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Abstract

We study the problem of discrimination between earthquakes and explosions on the basis of seismic signals detected at teleseismic

distances (over 2000 km). Most work in the field of discrimination has been limited to signals detected within a few hundred

kilometers which limits their utility from the perspective of sparse global seismic networks for either treaty monitoring or seismic

hazard analysis. We show that existing Deep Learning architectures that have been proposed for discrimination or related tasks

such as phase classification or signal detection can be repurposed for teleseismic discrimination. Using hyperparameter tuning

methods we have been able to improve the performance relative to the original architectures while reducing the model complexity.

We present empirical analysis of a number of different methods, and demonstrate that our proposed Deep Learning architecture

performs the best at teleseismic discrimination and is able to reliably identify rockburst events.
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Key Points:7

• Deep Learning can be used on seismic waveforms to discriminate between earth-8

quakes and explosions at teleseismic distances.9

• A model built on waveform inputs rather than spectrograms can achieve better10

results with fewer parameters.11

• This work can be used to monitor treaty compliance and build global seismic haz-12

ard maps using a sparse seismic network.13
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Abstract14

We study the problem of discrimination between earthquakes and explosions on the ba-15

sis of seismic signals detected at teleseismic distances (over 2000 km). Most work in the16

field of discrimination has been limited to signals detected within a few hundred kilo-17

meters which limits their utility from the perspective of sparse global seismic networks18

for either treaty monitoring or seismic hazard analysis. We show that existing Deep Learn-19

ing architectures that have been proposed for discrimination or related tasks such as phase20

classification or signal detection can be repurposed for teleseismic discrimination. Us-21

ing hyperparameter tuning methods we have been able to improve the performance rel-22

ative to the original architectures while reducing the model complexity. We present em-23

pirical analysis of a number of different methods, and demonstrate that our proposed24

Deep Learning architecture performs the best at teleseismic discrimination and is able25

to reliably identify rockburst events.26

Plain Language Summary27

Seismic events are caused mostly by naturally occurring earthquakes or manmade28

explosions. The capability to discriminate between event types is very important. It can29

be used to build maps of regions that are prone to earthquake damage and to monitor30

whether signatories of a treaty banning nuclear explosions are following through with31

their commitment. Previously, research in discrimination has focused mainly on wave-32

forms detected by seismic stations within a few hundred kilometers of the event. This33

distance limitation implies that the methods can only be used in regions of the earth that34

have dense seismic networks which tend to be concentrated in developed countries. Thus,35

our work seeks to address the discrimination problem using waveforms detected at more36

than 2000 km away (known as teleseismic distances), guaranteeing that all locations on37

the earth’s surface are within a few thousand kilometers of some station in global seis-38

mic networks. We explore various Deep Learning methods that have been developed for39

discrimination and systematically enhance them for teleseismic discrimination. We demon-40

strate our methods work well not only on the standard discrimination task for which they41

were trained, but also on completely unseen seismic events that have an energy release42

mechanism similar to explosions.43

1 Introduction44

An accurate catalog of earthquakes is required for probabilistic seismic hazard anal-45

ysis (McGuire, 2008). Such hazard analysis is the basis for building codes that help de-46

termine the safety of human occupants as well as critical infrastructure. A common prob-47

lem with such seismic catalogs is the proliferation of mining activity that gets inadver-48

tently captured and contaminates the catalog as noted by (Mackey et al., 2003), for ex-49

ample. Consequently, an important post-processing step after the creation of a catalog50

is to classify the explosion events, and to remove them from the bulletin. This task of51

classifying an event as an explosion versus an earthquake, is known as the discrimina-52

tion problem in seismology.53

Another important application of this discrimination task is for monitoring com-54

pliance with treaties banning nuclear testing. In the last century, the major nuclear pow-55

ers have signed various treaties limiting the size and number of nuclear tests that they56

could conduct. These limits were introduced to curb the development of increasingly lethal57

weapons which have endangered our existence as a species as well as to protect earth’s58

ecosystems from the effects of the radiation released by these tests. These efforts to rein59

in nuclear testing culminated in the Comprehensive Nuclear-Test-Ban Treaty (CTBT)(UN,60

1996), which bans all nuclear testing anywhere on earth, and has been signed by 185 coun-61

tries. The CTBTO is an international organization charged with the verification of the62

CTBT.63

–2–



manuscript submitted to Geophysical Research Letters

While earthquakes and explosions can both generate a vast amount of energy, the64

forces involved are very different. Explosions release energy in a small volume around65

the source, and this causes mostly compressional waves, or P phases, to radiate outwards66

isotropically. Earthquakes, on the other hand, release energy over multiple kilometers67

along a fault line and mostly in the form of shear waves, or S phases, that could have68

an anisotropic radiation pattern. These differences show up in the waveforms that are69

detected at seismic stations, and form the basis of work on discrimination.70

At distances less than 2000 km, a number of seismic phases(Bormann et al., 2013),71

each of which corresponds to a distinct wave path through the Earth, are normally de-72

tected. Many methods rely on contrasting the detections of multiple phases from the same73

event. For example, the spectral characteristics of the P versus the Lg phase (a type of74

surface wave that can be detected up to a few hundred kilometers) are an easy marker75

for discrimination purposes as shown in (Dysart & Pulli, 1990). At teleseismic distances,76

however, time differences between various phases are large and they are well separated.77

There are some unfortunate ramifications of having good discrimination methods78

that only work well at short distances. The main issue is that these methods can only79

be applied to events that occur in regions of the earth that are covered with very dense80

seismic networks. In other words, if a country wishes to use the latest techniques for seis-81

mic hazard analysis it must have the resources to deploy and maintain many stations.82

This creates an inequity in preparedness which causes poorer countries to be affected sig-83

nificantly more by natural disasters than richer countries. (Nairobi, 2005).84

For the purpose of monitoring compliance with a global treaty such as the CTBT,85

these regional discrimination methods have limited utility. The International Monitor-86

ing System (IMS), installed and maintained by the CTBTO, includes seismic networks87

which are too sparse to provide an assurance that a nuclear explosion test will be de-88

tected by at least one of the stations within 200 km. For example, (Stump et al., 2002)89

has done an analysis of the IMS network when it is fully operational. This work shows90

that 90% of the earth’s land mass will be covered by at least one station within 2000 km,91

but only 10% is within 200 km of an IMS station. Of course, member states that have92

signed the CTBT are free to use data obtained from other seismic networks to make their93

own determination as to the source of an event. However, there is no guarantee that such94

additional data will be available for all regions of the world. This brings into question95

the ability of the treaty to be effectively monitored. Given that the US Senate has yet96

to ratify the treaty citing concerns of monitoring capability (Pifer, 2016), it is important97

to address these concerns for the ultimate safety of the earth’s population from further98

development of atomic weapons.99

For the above reasons, our work aims to extend the capabilities of existing discrim-100

ination methods. Although it is much harder to accurately classify seismic waveforms101

at distances over 2000 km, we note that it is not entirely intractable. For example, we102

show waveforms in Figures 1 from an earthquake and an explosion detected at teleseis-103

mic distances. In these two examples, it is easy to determine the source of the event from104

the waveform. For example, the impulsive nature of the explosion event shows up in the105

sharp onset spike in Figure 1a while the earthquake in Figure 1b has a slower climb to106

its peak amplitude. Of course, for smaller magnitude events at greater distances such107

clear features are not immediately obvious. For example in Figure 2 the difference be-108

tween the waveforms are not immediately apparent to a visual inspection. In fact, it is109

not even apparent in these last two waveforms whether there is a detection at all. In all110

the examples in the paper we show a 90 second snippet of the waveform with the actual111

onset of the event at the 10 second mark. All the waveforms are passed through a 1 Hz112

high-pass filter and normalized.113
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0 10 20 30 40 50 60 70 80 90

(a) An explosion of magnitude 4.4 mb detected

at 22 degrees distance.

0 10 20 30 40 50 60 70 80 90

(b) An earthquake of magnitude 6.1 mb detected

at 31.4 degrees distance.

Figure 1. Examples of waveforms which are visually easy to discriminate.

0 10 20 30 40 50 60 70 80 90

(a) An explosion of magnitude 3.2 mb detected

at 72.8 degrees distance.

0 10 20 30 40 50 60 70 80 90

(b) An earthquake of magnitude 3.3 mb detected

at 72.5 degrees distance.

Figure 2. Examples of visually ambiguous waveforms.

In Section 2 we describe some of the previous work related to analyzing seismic wave-114

forms. Next we describe our data sources in Section 3 and our discrimination algorithm115

in Section 4. Finally, we describe our experiments in Section 5.116

2 Related Work117

The importance of discrimination between earthquakes and explosions for the pur-118

pose of seismic hazard analysis as well as nuclear explosion monitoring is well documented119

in the literature. We refer the reader to (Rabin et al., 2016) for a good overview of this120

topic. As mentioned in that paper, many of the previously developed methods rely on121

computing parameters computed from input waveforms such as event magnitude. Fur-122

ther, these parametric methods often require the detection of different types of seismic123

phases to be used for discrimination. For example, the Ms:mb ratio method (Blandford,124

1982) requires the detection of a surface wave and a body wave in order to compute two125

different magnitude estimates. The limitation of such methods for a global seismic net-126

work are apparent in the statistics. (Rabin et al., 2016) goes on to report that such para-127

metric methods are only applicable to 60% of all events reported by the CTBTO in years128

2011-2013.129

In recent years, the focus has shifted to applying Deep Learning directly on spec-130

trograms for the purpose of discrimination, for example (Magana-Zook & Ruppert, 2017).131

Also, in (Linville et al., 2019) the authors show results on architectures based on Con-132
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Model Architecture

1D CNN, Filters: 16, Kernel Size: 27, Strides: 1

Bidirectional LSTM, Units: 64

Dense Network, Nodes: 64, Activation: ReLU

Dense Network, Nodes: 1, Activation: Sigmoid

1D Max Pooling, Pool Size = 2

LSTM, Units: 64

Batch normalization

ReLU Activation

Dropout (Rates: 0.2, 0.1, 0.1 resp.)

2D CNN, Filters: 18, Kernel Size: (11, 11), Strides: (2, 2)

Dense Network, Nodes: 1, Activation: Sigmoid

Batch normalization

Dense Network, Nodes: 64, 
Activation: ReLU

1D Max Pooling, Pool Size = (2, 2)

2D CNN, Filters: 36, Kernel Size: (11, 11), Strides: (2, 2)

2D CNN, Filters: 54, Kernel Size: (11, 11), Strides: (2, 2)

2D CNN, Filters: 54, Kernel Size: (11, 11), Strides: (2, 2)

(a) CNN

Model Architecture

1D CNN, Filters: 16, Kernel Size: 27, Strides: 1

Bidirectional LSTM, Units: 64

Dense Network, Nodes: 64, Activation: ReLU

Dense Network, Nodes: 1, Activation: Sigmoid

1D Max Pooling, Pool Size = 2

LSTM, Units: 64

Batch normalization

ReLU Activation

Dropout (Rates: 0.2, 0.1, 0.1 resp.)

2D CNN, Filters: 18, Kernel Size: (11, 11), Strides: (2, 2)

Dense Network, Nodes: 1, Activation: Sigmoid

Batch normalization

Dense Network, Nodes: 64, 
Activation: ReLU

1D Max Pooling, Pool Size = (2, 2)

2D CNN, Filters: 36, Kernel Size: (11, 11), Strides: (2, 2)

2D CNN, Filters: 54, Kernel Size: (11, 11), Strides: (2, 2)

2D CNN, Filters: 54, Kernel Size: (11, 11), Strides: (2, 2)

Bidirectional LSTM, Units: 40

Bidirectional LSTM, Units: 40

Bidirectional LSTM, Units: 80

Bidirectional LSTM, Units: 80

Dense Network, Nodes: 64, Activation: ReLU

Dense Network, Nodes: 1, Activation: Sigmoid

Batch normalization

ReLU Activation

Dropout
(Rates: 0.4, 0.4, 0.4, 0.4, 0.2 resp.)

(b) LSTM

Figure 3. Neural Network architectures in Linville et al., 2019.

volutional Neural Nets (CNNs) as well as Long Short-term Memory (LSTM). We show133

these architectures in Figures 3a and 3b respectively. Although these architectures have134

only been tested for discrimination at regional distances, we believe that these can be135

adapted to teleseismic distances since they require nothing more than a spectrogram of136

the waveform as an input. However, other approaches such as (Ranasinghe et al., 2019),137

which are also based on CNNs, but require both a P and an S phase to be detected are138

not as easy to use since S phases are rarely detected at larger distances. Similarly, ap-139

proaches based on Support Vector Machines such as (Kim et al., 2020) that require fea-140

tures from both P and S phases are inapplicable for teleseismic discrimination.141

We note that there are a number of methods based on waveforms that we could142

extend to teleseismic distances such as (Pezzo et al., 2003), (Li et al., 2018), (Ross et al.,143

2018), (Miao et al., 2020), (Wei et al., 2020), or (Ray et al., 2017). All of them are de-144

signed to solve various classification tasks in seismology without any assumptions on ex-145

plicit feature extraction. In this paper we focus on Cnn-Rnn Earthquake Detector (CRED)146

(Mousavi et al., 2019) since its architecture is the most versatile. As shown in Figure 4a,147

it uses a mix of convolutional and recurrent layers in a residual structure. CRED was148

proposed to discriminate seismic phases from noise, but there is no reason it can’t be used149

for other classification tasks. Similar to most other models it uses the spectrograms of150

the waveforms as input, and has only been tested on regional detections.151

3 Data152

There is no existing dataset for teleseismic discrimination, so as part of our work153

we had to build one. We collected seismic event data from the online bulletins published154

by the International Seismic Centre (ISC)(Storchak et al., 2017, 2020) and correspond-155

ing waveforms from the waveform repository published by the Incorporated Research In-156

stitutions for Seismology (IRIS).157
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Model Architecture

1D CNN, Filters: 16, Kernel Size: 27, Strides: 1

Bidirectional LSTM, Units: 64

Dense Network, Nodes: 64, Activation: ReLU

Dense Network, Nodes: 1, Activation: Sigmoid

1D Max Pooling, Pool Size = 2

LSTM, Units: 64

Batch normalization

ReLU Activation

Dropout (Rates: 0.2, 0.1, 0.1 resp.)

2D CNN, Filters: 18, Kernel Size: (11, 11), Strides: (2, 2)

Dense Network, Nodes: 1, Activation: Sigmoid

Batch normalization

Dense Network, Nodes: 64, 
Activation: ReLU

1D Max Pooling, Pool Size = (2, 2)

2D CNN, Filters: 36, Kernel Size: (11, 11), Strides: (2, 2)

2D CNN, Filters: 54, Kernel Size: (11, 11), Strides: (2, 2)

2D CNN, Filters: 54, Kernel Size: (11, 11), Strides: (2, 2)

Bidirectional LSTM, Units: 40

Bidirectional LSTM, Units: 40

Bidirectional LSTM, Units: 80

Bidirectional LSTM, Units: 80

Dense Network, Nodes: 64, Activation: ReLU

Dense Network, Nodes: 1, Activation: Sigmoid

Batch normalization

ReLU Activation

Dropout
(Rates: 0.4, 0.4, 0.4, 0.4, 0.2 resp.)

2D CNN, Filters: 16, Kernel Size: (9, 9), Strides: (2, 2)

2D Max Pooling, Pool Size = (2, 2)

Bidirectional LSTM, Units: 64

2D CNN, Filters: 16, Kernel Size: (7, 7), Strides: (1, 1)

2D CNN, Filters: 16, Kernel Size: (7, 7), Strides: (1, 1)

2D CNN, Filters: 16, Kernel Size: (5, 5), Strides: (1, 1)

2D CNN, Filters: 16, Kernel Size: (3, 3), Strides: (1, 1)

2D CNN, Filters: 16, Kernel Size: (3, 3), Strides: (1, 1)

Bidirectional LSTM, Units: 64

LSTM, Units: 64

Dense Network, Nodes: 64, Activation: ReLU

Dense Network, Nodes: 1, Activation: Sigmoid

Batch normalization

ReLU Activation

Dropout (Rate: 0.2)

(a) CRED Architecture (Mousavi et al.).

Model Architecture

1D CNN, Filters: 16, Kernel Size: 27, Strides: 1

Bidirectional LSTM, Units: 64

Dense Network, Nodes: 64, Activation: ReLU

Dense Network, Nodes: 1, Activation: Sigmoid

1D Max Pooling, Pool Size = 2

LSTM, Units: 64

Batch normalization

ReLU Activation

Dropout (Rates: 0.2, 0.1, 0.1 resp.)

(b) Our architecture.

Figure 4. Side by side comparison of CRED and our architecture.

The ISC event bulletins have an optional field describing the source of each event.158

For a small subset of these events this field is filled in with either earthquake, explosion,159

or rockburst(Lu et al., 2013). We selected all the events with these three possible sources160

and then used the IRIS waveform repository to obtain the waveforms from stations which161

had detected the event according to the ISC bulletin. However, some waveforms didn’t162

show any clear signal and had to be discarded. We used the STA/LTA (short-term av-163

erage of 5 seconds divided by the long-term average of 20 seconds) method (Allen, 1978)164

to determine if there was a suitable detection in the waveform. For each valid waveform,165

we kept 90 seconds of data; 10 seconds before the onset and 80 seconds after the onset.166

This waveform snippet was high-pass filtered at 1 Hz and normalized. We only kept the167

waveform corresponding to the vertical channel and downsampled it to 20 samples per168

second.169

The following steps describe the overall data gathering procedure.170

• For each ISC event bulletin from 1970 to 2018:171

– For each event in bulletin, if event source is either earthquake, explosion, or rock-172

burst:173

∗ For each station at a distance of 20 degrees or more that detects the event:174

1. Download a waveform snippet around the onset time.175

2. High-pass filter at 1 Hz.176

3. If the STA/LTA reaches or exceeds 2 within 5 seconds of arrival time:177

· Add this waveform to the dataset. Record the event parameters and178

distance of station to event.179

–6–
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In order to train a balanced Deep Learning model, we used stratified sampling of180

the earthquake waveforms to ensure that our data included the same number of earth-181

quakes and explosions in each distance bucket from 20 to 180 degrees in steps of 10 de-182

grees.183

In total, we have 7608 data points compiled from data published by ISC and IRIS.184

All of the source code and dataset used in our project is available at Zenodo via DOI185

10.5281/zenodo.5167966 with MIT license (RaynaArora, 2021). This includes the code186

to download and compile the data set, build models on the data, and to analyze the re-187

sults.188

4 Methods189

In our work, we use the CRED architecture as a basis. However, instead of using190

a spectrogram of the waveform as input we found the performance to be better by us-191

ing the waveforms directly. We also made a number of other simplifications to the model192

by systematically identifying the best architecture. We used grid search to tune the fol-193

lowing hyperparameters on the validation data:194

1. The kernel size in each convolutional layer, varied from 10 to 40 in steps of 2.195

2. The number of filters in each convolutional layer, varied from 16 to 320 in steps196

of 16.197

3. The units (output dimension) in each LSTM or Bidirectional LSTM layer, var-198

ied from 32 to 128 in steps of 32.199

4. The number of convolutional, LSTM, and Bidirectional LSTM layers, varied from200

1 to 5 in steps of 1.201

5. Whether or not to use a residual layer (only when considering more than one con-202

volutional layer).203

6. The dropout rates in the LSTM and dense layers, varied from 0.1 to 0.4 in steps204

of 0.1.205

7. The number of nodes in the dense layer — 64 or 128.206

8. Whether to use a spectrogram or waveform as input.207

The resulting optimal architecture is described in Figure 4b.208

5 Experiments209

We used the Keras software package with the Adam optimizer for training all the210

Deep Learning architectures that we evaluated. In our experiments we divided the data211

into 80% training, 10% validation, and 10% test. All the hyperparameters were tuned212

on the validation set. The models were trained with a batch size of 32 and training was213

stopped when the validation accuracy plateaued for 60 epochs.214

Table 1a shows the results of our architecture as well as 3 other architectures in215

the literature. It also includes a baseline logistic regression model computed from the216

onset time and dominant frequency of each waveform for reference. Our model achieves217

the highest accuracy and Area Under the Curve (AUC) and has the least number of pa-218

rameters by a factor of 2.219

Figure 5a shows our model’s accuracy versus distance detected. This graph demon-220

strates that our model generalizes well across all distances. We also plot the accuracy221

of our model by event magnitude in Figure 5b. Our accuracy is quite low in the 3 to 3.5222

range, which comprises less than 1% of our data, and hence we have insufficient samples223

to train or evaluate. On the other hand, our accuracy of 90% in the 3.5 to 4.0 mb range224

is very promising because this range is critical for treaty monitoring purposes.225
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Model Accuracy AUC Parameters

Proposed Method 89.0 % 0.95 96,641
Mousavi et al. (CRED) 87.2 % 0.94 208,273
Linville et al. CNN 84.7 % 0.91 456,237
Linville et al. RNN 82.7 % 0.91 375,425
Baseline 69.8 % 0.72 3

(a) Accuracy on test data comprising only earthquakes and explo-

sions.

Model Rockburst Accuracy

Proposed Method 95.8 %
Mousavi et al. (CRED) 98.3 %
Linville et al. CNN 95.4 %
Linville et al. RNN 91.3 %

(b) Accuracy on test data comprising of only rock-

bursts.

Table 1. Accuracy of various approaches.
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(a) Accuracy by distance detected.
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(b) Accuracy by event magnitude.

Figure 5. Accuracy of our architecture along distance and magnitude dimensions.
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5.1 Rockburst226

In the previous experiments, we trained and tested our models on data from ex-227

plosions and earthquakes only. However, in order to test the generalization capability228

of our models, we took these models and tested them on rockburst data. As explained229

in (Ma et al., 2015)230

Rockburst is the sudden release of elastic strain energy in rock masses under high231

local stresses, as a result of rock fragmentation, ejection, projection and even earth-232

quakes.233

Given the energy-release mechanism of rockbursts is similar to explosions we expect our234

models to classify them as such. As shown in Table 1b, our model performs reasonably235

well on this unseen dataset.236

6 Conclusion237

We have demonstrated for the first time that it is possible to discriminate between238

earthquakes and explosions detected at teleseismic distances. Our approach of using seis-239

mic waveforms rather than spectrograms and tuning the model hyperparameters and ar-240

chitecture has led to a novel architecture with far fewer parameters than existing work.241

Our work achieves the best results on the discrimination task and competitive per-242

formance on unseen rockburst data. Even with limited data we were able to achieve nearly243

90% accuracy on teleseismic discrimination. The dataset synthesized from existing sources244

can be used to expand upon this work.245

We have taken an important step towards making treaty monitoring feasible with246

a sparse global seismic network. Furthermore, we expect that our work can be applied247

to improve seismic hazard analysis in developing nations with a sparse seismic network,248

thereby mitigating the disproportionate casualties counts these countries suffer due to249

earthquakes.250
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