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Abstract

Emissions of nitrogen oxides (NOx = NO + NO2) in the United States have declined significantly during the past three decades.

However, satellite observations since 2009 indicate total column NO2 is no longer declining even as bottom-up inventories suggest

continued decline in emissions. Multiple explanations have been proposed for this discrepancy including 1) the increasing relative

importance of non-urban NOx to total column NO2, 2) differences between background and urban NOx lifetimes, and 3) that

the actual NOx emissions are declining more slower after 2009. Here we use a deep learning model trained by NOx emissions

and surface observations of ozone to assess consistency between the reported NOx trends between 2005-2014 and observations

of surface ozone. We find that the 2005-2014 trend from older satellite-derived emission estimates produced at low spatial

resolution best reproduce ozone in low NOx emission (background) regions, reflecting the blending of urban and background

NOx in these low-resolution top-down analyses. The trend from higher resolution satellite-based estimates, which are more

capable of capturing the urban emission signature, is in better agreement with ozone in high NOx emission regions, and is

consistent with the trend based on surface observations of NO2. In contrast, the 2005-2014 trend from the US Environmental

Protection Agency (EPA) National Emission Inventory (NEI) results in an underestimate of ozone. Our results confirm that

the satellite-derived trends reflect anthropogenic and background influences and that the 2005-2014 trend in the NEI inventory

is overestimating recent reductions in NOx emissions.
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Abstract19

Emissions of nitrogen oxides (NOx = NO + NO2) in the United States have declined sig-20

nificantly during the past three decades. However, satellite observations since 2009 in-21

dicate total column NO2 is no longer declining even as bottom-up inventories suggest22

continued decline in emissions. Multiple explanations have been proposed for this dis-23

crepancy including 1) the increasing relative importance of non-urban NOx to total col-24

umn NO2, 2) differences between background and urban NOx lifetimes, and 3) that the25

actual NOx emissions are declining more slower after 2009. Here we use a deep learn-26

ing model trained by NOx emissions and surface observations of ozone to assess consis-27

tency between the reported NOx trends between 2005-2014 and observations of surface28

ozone. We find that the 2005-2014 trend from older satellite-derived emission estimates29

produced at low spatial resolution best reproduce ozone in low NOx emission (background)30

regions, reflecting the blending of urban and background NOx in these low-resolution top-31

down analyses. The trend from higher resolution satellite-based estimates, which are more32

capable of capturing the urban emission signature, is in better agreement with ozone in33

high NOx emission regions, and is consistent with the trend based on surface observa-34

tions of NO2. In contrast, the 2005-2014 trend from the US Environmental Protection35

Agency (EPA) National Emission Inventory (NEI) results in an underestimate of ozone.36

Our results confirm that the satellite-derived trends reflect anthropogenic and background37

influences and that the 2005-2014 trend in the NEI inventory is overestimating recent38

reductions in NOx emissions.39

1 Introduction40

Air pollution is a major cause of mortality globally (Cohen et al., 2017). In this41

context, tropospheric ozone is a key pollutant that is produced photochemically by the42

oxidation of hydrocarbons in the presence of nitrogen oxides (NOx = NO + NO2). Air43

pollution regulations have resulted in dramatic reductions in emissions of NOx. How-44

ever, Jiang et al. (2018) suggested that NOx emission estimates inferred from satellite45

observations (referred to as top-down estimates) indicate that there has been a slowdown46

in the reduction rate since 2009, compared to the bottom-up emission inventory reported47

by the US Environmental Protection Agency (EPA) National Emission Inventory (NEI).48

In contrast, it has been suggested that the slowdown in the reduction rate in the satellite-49

derived emission estimates does not indicate a discrepancy with the NEI inventory, but50

instead is due to the increasing relative influence of non-anthropogenic NOx emissions51

on atmospheric NOx as captured by the satellite measurements (Silvern et al., 2019). It52

has also been reported by J. Li and Wang (2019) that the satellite-derived trends are con-53

sistent with the trends in surface observations of NO2 in high emission regions and that54

the discrepancy between the top-down and bottom-up trends are due to non-linearity55

in the relationship between NOx emissions and the satellite observations of NO2 in low56

emission ”rural” regions. Here we use a data-driven deep learning (DL) model that pre-57

dicts surface ozone abundances across the US, which allows us to assess the consistency58

of the inferred 2005–2014 trends in NOx emissions with observed surface ozone.59

Surface ozone in the United States is highly variable on both short and long time60

scales, reflecting the influence of meteorology, non-linearity in the ozone chemistry, and61

changes in the emissions of ozone precursor gases. Atmospheric models used to simu-62

late the distribution of ozone typically do not reproduce the observed long-term trend63

in tropospheric ozone, partially due to large uncertainty in simulated ozone response to64

varying NOx emissions (Miyazaki et al., 2020b). Furthermore, these models tend to over-65

estimate summertime surface ozone abundances in the United States. For example, in66

an evaluation of 16 global models and one hemispheric model it was found that the mod-67

els overestimated summertime daily maximum 8-h average (MDA8) surface ozone in the68

eastern United States by 10–20 ppb (Reidmiller et al., 2009; Travis et al., 2016).69
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Machine learning methods are now becoming more widely used for simulation of70

atmospheric composition (e.g., Keller & Evans, 2019; Seltzer et al., 2020). For example,71

Seltzer et al. (2020) used an artificial neural network to simulation surface ozone to as-72

sess the impact of ozone exposure on human health and crop yields. In this study, we73

apply a state-of-the-art DL model in predicting surface ozone in the continental US. The74

data-driven, U-shaped DL model employed here captures well both the long-term and75

short-term variability in summertime MDA8 ozone in the United States. Previous stud-76

ies have used statistical methods to investigate the relationship between large-scale at-77

mospheric circulation patterns and summertime surface ozone (Gardner & Dorling, 2000;78

Shen & Mickley, 2017). Recent achievements in DL over the past few years show that79

empirical models are able to learn both spatial and temporal patterns in the input data80

(Goodfellow et al., 2016). It has been suggested that DL approaches have the potential81

to improve our predictive ability and understanding in a wide range of challenges we have82

in Earth science (Reichstein et al., 2019). A key benefit of this DL approach is that it83

is independent of the chemical errors that are typically found in atmospheric chemical84

transport models used in air quality studies. It requires no a priori assumptions about85

the relationship between NOx emissions and tropospheric ozone associated with changes86

in the lifetime of NOx or in emissions of volatile organic compounds (VOCs). During train-87

ing, the changing relationship between NOx emissions and ozone is learned by the model,88

to the extent that these changes are reflected in the ozone observations. This benefit of89

DL is also a limitation, in that these approaches currently are incapable of providing di-90

rect mechanistic insights in the processes governing the learned relationships. Neverthe-91

less, the model provides a useful tool to determine which putative trend in NOx emis-92

sions is most consistent with ozone observations.93

2 Methods94

2.1 A hybrid deep learning model to predict summertime surface ozone95

A schematic of the model is given in Figure 1. The model has eight convolutional96

layers and three max pooling layers to extract the dominant features in the input data.97

Convolutional neural networks (CNNs) are the most fundamental model in DL and are98

able to efficiently capture spatial correlations in data. The weights in each CNN layer99

in the DL model perform convolutional calculations with the input and forward the out-100

put into subsequent layers. Max pooling layers are similar to convolutional layers, ex-101

cept that the convolution is replaced by a simple max transformation. Max pooling lay-102

ers are used to further reduce data dimensionality and to extract dominant features. The103

optimization of the model is supervised by the ”truth”, which is the summertime MDA8104

ozone measured by the AQS network in this study. The weights in the CNNs are opti-105

mized using the back-propagation algorithm (Rumelhart et al., 1986; LeCun et al., 1989),106

which employs the partial derivatives of cost function with respect to the truth.107

We also embed the recurrent neural networks (RNNs) into our DL architecture. The108

RNNs were developed for sequential forecasting problems (Rumelhart et al., 1988), which109

showed strong skills in capturing dynamics hidden in data. The RNN model used in this110

study is the long-short term memory (LSTM) cell (Hochreiter & Schmidhuber, 1997),111

which is used to enhance the model’s ability to capture the temporal variability in sum-112

mertime ozone. In this study, the dynamics captured by the LSTM model includes both113

short-term daily variability and long-term trends in MDA8 ozone. We made the model114

deeper by stacking 3 LSTM cells in series to amplify its predictive skills.115

After the input information gets compressed by the convolutional blocks and the116

LSTM cells, the latent vectors are projected to the output layer via a decoder that con-117

sists of a sequence of transposed convolutional layers and upsampling layers. Following118

Ronneberger et al. (2015), we added residual learning connections that forward the high-119

resolution features extracted by the encoder to the decoder for better localization of the120
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features learned by the DL model. These connections are helpful with faster convergence121

of the optimization, as they contain trainable weights that represents more direct rela-122

tionship between input and output variables (H. Li et al., 2018).123

The loss function to be optimized is defined as the mean squared error calculated124

in each grid box as follows:125

L =
1

N

N∑
i=1

(yi − ŷi)2 (1)

where yi and ŷi are the predicted and observed MDA8 ozone. The Pearson correlation126

coefficient between predictions and observations is used as an auxiliary metric of model127

performance. This performance evaluation is only computed in grid boxes where AQS128

measurements are available. This way the optimization of the model is not influenced129

by the imperfect observational coverage of the AQS data. The back-propagation algo-130

rithm is used to train this end-to-end architecture, with the ADAM optimization algo-131

rithm for a faster convergence (Kingma & Ba, 2014).132

2.2 Summertime ozone predictors133

Large-scale patterns in atmospheric circulation, sea surface temperatures (SSTs),134

and sea level pressure (SLP) influence summertime ozone variability in the United States135

on synoptic to interseasonal timescales (Shen & Mickley, 2017; Shen et al., 2015). To rep-136

resent these large-scale processes, in addition to well-known proximate meteorological137

drivers of ozone variability, we have therefore selected the following MDA8 ozone pre-138

dictors, focusing on the JJA period: anthropogenic emissions of NOx, mean sea level pres-139

sure (MSLP), geopotential at 500 hPa level (Z), downward shortwave radiation (SSRD),140

sea surface temperature (SST), 2-meter temperature (T2M), and 2-meter dew point (D2M).141

The input NOx emissions are separated into the following seven emissions sectors to bet-142

ter help with the training: agriculture (AGR), the power industry (ENE), the manufac-143

turing industry (IND), residential and commercial (RCO), international shipping (SHP),144

surface transportation (TRA), and waste disposal (WST). The sector-based NOx emis-145

sions provide geospatial information to the neural networks, which helps with the regres-146

sion and localization of ozone levels.147

2.3 Data148

The meteorological data are from the ERA-Interim reanalysis (Dee et al., 2011)149

from the European Centre for Medium-Range Weather Forecasts (ECMWF), which have150

been regridded to a horizontal resolution of 1.5◦ × 1.5◦. The NOx emissions are from151

the CEDS inventory (Hoesly et al., 2018), and were regridded from their native resolu-152

tion of 0.5◦ x 0.5◦ to 1.5◦×1.5◦. We chose CEDS for the analysis as it was specifically153

developed to provide historical emissions for climate and atmospheric chemistry mod-154

els. CEDS uses a sequential scaling approach in which emissions are first scaled to the155

Emission Database for Global Atmospheric Research (EDGAR) inventory, and then rescaled156

to the appropriate national inventory. In the United States, this rescaling is with respect157

to the NEI inventory. CEDS also smooths discontinuities in the NEI inventory, result-158

ing in differences between CEDS and NEI. All the input data are cropped to a regional159

domain extending between 0◦–72◦N, and between 180◦W–0◦ to encompass the North160

Pacific and the North Atlantic, where strong linkages were found between ocean forc-161

ing and summertime climate in the eastern United States (Shen & Mickley, 2017; Sut-162

ton & Hodson, 2005, 2007; Gill, 1980).163

While CEDS emissions were used to develop the general DL framework, we used164

the EPA NEI inventory to evaluate the 2005-2014 bottom-up trends. Specifically, we used165

the NEI version 2014v1 downloaded from the EPA website (https://www.epa.gov/air166

-emissions-inventories/air-pollutant-emissions-trends-data). The top-down167

–4–



manuscript submitted to JGR: Atmospheres

estimates of NOx emissions are from the Tropospheric Chemistry Reanalysis (TCR) data168

product (https://tes.jpl.nasa.gov/tes/chemical-reanalysis/). The TCR data169

products were generated with a Kalman-filter-based data assimilation system that as-170

similated satellite measurements of ozone, CO, NO2, HNO3, and SO2 from the Ozone171

Monitoring Instrument (OMI), the SCanning Imaging Absorption spectroMeter for At-172

mospheric CartograpHY (SCIAMACHY), the Global Ozone Monitoring Experiment (GOME-173

2), the Tropospheric Emission Spectrometer (TES), the Microwave Limb Sounder (MLS),174

and the Measurement Of Pollution In The Troposphere (MOPITT) satellite instrument.175

The TCR NOx emissions used in Jiang et al. (2018) was an earlier version of the data176

product, described in (Miyazaki et al., 2015). The assimilated was conducted at a spa-177

tial resolution of 2.8◦×2.8◦. In this paper we also analyze the newer version of the TCR178

chemical reanalysis (TCR-2) (Miyazaki et al., 2020b), which utilized updated satellite179

observations at a higher model resolution of 1.1◦×1.1◦. The 1.5◦×1.5◦ resolution used180

for the deep learning model was chosen to be similar to the resolution of the TRC-2 prod-181

uct.182

MDA8 ozone was estimated from ozone measurements from the EPA Air Quality183

System (AQS) (https://www.epa.gov/aqs). The MDA8 ozone were aggregated to 1.5◦×184

1.5◦ grid boxes. The average value of MDA8 for each grid box will not be representa-185

tive of any specific type of station data (e.g., road, industrial point source, etc), however,186

the aggregated data set provides a good measure of regional surface ozone and can be187

used to evaluate the impact of recent trends in NOx emissions on ozone. By using this188

data set as the truth during training, the model is be able to capture the linkage between189

the NOx emission trend and the trend in surface ozone on these scales.190

3 Results191

3.1 Predicting summertime ozone192

The model is trained using AQS ozone observations from 1980 to 2009, and its per-193

formance evaluated using data from the subsequent five years. We do not train the model194

over the entire 1980–2014 period as our goal is to use the model in a predictive context195

to evaluate the putative NOx emission trends after 2009. During the training and eval-196

uation of the model we use the CEDS NOx emissions. As shown in Figure 2, the pre-197

dicted JJA MDA8 ozone concentrations between 2010–2014 are in good agreement with198

the AQS ozone observations. The mean error for the contiguous United States (CONUS),199

the northeastern United States, the southeastern United States, and the west coast is200

−0.09± 0.37 ppb, 0.28± 0.82 ppb, 0.12± 0.60 ppb, and 0.15± 0.54 ppb, respectively.201

We show in Figures S1 in the Supplementary Information that the errors are larger with202

a lower model resolution of 3◦×3◦, and we would expect improved performance at higher203

spatial resolution than the 1.5◦× 1.5◦ resolution. However, even at the course resolu-204

tion these errors in ozone are significantly smaller than the 10–20 ppb by which conven-205

tional model simulations typically overestimate JJA MDA8 ozone in the eastern United206

States (Reidmiller et al., 2009). In sensitivity tests in which we exclude NOx emissions207

as a predictor in the lower resolution version of the model, the predicted ozone abun-208

dances are significantly more biased across the CONUS (see Figure S2 and Table S1 in209

the Supplementary Information). The results indicate that during the training, the model210

is able to capture the changing relationship between NOx emissions and surface ozone.211

Overall, the model is able to capture both the short-term and long-term dynam-212

ics of MDA8 ozone well (Figure 3). The predicted MDA8 ozone over the United States213

have ubiquitously high correlations with the observations. However, low temporal cor-214

relations are found in the Intermountain West (R ≈ 0.40), where there are fewer AQS215

observations. Also, this region is strongly influenced by free troposphere background ozone216

abundances rather than local or regional precursor emissions (Zhang et al., 2014). In-217

cluding wind fields and wildfire emissions as additional predictors may improve the pre-218
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dictability of MDA8 ozone in the Intermountain West, as wildfires and transport from219

the western U.S. could have an impact on ozone in this region. The year-to-year vari-220

ability of surface ozone is also shown to be related to stratospheric intrusions in spring221

(Zhang et al., 2014; Lin et al., 2015) and the emissions of NOx from lightning in sum-222

mer (Zhang et al., 2014).223

The US NOx emissions have dramatically decreased since the 1990s due to air pol-224

lution regulations, and there has been regional changes in the ozone-NOx relationship225

associated with these emission reductions, reflecting the non-linearity in the ozone chem-226

istry (He et al., 2020). As a result of this non-linearity, the same ozone concentration227

can be produced at low and high levels of NOx emissions, reflecting the fact that the chem-228

istry is a source of ozone at low NOx emissions and a sink for ozone at high NOx emis-229

sions. This non-linearity is also influenced by VOC emissions. At low NOx emission, where230

ozone increases with increasing NOx, the chemistry is described as being NOx-sensitive.231

In contrast, at high NOx emissions, where ozone decreases with increasing NOx emis-232

sions, but increases with increasing VOC emissions, the chemistry is considered to be233

VOC-sensitive. Here we show that the DL model not only predicts well the short-term234

ozone variability, but also captures the regionally-dependent chemical relationship be-235

tween ozone and NOx emissions. Since the model was trained with data from 1980 to236

2009 and data after 2010 were not in the training samples, we chose the following three237

periods to examine the ozone sensitivity to NOx emissions the over the past 3 decades:238

1986–1990, 2001–2005 and 2010–2014. Because of the 1.5◦ resolution, we cannot explic-239

itly examine changes at urban scales, so instead we analyzed the chemical relationship240

between ozone and NOx emissions for the northeastern US, the southeastern US, and241

southern California, as shown in Figure S3 in the Supplementary Information.242

The relationships between summertime ozone and NOx emissions for the 3 selected243

time periods are shown in Figure 4. For the northeastern US, between 1986–1990 the244

extreme values of surface ozone observations between 1986–1990 exhibit a slight nega-245

tive slope, whereas the slope of median values is almost flat. The results suggest that246

the ozone photochemical regime was transitional between the VOC-sensitive and NOx-247

sensitive regimes during this time. This transitional photochemical regime was observed248

for 2001–2005 and 2010–2014 periods as well. For the southeastern US and southern Cal-249

ifornia, the ozone-NOx relationship in 1986–1990 has a turning point around 10×10−11
250

kgN m−2 s−1, suggesting a NOx-sensitive regime in regions of low NOx emissions (less251

than 10×10−11 kgN m−2 s−1) and a transition regime (between VOC- and NOx-sensitive252

conditions) in locations with higher NOx emissions. By 2010–2014, the the southeast-253

ern US and southern California become more NOx-sensitive, particular the southeast-254

ern US.255

Comparison of Figures 4a–4c with Figures 4d–4f shows that the ozone-NOx rela-256

tionships for all three regions over the three time periods are correctly predicted by the257

DL model. Since the model is trained with data from 1980 to 2009, the agreement be-258

tween the observed and predicted ozone relationships for the 1980s and early 2000s is259

somewhat expected. However, the regional consistency between the modeled and pre-260

dicted ozone relationships for 2010–2014 shown in Figure 4 suggests that through train-261

ing the model is able to learn the changing, regionally-dependent chemical relationship262

between surface ozone and NOx emissions in the US at the 1.5◦×1.5◦ spatial scales to263

which we aggregated the data.264

3.2 Trend of anthropogenic NOx emissions over the United States af-265

ter 2010266

The trend in the annual mean NOx emissions from the NEI bottom-up inventory267

as well as from top-down emission estimates from Jiang et al. (2018) and TCR-2 (Miyazaki268

et al., 2020a) are shown in Figure 5. As can be seen, there is good agreement in the NOx269
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emission trend in the different inventories between 2005, when the top-down inventories270

became available, and 2010. However, after 2010 the top-down inventories suggest a sig-271

nificant slowdown in the rate of reduction of NOx emissions in the United States (Jiang272

et al., 2018). Included in Figure 5 is the trend in surface NO2 from observations from273

the AQS network. The AQS NO2 trend suggests a smaller reduction in NOx emissions274

than the NEI inventory between 2005-2010, but not as pronounced as the slowdown ob-275

served in the top-down inventories.276

Evaluating these emission trends using conventional atmospheric chemical trans-277

port models is challenging due to the fact that those models are impacted by deficien-278

cies in the employed chemical mechanisms and dynamical parameterizations. The DL279

model captures the relationship between MDA8 and its predictors based on the input280

in situ and meteorological data only, and is able to mitigate the impact of a majority281

of the sources of error in conventional atmospheric models.282

To evaluate the trends in the NOx emissions, we use the trained DL model to pre-283

dict MDA8 ozone from 2010 to 2014 using the CEDS NOx emissions scaled by the dif-284

ferent annual trends shown in Figure 5. The CEDS inventory is scaled as follows:285

Em
i = ECEDS

i · βm (2)

where ECEDS
i is the CEDS emissions for month i, βm is the annual scaling factor that286

captures the trend shown in Figure 5 for a given inventory m, and Em
i is the resulting287

scaled NOx emissions used in the model prediction of MDA8 ozone. For each NOx trend,288

we run an ensemble of 22 ozone predictions.289

The error statistics for the predicted MDA8 ozone are shown in Figure 6. The ob-290

served AQS NO2 trend results in a mean error of −0.20±0.38 ppb across the CONUS,291

which is statistically indistinguishable from the standard results (−0.09±0.37 ppb) ob-292

tained with the CEDS inventory (shown in Figure 3) and that based on the TCR-2 trend293

(−0.12±0.38 ppb). In contrast, our results indicate that the NEI and Jiang et al. trends294

are statistically inconsistent, with the NEI trend resulting in a larger negative bias of295

−0.87±0.39 ppb and the Jiang et al. trend producing a positive bias of 0.15±0.39 ppb.296

Averaged across the United States, the satellite-based TCR-2 trend produces the small-297

est mean errors in predicted ozone. In a sensitivity test in which we trained the model298

using data from 1980-2005 and predicted MDA8 ozone for 2005-2016, the four trends all299

produced consistent ozone predictions between 2005–2010, but diverged after 2010, with300

the NEI trend producing the largest negative bias in predicted ozone (See Figure S4 in301

the Supplementary Information).302

To investigate whether the satellite observations of NO2 are more representative303

of non-anthropogenic NOx in rural regions after 2010 (Silvern et al., 2019; J. Li & Wang,304

2019), we segregated the predictions into high-NOx and low-NOx regions according to305

whether the average NOx emission in a given grid box is greater than or less than 1×306

1011 molec cm−2 s−1, respectively, following J. Li and Wang (2019). We assume that these307

high-NOx regions are strongly influenced by anthropogenic emissions, whereas the low-308

NOx regions are more representative of background NOx conditions (see Figure S5 in309

the Supplementary Information for the spatial distribution of these high-NOx and low-310

NOx emission regions). As shown in Figure 6, the NOx emissions scaled by the observed311

AQS NO2 trend produce ozone predictions with the smallest error (0.03±0.53 ppb) in312

regions with high NOx emissions. In these high NOx regions the NEI trend results in an313

ozone bias of −0.87±0.37 ppb. For the low-NOx regions, the best performance is ob-314

tained with the Jiang et al. trend, with a bias of 0.06± 0.37 ppb.315

Our results agree with Silvern et al. (2019), suggesting that the satellite-based NOx316

trend in Jiang et al. (2018) is more representative of background NOx conditions. They317

also confirm the finding of Jiang et al. (2018) that the 2005–2015 NEI trend is overes-318

timating reductions in NOx emissions. We find that the more recent satellite-based trend319
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from TCR-2 is relatively consistent with the AQS NO2 trend (in both high- and low-NOx320

regions). As noted in Section 2.3, the TRC-2 satellite-based NOx emission product is an321

update of that used in Jiang et al. (2018), and a key difference between the two prod-322

ucts that could explain the consistency of the TCR-2 and AQS NO2 trends is that the323

TCR-2 product was derived at higher spatial resolution (1.1◦ x 1.1◦ compared to 2.8◦324

x 2.8◦), which offers a better means of discriminating between anthropogenic and back-325

ground NOx. This updated emission product, TCR-2, is in agreement with J. Li and Wang326

(2019) who found that the trend in satellite observations of NO2 is consistent with the327

AQS NO2 data in urban regions, but reflects a more gradual decrease in NO2 in rural328

regions.329

4 Conclusions330

We have developed a state-of-the-art DL model to predict summertime daily MDA8331

ozone in the U.S. The model uses 13 predictors, including large-scale meteorological vari-332

ables and sector-specific anthropogenic emissions of NOx. The model was trained with333

observed summertime MDA8 ozone data from 1980 to 2009 and tested with data from334

2010 to 2014. We found that the model captured well the daily variability in MDA8 ozone335

across the United States, predicting ozone with a correlation of R = 0.88 and a mean336

error of −0.09±37 ppb. Regionally, the model has high predictability of ozone in the337

eastern U.S. and on the west coast (R > 0.85), but low predictability in the Intermoun-338

tain West (R ≈ 0.4).339

We used the model to evaluate trends in NOx emissions between 2005–2014 inferred340

from top-down and bottom-up inventories, in the context of the model predictions of sur-341

face ozone. Our analysis suggested that care is needed in interpreting top-down satellite-342

based emission estimates as the satellite observations are affected by a combination of343

anthropogenic NOx emissions and rural NOx conditions. The trend in the satellite-based344

NOx emission estimates in Jiang et al. (2018) is more indicative of the trend in back-345

ground NOx. However, our results confirm that the recent higher resolution TCR-2 satellite-346

based emission inventory is consistent with the surface NO2 trend in regions of high an-347

thropogenic NOx emissions. The results also confirm that the NEI inventory is overes-348

timating the reduction in NOx emissions after 2010, which Jiang et al. (2018) attributed349

to the growing relative contribution of less-stringently regulated emissions from diesel350

and off-road vehicles not accounted for in the NEI inventory. Our analysis demonstrates351

the potential utility of DL for air quality studies. The DL architecture employed here352

is generic and flexible. It can be utilized to realize other high-dimensional predictions,353

given the spatial and temporal dynamics in the data.354
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Figure 1. Deep learning model to predict JJA MDA8. The model consists of an input layer

with 13 channels for the ozone predictors, eight convolution and three max pooling layers to ex-

tract the dominant features in the data, and three stacked LSTM cells to capture the dynamics

in the data. Compressed data are then passed to transposed convolution layers for projection to

the output layer. The three arrows at the top indicate the residual learning connections that for-

ward the high-resolution features extracted by the encoder to the decoder for better localization

of the features.
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Figure 2. Observed (top left) and predicted (top right) mean JJA MDA8 ozone during 2010–

2014. Also shown (bottom left) is the absolute error (in ppb) for the predicted minus observed

MDA8 ozone. The errors are calculated where the AQS observations are located. Correlation

(R) between the observed and predicted MDA8 ozone in each grid box is shown in bottom right.

Also shown in bottom right are the definitions of the CONUS, Northeastern US, Southeastern

US and the West coast domains in blacked dashed box, black solid box, blue box, and red box,

respectively.
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Figure 3. Observed (blue line) and predicted (orange line) daily (first column), 7-day aver-

aged (second column), and monthly averaged (third column) JJA MDA8 ozone (in ppb) dur-

ing the testing period (2010–2014). Shown are the time series for the CONUS (first row), the

northeast (second row), the southeast (third row), and the west coast (last row). The regional

definitions are shown in Figure 2.
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Figure 4. The changing relationship between MDA8 ozone and NOx emissions for the three

periods: 1986–1990 (red), 2001–2005 (green) and 2010–2014 (blue). Panels (a–c) show the re-

lationship between the AQS ozone observations and NOx emissions, whereas panels (d–f) show

the relationship between the DL-predicted ozone and NOx emissions. NOx emissions and MDA8

ozone levels are smoothed by 4-day averaging windows. Note that the first two periods 1986–

1990 and 2001–2005 are within the training data set, but 2010–2014 is not used in the training

process. The three columns from left to right are results for the northeastern US (a and d), the

southeastern US (b and e), and the southern California (c and f) regions.
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Figure 5. Relative change (normalized to 2005) in annual mean anthropogenic NOx emissions

for the United States from the bottom-up NEI inventory (blue line) and from the top-down in-

ventories from TCR-2 (red line) and Jiang et al. (2018) (green line). Also shown is the trend in

AQS NO2 measurements (orange line).
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Figure 6. Mean error statistics for predicted MDA8 ozone for 2011–2014 for the CONUS

(blue bars) and high-NOx (orange bars) and low-NOx (green bars) emission regions, based on

NOx emissions scaled by the NEI, AQS NO2, TRC-2, and Jiang et al. (2018) trends. Error bars

indicate the standard error on the mean.
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Introduction This file contains supporting information for the main text of ”Deep learn-

ing to evaluate US NOx emissions using surface ozone predictions”. Sections S1, S2 and

S4 discuss the results from a variety of sensitivity tests, based on the experiments in the

main text. Section S3 shows the regional domains used in the ozone-NOx relationship

analysis in the main text, and Sections S5 shows the spatial distribution of the high- and

low-NOx emission regions discussed in the main text.
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Text S1: Sensitivity to model resolution

Figure S1 shows the predicted JJA MDA8 ozone at a model resolution of 3◦ x 3◦. The

errors are larger than for the 1.5◦ x 1.5◦ model, with a mean CONUS error of −0.27±0.08

ppb. As shown in Table S1, the mean errors are −2.63 ± 0.18 ppb, 2.45 ± 0.16 ppb, and

0.95±0.13 ppb for the Northeast, Southeast, and West Coast, respectively. The correlation

between the predicted and observe ozone remain high across the United States (R = 0.87

for the CONUS).
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Text S2: Sensitivity test of the impact of NOx emissions on US MDA8 pre-

dictability

We conducted a sensitivity experiment with the 3◦ x 3◦ model in which we trained

the model with only the meteorological predictors. The results of this experiment are

shown in Figure S2 and Table S1. Using only the meteorological predictors the model

captures well the ozone variability. For the CONUS, the model predicted MDA8 ozone

with a correlation of R = 0.81 with only the meteorological predictors, compared to a

value of R = 0.87 with the meteorological and NOx emission predictors. However, without

accounting for the NOx emissions, the mean error in the predicted ozone is significantly

larger, 4.50 ± 0.11 ppb compared to −0.27 ± 0.08 ppb (as indicated in Table S1).
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Text S3: Regional definition for ozone-NOx relationship analysis

Figure S3 shows the regional domains used for the ozone-NOx relationship analysis in the

main text. To capture the changing regional relationship between ozone abundances and

NOx emissions, we selected the southern California, southeastern US, and northeastern

US domains shown, which are slightly more restricted geographically than the domains

used in Figure 2 in the main text. We chose these more restricted domains to better

isolate the regional ozone-NOx relationships.
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Text S4: Sensitivity to reduced training data

To evaluate the impact of reduced training data, we retrained the 3◦ x 3◦ model from

1980 to 2005, and tested it from 2005-2016. The time series of the predicted and observed

MDA8 are plotted in Figure S4, and the error statistics for 2005-2009 and 2010-2016 are

given in Table S2, respectively. Between 2005-2009, the MDA8 ozone predicted using

the different NOx trends all show good consistency over the US. However, after 2010,

the bottom-up trends of NOx resulted in an underestimation of MDA8 ozone relative to

that from the top-down trends. The divergence is clearly visible in the time series of the

monthly mean errors in Figure S4, with the EPA-based trend clearly producing the largest

RMSE and negative bias after 2010. The results are consistent with those obtained with

the higher resolution model. Even with the reduced training data, for the CONUS for

2010–2014 we obtain the smallest mean error with the TCR-2 trend and the largest error

with the EPA trend.
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Text S5: Spatial distribution of high- and low-NOx emission regions

The 1.5◦ × 1.5◦ grid cells shown as blue boxes in Figure S5 are the cells with high NOx

emissions that were determined following the approach of Li and Wang (2019). These

cells are assumed to be representative of regions with anthropogenic emissions. All other

grid cells in the CONUS domain are defined to be low-NOx emission regions, and are

assumed to be representative of “background” regions in the regional analysis discussed

in the main text. Also shown in the figure is the definition of the regional domains for

the CONUS, Northeastern US, Southeastern US, and West Coast used in the analysis.
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Figure S1. Observed (blue line) and predicted (orange line) daily (first column), 7-day

averaged (second column), and monthly averaged (third column) JJA MDA8 ozone (in

ppb) during the testing period (2010–2014) at a resolution of 3◦ × 3◦.
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Figure S2. Observed (blue line) and predicted (orange line) daily (first row), 7-day

averaged (second row), and monthly averaged (third row) JJA MDA8 ozone (in ppb)

during 2010–2014 with only meteorological predictors. Shown are the time series for the

CONUS (first column), the northeast (second column), the southeast (third column), and

the west coast (last column).
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Table S1. Regional error statistics for the model evaluation in the period of 2010–2014

for the model configured with the meteorological and NOx emissions predictors and for

the experiment using only the meteorological predictors. Shown are the mean errors, the

standard error on the mean (SEM), and the R.

Predictors Meteorological and NOx Meteorological

Region Mean Error ± SEM (ppb) R Mean Error ± SEM (ppb) R

US −0.27 ± 0.08 0.87 4.50 ± 0.11 0.81

Northeastern US −2.63 ± 0.18 0.86 3.78 ± 0.25 0.82

Southeastern US 2.45 ± 0.16 0.88 10.88 ± 0.21 0.86

West coast 0.95 ± 0.13 0.81 5.37 ± 0.16 0.79

Figure S3. Domains for the Northeast, Southeast, and the southern California regions,

which are indicated by the boxes shaded in blue, red and green, respectively. The domains

are used for the ozone-NOx relationship analysis in Figure 4 in the main text.
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Figure S4. Observed and predicted daily mean (left) and monthly mean errors (right)

of MDA8 ozone between 2005–2016 (2005–2015 for Jiang et al.). Shown are the AQS

ozone observations (black line) and the model predictions based on the NOx emissions

scaled by the EPA (blue line), AQS NO2 (orange line), TCR-2 (green line), and the Jiang

et al. (red line) trends.
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Regional definition

Figure S5. The spatial distribution of high- and low-NOx emission regions. High-

NOx regions are indicated as dark blue grid cells. Also shown are the domains for the

Northeast, Southeast, and West Coast regions, which are indicated by the boxes shaded

in red, blue and green, respectively. The CONUS domain is shaded in grey.
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Table S2. MDA8 ozone error statistics for the CONUS for 2005–2009 and 2010–2016

(2010–2015 for Jiang et al.).

2005–2009 2010–2016 (2010–2015 for Jiang et al.)

NOx trend Mean Error ± SEM (ppb) R Mean Error ± SEM (ppb) R

EPA −0.94 ± 0.11 0.83 −2.63 ± 0.08 0.81

AQS −0.72 ± 0.11 0.83 −1.73 ± 0.08 0.81

TCR-2 −0.86 ± 0.11 0.84 −1.33 ± 0.08 0.79

Jiang et al. −1.04 ± 0.11 0.82 −1.24 ± 0.08 0.81
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