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classification metrics: the three-component ratio of high-frequency P/S amplitudes and the difference between local and coda

duration magnitudes (ML-MC). The metrics use different parts of the high-frequency wavefield and exhibit complementary

sensitivity for classification of M˜0.5–4 natural earthquakes and borehole explosions, which are the best analog for underground

nuclear explosions. Using means from bootstrap resampling across four diverse geologic settings, joint classification achieves

>94.4% true positives and <8.4% false positives when using >=8 seismographs within 200 km. This high performance is

obtained without local site corrections, indicating that the method may be transportable for local event classification.
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Key points:

1. P/S ratio and ML-MC exhibit complementary sensitivity for discriminat-
ing earthquakes and single-fired explosions.

2. Excellent classification performance is achieved in four diverse tectonic
settings without local site corrections.

3. The new methodology will improve the ability to identify low-yield under-
ground explosions.
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Abstract

Classification of local-distance, low-magnitude seismic events is challenging be-
cause signals can be numerous and difficult to characterize with approaches
developed for larger magnitude events observed at greater distances. Yet, accu-
rate classification is important to studies of earthquake processes and detection
of potential underground nuclear tests. Here, we combine two classification
metrics: the three-component ratio of high-frequency P/S amplitudes and the
difference between local and coda duration magnitudes (ML-MC). The metrics
use different parts of the high-frequency wavefield and exhibit complementary
sensitivity for classification of M~0.5–4 natural earthquakes and borehole ex-
plosions, which are the best analog for underground nuclear explosions. Using
means from bootstrap resampling across four diverse geologic settings, joint clas-
sification achieves >94.4% true positives and <8.4% false positives when using
>=8 seismographs within 200 km. This high performance is obtained without
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local site corrections, indicating that the method may be transportable for local
event classification.

Plain-Language Summary
Separating explosive sources from earthquakes is fundamental to seismic mon-
itoring and seismic hazard evaluation. Many methods have been developed to
discriminate between the two types of events, mostly taking advantage of depth
differences and/or the energy ratios between seismic phases. However, these
methods may be less effective at local scales (i.e., <200 km) and discrimination
parameters often need to be calibrated to adapt to various regional settings. In
this study, we collected hundreds of M~0.5–4 earthquakes and borehole explo-
sions from four regions in the western U.S. and tested two popular discrimina-
tion methods: 1) body-wave energy ratio (P/S) and 2) magnitude differences
(ML-MC). We find the two metrics complement each other, providing better dis-
crimination in all four regions with station numbers as low as ~8. Furthermore,
the joint method shows less dependence on local crustal setting, thus, it may be
applicable to new regions with complex geological settings or scarce calibration
data.

1 Introduction
Accurate classification of explosive seismic sources and earthquakes is a key
component for agencies monitoring compliance with nuclear test ban treaties
(e.g., Bowers & Selby, 2009) and for hazard mitigation agencies monitoring
earthquake activity (e.g., Renouard et al., 2021). Seismic discrimination of un-
derground explosions has been successful for larger magnitude events that are
typically observed at teleseismic distances (i.e., >3,000 km), however discrimina-
tion at local distances (< 200 km) remains challenging. Unidentified explosions
can bias earthquake statistics and increase uncertainty of seismic hazard predic-
tion (Mackey et al., 2003; Astiz et al., 2014; Gulia & Gasperini, 2021; Marzen
et al., 2021). Furthermore, mining blasts (Dokht et al., 2020) and underground
weapons tests (Tian et al., 2018; Walter et al., 2018) may temporarily increase
regional seismic hazard via activation of local faults or collapse events (Walter
et al., 2018). Thus, discrimination of small explosions and earthquakes at lo-
cal distances remains crucial. However, adaptation of teleseismic methods to
local scales and smaller magnitudes is challenged by factors like weaker and
higher-frequency seismic phases, highly variable geological structures, and lim-
ited station coverage (Taylor et al., 1989; Hartse et al., 1997; O’Rourke et al.,
2016).

Local-scale source classification, including machine-learning based techniques
(e.g., Linville et al., 2019), relies more on high frequency body wave measure-
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ments such as P/S ratios because long period surface waves are barely excited
by small magnitude events (e.g., Taylor et al., 1989; Kim et al., 1993; O’Rourke
& Baker, 2017; Walter et al., 2018). Accordingly, depth-sensitive magnitude-
based screening metrics, like the difference between local and coda duration
magnitudes (ML-MC), have been proposed and successfully applied to several
regions (Zeiler & Velasco, 2009; Holt et al., 2019; Voyles et al., 2020; Koper et
al., 2021), replacing the difference between teleseismic body wave and surface
wave magnitudes (mb:MS) that is commonly used for larger events (Stevens &
Day, 1985; Russell, 2006; Selby et al., 2012). Although both methods men-
tioned above show potential for local-scale discrimination, empirical corrections
from global-to-regional studies may be difficult to adapt to local crustal wave
propagation (Walter et al., 1995; Walter & Taylor, 2001; Anderson et al., 2009).
Such corrections and regional calibrations usually rely on high-resolution struc-
ture models and/or sufficient pre-classified events for learning (e.g., Fisk et al.,
1996; Rabin et al., 2016). Furthermore, region-specific calibration requirements
degrade the transportability of discrimination methods (Douglas, 2007).

The rapid growth of local-to-regional seismic data in recent years motivates
revisiting classic waveform-based discrimination methods at local distances
(O’Rourke et al., 2016; Pyle & Walter, 2019; Wang et al., 2020; Koper et al.,
2021). In this study, we systematically calculated P/S ratio and ML-MC values
for earthquakes and borehole explosives recorded at distances < 200 km by
dozens of seismometers in four distinct regions. Uniform processing for four
local-distance datasets enables more direct comparison than is possible among
prior studies using variable processing workflows and distance ranges. Perfor-
mance of our joint metric is evaluated by systematically decreasing station
coverage for individual and merged datasets to simulate a variety of more
realistic monitoring conditions. We show that accurate discrimination could
be achieved with minimal local knowledge (i.e., an approximate 1-D velocity
model) and the joint method is transportable across various local-regional
settings.

2 Datasets
We aim to collect local seismic observations of single-fired explosive sources and
earthquakes at comparable scales but variable tectonic settings. Toward this
goal, four datasets in the U.S. are used (Figure 1): Mount St. Helens magma
imaging project (MSH) in Washington, the Bighorn Arch Seismic Experiment
(BASE) in Wyoming, the Source Physics Experiment 1 (SPE) in Nevada, and
the Salton Seismic Imaging Project (SSIP) in California. As borehole shots are
effective proxies for underground nuclear tests (Stump et al., 2002), we focus
on a binary discrimination between borehole shots and earthquakes (i.e., mine
blasts from BASE are excluded). The four datasets contain 90 borehole shots
and ~290 earthquakes with comparable magnitudes and event-station distances,
which are concentrated at <200 km (Figure S1).
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2.1 Mount St. Helens (MSH)
Nearly 90 broadband stations recorded 23 explosive sources (ML 0.9–2.3) and
91 earthquakes (ML 1.5–3.3, as reported by USGS) within 75 km of the volcano
during the 2014–2016 iMUSH project (Figure 1a; Han et al., 2016, Ulberg et
al., 2020). The explosive events are shallow borehole shots with explosive loads
of either 454 or 907 kg, forming a relatively uniform distribution around the
volcano. Earthquakes (depth<20 km) in this region are broadly distributed as
well, with slightly more events located in the St. Helens seismic zone and West
Rainier seismic zone (Figure 1a; Stanley et al., 1996).

2.2 Bighorn Arch Seismic Experiment (BASE)
The BASE project was conducted in 2010 to image the Bighorn Arch (Figure
1b; Worthington et al., 2016). The dataset contains 21 explosive sources (ML
0.7–1.7; loads 113–907 kg), 19 earthquakes (ML 0.3–2.7), and 37 mine blasts
(ML1.8–3.3) recorded by ~90 broadband stations and ~180 short-period stations.
Most mine blasts are located to the southeast of the array with potential loads
on the order of 10,000 kg (O’Rourke et al., 2016). P/S ratio and ML-MC results
for the mine blasts in BASE are shown in Figure 2 for readers’ interest.

2.3 Source Physics Experiment Phase 1 (SPE)
Five borehole shots (ML 1.2–2.1, loads 90–5,035 kg) are available for SPE Phase
1 in 2011, which occurred in the area of prior underground nuclear explosion
tests in the U.S. (Figure 1c; Snelson et al., 2013). They are fired at the same
location at the center of the array with variable depths (see Figure 1c). The
station coverage of these events ranges from ~3-35, which makes it the smallest
among the four datasets. We used 110 earthquakes (ML 1.0–4.4) that occurred
in the area during or after 2011.

2.4 Salton Sea Imaging Project (SSIP)
SSIP conducted an active source seismic survey in 2011 to image crustal faults
and constrain rifting processes (Figure 1d; Han et al., 2016; Fuis et al., 2017).
Up to ~80 broadband stations were available during SSIP in 2011 and 126 ex-
plosions were single-fired with loads ranging from 3 to 1,440 kg. To ensure a
comparable magnitude to earthquakes and the other 3 datasets, we only used
41 shots with loads >200 kg (ML 0.6–2.1). The USGS catalog returns 76 events
(ML 1–3.6) during the month, including 6 borehole shots mis-cataloged as earth-
quakes (Table S1). The remaining earthquakes are mostly located within Mexico
along the Imperial Fault Zone, potential aftershocks of the M7.2 Baja California
earthquake (e.g., Castro et al., 2011).
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3 Methods
3.1 P/S ratio analysis
Four regional 1-D velocity models are used to predict the P or S phase arrivals
of events at the corresponding datasets (Figure S2). All broadband or high gain
three-component records are filtered between 10–18 Hz because that was found
to be optimal for local-distance P/S discrimination by Wang et al. (2020). The
P/S ratios are then calculated from the effective variance of given phases using
Eq (1).

𝑃/𝑆 =
√(𝑃 2

𝑅+𝑃 2
𝑇 +𝑃 2

𝑍)−(𝑁2
𝑅+𝑁

2
𝑇 +𝑁2

𝑍)

√(𝑆2
𝑅+𝑆2

𝑇 +𝑆2
𝑍)−(𝑁2

𝑅+𝑁2
𝑇 +𝑁2

𝑍)
, Eq (1)

where, R, T, Z denotes the radial, transverse, and vertical component recordings
for P-, S- and noise (N) windows, respectively. Three-component SNRs are
also calculated using the same P windows and noise windows 10 sec before
P arrival. A consistent cutoff of SNR>2 is required for a valid P/S ratio of
the given event-station pair. Considering the distance ranges, no pre-S noise
is involved, as the P-coda may continue until the S-wave arrival. Therefore,
our SNR threshold purposely admits events with low S amplitudes. No site
correction (e.g., MDAC, Walter & Taylor, 2001) is applied and the final event-
based P/S ratio is determined from the median value of all stations with valid
P/S ratio measurements. The final P/S ratios are calculated with only 1-D
velocity models and earthquake/explosive catalogs as inputs. More details on
parameters and comparison to methods from previous studies are provided in
Text S2.

3.2 ML-MC

ML and MC values for all events are calculated from the waveforms; none of the
ML values are adopted from the USGS or local monitoring catalogs. Thus, all
magnitude calculations are conducted without prior information of source type.
To emulate the situation that might exist when testing begins in a new region,
a consistent calibration of both ML and MC (optimized for Utah) is applied to
all datasets (e.g., Koper et al., 2021).

When calculating ML, the regional broadband seismic records (i.e., HH and
BH components) are first converted to Wood-Anderson seismometer equivalent
response. The station amplitude is then measured from the two horizontal-
components without station corrections and distance corrections are applied
(e.g., Richter, 1958).

For MC calculation, the formula inherits the current duration magnitude def-
initions of UUSS (Pechmann et al., 2006) with a modified cutoff threshold
(SNR=2). All vertical components of high gain seismometers are corrected for
instrument response and filtered between 1–10Hz. The seismogram envelopes

5



are generated for coda windowing, which starts near the maximum S-wave am-
plitude and ends with the designated SNR cutoff. The MC at a station is then
calculated from the measured coda duration using the equations described in
Koper et al. (2021). Note that the SNRs here are from single (vertical) com-
ponents, different from the three-component SNR used for P/S ratio at higher
frequencies (10–18 Hz). For both ML and MC measurements, the final event
magnitudes are determined as the median from >3 valid station-based measure-
ments.

3.3 Performance evaluation using ROC curve and Maha-
lanobis distance
The best threshold values for source type classification with either P/S ratio or
ML-MC are obtained via grid searches to optimize the Area Under the Curve
(AUC) defined by the Receiver Operating Characteristic (ROC). The ROC curve
(Figure S5) jointly considers the true positive rate (TPR) and false positive rate
(FPR) for binary classification (Fawcett, 2006). In our case, the explosions are
defined as “positive”, and earthquakes are defined as “negative”. Such evaluation
is event-based, where the median value of the P/S ratio or ML-MC from all valid
stations (>3) is determined as the final value for that event. In the joint domain,
the best cutoff line is also obtained by grid searching using a 2-D parameter space
of slope and intercept to maximize the AUC (Figure S6).

When all the events are finalized with a combination of P/S ratio and ML-MC,
the Mahalanobis distance (Δ2) between two types of events is calculated using
the mean and covariance values. The distances do not hold any specific physical
meaning but are often used as a mathematical evaluation to define the “closeness”
of two populations in a given parameter space (i.e., P/S ratio and ML-MC). We
refer readers to the supporting materials and previous publications for details
(e.g., Tibi, 2021). In general, AUC evaluates a discrimination that has been
performed on known datasets, whereas Mahalanobis distances could reflect the
robustness of the discriminations that may transfer to future applications.

4 Results
4.1 Individual metrics
Among the four different settings, the optimal P/S ratio and ML-MC cutoffs
vary between 0.9–1.5 and -0.15–0.3, respectively (Figure 2). The best P/S ratio
cutoffs are comparable between regions (~1) and highest for SPE. BASE requires
the lowest individually optimized P/S ratio cutoff (0.9–1.1 achieve identical
performance) but the highest ML-MC cutoff (0.3). For all four datasets, P/S
ratios provide more robust discrimination than ML-MC based on TPR (recall)
and FPR, which were used to optimize the discrimination threshold. Precision
(i.e., true positives/total positives) is also given as an additional performance
measure (Table 1). For MSH, BASE and SPE, optimal P/S ratio cutoffs could
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identify the explosions with only a few false alarms, whereas ML-MC results in
higher FPR. The precision (0.6 and 0.23) is low for both metrics at SPE, as only
three explosives meet our quality control (i.e., low station coverage). In addition,
we did not observe apparent distance-dependence of P/S ratios from the four
datasets at <200 km (Text S2 and Figure S3). As short period stations are
used for P/S calculations, whereas ML-MC requires broadband stations, most
events across the four datasets have a higher number of valid stations for P/S
ratio than for ML-MC (Figure S5).

4.2 Joint method
A total of 68 explosives and 262 earthquakes were analyzed with a minimum
magnitude of 0.6 and 0.7, respectively. The two groups are well-separated in the
joint P/S and ML-MC domain (Figure 2). The best joint cutoffs are determined
from grid-searching over slopes and intercepts (Figure S6) and the optimal values
are reported in Table 1. For individual datasets, a wide range of slopes (~0.7–
2.5) are acceptable except for SSIP (see Figure S6), suggesting a comparable
contribution from both methods. The low slope value obtained for SSIP is likely
affected by the single explosion with P/S ratio <1 (Figure 2d). Overall, the joint
method achieves better performance for all four datasets (Table 1), leading
to TPR=100% and FPR<1.2%. For regions that P/S ratio alone achieved
TPR=100%, the joint method increases precision by ~15% (i.e., MSH and SPE)
by rejecting more false positives.

Compared to earlier studies of local to regional seismic source discrimination
(e.g., Bennett et al.,1986), the performance of our joint discrimination approach
benefits from dense station coverage in the four study regions (see Figure 1).
Thus, we tested the station-coverage effect via bootstrapping: a given number
of stations are randomly selected (without repetition) and we require no SNR
threshold. In other words, valid stations are often less than the total number of
stations used within each trial to simulate the realistic circumstance in which
not all stations have adequate SNR for a specific event. For each total number
of stations, random selection is repeated 1,000 times and the mean (and stan-
dard deviation) of the TPR and FPR are recorded (Figure 3). As expected,
the discrimination performance increases with station coverage and larger varia-
tions are observed when a dataset contains fewer events (e.g., SPE). Meanwhile,
decent TPR (64.4%–94.5%) and FPR (5.8%–22.2%) could be achieved with 8
stations. Improvement is limited (<5%) with >32 stations.

5 Discussion
The joint method demonstrates promising transportability for uniformly pro-
cessed datasets. Although the discrimination thresholds vary between regions—
especially for ML-MC —the explosive sources and earthquakes always fall into
two clusters in the P/S versus ML-MC domain. Surprisingly, such separation
is preserved even after merging all four datasets: the covariance ellipses remain
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separated at 1 standard deviation (Figure 4a). Similarly high TPR (>95%) and
low FPR (<5%) are achieved when a joint cutoff line is used rather than indi-
vidually optimized cutoffs for each array, leading to a maximum AUC=0.9755
(Figure 4b). In fact, such discrimination performance can be achieved with fewer
stations, for example, 8-stations leads to averaged TPR=94.4% and FPR=8.4%
(Figure 4c) with <5% variations for both, comparable to the performance of
supervised machine-learning (e.g., Reynen & Audet, 2017). In addition, our
approach is particularly effective for identifying the true explosives, with only 1
out of 66 borehole shots resulting in a false negative classification.

The Mahalanobis distance (and minimum probability of mis-classification 𝑃𝑀 ;
Text S4) between the two populations increases (decreases) to 18.5 (1.6%) in the
joint domain, whereas P/S and ML-MC result in 15.4 (2.5%) and 2.6 (21.1%),
respectively. Such improvement could be explained by three types of comple-
mentary sensitivities between P/S and ML-MC: frequency, depth, and distance.
First, the two methods focus on different frequency ranges, with P/S ratios
calculated at 10–18 Hz, MC at 1–10 Hz and ML at <1.25 Hz. Second, previ-
ous studies suggested that ML-MC screening is sensitive to event depth because
shallow events create stronger coda (Holt et al., 2019), while P/S ratio exhibits
less sensitivity to depth at local distances (Wang et al., 2020). Lastly, the
depth-sensitivity of ML-MC is more effective at near-distances, evidenced by in-
creased slope of the “combined” discrimination threshold line reflecting higher
contribution from ML-MC (Figure 4d). In addition, when restricting the com-
bined dataset to near distances, the relatively low Mahalanobis distances imply
worse separation between the two populations (Figure 4d), echoing the reduced
performance of P/S-ratio based discrimination near the source in some prior
studies (e.g., O’Rourke et al., 2016, Pyle & Walter, 2019). We speculate that
such near-distance challenges may partly reflect poorer station coverage, which
diminishes at distances at ~60 km for the four datasets (Figure S1). Regardless
of the root factor that challenges near-source P/S-ratio-based discrimination,
adding ML-MC measurements leads to a stable and high AUC (>0.95) across
all distances.

The success of our joint discrimination is somewhat influenced by data selection,
in which any events missing any of the three measurements (i.e., P/S ratio, ML,
and MC) are excluded from the classification test. As a result, 23 earthquakes
and 21 explosive events were not analyzed in the joint domain. However, we note
that all explosions can still be discriminated by P/S ratio alone (i.e., P/S>1),
albeit with a higher FPR (26%) than we found for the events included in the joint
analysis (e.g., Figure S9, also see Table S1). Therefore, the high performance
achieved by our joint discrimination is not strongly biased by the quality controls
governing data selection.

Unlike previous locally specific discrimination studies that demand site (e.g.,
Wang et al., 2021), path (e.g., Rodgers et al., 1999) and/or magnitude correc-
tions (e.g., Walter et al., 1995), the joint method as implemented here does
not rely on locally-specific pre- or post-measurement corrections. Our discrim-
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ination requires no statistical priors such as the ratio or number of explosives
expected. The only prerequisites are three-component data and an approximate
1-D velocity model for phase windowing. Encouraging performance without lo-
cal correction factors does not imply that such corrections are unimportant. In
regions where sufficient data exist to calibrate local corrections, we expect that
incremental but important improvements in performance are possible for a given
number of stations (e.g., Wang et al., 2020; Kintner et al., 2020). Lastly, both
methods used here are fast to calculate, making the joint method practical for
near-real time screening at local scale (e.g., Dempsey et al., 2020, Scafidi et al.,
2018).

Joint discrimination could also benefit future development of new discrimination
methods, including machine-learning based techniques. The success of our ap-
plication offers unique insight into the “black-box” classification resulting from
machine-learning-based discrimination algorithms by highlighting specific parts
of the wavefield that are diagnostic of different source types (e.g., Kortström et
al., 2016; Linville et al., 2019; Renouard et al., 2021). The high-transportability
of our method may also mitigate potential challenges with network-based dis-
criminations, where location pattern recognition or site-specific source effects
could unintentionally dominate source type determination. For instance, a neu-
ral network could learn to associate explosive sources with a specific place if
event location is included in end-to-end classification process along with other
information such as waveforms or spectrograms (e.g., Reynen & Audet, 2017;
Tang et al., 2020). Our results suggest that attributes such as P/S ratios and
ML-MC could be beneficial to include for training future classification models.

6 Conclusion
We applied P/S ratio analysis and ML-MC calculations to four regional datasets
with ~400 small-moderate sized earthquakes and explosions recorded by tens-
to-hundreds of stations concentrated at distances <200 km. The joint method
requires minimal processing and little prior knowledge of site or path condi-
tions. Joining the two discrimination methods achieves high accuracy in source
type classification with individual dense local arrays (up to TPR=100% and
FPR=0% when large number of stations are used). The joint method maintains
similarly high performance after merging all datasets and decreasing station
coverage to 8 randomly sampled stations (TPR=98.5%, TPR=4.2%). Thus, it
promises transportability to other regions of interest with less favorable station
coverage. Our proposed metric is suitable for reliable near-real time screening
that will benefit regional monitoring and hazard evaluation, as well as future
developments of machine-learning based classifiers.
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Figure 1. Seismic networks and events for the four studied regions (a–d). See
Table S1 for details of the six “false report” earthquakes in SSIP (d).
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Figure 2. The four datasets analyzed in the joint domain. The horizontal and
vertical dotted lines are best P/S ratio and ML-MC cutoffs, respectively. The
diagonal dashed lines are optional joint cutoffs resolved via grid searching (see
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Figure S6). For BASE, the results of 37 mine blasts are shown but excluded
from further analysis.

Dataset MSH BASE SPE SSIP
Neq 90 14 88 70
Nex 22 19 3 22
P/S 1.1 0.9–1.1 1.5 1
TPR (recall) 1 1 1 0.96
FPR 0.03 0 0.02 0
precision 0.88 1 0.60 1
ML-MC 0.11 -0.3 -0.15 0.15
TPR (recall) 0.86 0.89 1 0.71
FPR 0.07 0.21 0.11 0.11
precision 0.76 0.85 0.23 0.68
Joint [2.70 1.00] [2.30 1.60] [2.75 2.00] [0.70 0.75]
TPR (recall) 1 1 1 1
FPR 0.01 0 0.01 0
precision 0.96 1 0.75 1

Table 1. Best discrimination performances for three metrics: 1. P/S; 2.
ML-MC; and 3. Joint, where numbers in brackets are slope and intercept. For
all cases, “explosive” is defined as “positive” (P). True Positive Rate-TPR
(recall): TP/(TP+FN); False Positive Rate-FPR: FP/(FP+TN); Precision:
TP/(FP+TP). Neq and Nex are final numbers of earthquakes and explosives
that have both valid P/S and ML-MC measurements.
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Figure 3. Station coverage test for the four datasets (as labeled). Only broad-
band stations (i.e., “HH” and “BH”) are considered in BASE. Error bars indicate
the standard deviations from 1,000 trials.
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Figure
4. Discrimination results in the joint domain for merged dataset. (a) All
event-based P/S or ML-MC of the four datasets as labeled. The cross symbols
mark the best P/S and ML-MC cut offs for each dataset (see Figure 2).
The dashed and dotted ellipses are the covariance of one and two standard
deviations, respectively. The grey line marks the best joint discrimination
threshold determined from a grid search for maximum AUC shown in (b). (c)
Station coverage test for the merged dataset. (d) Slope and discrimination
performance variation (Δ2 and AUC) with source-station distance limitations.
Red (Neq) and black (Nex) bars are the numbers of events surviving at each
distance limit; only the nearest and farthest distance are labeled with numbers
for scaling.

20



 

Geophysical Research Letters 

Supporting Information for 

Advancing Local Distance Discrimination of Explosions and Earthquakes with Joint P/S and ML-MC 
Classification 

Ruijia Wang1,2, Brandon Schmandt1, Monique Holt3,4, and Keith Koper3 

1.Department of Earth & Planetary Sciences, University of New Mexico, Albuquerque, NM, US 

2.Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China 

3.Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, US 

4.Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, Illinois, US 

 

 

Contents of this file 

Text S1 to S4 
Figures S1 to S9 
Table S1 
 

Additional Supporting Information (Files uploaded separately) 

 

Caption for Table S2 

 

Introduction 

The supporting information provides details for the local velocity models (Text S1 and Figure S1), 
datasets (Figure S2–S3, Figure S8–9, also see Table S2 uploaded separately), and processing parameters 
(Text S2–S3 and Figures S3–S6). The P/S ratio results for SSIP using 3-sec windows are discussed in Text 
S3 and shown in Figure S4. The optimal P/S ratio and ML-MC cutoffs of four datasets are determined 
based on Area Under the Curve (AUC) from Receiver Operating Characteristic curves (ROC, Figure S5). 
Figure S6 shows the determination of the best “combined” line by searching over intercept and slopes in 
the P/S vs. ML-MC domain, where best line(s) are chosen based on the maximum AUC. Figure S7 
illustrates how the separation of the two populations decreases with station coverage. Figure S8 shows 
an example of the joint discrimination of the merged dataset with limited station distances (<100 km). 
Figure S9 includes events that failed quality control (e.g., insufficient ML or MC measurements). 



Text S1. 1-D Velocity models for the four regions 

The 1-D velocity model for MSH is adopted from Kiser et al. (2016), where the P and S phases were 
manually picked from ~3,000 geophones during the controlled source survey (the geophone records are 
not used in this study). For BASE, we averaged and smoothed the 3D velocity model from Worthington 
et al. (2016) to create the 1-D velocity model for phase prediction. The 1-D velocity model for SPE is 
adopted from Anderson & Myers (2010). The starting 1-D velocity model of the regional imaging project 
(Han et al., 2016) is used for SSIP. We merge the crustal models with ak135 (Kennett et al., 1995) at 
deeper depths (i.e., below the Moho). Lastly, we use the empirical equation from Brocher (2005) to 
calculate S-wave velocity or density when they are not provided in the original models (Figure S1). 

Text S2.Parameter details for P/S ratio calculations and differences to previous studies 

Several parameters of P/S calculation and performance evaluation may contribute to our discrimination 
results:  
The P and S phase arrivals are calculated using the corresponding velocity models. The phase windows 
are scaled with the predicted arrival time differences (𝑑𝑡 = 𝑡𝑝 − 𝑡𝑠) with two constraints: 1) where 
5%𝑑𝑡 before and 50%𝑑𝑡 after the phases are used; 2) total window lengths between 1–3 sec. In other 
words, we removed records with phase windows less than 1 sec to avoid potential contamination from 
phase picking uncertainties. Records at larger distances (~>50km) have a uniform length of 3 sec. The 
5%𝑑𝑡 buffer window (up to 0.3 sec) before the arrivals is included to mitigate the effects of potential 
late phase predictions.  
As most of the broadband stations have a sampling rate of 40 Hz, we adopted the relatively high and 
wide frequency band (10–18 Hz) for local distances from Wang et al. (2020). Considering our window 
choices, all phase energy calculations contain at least 10 periods at 10–18 Hz. We refer readers to Wang 
et al. (2020) for more comprehensive and detailed analysis on parameter optimizations (e.g., 
component, phase window sizes, and frequency band). 
In addition to windowing & frequency choices, our method of P/S calculation is different from previous 
regional studies (e.g., O’Rourke et al., 2016) in a few aspects: 1) all three components are used to 
calculate phase energy, including transverse for P-waves; 2) no pre-S noise window or S-wave SNR is 
used; and 3) no MDAC corrections were applied. Such modifications accommodate high-scattering, 
potential P-coda contamination (to S waves), as well as unsuitable larger-scale corrections at near-
distances.  
Lastly, our performance evaluation is event-oriented, where TPR and FPR are used instead of variances 
(e.g., standard deviation from L2 norm; or median absolute deviation from L1 norm). The TPR and FPR 
(and AUC; or recall and precision) parameters are more resistant to outliers, analogous to event-based 
L1-norm evaluations. In contrast and for a comparison, the covariance ellipses of the two populations 
overlap at two standard deviations in the P/S vs. ML-MC domain (Figure S7 and S8, also see Figure 4 I the 
main text). For record-based P/S ratios, the distributions for earthquakes and explosions overlap across 
most distances like previous studies, even when median absolute deviation is used (Figure S3). 

Text S3. P/S ratios for SSIP calculated with 3-sec windows 

Considering the significant variation of both topography and Moho depths (Han et al., 2016) in southern 
California, a slightly wider window (4 sec instead of 3 sec) is used during P/S ratio analysis to account for 
potential inaccuracies of phase prediction from 1-D velocity model. The 3-sec windows lead to slightly 
worse discrimination (Figure S4) than 4-sec ones (Figure S3d). We obtained TPR=95.13% and FPR=5.71% 
with maximum AUC=0.9470 at a P/S cutoff of 0.9. For comparison, when 4-sec phase windows are used, 
we achieved TPR=97.56%  and FPR=0.00%  with maximum AUC=0.9818. The number of records also 
increased (2431 vs. 2754) using 4-sec, suggesting more records reach SNR>2 and a better capture of P 



energies in the predicted phase windows. Therefore, the modified window (4-sec) is used for our 
analysis throughout the main text for SSIP. Other datasets are evaluated with 3-sec windows.  

Text S4.Mahalanobis distances (𝚫𝟐) from Multivariate Quadratic Discriminant Function (QDF)  

This section introduce the revised Mahalanobis distance calculated from the multivariate quadratic 
discriminant function (QDF).  
For a given sampled event (earthquake or borehole shot), the measured discrimination vector 𝒓 contains 
two elements: 

𝒓 = (𝑑1, 𝑑2)𝑇,       (1) 

Where, 𝑑1 = 𝑙𝑜𝑔10(𝑃/𝑆), is the array-median P/S ratio and 𝑑2 = 𝑀𝐿 − 𝑀𝑐 is the array-median 
magnitude difference. Following Tibi et al. (2018) and Tibi (2021), we use the P/S ratio in log scale to 
ensure they are roughly at comparable range with ML-MC. The bivariate Quadratic Discriminant Function 
(QDF) is then calculated by 

𝐷(𝒓) = 𝒓𝑇𝑨𝒓 + 𝑩𝒓 + 𝑘,      (2) 

in which 

𝑨 = −
1

2
(𝑺𝒆𝒙

−1 − 𝑺𝒆𝒒
−1)𝑇,       (3) 

𝑩 = 𝝁𝒆𝒙
𝑇 𝑺𝒆𝒙

−1 − 𝝁𝒆𝒒
𝑇 𝑺𝒆𝒒

−1,      (4) 

𝑘 = −
1

2
[ln (

|𝑺𝒆𝒙|

|𝑺𝒆𝒒|
) + (𝝁𝒆𝒙

𝑇 𝑺𝒆𝒙
−1𝝁𝒆𝒙 − 𝝁𝒆𝒒

𝑇 𝑺𝒆𝒒
−1𝝁𝒆𝒒)],    (5) 

Where, 𝝁𝒆𝒙is the mean of 𝑹𝒆𝒙 = [𝒓𝟏 𝒓𝟐 𝒓𝟑 … 𝒓𝒏] that contains all discrimination vectors for 𝑛 explosive 
events; and 𝑺𝒆𝒙 is the 2×2 ratio covariance matrix for 𝑹𝒆𝒙. The vectors and matrices with “𝒆𝒒” 
subscripts are defined correspondingly. For a given event, the discrimination score (𝐷) is expected to be 
positive for explosive sources and negative for earthquakes. The Mahalanobis distance between the two 
types of events is defined as: 

  Δ2 =  𝐷(𝝁𝒆𝒙) − 𝐷(𝝁𝒆𝒒)        (6) 

Taking covariances into consideration, Mahalanobis distance (Δ2) is a quantitative measure of the 
“closeness” between two populations in the joint domain (e.g., Figure S6). Lastly, the minimum 
probability of misclassification 𝑃𝑀, is then calculated using the Mahalanobis distance:  

𝑃𝑀 =
1

√2𝜋
∫ 𝑒−𝑥2/2−Δ/2

−∞
𝑑𝑥 ,      (7) 

To evaluate the performance of joint method, only events that have both array-median P/S ratio and 
ML-MC are carried over for the joint discrimination. Thus, the total number (𝑛) of explosives and 
earthquakes are 68 and 262, respectively. Events that failed to meet the criterion (<3 station-based 
measurements) are shown Figure S9.  



 

 

Figure S1. a) Magnitude and event depth distributions for the four datasets (see Figure 1). b–e) event-

station distance distributions. EX-explosives (borehole events), EQ-earthquakes. 



 

Figure S2. Velocity models used for the four study regions (see Figure 1 in main text). 



 

Figure S3. P/S ratio dependence on distances. Distances beyond 200 km are used for calculations but 

not shown for consistency. The bold bars are average and median absolute deviation for each 20-km 

bin. EX-explosives (borehole events), EQ-earthquakes. 

 

 

 



 

Figure S4. P/S calculation results for SSIP with 3-sec phase windows. a) ROC and AUC curves. Note that 

the best P/S cutoff peaks at 0.9 instead of 1 (4-sec). b) same as Figure S3d but for 3-sec windows. Note 

the number of records is lower. 



 

Figure S5. a) Valid number of measurements for both methods (top to bottom, MSH, BASE, SPE, SSIP) . 

Performance evaluation and best cutoff thresholds for P/S ratio (b) and ML-MC (c). Here the TPR and FPR 

are slightly different from Table 1 in the main text, as events with only valid P/S or ML-MC are counted 

in. In the other word, we do not require an event to have both measurements in this case; Table 1 is 

showing statistics obtained from the intersection dataset of b) and c). The bottom panels showing AUC 

as a function of cutoff value are derived by calculating the AUC based on a 3-point curve connecting the 

lower left corner, the FPR and TPR performance coordinate, and the upper right corner.  



 

 

Figure S6. Grid search of slopes and intercepts for the best discrimination “combined” line for the four 

studied datasets. The color bars are areas under the curve (AUC) from the 2-D ROC analysis. The dashed 

lines are the combinations of slopes and intercepts that achieve the highest AUCs. 



 

Figure S7. Discrimination performance in the joint domain with decreased stations. The MSH dataset is 

used for this example (i.e., corresponding to Figure 3a in the main text). In all figures, the dashed and 

dotted ellipses are the covariance of one and two standard deviations, respectively. Note the 

overlapped region between the EQ and EX ellipses increases with decreased station number, which will 

be quantified as lower Mahalanobis distances. 



 

Figure S8. Discrimination results in the joint coordinate using stations within 100 km (i.e., same as Figure 

4a in the main text but limiting to 100 km). (a) All event-based P/S or ML-MC of the four datasets as 

labeled. The cross symbols mark the best P/S and ML-MC cut offs for each dataset, determined from the 

ROC and AUC curves (see Figure 2). The dashed and dotted ellipses are the covariance of one and two 

standard deviations, respectively. The grey line marks the best joint discrimination threshold.  

 

 



 

Figure S9. P/S ratio for the 23 earthquakes and 21 explosive events that are not analyzed in the joint 

domain due to low (<3) or missing valid stations. Five earthquakes from SPE are missing P/S 

measurements, thus, are not shown. The orange dotted line marks an optimal P/S cutoff of 1. 

  



Table S1.  Explosives reported as earthquakes by USGS from SSIP. The reported origin times of the six 

events are within 0.2–2.4 sec of and co-located with the six shots on March 6, 2011. 

Catalog Time (UTC) Catalog 

Latitude 

Catalog 

Longitude 

Catalog 

Depth 

Catalog 

ML 

Shot ID True time 

(UTC) 

True 

Latitude 

True 

Longitude 

Load 

(kg) 

2011-03-06 12:09:02.400 32.703 -115.260 10 2 10460 12:09 32.69438 -115.25193 1367 

2011-03-06 10:33:00.400 32.677 -116.386 3 1.8 20550 10:33 32.67207 -116.34656 911 

2011-03-06 10:12:01.620 32.841 -115.367 13 1.7 10670 12:12 32.84924 -115.3718 458 

2011-03-06 10:09:01.370 32.981 -115.205 4.8 1.7 21640 10:09 32.9638338 -115.2313188 592 

2011-03-06 09:02:59.800 32.59 -116.693 0.6 1.5 20220 09:03 32.6008 -116.68154 684 

2011-03-06 07:15:01.490 32.879 -115.535 17.2 2.1 21330 07:15 32.8851499 -115.5409971 911 

 

Table S2. [uploaded separately] Datasets showing all the events and explosives used for the four 

regions, with event-based P/S, ML, and MC calculated (as well as the number of stations used for each 

measurement). For the “Source Type” in the last column of each sheet: 0-explosive, 1-earthquake, 4-

mine blast. 


	Plain-Language Summary 
	1 Introduction 
	2 Datasets 
	2.1 Mount St. Helens (MSH)
	2.2 Bighorn Arch Seismic Experiment (BASE)
	2.3 Source Physics Experiment Phase 1 (SPE)
	2.4 Salton Sea Imaging Project (SSIP)

	3 Methods 
	3.1 P/S ratio analysis
	3.2 ML-MC
	3.3 Performance evaluation using ROC curve and Mahalanobis distance

	4 Results 
	4.1 Individual metrics
	4.2 Joint method 

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

