Formation and exhumation of ultra-high pressure rocks through
delamination and mantle upwelling: Evidence from seismic
tomographic data beneath the Qinling-Dabie Orogen, Central
China

Chuansong He!, Huili Guo?, and M Santosh?

nstitute of Geophysics China Earthquake Adminstration
Institute of Geophysics, China Earthquake Administration
30cean University of China

November 26, 2022

Abstract

The Qinling-Dabie Orogenic Belt (QDOB) in Central China was built through prolonged subduction-accretion collision events
and incorporates many exposures of exhumed ultrahigh-pressure (UHP) metamorphic rocks. We collected a large number of
teleseismic and local earthquake data and performed a P-wave tomography and CCP stacking of receiver functions from this
region. Our results reveal high-velocity horizontal anomalies at depths of 100-300 km beneath the QDOB, which may be related
to the deep subduction or the delamination of the lower crust and lithosphere. We also imaged a low-velocity anomaly at depths
of 200-400 km, which may be associated with mantle upwelling in this region. Based on a detailed analysis, we consider that

the delamination of the lower crust and lithosphere might have contributed to the formation of the UHP rocks.
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Abstract:

The Qinling-Dabie Orogenic Belt (QDOB) in Central China was built through
prolonged subduction-accretion collision events and incorporates many expo-
sures of exhumed ultrahigh-pressure (UHP) metamorphic rocks. We collected a
large number of teleseismic and local earthquake data and performed a P-wave
tomography and CCP stacking of receiver functions from this region. Our re-
sults reveal high-velocity horizontal anomalies at depths of 100-300 km beneath
the QDOB, which may be related to the deep subduction or the delamination
of the lower crust and lithosphere. We also imaged a low-velocity anomaly at
depths of 200-400 km, which may be associated with mantle upwelling in this
region. Based on a detailed analysis, we consider that the delamination of the
lower crust and lithosphere might have contributed to the formation of the UHP
rocks.

Key words: Qinling-Dabie Orogen, ultra-pressure metamorphic rocks, deep sub-
duction, exhumation, tomography, CCP stacking of receiver function.

Plain Language

The Qinling-Dabie Orogenic Belt (QDOB) in Central China is famous in the
world due to many exposures of exhumed ultrahigh-pressure metamorphic rocks
(UPMR). It is widely accepted that the UPMR may be generated by deep sub-
duction and exhumation. In this study, we collected a large number of tele-
seismic and local earthquake data and performed a P-wave tomography and
CCP stacking of receiver functions in the QDOB. Results reveal high-velocity
horizontal anomalies at depths of 100-300 km beneath the QDOB rather than
subducted slab-like, the high-velocity horizontal anomalies may be related to
the delamination of the lower crust and lithosphere. Based on a detailed analy-
sis, we consider that the delamination of the lower crust and lithosphere might
have contributed to the formation of the UHPMRs.

1. Introduction
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Ultrahigh-pressure (UHP) metamorphic rocks that carry coesite and diamond
inclusions are considered to have formed by the subduction of continental crust
to mantle depths of 80-120 km or more in subduction-collision orogens (Chopin,
1984; Deng et al., 2021; Smith, 1984; Sobolev and Shatsky, 1990; Xu et al.,
1992). The Qinling-Dabie and its counterpart Sulu orogenic belt in Central
China is a classic example for the occurrence of typical UHP rocks, and the
orogen was constructed though multi-stage involving subduction-accretion and
collision (Zheng et al., 2013; Dong and Santosh, 2016; Dong et al., 2021; Niu,
2021). The final amalgamation of the DQOB involved the collision between
the North China Block (NCB) and the South China Block (SCB) during the
Early Paleozoic to Early Mesozoic (Chai et al., 2020; Dong and Santosh, 2016;
Liu et al., 2016; Wu and Zheng, 2013). Several coesite- and diamond-bearing
UHP rocks were reported from this orogenic belt, and have been considered
as an indicator for the deep subduction of the continental crust (Deng et al.,
2021; Li et al., 2020; Okay et al., 1989; Wang et al., 1989) with one school
of thought proposing the subduction of the SCB beneath the NCB during the
Triassic (Ames et al., 1996; Hacker et al., 1998; Ma et al., 2021; Yang et al.,
2019; Zheng et al., 2005).

Recent geophysical investigations have reported deeply subducted continental
crust in the Pyrenees and the Western Alps (Chevrot et al., 2015; Zhao et al.,
2015) at depths of 70 km and 75 km. Deep subduction of continental crust has
also been identified in the Pamir range (Schneider et al., 2013). However, deeply
subducted continental crust has not been unequivocally traced in the QDOB
region (Dong et al., 2008; He et al., 2014; Luo et al., 2012) although reflection
surveys defined a northward dipping Moho beneath the Dabie region (Wang et
al., 2000; Yuan et al., 2003).
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Fig. 1. Left panel: Location of the study region. Right panel: red lines: over-
lapped profiles of P-wave perturbation and CCP stacking of receiver function,
black triangle: seismic station, which record teleseismic events, blue triangle:
seismic stations, which record local seismic events. White lines: boundary of
geological units.



In order to gain further insights on the deep subduction process, we carried out
a P-wave teleseismic tomography and CCP stacking of receiver function study
in the QDOB (Fig. 1) by collecting a large number of teleseismic and local
earthquake data (teleseism event, see Fig. S1). Our results reveal horizontal
lensoid high-velocity anomalies at depth, and low-velocity anomalies in the up-
per mantle beneath the QDOB, which correlate with delamination and mantle
upwelling.

1. Data
(a) Tomography

The collected data set included those from permanent seismic stations (316
stations, July 2007-August 2020) and regional seismic network (361 stations,
July 1984-July 2018) (Fig. 1). The epicenter distance of the event-station pair
for the teleseismic event ranged from 30° to 95°.

The teleseismic waveforms were cut 15 s before and 50 s after the first P-wave
arrival from the digital seismogram with bandpass filtering between 0.3 and 3
Hz. The P-wave arrival times were selected from the cut seismograms. The
65449 P-wave arrivals were extracted from the 644 teleseismic events (Fig. S1).
Moreover, we also collected a total of 60655 P-wave arrivals from 16862 local
earthquakes recorded by 361 seismic stations.

1. CCP stacking of receiver function

A total of 1220 teleseismic events were extracted from 316 permanent seismic
stations recorded from July 2007 to August 2020 in the study region (Fig. S1).
The events were limited to Ms >6.0, and the earthquake epicentral distances
ranged from 30° to 90° for individual event-station pairs. A Butterworth band-
pass filter between 0.05 and 1 Hz was applied to the raw record, which was cut
from 15 s before to 200 s after the P-wave arrival. To obtain a high signal-to-
noise ratio for all events, the waveform cross-correlation technique (VanDecar
and Crosson, 1990) was used to select consistent raw data. In total, 21627
high-quality receiver functions were calculated by a modified frequency-domain
deconvolution with a 1 Hz Gaussian filter and 0.01 water level (Langston, 1979;
Zhu and Kanamori, 2000) (for example, please see Fig. S2).

1. Results
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Fig. 2. P-wave perturbation at depth from 50 to 800 km.

Our results show a prominent low-velocity anomaly (Lv1) in the eastern part of
the study region (Fig. 2), which is consistent with previous tomographic results
(He, 2020; Jiang et al., 2013; Lei, 2012 Tian and Zhao, 2013; Zhao et al., 2012).
The high-velocity anomaly (Hvl) at the depth of 100km is interpreted as the
lithospheric root beneath the Sichuan Basin (Fig. 2), and previous regional
tomography had also defined a similar velocity structure in this area (Li et
al., 2006; Shen et al., 2016; Wei et al., 2016). At the depth of 200 km, the
high-velocity anomalies (Hv1 and Hv2) appear beneath the Yangtze Block and
the Dabie belt respectively (Fig. 2). The low-velocity anomaly (Lv1) beneath
the QOB occurs at depths of 200 and 300 km (Fig. 2). Large-scale high-
velocity anomaly (Hv4) appears at depths of 300-600 km (Fig. 2). A previous
tomography study correlated this high-velocity anomaly with the subducted
slab of the Pacific plate in the Mesozoic (He and Zheng, 2018).
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Fig. 3. P-wave perturbation profiles (a-g). QL: Orogenic Belt; NY: Nanyang
Basin; DB: Dabie Belt; SB: Sichuan Basin.

We also perform 7 profiles of P-wave velocity perturbation which pass through
the QDOB (profile location, please see Fig. 1). The results show that the Hvl
is under the Sichuan Basin (Fig. 2a and b). The low-velocity anomaly (Lv2)
appears at upper mantle at depths of 200-400 km and is located beneath the
QOB (Fig. 2a, b and c). The high-velocity anomaly with the lensoid shape
(Hv2) is located at the southern part of the QOB and the Nanyang Basin at
depths of 100-300 km (Fig. 2c and d). Another high-velocity anomaly (Hv3) is
located at the southern part of the DOB at depths of 150-350 km (Fig. 2e and
f). Outside the QDOB, the lens-shaped high-velocity anomaly (Hv4) appears at
depths of 300-500 km and is located at the northern part of the f and g profile
(Fig. 2f and g). The low-velocity anomaly (Lv1) appears at depths of 0-200 km
and is located at the northern part of the g profile (Fig. 2g).
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velocity perturbation profiles (profile location, please see Fig. 1). The results
show that the topography of both the 410 and 660 km discontinuities (Fig. 4)
is close to the global average depth (Flanagan and Shearer, 1999; Houser et al.,
2008). However, the 410 km discontinuity becomes weak or vanishing at e, f
and g profiles (Fig. 4e, f and g). We superimpose the CCP stacking profiles
on the P-wave perturbation profiles (Fig. 5), the weak and vanishing 410 km
discontinuities basically coincide with the high-velocity anomaly (Hv4) (Fig. 5f,

g).
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Fig. 5. CCP stacking profiles of receiver functions overlain on P-wave pertur-
bation profiles. The yellow points we picked for both the depths of the 410
km and the 660 km discontinuities on the CCP stacking of receiver functions.
Horizontal scale is in km.

1. Discussion

The wide occurrence of UHP rocks with diagnostic ultrahigh-pressure mineral
assemblages in the DQOB suggests deep subduction and exhumation process
(Chang et al., 2021; Deng et al., 2021). However, the results from this study do
not indicate the presence of any subducted slab beneath the orogenic belt. He
and Zheng (2018) noted that the high-velocity anomalies (Hv2 and Hv3) have
a thickness of 200 km, which is much larger than the thickness of either oceanic
or continental lithosphere. The Hv2 and Hv3 anomalies may be related to the
break-off of the subducted slab.

It is generally believed that the DOB was constructed through continent-
continent collision between the NCB and the Yangtze Block (YB) in the Middle
to Late Triassic (Hacker et al., 2004) and that the lithosphere of the YB was
subducted beneath the NCB to more than 100 km in the upper mantle, leading
to a thickened lithospheric root beneath the orogen. The post-magmatic
intrusions, heat flow values and geochemical features indicate that the orogenic
collapse of the DOB might have occurred in the early Cretaceous (Xu et al.,
2007; Zhang et al., 2020), marking the delamination of the lithospheric root
and thickened lower crust in this area (He et al., 2011). The Hv2 and Hv3 are
horizontal plates rather than blob-shaped subducted slabs, and therefore, these
high-velocity anomalies (Hv2 and Hv3) could also represent lithospheric and
lower crustal delamination.

Subduction and delamination are major processes that lead to the recycling of
crustal materials into the mantle, generating mantle heterogeneities reflected
in seismic velocity structure (He, 2020; Stern, 2002; Turner et al., 2017). The
ocean-continent subduction in the QOB occurred during Early Paleozoic fol-
lowed by continent-continent collision along the Shangdan Suture Zone in the
Late Paleozoic (Dong et al., 2021). Previous studies suggested that the Silurian-
Devonian oceanic crust started subduction during the Late Carboniferous to
Early Permian in the DOB (Dong et al., 2021). The subducted slab or de-
lamination of the lower crust an lithosphere can result in partial melting and
dehydration of the oceanic crust (Hu et al., 2021; Kelemen et al., 2007; Zheng
et al., 2019), as well deep subduction induce return flow of the mantle (Santosh,
2010; Zhao and Ohtani, 2009). In the QOB, the results from our present study
reveal a low-velocity anomaly (Lv2) at depths of 200-400 km, which may be re-
lated to above deep process. Once the temperature of the low-velocity anomaly
(e.g., Lv2) is higher than that of the surrounding mantle, mantle upwelling
occurs (Deuss, 2007, Foulger, 2012; Sleep, 2004).

The Hv2 and Hv3 anomalies appear at depths of 200-300 km, where also UHP
assemblages are stable. Subsequent mantle upwelling would bring these rocks
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to shallower domains and subsequently exhume to the surface.

Our CCP stacking images of receiver function indicate that the topographies of
410 and 660 km discontinuities are close to the global average depth, suggesting
that the mantle upwelling might not have originated from the mantle transition
zone. If so, this would result in the topography variations of the upper mantle
discontinuities (Foulger, 2012). On the other hand, an important finding from
this study is that the high-velocity anomaly can induce weak and vanishing 410
km discontinuity, the processes for which require further investigations.

1. Conclusions

Our seismic tomographic studies define plate-shaped high-velocity anomaly at
depths of 100-400 beneath the Qinling-Dabie Orogenic Belt, which we correlate
with the break-off of the subducted slab or lithospheric and lower crustal delam-
ination. We also define low-velocity anomaly at depths of 200-400 km beneath
this orogenic belt.

Based on a detailed analyses of the data obtained in this study, we suggest that
the UHP metamorphic rocks in the Qinling-Dabie Orogenic Belt were generated
through deep subduction of slab, or lithospheric and lower crustal delamination.
It is possible that the exhumation of these rocks from deeper to shallower do-
mains was aided by mantle upwelling.
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