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Abstract

High water cut has been an issue in the Delaware basin for many years now. Volume of produced water continue to increase,

resulting in adverse environmental impacts and higher reservoir-management costs. To address these problems, a data-driven

workflow has been developed to pre-emptively identify the high water-cut wells. The workflow uses unsupervised pseudo-rock

typing followed by supervised classification trained on well logs from 17 wells in the Delaware basin. The workflow requires a

suite of 5 well logs from a 500-ft depth interval surrounding the kick-off points of these wells, which includes 200 ft above and

300 ft below the KOP. First, the well logs are clustered into 5 pseudo-rock types using multi-level clustering. Using statistical

features extracted from these 5 pseudo-rock types, 3 supervised classifiers, namely K-nearest neighbor, support vector machine,

and logistic regression, are trained and tested to detect the high water-cut wells. Over 100 cross validations, the 3 classifiers

perform at a median Matthew’s Correlation Coefficient (MCC) of 0.90. The kurtosis of the neutron porosity log response of

the pseudo-rock type A0, interpreted as a shale lithology, is the most The submitted paper is currently under review. Dr. Sid

Misra is the lead investigator on this topic. informative/relevant signature associated with high water cut. Next, the presence

of pseudo-rock type A1, interpreted as high-permeability lithology, is an informative signature of low water-cut wells. The

kurtosis of the density porosity log response of the pseudo-rock type B0, interpreted as carbonate lithology, and the presence

of pseudo-rock type B1, interpreted as a tight sandstone lithology, serve as informative signatures for differentiating high water

cut wells from low water cut wells.
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Abstract 

High water cut has been an issue in the Delaware basin for many years now. Volume of 

produced water continue to increase, resulting in adverse environmental impacts and higher 

reservoir-management costs. To address these problems, a data-driven workflow has been 

developed to pre-emptively identify the high water-cut wells. The workflow uses unsupervised 

pseudo-rock typing followed by supervised classification trained on well logs from 17 wells in 

the Delaware basin. The workflow requires a suite of 5 well logs from a 500-ft depth interval 

surrounding the kick-off points of these wells, which includes 200 ft above and 300 ft below the 

KOP. First, the well logs are clustered into 5 pseudo-rock types using multi-level clustering. 

Using statistical features extracted from these 5 pseudo-rock types, 3 supervised classifiers, 

namely K-nearest neighbor, support vector machine, and logistic regression, are trained and 

tested to detect the high water-cut wells. Over 100 cross validations, the 3 classifiers perform at a 

median Matthew’s Correlation Coefficient (MCC) of 0.90. The kurtosis of the neutron porosity 

log response of the pseudo-rock type A0, interpreted as a shale lithology, is the most 
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informative/relevant signature associated with high water cut. Next, the presence of pseudo-rock 

type A1, interpreted as high-permeability lithology, is an informative signature of low water-cut 

wells. The kurtosis of the density porosity log response of the pseudo-rock type B0, interpreted 

as carbonate lithology, and the presence of pseudo-rock type B1, interpreted as a tight sandstone 

lithology, serve as informative signatures for differentiating high water cut wells from low water 

cut wells. 

1 INTRODUCTION 

1.1 Background 

The widespread implementation of hydraulic fracturing and lateral drilling has led to vast 

expansion of drilling in the Permian basin. This boom in oil and gas production was 

unexpectedly followed by high water production. The percentage of water produced from a 

hydrocarbon well is commonly referred to as a “water-cut.” A study found that out of 10,000 

shale-oil, unconventional wells in the Permian basin, a quarter of them have water-cuts as high 

as 70% [1]. This is particularly an issue in the western-most portion of the Permian basin, the 

Delaware basin. In the Delaware, water-to-oil ratios reach as high as 10:1 [2]. This produced 

water has become a huge logistical issue for operators in the region as water management fees 

continue to rise, with IHS Markit estimating a cost of $12.2 billion to Permian operators in 2018.  

 

1.1.1 Motivation 

The unit cost rise for a barrel of produced water is over $5.00/bbl [2]. If cost increases continue 

as projected, approximately 20% of all unproduced barrels of oil in the Permian will become 

non-commercial. Reusing the produced formation water has the potential to offset some of the 
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water management costs, but in exceptionally high water-cut wells operators are unable to 

reinject all produced volumes at a low cost [2]. High water-cut wells produce excess water, 

containing oil residues, sand or mud, naturally occurring radioactive materials, fracking chemicals, salts, 

and organic compounds. There are environmental concerns surrounding the produced water from the 

Permian. These produced waters have failed chemical examinations to determine safety levels for 

drinking and irrigation [3]. The reinjection of produced water into the subsurface through saltwater 

disposal (SWD) wells is a common water-management approach [4]. Some propose to inject these fluids 

into the deeper Ellenberger formation; however, there is a danger of inducing seismic activity in the 

region [4].  High water-cut wells are susceptible to adverse conditions, such as corrosion, scaling, salt 

deposition, asphaltene/wax deposition, and culminating with the need for safe water storage, management 

and disposal. Excess water production from oil wells in shale plays has large-scale adverse environmental 

consequences. There is no fundamental understanding & scientific consensus on the factors and processes 

influencing the water cuts of wells drilled in the Delaware Basin and several other U.S. shale plays.  

 

1.1.2 Objective 

In order to help mitigate issues of water management and potential environmental hazards, a 

data-driven workflow has been designed with the intention of preemptively detecting the high 

water-cut wells before production. Should an operator have reliable insight into a well’s potential 

water-cut, they will be able to make an informed decision on the economic viability of the given 

well and better determine what is in their best interest. In addition to the data-driven workflow, 

we investigated the geologic factors which may be contributing to high water-cuts in the 

Delaware basin. As an extension from previous work [5], this data-driven workflow utilizes 

unsupervised learning for the purposes of predicting pseudo-rock types from well log data. These 
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pseudo-rock types significantly improve the robustness and geological consistency of the 

subsequent detection of high water-cut wells using supervised learning.  

1.2 Well Log Suite 

This data-driven workflow uses depth-based well logs to train unsupervised learning methods to 

predict the pseudo-rock types. Following that, statistical features extracted from well logs for 

each pseudo-rock type are used in the supervised learning for relating these statistical features 

with the target derived from production data. The well log suite which has shown reasonable 

success is the conventional “triple combo” well log suite, which is available in several wells 

drilled in the Permian basin. The triple combo log suite consists: Gamma ray (GR), porosity, and 

resistivity. The porosity logs used in the data-driven workflow are density porosity (DPHI) and 

neutron porosity (NPHI). The resistivity logs are shallow resistivity (ILS) and deep resistivity 

(ILD). This well log suite is popular due to the fact you can gain relatively deep insight into the 

rock properties of your target using a small amount of well logging tools. Gamma ray provides 

lithology information based on radioactive material within the rock body, which is closely 

associated with clay content and shale volumes. The porosity logs provide information on the 

storage available for subsurface fluids to saturate the pores of the target rock bodies. Neutron 

porosity can serve as an indicator of clay-bound water. The resistivity logs detail the fluid 

saturation of the rock body based on the inverse of its conductivity. The separation between 

shallow and deep resistivity logs serve as an indicator of the permeability of the formation. 

 



 

The submitted paper is currently under review. Dr. Sid Misra is the lead investigator on this topic.  

1.3 Production Data and Produced Water Volume 

The production data from the horizontal wells in the Delaware basin data set is used to generate 

the target, which is a categorical variable based on the relative volume of water production with 

respect to total volume of fluids produced from a well. Such a target is essential for the 

supervised learning required to relate the well-log based, pseudo-rock type specific statistical 

features to the target. For the desired task of detecting high water-cut wells, the target is either a 

high water producer (HWP) or low water producer (LWP). Due to the fact the wells are located 

in Texas, the water produced from each well is not reported. To remedy this lack of information, 

the water volumes were calculated based on the number of barrels of water produced for each 

well during well tests. Well tests within a lease are averaged and then approximated to a 

synthesized volume of water for the lease. This lease-sized volume of water is allocated to each 

well based on its calculated water-cut percentage. Although it is not reported water volume, this 

method of calculation has been tested on a blind spot-check basis and has proven to be very 

accurate.  

 

1.4 Target Label Definition 

From the calculated water volumes, 4 different time intervals were used to calculate the water 

production ratio (WPR). These 4 different time intervals are: 2 months, 6 months, 1 year, and 2 

years of production from the beginning of a well’s production. The amount of oil, gas, and 

calculated produced water was provided for each of these time intervals. The production values 

from these 4 separate time intervals were averaged, then using the following formula (eq. 1) the 

WPR is calculated for each well: 
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 𝑊𝑃𝑅 =
𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑊𝑎𝑡𝑒𝑟

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝐹𝑙𝑢𝑖𝑑
 (eq. 1) 

Once the WPR is calculated, thresholds were used to define two primary well classes as the 

target: High water producer (HWP) and low water producer (LWP). A HWP is defined as any 

well with a WPR greater than or equal to 0.70 and a LWP is defined as any well with a WPR 

lower than 0.50.  

 

2 METHODOLOGY 

2.1 Generalized Workflow 

The generalized proposed workflow is presented in Fig. 1. Our proposed workflow consists of 

two primary portions: the target definition and the feature definition. The target definition is 

discussed in section 1.4.  The feature section of the workflow is split into the following 

components: well log extraction, log transformation, outlier detection, multilayer clustering, and 

feature extraction. This workflow was designed to use unsupervised learning to automatically 

cluster the well log samples, which are sampled at every ½ foot typically, into separate pseudo-

rock type. The purpose of the clustering procedure was to determine which rock properties best 

described and separated the lithologies within our interval of interest. Once the lithologies were 

determined, features were extracted with respect to each pseudo-roc type and some additional 

features based on depth. These features are designed to describe petrophysical properties on a per 

pseudo-rock type per well basis. These extracted features were then used to train supervised 

learning methods to classify and predict whether or not a given well will be a HWP or an LWP. 
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2.2 Kick-Off Point Calculation 

The interval of interest within the logged wellbore section of the wells in our data was 

determined by trial and error. By testing the predictability of features extracted out from well 

logs from various regions of the wellbore, it has been determined that the depth intervals nearest 

to the kick-off point (KOP) are the most effective descriptors for predicting relative water 

production. The typical definition for the KOP, and the definition used in this analysis, is the 

point at which a vertical wellbore begins transitioning into the horizontal wellbore. To automate 

this process and reduce user bias, the KOP was calculated algorithmically for each well. Using 

Fig. 1: Generalized data-driven workflow designed to utilize unsupervised 

learning in combination with supervised learning to preemptively detect the 

high water-cut wells. 
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trajectory data available, the inclination of the drill-bit was used as a guide to determine how 

horizontal the wellbore was at any depth. The depth of the KOP must be calculated in measured 

depth (MD), as opposed to true vertical depth, due to the fact well logs are presented in MD as 

well. The method of calculation used counts the number of depth samples in a row where the 

inclination is greater than 20 degrees, where 0 degrees is vertical. There are many variations in 

wellbore type in the Delaware basin, however this method has proven to be reliable in KOP 

calculation.  

 

2.3 Interval of Interest 

In our previous study [5], it was determined that the most informative features extracted from 

well logs in differentiating HWPs and LWPs were taken from the region nearest to the KOP in a 

given wellbore. Building off of these results, the well log data chosen to prioritize in this data-

driven workflow also surrounds the KOP. The interval of interest of a given wellbore consists of 

500 ft of well log data, using 200 ft of well log data above the KOP and 300 ft below the KOP. 

As well log readings are taken at every ½ foot interval, this depth interval provided us with 1000 

samples of rock data from each well. Requiring this exact region of the wellbore to have well log 

data available resulted in the data set of 17 wells which were utilized in this analysis. Both 

intervals of interest are illustrated in Fig. 2.  
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2.4 Data Processing 

2.4.1 Scaling and Transforming Data 

As with any machine learning workflow, it is optimal to perform feature engineering steps to 

construct the data into something resembling a Gaussian distribution centered at 0. This is 

necessary due to underlying assumption of a Gaussian distribution which most machine learning 

algorithms make. To accomplish this, two common feature engineering functions are utilized in 

this workflow: a Z-score transform and the Yeo-Johnson transform. The Z-score transforms the 

data utilizing eq. 2 where a given sample is represented by x, the mean of the feature is 

Fig. 2: Illustration of region(s) from where well log data was extracted. 200 ft 

from above kick-off point and 300 ft below the kick-off point were used in 

this data-driven workflow. 
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represented by μ, and standard deviation of the feature is represented by σ. Essentially, this 

transformation scales the data with respect to the mean and standard deviation of a given 

feature’s distribution and grades a sample based on the number of standard deviations it lies from 

the mean [6]. This determines what is called the Z score for a sample, which is then used as the 

sample’s new position or value in the feature’s distribution. 

 𝑍 =
𝑥−𝜇

𝜎
 (eq. 2) 

The Yeo-Johnson transform has a similar goal, although it is more specifically focused on 

improving symmetry of a given data set [7]. The Yeo-Johnson transform is a modification of the 

Box-Cox transformation which allows for negative input values, something that the Box-Cox 

does not allow. Both Yeo-Johnson and Box-Cox use a parameter λ, which determines what 

direction the feature’s distribution is currently skewed towards and how it will be reshaped 

accordingly. This parameter is typically estimated by calculating the maximum likelihood of 

each unique feature, independently, and then transforming that feature. The Yeo-Jonhson 

transform takes the following form (eq. 3): 

            𝜓(𝜆, 𝑥) =

{
 
 

 
 {(𝑥 + 1)𝜆 − 1}/𝜆 

log (𝑥 + 1)

−{(−𝑥 + 1)2−𝜆 − 1}/(2 − 𝜆)
−log (−𝑥 + 1)

     (𝑥 ≥ 0, 𝜆 ≠ 0),
      (𝑥 ≥ 0, 𝜆 = 0),
      (𝑥 < 0, 𝜆 ≠ 2),
      (𝑥 < 0, 𝜆 = 2).

 (eq. 3) 

Researchers have tested several data-preprocessing schemes for purposes of supervised learning 

on well logs [29].  

 

2.4.2 Outlier Detection 

Outlier samples will cause shifts in the distributions of unsupervised clusters, due to potentially 

noisy data. To remove this noisy data, an isolation forest algorithm is utilized to detect outliers. 
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The principal assumption of the isolation forest algorithm is that outlier samples are few and 

different from the rest of the sample set. Outlier samples mostly reside in lower-density regions 

of the sample space. Using this assumption, the isolation forest algorithm begins creating a 

forest-styled hierarchy where samples are grouped by common characteristics and are separated 

by more and more criteria as the forest gets deeper. The outlier samples, in theory, will remain at 

the beginning of the forest near the top because outliers are easy to isolate by portioning the 

sample space using feature thresholds [8]. Outliers remain at the top of the forest due to the fact 

that they will have less in common with other samples than actual signal data points. Once 

outlier samples, or contamination samples, are determined they are cast out of the data set. More 

information about outlier detection for well logs has been presented by Misra et al. [25].  

 

2.5 Multi-Level Clustering 

We apply clustering in two levels to generate the pseudo-rock types. Each level of clustering 

applies two distinct clustering methods. Comparison of the clusters generated using the two 

distinct methods based on the degree of overlap/similarity between the clusters enables the 

creation of final clusters for a given level. In our study, the first level of clustering generates two 

final clusters, while the second level generates five final clusters. Similar multi-level clustering 

has been applied for visualizing the carbon dioxide content in a injection reservoir for purposes 

of carbon geo-sequestration [26].  

 

2.5.1 K-Means Clustering 

For the purposes of predicting pseudo-rock types, this workflow utilizes two unsupervised 

clustering algorithms. The K-Means algorithm applies a process of partitioning a population of 
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N-dimensions in to k sets [9]. K-Means determines k initial cluster centers, where k is defined by 

the user, and then each cluster center is refined to be the mean of constituent samples within 

similar clusters [10]. Each sample is then assigned to its closest cluster center, and thus cluster 

label. This process is iteratively refined until there are no further changes in samples to clusters. 

 

2.5.2 Spectral Clustering 

The second unsupervised algorithm by which pseudo-rock type was predicted is spectral 

clustering. This method of clustering utilizes the eigenvectors of a matrix which has been derived 

from the distances between samples [11]. In the d-dimensional space, where d is the number of 

eigenvectors, the eigenvectors construct a geometric representation of the data which is then 

partitioned heuristically [12]. Using the eigenvectors in this manner allows to reduce the problem 

from graph partitioning to vector partitioning. 

 

2.6 Cluster Validation 

2.6.1 Silhouette Score 

In order to evaluate the robustness of the generated clusters, methods of cluster validation were 

necessary to be incorporated into the workflow. This analysis utilizes two primary methods of 

cluster validation: silhouette score and comparison of different unsupervised algorithms. Several 

other evaluation metrics have been applied in the past on subsurface data for purposes of 

evaluating the robustness of the clustering results [26]. The silhouette score is a metric which is 

calculated after an unsupervised algorithm has been allowed to cluster a data set. This metric 

calculates the intra-cluster distance and the inter-cluster distance for every sample in the data set 
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[13]. These values are both averaged with respect to all samples within each cluster and the 

difference between the average values are used to generate a value ranging from -1.0 to 1.0. An 

illustration of a silhouette score plot is shown in fig. 3. 

 

 

2.6.2 Comparison of Different Algorithms 

Our second method of cluster evaluation is comparing different unsupervised algorithms. The 

two algorithms used to cluster the well log data are K-Means and spectral clustering. These two 

algorithms were allowed to cluster the samples simultaneously and separately. Once clustered, 

Fig. 3: Illustration of silhouette score plot, where the dashed yellow line 

represents the average silhouette score for the entire data set with the given 

clusters. 
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the clusters can be visualized and compared side-by-side to compare cluster distributions in 

feature-space. It can be inferred that if two independent clustering algorithms based on distinct 

mathematical/optimization strategy generate a similar boundary between n number of clusters, it 

provides good indication that the clusters generated are robust signals and not randomly 

generated noise. This is illustrated in fig. 4 where the results of K-means are compared to the 

results of spectral clustering for n = 2 clusters in a reduced 2-dimensional feature space. 

 

 

2.7 Clustering Results 

To begin applying the multi-level clustering, all 17 wells were treated as one continuous well; in 

other words, we mixed the data from all the wells. We had 1000 samples per well. Therefore, 5 

log responses from approximately 17000 depth points (samples) were available for the 

clustering. For the first level of clustering, both the spectral clustering and the K-Means 

Fig. 4: Comparison plot of K-Means clustering and spectral clustering given n = 2 

clusters, where the blue represents cluster 1 and pink represents cluster 2. The plot 

is presented on a reduced 2-dimensional feature space for visualization purposes.  
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clustering algorithms preferred to split the data set into two major rock types: A and B. Both of 

these two clusters contained a relatively large sample size, such that A has 10,000+ samples and 

B has 4,000+ samples. Out of 17000 samples, close to 1000 samples were removed because the 

two distinct clustering methods exhibited disagreement for these 1000 samples.  

 

Clusters A and B were further subdivided into A0, A1, A2, B0 and B1 using the second level of 

clustering without re-scaling the features.. Based on silhouette scores and agreement between K-

Means and spectral clustering algorithms, cluster A best divided into three sub-clusters. These 

clusters are named A0, A1, and A2. Similarly, cluster B divided into two sub-clusters: B0 and 

B1. The results of this multilayer clustering scheme are displayed for 5 HWPs and 5 LWPs in 

fig. 5 below. 

 



 

The submitted paper is currently under review. Dr. Sid Misra is the lead investigator on this topic.  

 

 

2.8 Clustered Feature Extraction 

Once all the samples were assigned a cluster, the feature extraction process began. The features 

for training supervised models needed to be defined on a well-by-well basis. Thus, the clustered 

Fig. 5: Plot of the distribution of predicted lithologies from multilayer clustering 

process throughout the logged intervals for five high water producing wells (left 

half) and five low water producing wells (right half) randomly selected from the 

entire dataset. 
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samples were redistributed back into their respective well. Features extracted took various forms. 

The first feature and the simplest was a binary feature which determined whether or not one of 

the 5 predicted clusters, or lithology types, was present in a given well. If this a cluster was 

classified as “present” in a well, the feature extraction process based on the given cluster was 

continued. If a cluster was not present in a given well, all subsequent features associated with 

that cluster are set to 0. 

 

When a cluster is present in a well, a secondary check is applied for that cluster to determine 

whether or not there are at least 30 samples of this cluster in the given well. If this secondary 

check is passed, statistical summary parameters are extracted out from each well log with respect 

to the given cluster. These summary parameters consist of: mean, median, variance, kurtosis, 

root-mean square, skewness, and inter-quartile range. Each of these summary parameters were 

extracted to describe each well log within each cluster, granted there was sufficient sample 

count.  

 

In addition to log-based features, depth-focused features were also extracted to determine if there 

was some correlation between relative depth of clustered lithology within a well and high water-

cuts. In order to standardize depth measurements, depth was normalized with respect to each 

well’s own KOP. Thus, the deepest depth is 300 ft from the KOP in the positive direction while 

the shallowest depth is 200 ft from the KOP in the negative direction. Depth-focused features 

were extracted on a cluster-by-cluster basis within a well, just as the log-based features were 

extracted. Similarly, statistical parameters were extracted based on relative depth measurements 

within a cluster. For example, the mean depth for cluster A1 would be calculated with respect to 
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a given well provided it had sufficient sample count of the A1 cluster. Each cluster’s sample 

count was calculated, regardless if there was a minimum of 30 samples within a well, with 

respect to sliced depth intervals. The total depth interval was divided into five parts of equal 

thickness and each cluster’s sample count was taken within that depth interval. 

 

2.9 Feature Reduction 

Once the feature extraction process was completed, there was a total of 255 features to use for 

supervised learning needed to relate the features to the target. Naturally, not all of these features 

will be useful for identifying the high water-cut wells. These features needed be reduced in order 

to optimize the predictive performance of the models which will be used to classify the wells in 

this data set. To accomplish this goal, three primary methods were utilized to reduce the feature-

set: a One-Way ANOVA, Pearson’s Correlation Coefficient, and Mutual Information score. 

 

The first method, the One-Way ANOVA (analysis of variance) F-test is a standard statistical test 

which is capable of calculating correlation between continuous variables, such as most of the 

features in our data set, and discrete target labels, or our well classes. The F-test generates two 

linear regression models, where one is built with randomly selected constants assigned to a 

feature and another which one constant attached to a feature. If both of these models produce 

similar results, the null hypothesis is accepted and there is no statistical significance between the 

chosen feature and the target label [14]. This simple test generates two values which describe 

statistical significance: the p-value and the F-value. Both of these two values are highly 

correlated with one another and generally, a p-value ≤ .05 and a F-value ≥ 1.0 are considered to 
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be statistically significant. However, in the context of this workflow only the p-value is utilized 

and the threshold which we reduce features by varies depending on an algorithm’s prediction 

accuracy from the resultant feature set. 

 

The second method utilized to reduce the feature set is mutual information (MI). MI is a metric 

which calculates the shared dependency between two variables, features and target. The MI 

between feature and target is calculated based on a joint probability density function between 

two variables and each variable’s marginal probability density functions [15]. This is a metric 

which can be applied to both continuous and discrete variables, which is ideal as the data set 

contains both types of variables in the feature set. Put simply, a high MI value indicates high 

dependency between two variables and a low MI value indicates a more independent relationship 

between features. With this in mind, a threshold was applied to remove the features that have low 

MI score. The optimal MI threshold value varied depending on the supervised learning method. 

 

The third method which is used for feature reduction is the Pearson’s Correlation Coefficient 

(PCC). The intended result of filtering based on PCC is to reduce redundancy within the data set 

by removing features which are highly collinear to other features in the data set [16]. If two 

features are highly collinear, it can be assumed that they are sharing approximately the same 

information to the ML algorithms. The PCC generates a value ranging from -1.0 to 1.0, where 

1.0 is perfectly collinear while -1.0 is perfectly collinear with a negative relationship. In the case 

of this workflow absolute values were utilized as we were only concerned with collinearity, as 

opposed to negative versus positive relationships.  
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2.10 Supervised Learning 

2.10.1 K-Nearest Neighbors 

This workflow utilized three supervised ML classifiers to preemptively identify the high water-

cut wells: K-Nearest neighbors (KNN), support vector machine, and logistic regression. The 

KNN classifier utilizes the Euclidean distance between samples in feature-space to determine 

samples that belong to the same class [17]. This algorithm is dictated by the number of 

neighbors, n, which is specified to constitute a neighborhood within which the distances are 

calculated for purposes of assigning a class to a sample. Depending on which sample class has a 

“majority vote” within a neighborhood, this algorithm generates a model with a defined 

boundary used to assign that neighborhood to be descriptive of a sample class. 

 

2.10.2 Support Vector Machine 

The second supervised algorithm utilized in this workflow is the support vector machine (SVM). 

This algorithm is designed for two-group classification problems. With a SVM, input vectors are 

mapped non-linearly to a feature space with high dimensionality or many features [18]. Using 

this strategy, the SVM algorithm generates a decision boundary designed to maximally separate 

both sample classes. While this algorithm can be extended to create hyper-planes of high 

dimensionality, a linear decision boundary has proven to have the best results in this study 

because of the small dataset size. 
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2.10.3 Logistic Regression 

The third supervised algorithm used to predict well classification in this workflow is the logistic 

regression. Modified from its predecessor the linear regression, the logistic regression is 

designed to produce binary outputs [19]. The logistic regression algorithm transforms continuous 

data to discrete classes using a sigmoid function bounded between values 0 and 1. The logistic 

regression model assigns a weight to each feature in the data set. Then the weights of these 

features are passed through the sigmoid function, where all samples will fall on a value between 

1 and 0. A boundary is determined to separate each both classes which is then used to predict 

sample class based on the maximum log-likelihood distribution [20]. 

 

2.11 Training the Supervised Models  

In order to better estimate the predictability of models generated, cross-validation technique was 

utilized. Cross-validation allowed us to determine the efficacy of produced models on various 

training and testing samples. Cross-validation takes the entire sample pool of a data set and splits 

it into separate, typically equal folds. The optimal number of number of folds determined for this 

approach was 5. With a 5-fold setup, the data from wells are split into 5 different folds. 4 of these 

5 folds are used to train the supervised ML model, while the remaining fold is used to test the 

model’s ability to predict well class. Owing the small dataset size, cross validation was 

performed multiple times to get a well-rounded statistical representation of how well these 

features can be utilized to identify the categories of water cuts, HWP vs. LWP. In this workflow, 

the cross-validation procedure is performed 100 times for each of the three supervised ML 

algorithms. 
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During each cross-validation iteration, the hyper-parameters of the given supervised algorithm 

are being optimized. These hyper-parameters are attributes of each algorithm which dictates the 

manner in which they learn. Optimizing the hyper-parameters was a key component to producing 

models which can most accurately predict the water cuts. The method used for hyper-parameter 

optimization in this workflow was the grid search method [21]. Using grid search, we provide 

the algorithms with a wide array of hyper-parameters to use in a series of trials. During these 

trials, every combination of hyper-parameters is tested to find which setup produces the best 

results. The best set of hyper-parameters was preserved after the trials and used to train and then 

predict well class from our features. 

 

Each model generated from the supervised algorithms are evaluated using Matthew’s Correlation 

Coefficient (MCC). The MCC score is a robust classification evaluation metric which quantifies 

a traditional confusion matrix into a numeric value ranging from -1.0 to 1.0, where 1.0 is a 

perfectly correct score and -1.0 is perfectly incorrect predictions [22]. The confusion matrix 

consists of four quadrants which describe predictions of a classifier: True positive (TP), true 

negative (TN), false positive (FP), and false negative (FN). The MCC score quantifies these 

quadrants using the following eq. 4: 

 𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (eq. 4) 

 

2.12 Feature Ranking Procedure 

One of the primary goals of producing this workflow is to determine what underlying geological 

factors are contributing to the high water-cuts in the Delaware basin. In order to determine these 
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factors, it was necessary to investigate which features from the data set contributes the most 

information to our predictive models. To determine these most informative features, a process 

known as permutation testing is utilized [23]. This process takes one supervised model with 

known results and retrains and tests the model with an altered feature set. The altered feature set 

has every feature removed one at a time and the performance on each feature set is evaluated 

with the MCC metric. If a feature is important to the model’s predictability, there will be a 

noticeable change in the model’s MCC score when that feature has been removed through 

permutation testing. Several researchers have used extensive feature ranking schemes [27,28]. 

 

In order to get a wide understanding of what features are contributing to various models 

generated from these supervised algorithms, it was beneficial to perform permutation testing on 

models with varying MCC scores, or success rates. In order to achieve diversity in models, a 

resampling procedure from the models generated during cross-validation was utilized. A pool of 

20 models were extracted from the 100 models generated during cross-validation. The median 

MCC score of these 20 models was calculated and compared to the median MCC score of the 

entire set of 100, which was 0.90. If the median MCC score of the set of 20 sampled models was 

greater than 0.85, the set of 20 was resampled until the median MCC score became less than 

0.85. This limitation to the sampled pool was incorporated to ensure that there were less optimal 

models with more variety included in the sampled pool of 20 models. This process was 

performed for all three supervised algorithms to determine the most informative features when 

differentiating our two well classes. 
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The most informative features needed to be cumulatively ranked across many models and 

algorithms. In order to cumulatively rank them, they were first ranked model-by-model within 

each of the three respective algorithms. First, the features were ranked using a system used in our 

previous study [5] which incorporates ranked informativeness of a feature along with its 

frequency across multiple generated models. The following equation 5 was used to rank features 

from the 20 sampled models: 

 𝑅𝑓 =
∑ 𝑅𝑖
𝑛
𝑖

𝑓𝑖∗100
 (eq. 5) 

where Ri represents the relative rank for a feature within one of the 20 models sampled for an 

algorithm, and  fi represents the frequency with which the feature displays significance through 

permutation importance, which is scaled by a factor of 100 to provide weight to features which 

occur more frequently across multiple models. The Rf represents the final rank within the set of 

20 sampled models for one algorithm. Once a set of 8 to 10 most informative features was 

determined from a given algorithm, the same eq. 5 was used to calculated a global rank across all 

three supervised algorithms. 

 

3 RESULTS & DISCUSSION 

3.1 Supervised Classifier Performance 

The results produced by the 3 supervised algorithms are interestingly all comparable. Over 100 

iterations of cross-validation, each of the 3 supervised algorithms produce an MCC score 

distribution with a median value of 0.90. Another point which should be mentioned is that the 

lowest MCC score for any models produced through the described methods is at least 0.70. This 
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provides confidence that the features produced through unsupervised lithology clustering convey 

important information for differentiating HWPs from LWPs. Granted that these features prove 

similar effectiveness for predicting HWPs and LWPs across different supervised algorithms, it 

can be assumed that the results produced from these three relatively simple ML algorithms can 

be improved with more complex learning systems with large dataset size is available. The 

performances of all three supervised algorithms are displayed in table 1, below. Both logistic 

regression and support vector machine outperform k-nearest neighbors by the narrowest of 

margins, when comparing their mean MCC scores. 

  

 

3.2 Top 10 Ranked Features 

The results from the permutation testing procedure are displayed in Table 2, where the top 10 

most informative features across all algorithms are shown. Across all three algorithms the most 

informative feature was the kurtosis of the neutron porosity (NPHI) log within the A0 lithology. 

The second most informative feature to the supervised models is the presence of the A1 

lithology. This feature is one of the binary checks that simply detect any presence at all of a 

sample labeled the given lithology. The third most informative feature to the supervised models 

is the kurtosis of the density porosity (DPHI) within the B0 lithology. Features ranked 4 through 

Table 1. Results of supervised algorithm performances (Matthew’s Correlation 

Coefficients [MCC]) for 100 cross-validation training and testing iterations.  
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10 are various features involving the B1 lithology. The difference in statistical significance 

between the B1 cluster’s features and the top 3 ranked features is clear in the sense that every 

almost every model found the top 3 to be overwhelmingly significant. The exception to this 

would be the KNN algorithm, which did find the root-mean square of the gamma ray log to be 

ranked third. 
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Delaware Basin Cumulative Ranked Features for  

K-Nearest Neighbors, Logistic Regression, and 

Support Vector Machine 

Feature Rank 

A0_NPHI_Kurtosis 1 

A1Present 2 

B0_DPHI_Kurtosis 3 

B1_GR_rms 4 

B1icount3 5 

B1_DPHI_rms 6 

B1_GR_Variance & B1_ILD_mean 7 

B1gr30 8 

B1_ILD_median 9 

B1_ILD_rms 10 

 

 

3.3 Lithology Interpretation of Unsupervised Clustering 

In order to better understand the physical meaning behind each of the 5 pseudo-rock type 

generated by unsupervised clustering, it was necessary to investigate the well log signature for 

each rock type. To best characterize the clusters, the centroids of each cluster were calculated. 

The centroid in this case was the arithmetic average of each well log within each cluster. It is 

important to note that the well log data in its final form is scaled and transformed by the means 

described in section 2.4.1. This scaling at this stage of the workflow resulted in notable loss of 

Table 2. List of the top 10 most informative features for the preemptive detection of 

high water-cut wells, determined by the permutation testing procedure. Ranked from 

highest importance (#1) to lowest importance (#10).  
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resolution. It was still possible to make some geologic interpretations of the pseudo-rock types 

based on their relative centroid in the three major axes of this workflow’s utilized well log suite: 

porosity, resistivity, and gamma ray. The centroids along these major axes are illustrated in Fig. 

6, where deep resistivity vs. average apparent porosity is plotted and the sizes of the points are 

scaled with respect to gamma ray signature. Other such 2D plots were tested but the one that 

generate a clear differentiation between the clusters is shown in Fig. 6. 

 

 

Fig. 6: Plot of the 5 predicted pseudo-rock types resulting from the multilayer 

clustering process. Size of the markers are scaled with respect to the gamma ray 

(smaller = lower GR signature). All features in this plot (Average porosity, deep 

resistivity, and gamma ray) are scaled with respect to the data set, where 0.0 

represents the mean of each feature. 



 

The submitted paper is currently under review. Dr. Sid Misra is the lead investigator on this topic.  

 

Starting with the original 2 principal clusters A and B, it is quite evident upon inspecting the 

results of Fig. 6 that the multi-level clustering created clusters which have decent separation in 

all three of the major petrophysical properties in study. Cluster A can primarily be described as a 

lithology that has lower-than-average resistivity and high gamma ray signature with high 

apparent porosity. Neutron porosity values are large for shale rich formation because of large 

volume of clay-bound water and structural water in clays. Considering that our target formations 

are the bone springs sands and the Wolfcamp shale it is quite likely that cluster A can be 

considered a shaley rock which is relatively highly saturated with brine. Breaking this cluster 

down further, sub-cluster A2 appears to be much more heavily saturated with brine and 

conductive clays than any other pseudo-rock types. The low values of deep resistivity in this 

region are relatively indicative of brine saturation and clays as this will make the rock body more 

conductive than fresh water or hydrocarbon. The cluster A0 presents a very strong shale signal 

with its high GR signature, which is the highest out of all the sub-clusters of primary cluster A. 

Examining the resistivity signature from A0, it is likely that this lithology is the producing 

lithology of the Wolfcamp shale. The mean apparent porosity values for A0 are well above the 

mean of all the porosities in the sample pool. The A0 cluster is also the overwhelmingly largest 

out of all the predicted lithologies. 

The A1 lithology is perhaps the most peculiar out of the 5 pseudo-rock types. The mean apparent 

porosity values of this lithology are not too different from lithology A0, but the resistivity and 

GR readings are significantly different. For every other predicted lithology, the deep resistivity is 

less resistive than the shallow resistivity, or nearly the same average value. This is not the case 

for the A1 lithology, in fact the opposite is the case. Within the A1 cluster, the mean shallow 
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resistivity value is nearly a standard deviation less than the average, while the deep resistivity is 

very close to the average expected value for deep resistivity of our samples. This separation 

between ILD and ILS could be indicative of a high permeability rock or mud-cake invasion into 

the formation. Though the invasion hypothesis is unlikely the case as using oil-based mud in the 

Delaware basin is by far the most common mud type. The presence of the A1 lithology being in 

the interval of interest is a strong predictor between HWPs and LWPs. Seven out of 9 low water 

producers have this lithology present in the interval of interest, so it is clear as to why this would 

be statistically significant. However, 2 out of the 8 HWPs in the data set also have this lithology 

present. Given that this lithology is mostly common in the LWPs, it provides evidence that this 

ILS and ILD separation could be indicative of a highly permeable oil producing rock. The 

gamma ray values for this lithology are just slightly higher than the average GR value expected 

amongst all the samples, so this is likely a dirty or shaley sandstone. 

 

The primary cluster B seems to be characterized as low gamma ray, low apparent porosity, and 

high resistivity rocks. Differentiating between subclusters B0 and B1 is tricky, as there is 

significant separation in all three of the well log axes. The combination of very low gamma ray 

signature and high resistivity values characterizing the B0 lithology is typically indicative of a 

carbonate rock. The noticeable drop in porosity between B1 and B0 could also indicate that B0 is 

characterizing carbonates as certain carbonate rocks tend to deposit in thick beds with very little 

porosity. The gamma ray increase going from the centroid of B0 to B1 is likely indicative of a 

sandstone body. The increase in porosity as well could also be interpreted as a transition from 

carbonate to sandstone, however the porosity is still relatively low in comparison to cluster A. 

Generally speaking, the geologic interpretations discussed with respect to the centroids of these 
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pseudo-rock types are in agreement with generally agreed upon geology of the Upper Wolfcamp 

sections. The Upper Wolfcamp is generally described by geologists as a sequence of carbonate 

turbidites with varying total organic carbon (TOC) values [24].  

 

3.4 Geologic Interpretations from Top Ranked Features 

To get a better understanding of the physical interpretations of the top ranked features, the details 

of each needed to be further explored. In regards to the neutron porosity within the A0 lithology, 

the vast majority of the time the kurtosis for any given HWP is greater than any given LWP. This 

implies that the tails of the distributions of this well log extend out further for a given HWP, 

while the distributions for LWPs tend to be blockier. This means that generally the neutron 

porosity log reads more extreme values for HWPs, while the LWPs tend for NPHI values to 

stack up more centrally. Granted that the NPHI log detects fluid-filled porosity, this trend can be 

interpreted as these shales containing more deviations from the expected values of fluid-filled 

porosity. It is an intuitive interpretation that these outliers in saturated pore-space can result in 

high water-cuts. This could be refuted by the fact that these outlier NPHI readings could be 

indicative of hydrocarbon saturation, as opposed to water saturation, but with the contextual 

knowledge of already knowing that these wells are high water producers we can infer that these 

are likely water saturated samples. The difference between HWPs and LWPs is relatively large 

for this feature. The mean value of kurtosis for the NPHI log within the A0 lithology for HWPs 

is 0.17, while the mean value for LWPs is -0.31. 
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The second most important feature for differentiating high and low water producers is the 

presence of any samples of the A1 lithology within a given well. If this lithology is to be 

assumed to be a high permeability layer as interpreted in section 3.3, these layers could function 

as conduits for water to flow through. However, these high permeability samples predominantly 

occur in the low water producing wells. Examining A1’s distribution in figure 6, these samples 

generally occur deeper into the sampled well log region. Granted that the gamma ray signature in 

A1 is approximately half a standard deviation lower than the values of gamma ray in A0, this 

could indicate a dirty sandstone or perhaps even a thin sandstone interval. The latter of these two, 

the distribution of these samples would support due to their relative scarce distribution among 

the rest of the samples. Given that these layers most frequently occur in LWP wells, it is the most 

likely case that these are thin sandstone bodies which act primarily as conduits for hydrocarbons 

to be produced from. 

 

The third most informative feature for the supervised models for the purpose of predicting well 

class is the kurtosis of the density porosity within the B0 lithology. Considering that the B0 

lithology is most likely a carbonate signature, the interpretation of this feature is complicated. A 

clear trend displayed when examining figure 5 is that this carbonate signature tends to be at the 

upper portion of the sampled log interval. The calculated KOP is at the 400-sample point (200ft) 

in figure 5, which provides insight that the vast majority of the B0 samples are stratigraphically 

above the producing interval in the horizontal wellbore. With this in mind, their influence to 

production is most likely associated with hydraulic fracture penetrating upwards through the rock 

bodies. The exception sample to this would be HWP 5 in figure 5 where the horizontal wellbore 

also appears to predominantly be drilling through this presumed carbonate lithology. Similar to 



 

The submitted paper is currently under review. Dr. Sid Misra is the lead investigator on this topic.  

the kurtosis of the NPHI within the A0 cluster, the vast majority of HWPs have higher kurtosis 

of the DPHI log within the B0 cluster. Thus, the distributions of DPHI are blockier within the 

LWP category than within the HWP wells. As the density porosity (DPHI) log is a product of a 

bulk density measurement, it is susceptible to influence by fluid inclusion as well. As either 

hydrocarbon or water saturation will lower the bulk density of a rock body, thus altering the 

density porosity to be higher, the outlier samples within a lithology can be interpreted as such. 

The mean value of kurtosis for the DPHI log in the B0 lithology is 0.57 for HWPs, while the 

mean value for the LWPs is -0.35. 

 

The next 7 statistically significant features for the supervised models are all related to the B1 

lithology. The B1 lithology is scattered about various relative depths within both HWPs and 

LWPs. Every well log within B1 seems to contain varying amounts of significant information for 

the supervised algorithms, with the exception of neutron porosity (NPHI). The B1 lithology 

likely represents a dirty sandstone or some type of clean rock with a relatively lower gamma ray 

signature than the shales (A0, A1, A2). With the very small sample size being worked with, the 

significance of features regarding this lithology type is unclear. Five out of the eight HWPs in 

the data set contain sufficient samples for statistical parameters to be extracted, the sample size 

greater than 30 samples requirement. Considering only the wells which meet this requirement, 

there are a few observations which can be made. All of the features represented of the B1 

lithology in Table 1 are on average lower for HWPs than for LWPs. The root mean square 

(RMS) of both the gamma ray and density porosity are both higher within the LWP wells. This is 

deceptive in regards to the DPHI, as the normalized porosity values within the B1 lithology are 
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all below the mean value and thus negative. The difference between mean DPHI values is still 

relatively significant, however the LWP wells have lower DPHI readings within this lithology. 

 

4 CONCLUSIONS 

In this analysis a data-driven workflow is prescribed to preemptively detect the high water-cut 

wells in the Delaware basin. This workflow utilizes unsupervised learning to predict pseudo-rock 

types from well log data. Once clustered, features were extracted from these pseudo-rock types 

and used to train supervised learning methods to differentiate high water cut wells for the low 

water cut wells. Using well log data from the Delaware basin, this workflow has produced 

promising prediction performances using multiple supervised methods. For 100 cross-validation 

training and testing iterations, a median Matthew’s Correlation Coefficient of 0.90 has been 

generated for three supervised learning methods: K-Nearest neighbors, support vector machine, 

and logistic regression. 

 

The pseudo-rock types identified by unsupervised learning broke down into 5 unique lithologies: 

A0, A1, A2, B0, and B1. The A group represented shalier rocks with higher gamma ray 

signatures and higher apparent porosities. The B group represented cleaner rocks, with lower 

porosity values. The A0 lithology likely represents the target shale formation for production as it 

has preferable porosity readings and high gamma ray signature. A1 was interpreted to be a high 

permeability zone characterized by a lower average shallow resistivity value than its average 

deep resistivity value. The A2 lithology was interpreted to be another shale formation with 

exceptionally low resistivity readings, which could represent a possible source of the water cuts. 
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Although no significant features were detected from the A2 lithology during permutation testing 

to find significant features to confirm this hypothesis. The B0 lithology was interpreted to be 

most likely a carbonate signature, due to low gamma ray and high resistivity readings. The B1 

cluster most likely represents a sandstone or dirty sandstone formation as it is characterized by 

lower-than-average gamma ray, but higher than average resistivity. 

 

The most informative features to the supervised models generated through this workflow were 

also examined. The most informative feature, by far, was the kurtosis of the neutron porosity log 

within the target shale A0 lithology. This is an intuitive result as the neutron porosity log 

specializes in fluid-saturated porosity calculations. Assuming that the kurtosis can be generalized 

as a number to represent the frequency of extreme values, it can be inferred that these extreme 

values of fluid-saturated porosity could be characteristic of high water-cut wells. The results of 

this analysis support this as high water-cut producing wells will on average have higher readings 

of kurtosis from the neutron porosity log. The second most informative feature to the supervised 

models is the presence of the A1 lithology. Generally, the wells which have this lithology within 

their sampled well log interval are going to be low water-cut wells. This high permeability 

lithology must act as a conduit for hydrocarbons to flow easier, assuming the results from this 

approach are to be trusted. The third most informative feature is the kurtosis of the density 

porosity log within the carbonate lithology, B0. The density porosity is a product of a 

transformation from the bulk density log. As bulk density can be affected by fluid inclusion, the 

only intuitive geological interpretation from this feature is that fluid inclusions are being detected 

with respect to HWP wells. HWP wells generally have higher kurtosis within the density 

porosity within the B0 lithology. Lastly the remaining features in the top 10 most informative 



 

The submitted paper is currently under review. Dr. Sid Misra is the lead investigator on this topic.  

features are all associated with the B1 lithology. LWPs tend to have higher values of deep 

resistivity and gamma ray, but lower values of density porosity on average. 
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