
P
os
te
d
on

24
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
77
68
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Lightning Interferometric Processing and Uncertainty Analysis for

General Noncoplanar Antenna Arrays

Xuan-Min Shao1, Cheng Ho1, Collin S. Meierbachtol1, and Dale Anderson1

1Los Alamos National Laboratory (DOE)

November 24, 2022

Abstract

Broadband radio frequency interferometric technique is being rapidly advanced in recent years and is being increasingly widely

used in the lightning community for detailed discharge physics studies. Los Alamos National Laboratory is in the process of

deploying two spatially separated interferometers that consist of four, dual-polarization antennas for each interferometer. For a

4-antenna array, or any array that consists of more than three antennas, the antennas cannot be assumed situated in the same

plane, and a generic interferometric process is needed to take the full advantage of the additional antennas. In this paper we

present and numerically verify an analytic solution for a general noncoplanar array that directly relates the source direction to

the array geometry and the time delay measurement. This general and analytic solution can be used in any array configurations

with three or more antennas. We then derive the analytic formulas for the associated interferometric uncertainties based on the

general analytic solution. Uncertainty analysis is critically important for correct and credible interpretation of the observations,

but only very limited and incomplete uncertainty analyses have been reported in the lightning community. In this paper, we

first carry out the uncertainty analysis for a pair of baselines and then extend the analysis to a combination of multiple pairs of

baselines. We verify the analytic uncertainty analyses with numerical experiments and discuss the behavior of the uncertainties.

These analyses will hopefully help to lay the foundation for future uncertainty estimate, and for more statistically trustworthy

interpretation of the interferometric observations.

Hosted file

essoar.10507768.1.docx available at https://authorea.com/users/532719/articles/603672-

lightning-interferometric-processing-and-uncertainty-analysis-for-general-noncoplanar-

antenna-arrays

1

https://authorea.com/users/532719/articles/603672-lightning-interferometric-processing-and-uncertainty-analysis-for-general-noncoplanar-antenna-arrays
https://authorea.com/users/532719/articles/603672-lightning-interferometric-processing-and-uncertainty-analysis-for-general-noncoplanar-antenna-arrays
https://authorea.com/users/532719/articles/603672-lightning-interferometric-processing-and-uncertainty-analysis-for-general-noncoplanar-antenna-arrays


Lightning Interferometric Processing and Uncertainty Analysis for
General Noncoplanar Antenna Arrays

Xuan-Min Shao, Cheng Ho, Collin S. Meierbachtol, and Dale Anderson

Los Alamos National Laboratory

Corresponding author: Xuan-Min Shao

To be submitted to JGR-Atmosphere

LA-UR-21-28149

Main points:

1. A generic and analytic source direction solution is derived for general
nocoplanar lightning interferometer arrays.

2. Analytic analyses of uncertainties are presented for a pair of baselines and
for a combination of any number of pairs of baselines.

3. All analytic analyses are verified with numerical experiments and can be
readily implemented in future interferometric observations.

Abstract

Broadband radio frequency interferometric technique is being rapidly advanced
in recent years and is being increasingly widely used in the lightning community
for detailed discharge physics studies. Los Alamos National Laboratory is in
the process of deploying two spatially separated interferometers that consist of
four, dual-polarization antennas for each interferometer. For a 4-antenna array,
or any array that consists of more than three antennas, the antennas cannot
be assumed situated in the same plane, and a generic interferometric process is
needed to take the full advantage of the additional antennas. In this paper we
present and numerically verify an analytic solution for a general noncoplanar
array that directly relates the source direction to the array geometry and the
time delay measurement. This general and analytic solution can be used in any
array configurations with three or more antennas. We then derive the analytic
formulas for the associated interferometric uncertainties based on the general
analytic solution. Uncertainty analysis is critically important for correct and
credible interpretation of the observations, but only very limited and incom-
plete uncertainty analyses have been reported in the lightning community. In
this paper, we first carry out the uncertainty analysis for a pair of baselines
and then extend the analysis to a combination of multiple pairs of baselines.
We verify the analytic uncertainty analyses with numerical experiments and dis-
cuss the behavior of the uncertainties. These analyses will hopefully help to
lay the foundation for future uncertainty estimate, and for more statistically
trustworthy interpretation of the interferometric observations.

1. Introduction
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Broadband radio frequency (RF) interferometry is playing an increasingly im-
portant role in lightning observations since its first introduction over two decades
ago (Shao et al., 1996), and is now widely used in the lightning community for
detailed physics understandings of lightning discharge processes (e.g., Belz et
al., 2020; Dong et al., 2001; Huang et al., 2021; Jensen et al., 2021; Lyu et al.,
2019; Rison et al., 2016; Shao et al., 2018, 2020; Stock et al., 2014, 2017; Sun et
al. 2013; Tilles, et al., 2019). Many recent new understandings and discoveries
of lightning physics, notably processes related to lightning initiation, can be at-
tributed to broadband RF interferometric observations (e.g., Huang et al., 2021;
Rison et al., 2016; Shao et al., 2020; Tilles, et al., 2019). As a result, broad-
band interferometry techniques have been advanced rapidly in recent years, with
improved broadband data acquisition and processing techniques, and more re-
cently with increased number of antennas for a more redundant and diversified
baseline configuration.

Los Alamos National Laboratory (LANL) is in the process of deploying a two-
station, four-antenna, polarized interferometer for 3-dimensional lightning RF
source location and polarization measurement, in an expansion of its previous
single-station, three-antenna broadband interferometric mapping and polariza-
tion (BIMAP) observations (Shao et al., 2018, 2020). As discussed in our earlier
satellite observations (Shao and Jacobson, 2001, 2002) and in our more recent
ground-based BIMAP studies, RF polarization detection provides a next-level in-
sight into the physics of lightning discharge processes. However, a single-station
BIMAP system only provides a 2-D source location and a 2-D polarization state
that leaves possibilities for ambiguous physics interpretation of the observations.
The goal of the new 3-D BIMAP observation (BIMAP-3D) is to eliminate these
undesired ambiguities and to provide a more complete insight into the discharge
physics.

However, before combining the 2-station BIMAP for 3-D observations, it is
essential to improve the interferometric technique itself to take the full advantage
of the new 4-antenna (instead of previous 3-antenna) arrays for the BIMAP-3D
system and to understand the associated uncertainties with the single-station
interferometric observations, and that are the focus of this study.
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BIMAP-3D’s four anten-
nas at each station form a roughly Y-shaped array (e.g., Figure 1). Such an
array will provide six independent baselines instead of three baselines for a
3-antenna array and is expected to improve the interferometric performance.
However, unlike a 3-antenna array, the four antennas cannot be assumed to be
situated in the same (e.g., horizontal) plane, as in the case of Figure 1 where
the four antennas are placed at different heights due to the local topography.
For a 3-antenna array, if the plane of the array is not in parallel with the local
horizontal plane, the sources can be first mapped referenced to the array’s plane
and then geometrically transformed to a coordinate frame that aligned with
the local horizontal plane, as had been done in our earlier BIMAP observations.
A similar approach can be applied to an array with four or more antennas,
but that will limit to groups of three neighboring antennas that form closed
triangles, and will not take the full advantage of other baseline combinations,
for instance, the baseline pair of L0 and L5 in Figure 1. In this report we
provide an analytic solution for a general 3-D antenna and baseline placement
with an arbitrary number of antennas. Such an analytic solution can be used
for our upcoming 4-antenna BIMAP-3D arrays or any other interferometer
arrays with three or more antennas.

We will further analyze the interferometric uncertainties related to the proposed
generic processing technique. For a mapped lightning source location, it is im-
portant to understand the related uncertainty/error range and the associated
confidence level, like in any other experimental and observational researches.
However, only very limited and preliminary studies have been reported on the
interferometric uncertainties in the lightning community (e.g., Stock et al., 2014,
Shao et al., 2020). Without a credible estimate of the uncertainty, it is often
possible to misinterpret the observations and to arrive to ambiguous and even
erroneous conclusions. In this paper we present an analytic analysis based on
the uncertainty propagation principles, from the time-delay uncertainty to the
source error ellipses, and verify our analytic analysis with numerical experi-
ments. Such an analytic uncertainty analysis will help to lay the foundation
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for the upcoming interferometric studies with our new BIMAP-3D systems and
will be also applicable on others’ interferometer observations in the lightning
community.

1. General Formulas for Source Direction Cosines

In this section we present a set of formulas that relate the direction cosines of a
source to a pair of baselines that are formed with arbitrary antenna placements.
A common coordinate frame is used for both the antenna and baseline placement
and the source direction cosines (e.g., an East-North-Up (ENU) coordinate)
such that the source direction can be directly obtained for any pair of arbitrary
baselines without further geometric transformation.

For two spatially separated antennas at P1 and P2, a baseline can be expressed
as L = P2 – P1 = (a, b, c) in general in a right-hand Cartesian coordinate
frame (X, Y, Z). The direction cosines of the source can be expressed in the
same frame as S = (�, �, �), where 𝛼2 + 𝛽2 + 𝛾2 = 1. The time delay � detected
between the two antennas can be expressed as S • L = −𝑣𝜏 , where v is the
signal propagation speed, the speed of light for RF signal, and � is the time
delay measured from P2 to P1 of the baseline, or more explicitly

𝑎𝛼 + 𝑏𝛽 + 𝑐𝛾 = −𝑣𝜏.

The source direction cosines can be determined with two different baselines L1,
L2,

𝑎1𝛼 + 𝑏1𝛽 + 𝑐1𝛾 = −𝑣𝜏1
𝑎2𝛼 + 𝑏2𝛽 + 𝑐2𝛾 = −𝑣𝜏2

together with the relation of 𝛼2 +𝛽2 +𝛾2 = 1, where L1, L2 don’t need to share
a common antenna in an array composed of more than three antennas (e.g., L0
and L5 in Figure 1).

Through direct but somewhat laborious and lengthy algebraic derivations, one
can arrive to the following analytic solutions for (�, �, �) as functions of the
baseline vectors and the corresponding time delay measurements

� = 𝑣[(𝑎2𝜏1+𝑎1𝜏2)(L1•L2)−𝑎1𝜏1𝐿2
2−𝑎2𝜏2𝐿2

1]±(𝑏2𝑐1−𝑏1𝑐2)𝐴0
|L1×L2|2

𝛽 = 𝑣[(𝑏2𝜏1+𝑏1𝜏2)(L1•L2)−𝑏1𝜏1𝐿2
2−𝑏2𝜏2𝐿2

1]±(𝑐2𝑎1−𝑐1𝑎2)𝐴0
|L1×L2|2

𝛾 = 𝑣[(𝑐2𝜏1+𝑐1𝜏2)(L1•L2)−𝑐1𝜏1𝐿2
2−𝑐2𝜏2𝐿2

1]±(𝑎2𝑏1−𝑎1𝑏2)𝐴0
|L1×L2|2

where,

𝐴0 = √|L1 × L2|2 − 𝑣2 (𝜏1L2 − 𝜏2L1)2
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There exist two sets of possible solutions for (�, �, �) in the above equations
due to the quadratic nature of the source direction cosines. In practice with all
the antennas situated on the ground, the physically meaningful set of solutions
can be obtained by selecting the set with the greater � value between the two �
solutions.

It is clear from the above equations that the two baselines L1 and L2 have to
be in two different directions to provide a solution, or otherwise |L1 × L2|2 = 0.
It is also clear that |L1 × L2|2 − 𝑣2 (𝜏1L2 − 𝜏2L1)2 need to be greater or equal
to 0, which leads to

𝑣2𝜏2
1

𝐿2
1

+ 𝑣2𝜏2
2

𝐿2
2

− 2𝑣𝜏1
𝐿1

𝑣𝜏2
𝐿2

cos 𝜑 − sin2 𝜑 ≤ 0,

where � is the angle between the two bassline vectors. This constraint can be
used to evaluate if the two baselines detect a physically variable signal or if the
data are dominated by uncorrelated noises.

Equation (3) can be directly applied on other idealized or simplified antenna
and baseline placements. For a 2-dimensional flat array with all the antennas
situated in the XY plane, the general form of Equation (3) can be simplified.
For instance, if L1 and L2 are orthogonal to each other and are in the X and Y
directions, L1 = (a1, 0, 0) and L2 = (0, b2, 0), Equation (3) can be simplified
to

� = − 𝑣𝜏1
𝑎1

� = − 𝑣𝜏2
𝑏2

� = √1 − ( 𝑣𝜏1
𝑎1

)2 − ( 𝑣𝜏2
𝑏2

)2

Equation (5) is familiar to the lightning researchers who place their three an-
tennas in a horizontal, right-angle configuration.

In the case of a flat array that the two baselines are not orthogonal to each
other, without losing the generality we can assume L1 = (a1, 0, 0), L2 = (a2,
b2, 0), and we have L1 •L2 = 𝑎1𝑎2 and |L1 ×L2| = 𝑎1𝑏2, Equation (3) becomes

� = − 𝑣𝜏1
𝑎1

, � = − 𝑣𝜏2
𝑏2

+ 𝑣𝜏1𝑎2
𝑎1𝑏2

, � = √1 − ( 𝑣𝜏1
𝑎1

)2 − ( 𝑣𝜏2
𝑏2

)2 + 𝑣𝜏1𝑎2(2𝑣𝜏2𝑎1−𝑣𝜏1𝑎2)
(𝑎1𝑏2)2

Since � can be determined with known (�, �), in the following analysis we will
only focus on (�, �).

With known � and �, the source direction in the azimuth and elevation (�, �) space
can be simply obtained with

𝜙 = atan 𝛽
𝛼

𝜃 = acos√𝛼2 + 𝛽2
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To verify the
analytic solution in Equation (3), we excised a numerical experiment based on
the array configureation shown in Figure 1. We divide the direction cosines of
(�, �) into 400 X 400 grid points with a grid size of (0.005 X 0.005). For each
grid point, which is corresponding to a certain source direction, we compute
the time delays for each of the six baselines (�l, l=0,1, … 5) with Eqaution (1).
We then select a pair of baselines with their corresponding time delays and
compute backward the direction cosines (�, �, �) with Equation (3). For the two
possible sets of solutons in Equation (3) we select the set that corresponding
to the greater � value among its two possible values since the source is assumed
to arrive from above the ground. It is noted here that both of the � values
could be greater than zero since the baselines are assumed tilted from the true
horizonal plane. We found that correct (�, �, �) are retrieved for all the possible
pairs of baselines across the entire (�, �, �) space , verified that Equation (3)
provides the correct and general analytic solutions.

Figure 2 demonstates the test result for one of the baseline pairs (L0, L5 in
Figure 1 which do not share a common antenna). The plot shows the difference
between the retrieved and the input direction cosine � over the entire direction
cosine space (-1 to +1 for � and �). In an ideal case, the difference would be
zero across the entire (�, �) space. The residual differences of about 10-10 over
the majority of the grid points are due to the finite grid resolution and the
numerical resolution, and they are much finer than the resolution of a realistic
interferometric measurement. The signicant differences along the northern edge
are due to the fact that L0 is tilted upward toward the north (Figure 1). At
these grid points, the input source directions are actually below the L0 baseline
(ground surface) that are unrealistic and would not be observed with an actual
interferometer. Results for � and � show the same behavior as for �, and are not
shown here.

1. Uncertainty Analysis
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It is important to understand the uncertainty range and confidence level asso-
ciated with the detected source direction based on the general interferometric
processing proposed here, as in any experimental and observational researches.
In this section we present the analytical uncertainty analysis and then verify
the analytical results with numerical experiments.

3.1 Uncertainty for one pair of baselines

We start the uncertainty analysis with a single pair of baseline measurement, and
extend the analysis to a combination of any number of baseline pairs in the next
section. Assuming the systematic errors related to the antenna positions and the
signal propagation through cables and electronics can be accurately calibrated,
and assuming signals from all antennas are digitized and recoded with a phase-
synchronized data acquisition system, the remaining random errors in (�, �) can
be attributed to the errors in the time delay detection (�1, �2) between the
antennas for each baseline.

To evaluate the variance and covariance for � and �, which defines the er-
ror/uncertainty ellipse, we need to carry out their partial derivatives respect to
�1 and �2 due to the nonlinear dependence of � and � on �1 and �2 (e.g. Equation
3), under small error assumptions. From Equation (3) we have, for �,

𝜕𝛼
𝜕𝜏1

= 𝑣 [𝑎2(L1•L2)−𝑎1𝐿2
2]±(𝑏2𝑐1−𝑏1𝑐2) 𝐵1

|L1×L2|2
𝜕𝛼
𝜕𝜏2

= 𝑣 [𝑎1(L1•L2)−𝑎2𝐿2
1]±(𝑏2𝑐1−𝑏1𝑐2)𝐵2

|L1×L2|2

Similarly for � we have

𝜕𝛽
𝜕𝜏1

= 𝑣 [𝑏2(L1•L2)−𝑏1𝐿2
2]±(𝑐2𝑎1−𝑐1𝑎2)𝐵1

|L1×L2|2
𝜕𝛽
𝜕𝜏2

= 𝑣 [𝑏1(L1•L2)−𝑏2𝐿2
1]±(𝑐2𝑎1−𝑐1𝑎2)𝐵2

|L1×L2|2

where,

𝐵1 = 𝑣[𝜏1𝐿2
2−𝜏2(L1•L2)]

𝐴0

𝐵2 = 𝑣[𝜏2𝐿2
1−𝜏1(L1•L2)]

𝐴0

It should be noted here that in Equations (8-9) the ± signs correspond to the ±
signs in Equation (3). Once the correct set of solution for (�, �) is selected based
on �, the same sign is used in Equations (8-9) in the uncertainty analysis.

Assuming ��1 and ��2 are independent with each other, the variance and covari-
ance for � and � are expressed as, based on general error propagation principles
(e.g., Arras, 1998)
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𝜎2
𝛼 = ( 𝜕𝛼

𝜕𝜏1
)2 𝜎2

𝜏1 + ( 𝜕𝛼
𝜕𝜏2

)2 𝜎2
𝜏2

𝜎2
𝛽 = ( 𝜕𝛽

𝜕𝜏1
)2 𝜎2

𝜏1 + ( 𝜕𝛽
𝜕𝜏2

)2 𝜎2
𝜏2

𝜎�� = 𝜎�� = ( 𝜕𝛼
𝜕𝜏1

𝜕𝛽
𝜕𝜏1

) 𝜎2
𝜏1 + ( 𝜕𝛼

𝜕𝜏2
𝜕𝛽
𝜕𝜏2

) 𝜎2
𝜏2

Equation (10) defines the error ellipse in the (�, �) space, which is dependent on
the geometry of the pair of the baselines, the source direction, and the error of
time delays measured by the two baselines.

To
verify the analytic error analysis (Equation 10), we compare its predictions
with a numerical excise. Figure 3 illustrates the comparison for two selected
baseline pairs, (L0, L5) and (L1, L2) in Figure 1. In the comparison, we chose
a source direction of (0.4, 0.7) in the (�, �) space and assumed �� to be the
same of 0.4 ns for all the baseline measurements. In general �� are different for
different baselines and are dependent on the direction of the source. However,
if one apply the beam-steering interferometry technique introduced in Shao et
al. (2020), �� approach approximately the same for all the baselines. As also
discussed in Shao et al. (2020), the time delay error �� can be estimated based
on the signal-to-noise ratio, the interferometer’s RF bandwidth, and the time
widow used for the signal correlation computation. In the current study, we
assumed �� are known and the readers are referred to Shao et al. (2020) for the
analysis of ��.

In this excise, the actual time delay for the source at (0.4, 0.7) for each baseline
is computed with Equation (1). In the numerical calculation, the actual time
delay for each baseline is added with an independent and random time error that
has a standard deviation of ��, and the corresponding direction cosines are then
computed by using Equation (3) for the selected baseline pairs. The scattered
dots in each plot in Figure 3 show the results for such a numerical excise with
104 iterations. The overlapped error ellipse in each plot is computed analytically
from Equation (10). In the plot, we chose a confidence level of 90% for the size
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of error ellipse, meaning that there is a 90% of probability that the true result
will fall within the ellipse. For a 68% confidence level, the one-sigma level, the
size of the ellipse would be scaled down by a factor of 2.1. It is clear from
Figure 3 that the analytic error prediction is in agreement with the numerical
experiment.

We now further derive the corresponding variance and covariance in the azimuth
and elevation angle (�, �) space. For a general pair of baselines, �� and �� cannot be
assumed independent, as indicated by the covariance term in Equation (10) and
as shown in Figure 3, unless the two baselines are orthogonal to each other (e.g.,
Equation 5). Therefore, we have, based on the error propagation principles,

𝜎2
𝜙 = ( 𝜕𝜙

𝜕𝛼 )2 𝜎2
𝛼 + ( 𝜕𝜙

𝜕𝛽 )2 𝜎2
𝛽 + 2 ( 𝜕𝜙

𝜕𝛼
𝜕𝜙
𝜕𝛽 ) 𝜎��

𝜎2
𝜃 = ( 𝜕𝜃

𝜕𝛼 )2 𝜎2
𝛼 + ( 𝜕𝜃

𝜕𝛽 )2 𝜎2
𝛽 + 2 ( 𝜕𝜃

𝜕𝛼
𝜕𝜃
𝜕𝛽 ) 𝜎��

𝜎�� = ( 𝜕𝜙
𝜕𝛼

𝜕𝜃
𝜕𝛼 ) 𝜎2

𝛼 + ( 𝜕𝜙
𝜕𝛽

𝜕𝜃
𝜕𝛽 ) �

2

𝛽
+ ( 𝜕𝜙

𝜕𝛼
𝜕𝜃
𝜕𝛽 + 𝜕𝜙

𝜕𝛽
𝜕𝜃
𝜕𝛼 ) 𝜎��

Using 𝛼 = cos 𝜃 cos 𝜙 and 𝛽 = cos � sin 𝜙 we have

𝜕𝜙
𝜕𝛼 = − sin 𝜙

cos 𝜃 , 𝜕𝜙
𝜕𝛽 = + cos 𝜙

cos 𝜃 ,
𝜕𝜃
𝜕𝛼 = − cos 𝜙

sin 𝜃 , 𝜕𝜃
𝜕𝛽 = − sin 𝜙

sin 𝜃

Equation (11) becomes

𝜎2
𝜙 = 1

cos2 𝜃 (sin2 𝜙 �2𝛼 + cos2 𝜙𝜎2
𝛽 − sin 2𝜙 𝜎��)

𝜎2
𝜃 = 1

sin2 𝜃 (cos2 𝜙 �2𝛼 + sin2 𝜙𝜎2
𝛽 + sin 2𝜙 𝜎��)

𝜎�� = 1
sin 2𝜃 [sin 2𝜙 (𝜎2

𝛼 − 𝜎2
𝛽) − 2 cos 2𝜙 ���]

where � and � can be computed with Equation (7) from (�, �).

Similar to Figure 3, Figure 4 shows the corresponding comparisons for the error
analyses in the (�, �) space. The scattered dots are converted directly from
(�, �) to (�, �) with Equation (7), and the corresponding analytic ellipses are
computed analytically based on Equation (13). As expected, good agreements
are observed.
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As
noted earlier, interferometric errors depend on the baseline geometries, the
source direction, and the error of the time delay measurement over the baselines.
It is clear in Figures 3 and 4 that for the same source direction and the same
time error, the error ellipses are clearly different for the two different pairs of
baselines. Although not shown here, it is also evident that for a source in a
different direction, the error ellipses will also be different. This is part of the
reason why it is important to be able to compute the error level analytically.
With this, one can directly and straightforwardly estimate the level of the
direction errors for sources from any directions with any antenna and baseline
configurations.

3.2 Combination of multiple pairs of baselines

To estimate the source direction cosines (�, �) from multiple pairs of baselines,
the most straightforward approach is to compute the arithmetic average of �
and � among all the baseline pair measurements, especially when there is no pre-
knowledge of the source direction in a normal interferometric process. Assuming
the number of independent baselines is N (6 in Figure 1), the arithmetic mean
can be expressed as functions of 𝜏𝑙 ∶ 𝑙 = 1, 2, … 𝑁 , i.e.,

𝛼 = 2
𝑁(𝑁−1) ∑𝑁−1

𝑙=1 ∑𝑁
𝑚=𝑙+1 𝛼 (𝜏𝑙, 𝜏𝑚)

𝛽 = 2
𝑁(𝑁−1) ∑𝑁−1

𝑙=1 ∑𝑁
𝑚=𝑙+1 𝛽 (𝜏𝑙, 𝜏𝑚)

The variance for � can be computed in general by, again based on error propa-
gation principles

𝜎2
𝛼 =

𝑁
∑
𝑖=1

( 𝜕𝛼
𝜕𝜏𝑖

)
2

𝜎2
𝜏𝑖

+
𝑁

∑
𝑖

𝑁
∑
𝑗≠𝑖

( 𝜕𝛼
𝜕𝜏𝑖

) ( 𝜕𝛼
𝜕𝜏𝑗

)𝜎𝜏𝑖𝜏𝑗

Because the uncertainties for the time delays for different baselines can be as-
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sumed independent, the 2nd term in the above equation can be assumed to be
zero. We then have, by using Equations (14) and (15),

𝜎2
𝛼 = [ 2

𝑁(𝑁 − 1)]
2 𝑁

∑
𝑖=1

[
𝑁−1
∑
𝑙=1

𝑁
∑

𝑚=𝑙+1

𝜕𝛼 (𝜏𝑙, 𝜏𝑚)
𝜕𝜏𝑖

]
2

𝜎2
𝜏𝑖

Similarly for 𝛽 we have

𝜎2
𝛽 = [ 2

𝑁(𝑁 − 1)]
2 𝑁

∑
𝑖=1

[
𝑁−1
∑
𝑙=1

𝑁
∑

𝑚=𝑙+1

𝜕𝛽 (𝜏𝑙, 𝜏𝑚)
𝜕𝜏𝑖

]
2

𝜎2
𝜏𝑖

For the covariance between � and 𝛽 we have

𝜎𝛼𝛽 = [ 2
𝑁(𝑁 − 1)]

2 𝑁
∑
𝑖=1

{[
𝑁−1
∑
𝑙=1

𝑁
∑

𝑚=𝑙+1

𝜕𝑎 (𝜏𝑙, 𝜏𝑚)
𝜕𝜏𝑖

] [
𝑁−1
∑
𝑙=1

𝑁
∑

𝑚=𝑙+1

𝜕𝛽 (𝜏𝑙, 𝜏𝑚)
𝜕𝜏𝑖

]} 𝜎2
𝜏𝑖

The differentials in Equations (16-18) can be computed from Equations (8-9).

For example, for a three-baseline interferometer that has been used presently by
many research institutes the uncertainties can be estimated with the following
explicit formulas

𝜎2
𝛼 = 1

9 {[ 𝜕𝑎12
𝜕𝜏1

+ 𝜕𝑎13
𝜕𝜏1

]
2

𝜎2
1 + [ 𝜕𝑎12

𝜕𝜏2
+ 𝜕𝑎23

𝜕𝜏2
]

2
𝜎2

2 + [ 𝜕𝑎13
𝜕𝜏3

+ 𝜕𝑎23
𝜕𝜏3

]
2

𝜎2
3}

𝜎2
𝛽 = 1

9 {[ 𝜕𝛽12
𝜕𝜏1

+ 𝜕𝛽13
𝜕𝜏1

]
2

𝜎2
1 + [ 𝜕𝛽12

𝜕𝜏2
+ 𝜕𝛽23

𝜕𝜏2
]

2
𝜎2

2 + [ 𝜕𝛽13
𝜕𝜏3

+ 𝜕𝛽23
𝜕𝜏3

]
2

𝜎2
3}

𝜎𝛼𝛽 = 1
9 {[ 𝜕𝑎12

𝜕𝜏1
+ 𝜕𝑎13

𝜕𝜏1
] [ 𝜕𝛽12

𝜕𝜏1
+ 𝜕𝛽13

𝜕𝜏1
] 𝜎2

1 + [ 𝜕𝑎12
𝜕𝜏2

+ 𝜕𝑎23
𝜕𝜏2

] [ 𝜕𝛽12
𝜕𝜏2

+ 𝜕𝛽23
𝜕𝜏2

] 𝜎2
2 + [ 𝜕𝑎13

𝜕𝜏3
+ 𝜕𝑎23

𝜕𝜏3
] [ 𝜕𝛽13

𝜕𝜏3
+ 𝜕𝛽23

𝜕𝜏3
] 𝜎2

3}

where, 𝛼12 stands for 𝛼 (𝜏1, 𝜏2) for baselines 1 and 2, and so forth.

To find the variance and covariance in the azimuth and elevation(𝜙, 𝜃) space, we
can simply substitute (𝜎2

𝛼, 𝜎2
𝛽, 𝜎𝛼𝛽) in to Equation (13), with the corresponding

(𝜙, 𝜃) computed with Equation (7).

Figure 5 illustrates the combination results for three pairs of baseline measure-
ments, based on the three longest baselines L3, L4, and L5 in Figure 1. Similar
to Figures 3 and 4, the black, green, and red dots and their corresponding el-
lipses are for each individual baseline pairs of (L3, L4), (L3, L5), and (L4, L5),
respectively. The white dots are the arithmetic average of the three colored dots
at each of the 104 iterations, computed with Equation (14). The white ellipse is
computed based on the variance and covariance Equations (16-18), or explicitly
Equation (19) in this three-pair case. It is clear that the analytic error analysis
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for the combined baseline pairs (the white ellipse) agrees with the numerical
experiment (white dots). As in Figures 3 and 4, the ellipses indicate the 90%
confidence level.

It
should be noted here that since the three pairs of baselines are correlated
with each other, as shown in Equations (16-18), the combined error do not
have a factor of 3 reduction as would be expected for totally independent
measurements. Instead, the combined error ellipse (white) is inscribed within
the three individual error ellipses (colored).

Finally we present the results for all the possible pairs of baselines. For a 4-
antenna array (e.g., Figure 1) we have 6 independent baselines( [4•3]

2 ). With 6
baselines, we have 15 (( [6•5]

2 ) unique combinations of pair of baselines. Figure 6
shows the error ellipses for all the individual pairs (colored) and the error ellipse
(white) after the arithmetic average of all the pairs. The combined error ellipse
is computed with Equations (16-18). Similar to that in Figure 5, the combined
error ellipse is inscribed by the smallest three individual ellipses, in this case
the same three individual ellipses shown in Figure 5. These smallest individual
ellipses correspond to the three pairs of the longest baselines in the array (L3,
L4, L5, in Figure 1). Therefore, Figures 6 and 5 show that the size of the error
ellipse after the arithmetic average is determined by the longest baselines in
the array. In other words, the finest interferometric resolution for the array is
determined by the longest baselines.

The question is then how do the other redundant, shorter baselines help the
overall interferometric process? In practice, signals detected by a longer baseline
will have a greater time delay between their two corresponding antennas, and the
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signals are less correlated in a normal interferometric process, such that the time
delay estimate could be less accurate or sometimes erroneous, and the resultant
source direction could be ambiguous. In the opposite, the signals over the shorter
baselines are more correlated and the measurement is less likely to provide a
wrong source direction. The combination of all the baseline measurements then
intend to provide a correct measurement for the source direction.

Additionally,
once the correct but coarse source direction is determined, one can apply the
beam-steering interferometry technique introduced in Shao et al. (2020) to
further improve the mapping resolution. The beam-steering interferometry
shifts the signals among all the antennas to align the signals in time based on
the source direction estimated in a first-stage normal interferometric process.
As such, signals among all the antennas have the maximum correlation over all
the baseline measurements, and the errors of time delay for all the baselines
intend to be the same and to be minimized. In this case, simply using the
longest baselines in the array will provides the same accurate results as that
using the combination of all the baselines. It is also possible to map multiple
sources at each chosen time window with an iterative process by applying the
beam-steering interferometry. But this is beyond the scope of this paper and
will be investigated in future studies.

1. Summary

In this paper, we present an analytic solution for a general 3-dimensional an-
tenna and baseline placement for a broadband RF lightning interferometer. The
analytic formulas directly relate the source direction in the direction cosine space
(�, �, �) to the baseline vectors in the same coordinate frame, and to the signal
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time delays measured over the baselines. The analytic solution is compared
against a numerical experiment and is verified to be correct to within the simu-
lation and numerical precision. Such a general solution can be used in existing
3-antenna arrays, and more importantly in arrays with more than three anten-
nas that are less likely situated in the same plane.

We also present analytic error/uncertainty analyses for a pair of baseline mea-
surement and for a combination of multiple pairs of baselines, based on error
propagation principles. The error analysis is presented in both the direction
cosine space and the azimuth-elevation space. The analytic error solutions are
also verified with a set of numerical experiments. Error estimate is important in
the rapidly developing and increasingly widely used broadband lightning inter-
ferometry for credible and unambiguous interpretation of the observed results.
The analytic formulas in this paper will help to lay the foundation for future
error analysis in the interferometric lightning studies.

We should note that the combined error analysis presented here is based on
the arithmetic average of the multiple pairs of baseline measurements. This
is especially applicable on a normal interferometric process during which the
source direction is unknown. If one applies a 2nd-stage beam-steering interfer-
ometry after the normal interferometry with the known source direction, one
can obtain the variance and covariance for the specific source direction and an
error-weighted average among the baseline pairs can be used. The correspond-
ing error range with the weighted average is expected to be reduced. However,
the analytic error analysis becomes more complicated and will be investigated
in a future study.
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Figure captions:

Figure 1. Antenna array for one of two BIMAP-3D interferometers. Note that
the four antennas are not in a horizontal plane or a common plane. The heights
are different in meters among the antennas.

Figure 2. Difference between retrieved and input direction cosine � in the entire
(�, �) space. The baseline pair of L0 and L5 in Figure 1 are used for this plot.
The majority of the points are in agreement within about 10-10, showing correct
source directions are retrieved. Points at the northern edge are due to the input
directions beneath the L0 baseline which would not occur in real observations.

Figure 3. Analytic error ellipse compared with numerical test for two selected
baseline pairs (L0, L5) and (L1, L2). The scattered dots shows the numerical
results and the error ellipses are based on the analytic calculations. The error
ellipses are plotted at the 90% confidence level.

Figure 4. Similar to Figure 3, but shows the error analyses in (�, �) space.

Figure 5. Interferometric results and error estimate for a combination of three
baseline (L3, L4 and L5 in Figure1) measurement. The colored dots and ellipses
are for each individual baseline pairs, similar to that in Figure 3 and 4. The
white dots are the arithmetic average of the colored dots, and the white ellipse
is the error ellipse based on Equations (16-18). The left plot is for (�, �) and the
right plot is for (�, �).

Figure 6. Similar to Figure 5, but for all the possible 15 pairs of baselines for
the 4-antenna array in Figure 1. The left plot is for (�, �) and the right plot is
for the corresponding (�, �).
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