;140

2) the land nadir/land glint (LNLG) retrievals of column-integrated CO2 from OCO-2141

v9; 3) OCO-2 ocean glint (OG) v9 retrievals; and 4) a combination of the in situ and satel-142

lite data (LNLGOGIS). The suite of multiyear gridded CO2 flux inversions are the monthly143

averaged products (https://gml.noaa.gov/ccgg/OCO2 v9mip/). In this study, ancil-144

lary gridded global CO2 NEE products at 3-hourly resolution from nine members of OCO-145

2 v9 MIP (Text S1) was created for the four ACT-America Campaign periods (summer146

2016, winter 2017, fall 2017, and spring 2018). All models in OCO2 v9 MIP were required147

to use the same fossil fuel inventory from the Open-source Data Inventory for Anthro-148

pogenic CO2 (ODIAC) 2018 version but were not limited in their choice of biospheric,149

oceanic and fire prior fluxes. The prior flux inputs for the components of the biospheric,150

oceanic, and fire sources are listed in Table S2. Overall, there are 7 different prior NEE151

of CO2 estimates used in these inversion systems, 6 different prior estimates of the oceanic152

CO2 fluxes, and 4 different prior fire CO2 emissions estimates.153

2.2 Influence functions154

We established the source-receptor relationship between CO2 NEE fluxes and at-155

mospheric CO2 enhancement/depletion along flight tracks using the Lagrangian parti-156

cle dispersion modeling technique (e.g., Cui et al., 2021). In the study, we aggregated157

the ACT-America CO2 measurements in the ABL, excluding take-off and landing por-158

tions, to the 10-minute intervals to match the spatial resolution of the transport simu-159

lations in the global inversion systems. The ABL determination is described in Pal et160

al. (2020) and Davis et al. (2021). Each of the 10-minute (roughly 60-70 km at typical161

flight speeds) intervals is treated as a receptor and we release 1000 particles per recep-162

tor and simulate their backward transports for 10 days using FLEXPART v10.4 (“FLEX-163

ible PARTicle dispersion model”) (Pisso et al., 2019). The FLEXPART model was driven164

by the ERA-interim reanalysis data (0.75 x 0.75 degree, 6-hourly).165

2.3 Background values166

To determine the background values, we sampled the CO2 mole fraction field at167

the locations in time and space when and where the particle trajectories’ 10-day back-168

ward simulations terminated. The CO2 mole fraction fields are from the long-term for-169

ward simulation from each OCO-2 v9 MIP model within the optimized fluxes from each170

experiment. The total number of the CO2 mole fraction fields used here are 35 (9 mod-171

els and 4 experiments, and the CSU model did not implement the LNLGOGIS exper-172

iment).173

Specifically, we use the option of FLEXPART to output the spatially and tempo-174

rally resolved sensitivity field (dimensionless and the range is from 0 to 1) of each recep-175

tor used in the study to the initial conditions, interface with the CO2 mole fraction fields176

when and where particles are terminated to determine the background value for each re-177

ceptor (Text S1 and Figure S1).178
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2.4 Evaluation metrics179

We convolve each CO2 NEE flux product to the atmospheric mole fractions along180

the ACT-America ABL flight tracks and compare them with the enhancement or deple-181

tion levels of the NEE-related CO2 mole fractions within the ABL observed by ACT-182

America. The enhancement/depletion levels of the CO2 mole fractions sampled by ACT-183

America flights are total CO2 influenced by different CO2 sources. The influence of bi-184

ological sources dominates the aircraft data because the flights were designed to fly over185

the ecosystems in the Central and Eastern US. We obtain the enhancement/depletion186

levels of the NEE- related CO2 mole fractions along flights after extracting the portions187

influenced by the fossil fuels, fire and ocean from the total CO2 measurements, as well188

as the determined regional background values described in Section 2.3 (Cui et al., 2021).189

The influences of fossil fuels, fire and ocean are calculated using the influence function190

to convolve their surface fluxes within the 10-day span. We use the fossil fuel CO2 emis-191

sion estimates from the ODIAC 2018 emission inventory, and fire emissions from the GFED192

v4.1s wildfire emission inventory for all cases. The ocean CO2 influence is derived from193

the convolution of the influence function and the monthly-averaged posterior oceanic CO2194

flux estimates from each experiment of the individual model in OCO-2 v9 MIP. In the195

study, we only used the boundary-layer CO2 mole fractions of the ACT-America flights196

in the evaluation. Numerical estimates in Cui et al. (2021) show that the fire and ocean197

fluxes have very small contributions to the ABL mole fractions. Fossil fuel sources have198

a more significant, but moderate impact.199

Cui et al. (2021) used the root-mean-square error (RMSE) metric (equation 2) to200

evaluate inversion products of the CarbonTracker model, one of OCO-2 v9 MIP ensem-201

ble members, based on the comparisons between the simulated and ACT-America ref-202

erenced NEE-related CO2 mole fractions. In this study, we apply the RMSE metric to203

nine models of OCO-2 v9 MIP. Furthermore, we focus more on the mean bias error (MBE)204

metric analysis (equation 3) in the CO2 mole fraction space to investigate the bias er-205

ror of each inversion case in OCO-2 v9 MIP.206

RMSE =

∑N
i=1

√
(ymodbioi − yACTbioi)

2

N
(1)

MBE =

∑N
i=1(ymodbioi − yACTbioi)

N
(2)

, where i denotes each receptor, and N denotes the number of receptors. More de-207

tails of ymodbioi and yACTbioi are described in Cui et al. (2021). Similar to Cui et al. (2021),208

our evaluation is seasonal. The RMSE and MBE values are calculated for each campaign209

(i.e each season). The flux product associated with smaller RMSE values indicates bet-210

ter spatially and temporally resolved flux estimates. The MBE analysis is also applied211

for each campaign. Smaller biases imply NEE of CO2 that is most consistent with the212

mean impact of biogenic fluxes on ABL CO2.213

2.5 Ecoregion-based evaluation framework214

To evaluate fluxes by ecoregion, we group the receptors by ecoregion and calculate215

the MBE values between the simulated and observed biological CO2 mole fractions for216

each group. The ecoregion-based MBE analysis are subsets of the overall MBE analy-217

sis. We present the “zoom-in” maps to investigate the spatial origins of the MBE val-218

ues and show the maximum MBE value for each ecoregion associated with the correspond-219

ing inversion case.220

We attribute the receptors along the flight tracks to different ecoregions, taking ad-221

vantage of the source-receptor relationship obtained from the Lagragian framework. Specif-222

–5–
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Figure 1. Seasonal NEE of CO2 estimated from OCO-2 v9 MIP in Central and Eastern US

(Text S1 and Figure S1) as a function of seasonal Mean Bias Error (MBE) values in posterior

fluxes from the OCO- 2 v9 -MIP calculated using ACT-America ABL CO2 mole fraction ob-

servations and a Lagrangian particle dispersion model (Cui et al., 2021). The observations and

calculated NEE of CO2 encompass July-August 2016 (“Summer 2016”); February-March 2017

(“Winter 2017”); October-November 2017 (“Fall 2017”); and April-May 2018 (“Spring 2018”).

The open circles denote the IS experiments, and the solid circles denote the LNLG experiments.

The TM5 group (CT, OU, and TM5-4DVAR) is colored in red, the GEOS-Chem group (Ames,

CMS-Flux, UT, and CSU) is colored in blue, the Baker model is in black, and the CAMS model

is in yellow. The pink lines are linear regressions of all cases for each season.

ically, we attribute each receptor to one eco-region which contributes the largest influ-223

ence function for that receptor (Text S1 and Figure S2). We group the segments of CO2224

mole fractions along the flight tracks into different ecoregions and apply the MBE anal-225

ysis for each group to investigate the associated seasonal bias levels aligned with the ecore-226

gion regions of the temperate North America area. The overall spatial coverages of the227

influence functions of ACT-America are shown in Cui et al. (2021). We focus on region228

1-9 in this study, which contribute largest influence on the enhancement/depletion of CO2229

mole fractions along ACT-America ABL flight tracks.230
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3 Results231

Figure 1 shows seasonal Mean Bias Error (MBE) levels to the seasonal NEE es-232

timation of OCO-2 v9 MIP members. We focus here on the flux estimates from the in-233

situ (“IS”) and the OCO-2 v9 land nadir/land glint (“LNLG”) experiments, which Cui234

et al., (2021) suggests are the most reliable NEE estimates for the central and eastern235

US. We find correlations between OCO-2 v9 MIP seasonal NEE estimates and seasonal236

MBE. The corresponding correlation coefficient (p-value) to the four campaigns are 0.4237

(p=0.15), 0.7 (p=0.001), 0.6 (p=0.009), and 0.5 (p=0.02), respectively. The correlations238

are statistically significant for the winter, fall and spring months. Figure 1 shows that239

posterior estimates of NEE of CO2 are underestimated in the IS and LNLG experiments240

compared to observations during winter, fall, and spring. Posterior estimates of NEE of241

CO2 are overestimated (not sufficiently negative) during the summer. The TM5-4DVAR242

and OU models have the best performance during winter and fall seasons. The TM5-243

4DVAR and CT model within the LNLG experiment have the best performance during244

the summer.245

The inversion products from each model are only required to use the same fossil246

fuel emission and the same observational datasets, leaving many potential differences among247

the inversion systems including prior fluxes, transport, and inversion algorithms. There-248

fore, some of the performance differences of the inversion systems is caused by the dif-249

ferences of these model framework components, enabling limited diagnosis of the causes250

of the MBEs. Overall, the TM5-4DVAR model has the best performance across the dif-251

ferent seasons. The TM5 group shows the best performance among the transport mod-252

els, with smaller MBEs than the other transport models across four seasons. The OCO-253

2 v9 land nadir/land glint experiment yields the MBE level that is similar to, or better254

(e.g winter) than, the in situ data experiment. We have used one transport model to cre-255

ate the influence functions used to link NEE of CO2 to ABL CO2 mole fractions (see Sec-256

tion 2), thus we compare all of the systems on an equivalent basis. It is possible, how-257

ever, that a bias in our influence functions contributes to the MBE in Figure 1, and yields258

incorrect rankings among these inversions.259

In summary, we find the NEE of CO2 in central and eastern North America by nearly260

all these inversion systems to be positively biased in summer and negatively biased in261

the other three seasons, with the degree of bias varying across the inversion system. There-262

fore, the magnitude of the seasonal cycle of NEE of CO2 across central and eastern Tem-263

perate North America is likely to be underestimated across the models in the OCO-2 v9264

MIP. The overall annual bias from these systems is not clear, since the seasonal flux bi-265

ases change sign and will cancel out over the course of a year to a degree that is not clear266

from this analysis.267

A number of broad patterns emerge when the MBE is evaluated for each ecoregion268

(Figure 2). In all seasons the patterns of ecoregion MBEs change relatively little as a269

function of the data source used in the inversion. Summer and fall have the largest over-270

all MBEs. The large MBEs are located in the Appalachian forests (ecoregion 5), cen-271

tral crops and forest (ecoregion 6), the corn belt (ecoregion 7), and the northern crops272

(ecoregion 8). More pronounced MBE levels in the positive and negative direction are273

found in the Baker and UT models, which may imply a smaller model-data-mismatch274

covariance given in the model than others. The OU model MBE most often diverges in275

sign from the other models during the dormant season, and the Ames and CMS-Flux276

models often have the largest negative MBEs in the dormant seasons, especially when277

limiting the discussion to the IS and LNLG inversions.278

During the summertime, we identify large positive biases in Appalachian forests279

(ecoregion 5), central crops and forests (ecoregion 6), the corn belt (ecoregion 7), and280

northern crops (ecoregion 8). The UT and Baker-mean models contain many of the peak281

positive biases across these ecoregions. The TM5-4DVAR model shows the smallest MBE282
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Figure 3. RMSE of the posterior biogenic CO2 computed from all inverse estimates of NEE

of CO2 compared to the observed ABL CO2 mole fractions from each of four seasonal ACT-

America campaigns.

across all ecoregions. During the fall months, large negative MBE values are found in283

most ecoregions with the exception of the Appalachian forests (ecoregion 5) where the284

MBEs are positive. The Baker model again stands out in comparison to other inversion285

systems, with positive MBEs for many ecoregions when driven by OCO-2 data (i.e., LNLG286

and OG). Given that only moderate NEE of CO2 is expected in the fall, the performance287

of the OCO-2 v9 MIP models during the fall months is relatively poor compared to other288

seasons.289

Figure 3 and Figure 4 show the RMSE and MBE analysis, respectively, for four290

data experiments in OCO-2 v9 MIP including IS, LNLG, the OCO-2 v9 ocean glint (“OG”)291

experiment, and the combination of IS, LNLG and OG experiment (“LNLGOGIS”) (see292

details in section 2).293
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Figure 4. MBE of the posterior biogenic CO2 computed from all inverse estimates of NEE of

CO2 compared to the observed ABL CO2 mole fractions from each of four seasonal ACT-America

campaigns.
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The RMSE analysis (Figure 3) shows seasonal patterns likely related to flux mag-294

nitudes. Across all members of OCO-2 v9 MIP, spring and winter CO2 NEE flux esti-295

mates have smaller RMSE levels than fall and summer estimates. The variability of RMSE296

levels across different models is small during the spring months, and largest during the297

fall months. These findings are roughly consistent with larger NEE (Figure 1 and Fig-298

ure S4-7), hence larger potential for model-data differences, in the more biologically ac-299

tive seasons.300

Sensitivity of RMSE in the CO2 NEE flux estimates to data sources varies, per-301

haps indicative of the construction of the inversion systems. Most of the models in the302

OCO-2 v9 MIP are not strongly sensitive to changes in the observational source. The303

Baker-mean model, in contrast, is relatively sensitive to the source data used in the in-304

version, especially to the OCO-2 ocean glint v9 retrievals (“OG”). The OU and CSU mod-305

els are sensitive to the OG data during the wintertime as well. The UT model is sen-306

sitive to the different observing datasets during the fall months. This suggests that these307

inversion systems are the most data driven. In addition, RMSE analyses suggest that308

the OCO-2 v9 OG-based inversion is inferior to other experiments, yielding the highest309

RMSE across seasons and models.310

The MBE analysis as a function of the observational data set shows similar pat-311

terns (Figure 4) to the RMSE analysis. MBE levels are smaller in winter and spring months312

than the fall and summer months, and the MBE level is smallest in the spring. Unlike313

the RMSE analysis, the OG experiments here don’t show the large discrepancies as com-314

pared to the other experiments. During the fall months, the MBE levels for the CO2 NEE315

flux estimates from the UT and Baker model still display large divergences across dif-316

ferent observing datasets. The LNLGOGIS experiment includes both in situ and OCO-317

2 data but we do not find superior performance in the current global inversion system318

despite the superior data density. Patterns of MBE across models and regions have been319

discussed earlier in the paper.320

4 Discussions and Conclusion321

We implement a regional evaluation of net ecosystem exchange (NEE) of CO2 flux322

products from nine current state-of-the-science global inversion systems in central and323

eastern temperate North America, using the largest carbon-centric, regional-scale air-324

craft mission (ACT-America) yet deployed anywhere on the earth. We estimate the sea-325

sonal performance of CO2 NEE flux products of the OCO-2 v9 MIP across this portion326

of North America and expand the evaluation to the ecoregions within the domain.327

The seasonal bias analysis shows that the inversion models’ NEE estimates are pos-328

itively biased in summer, and negatively biased in winter, fall, and spring across most329

flux products, suggesting that the seasonal magnitude of CO2 NEE is underestimated330

in these global CO2 inversion systems. The performance of the OCO-2 v9 land nadir/land331

glint data experiment is similar to the in situ experiment, an encouraging finding for re-332

gions of the world where the in situ observing network is sparse. The spatially resolved333

errors for the regional fluxes in the inversion models are not strongly dependent on the334

observational data sources for most of the models but a small number of the inversion335

systems display noticeably greater sensitivity to the data source. Large seasonal MBE336

values exist in the crop land and eastern forest regions.337

The implication that most OCO-2 v9 MIP models underestimate the seasonal am-338

plitude of NEE across central and eastern US ecosystems, regardless of data set, is strik-339

ing. Similar results were found in two additional studies using ACT-America observa-340

tions. Zhang et al. (2021) compared the posterior CO2 4D fields from different inversion341

systems of OCO2 v9 MIP to the ACT-America flight observations to understand the weather-342

driven atmospheric CO2 differences, which does not separate the impacts of transport343
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and flux errors. Zhang et al. (2021) found that most inversion systems in most seasons344

underestimated the difference in CO2 between the ABL and the free troposphere, a re-345

sult that is potentially consistent with systematically underestimated seasonal flux mag-346

nitudes. It is worth noting that the methods of Zhang et al. (2021) do not depend on347

a ”third-party” atmospheric transport model to project mole fractions into flux space,348

as was done in this study. Feng et al. (2021) found a systematic underestimate of sum-349

mer 2016 net uptake of CO2 when comparing an ecosystem flux ensemble and Carbon-350

Tracker posterior fluxes to ACT-America and NOAA tall tower CO2 observations. The351

results of Feng et al. (2021) use a WRF-Chem atmospheric ensemble to transport flux352

estimates, presenting a third and independent treatment of atmospheric transport yet353

yielding similar findings, albeit only for the summer season. Finally, Hu et al. (2019) used354

independent aircraft vertical profiles of CO2 to evaluate CarbonTracker’s CO2 NEE in-355

version products and show similar seasonal-biases pattern in terms of simulating the ABL356

CO2 mole fractions.357

The impact of this apparent underestimate in the seasonal cycle of fluxes on an-358

nually integrated NEE of CO2 of North America is not clear but deserves additional in-359

vestigation. It is also possible that this seasonal bias could directly impact or is indica-360

tive of features of these inversions that could impact NEE estimates in other regions of361

the globe. The finding that the TM5-based inversions appear on average to have smaller362

seasonal biases than the GEOS-Chem-based inversions is also potentially consistent with363

the findings of Schuh et al. (2019). Schuh et al. (2019) suggested that TM5 mixes more364

vigorously in the vertical than GEOS-Chem. This could lead to TM5-based inversions365

requiring stronger NEE of CO2 to match ABL CO2 observations, since seasonal fluxes366

would be diluted within a larger atmospheric mixing volume. Schuh et al. (2019) showed367

that, globally, these differences in atmospheric mixing led to large differences in inverse368

estimates of annual NEE of CO2. We suggest that continued understanding of the causes369

of the biases at sub-continental scales found in this study will enable increased confidence370

not just in regional, seasonal NEE, but in global, annual NEE estimates.371
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Text S1.

The background CO2 mole fractions (Cbkg) for each receptor are determined by combin-

ing the sensitivity of each receptor to the initial condition (m, prior to the backward 10

days) and the OCO-2 v9 MIP global optimized CO2 mole fraction fields (CCO2) (Equation

S1).An example of the background determination is shown in Figure S1.

Cbkg = m · CCO2 (1)

where m is the spatially and temporally resolved sensitivity field of the receptors to the

initial conditions (dimension: n × i × j × z, n denotes the receptors, i, j, and z are latitude,

longitude, and altitude, respectively), CCO2 is the corresponding inversion-optimized CO2

mole fraction fields (dimension: i × j × z), and Cbkg is the determined background values

for each receptor (dimension: n × 1).

We define 12 ecoregions in the study (Figure S2) and calculated the influence func-

tions with these ecoregions. For each receptor, the ecoregion associated with the largest

contribution to the influence functions is tagged as the representative region (Figure S2).
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We calculate the seasonal NEE flux budget (PgC/yr) for the shaded areas (Figure S3)

and analyze the relationships between the regional flux strength and the estimates of

Mean Bias Error based on the ACT-America aircraft campaigns.

The maps of averaged CO2 NEE during the ACT-America campaign months from the

inversion products are shown in Figure S4, Figure S5,Figure S6, and Figure S7.

As mentioned in the main text, a suite of gridded global CO2 NEE products at 3-hourly

resolution from nine members of OCO-2 v9 MIP (Table S1) was created for the four

ACT-America Campaign periods (summer 2016, winter 2017, fall 2017, and spring 2018).

The global atmospheric CO2 inversion models are driven by different prior flux compo-

nents including Fossil fuel, NEE, fire and ocean fluxes. All models used the same fossil

fuel flux products from ODIAC 2018 version (https://gmao.gsfc.nasa.gov/gmaoftp/

sourish/ODIAC/2018/distrib/), and the prior flux from NEE, fire, and ocean compo-

nents are listed in Table S2.
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Table S1. Basic information of the nine global inversion systems evaluated in the study.

Inversion Transport Met Inversion Flux spatial Flux temporal
system model driver method resolution resolution
CT TM5 ERA-Interim EnKF 1x1 3-hourly
OU TM5 ERA-Interim 4DVar 1x1 3-hourly
TM5-4DVAR TM5 ERA-Interim 4DVar 2x3 3-hourly
Ames GEOS-Chem MERRA-2 4DVar 4x5 3-hourly
CMS-Flux GEOS-Chem MERRA-2 4Dvar 4x5 3-hourly
CSU GEOS-Chem GEOS-FP Beyesian synthesis 1x1 3-hourly
UT GEOS-Chem GEOS-FP 4Dvar 4x5 3-hourly
Baker-mean PCTM MERRA-2 4Dvar 2x2.5 3-hourly
CAMS LMDZ3 ERA5 Variational 1.875 x 3.75 3-hourly

Table S2. Prior inventories of CO2 flux components

NEE Ocean Fire
CT CT2019 CASA-GFED4 CT2019 OI CT2019 w4 (based on GFED4)
OU CASA-GFED3 Takahashi GFED3
TM5-4DVAR SiB4 Lofi GFED4
Ames CT2019 CASA-GFED4 CT2019 OI CT2019 w4 (based on GFED4)
CMS-Flux CARDAMOME ECCO-Darwin GFED3
CSU SIB4/MERRA CT2015 OI GFED4-HEMCO
UT CASA-GFED4 Takahashi GFED4
Baker-Mean CASA-GFED4 Takahashi GFED3
CAMS ORCHIDEE CMEMS GFED4
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Figure S1. The upper panel shows the background CO2 mole fractions for each receptor

from the all B200 flights during the ACT summer 2016 campaign for each OCO-2 v9 MIP model

that is associated with the IS experiment. The lower panel shows the integrated sensitivity of

all receptors from one single B200 flight (pink line is the flight track) to the initial condition

(backward 10 days) across all vertical layers. Background CO2 (Cbkg) for all ACT airborne ABL

observations were computed in this fashion.
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Figure S2. The left panel displays the spatial patterns of ecoregions in Temperate North

America defined in the study. The right panel presents an example of this ecoregion tagging

process for each receptor in the ABL of one ACT flight.
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Figure S3. The seasonal NEE flux strength from the shaded areas are calculated for Figure 3.
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Figure S4. Averaged CO2 NEE fluxes (unit:µmol m-2 s-1) during July-August 2016.
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Figure S5. Averaged CO2 NEE fluxes (unit:µmol m-2 s-1) during February-March 2017.
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Figure S6. Averaged CO2 NEE fluxes (unit:µmol m-2 s-1) during October-November 2017.
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Figure S7. Averaged CO2 NEE fluxes (unit:µmol m-2 s-1) during April-May 2018
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