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Abstract

Accurate estimation of the spatio-temporal distribution of snow water equivalent is essential given its global importance for

understanding climate dynamics and climate change, and as a source of fresh water. Here, we explore the potential of using the

Long Short-Term Memory (LSTM) network for continental and regional scale modeling of daily snow accumulation and melt

dynamics at 4-km pixel resolution across the conterminous US (CONUS). To reduce training costs (data are available for ˜0.31

million snowy pixels), we combine spatial sampling with stagewise model development, whereby the network is first pretrained

across the entire CONUS and then subjected to regional fine-tuning. Accordingly, model evaluation is focused on out-of-sample

predictive performance across space (analogous to the prediction in ungauged basins problem). We find that, given identical

inputs (precipitation, temperature and elevation), a single CONUS-wide LSTM provides significantly better spatio-temporal

generalization than a regionally calibrated version of the physical-conceptual temperature-index-based SNOW17 model. Adding

more meteorological information (dew point temperature, vapor pressure deficit, longwave radiation and shortwave radiation)

further improves model performance, while rendering redundant the local information provided by elevation. Overall, the

LSTM exhibits better transferability than SNOW17 to locations that were not included in the training data set, reinforcing the

advantages of structure learning over parameter learning. Our results suggest that an LSTM-based approach could be used to

develop continental/global-scale systems for modeling snow dynamics.
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Abstract 
Accurate estimation of the spatio-temporal distribution of snow water equivalent is 
essential given its global importance for understanding climate dynamics and climate 
change, and as a source of fresh water. Here, we explore the potential of using the Long 
Short-Term Memory (LSTM) network for continental and regional scale modeling of daily 
snow accumulation and melt dynamics at 4-km pixel resolution across the conterminous 
US (CONUS). To reduce training costs (data are available for ~0.31 million snowy pixels), 
we combine spatial sampling with stagewise model development, whereby the network is 
first pretrained across the entire CONUS and then subjected to regional fine-tuning. 
Accordingly, model evaluation is focused on out-of-sample predictive performance across 
space (analogous to the prediction in ungauged basins problem). We find that, given 
identical inputs (precipitation, temperature and elevation), a single CONUS-wide LSTM 
provides significantly better spatio-temporal generalization than a regionally calibrated 
version of the physical-conceptual temperature-index-based SNOW17 model. Adding 
more meteorological information (dew point temperature, vapor pressure deficit, longwave 
radiation and shortwave radiation) further improves model performance, while rendering 
redundant the local information provided by elevation. Overall, the LSTM exhibits better 
transferability than SNOW17 to locations that were not included in the training data set, 
reinforcing the advantages of structure learning over parameter learning. Our results 
suggest that an LSTM-based approach could be used to develop continental/global-scale 
systems for modeling snow dynamics.  

Plain Language Summary 
Understanding the spatio-temporal distribution of water in the snowpack (known as snow 
water equivalent) is very important for understanding climate dynamics and climate change, 
and for forecasting and management of global water supplies. In this study, we use Deep 
Learning (DL) to model snow accumulation and melt at 4-km pixel-scale resolution across 
the conterminous US (CONUS). Long Short-Term Memory (LSTM) networks are 
developed at both continental- and regional-scale, by combining spatial pixel sampling and 
stagewise network pre-training/fine-tuning. We benchmark out-of-sample predictive 
performance against the physical-conceptual temperature-index-based SNOW17 model, 
and find that LSTM networks significantly outperform calibrated versions of the SNOW17 
model when given identical information. Further, when provided with additional 
meteorological information, performance of the LSTM is improved. The LSTM models 
also exhibits better transferability than the SNOW17, indicating the potential for future 
development of a DL-based system for modeling continental/global-scale snow dynamics.  
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1. Introduction 1 

1.1 The Problem of Continental-Scale Estimation of Snow Water Equivalent 2 
[1] Accurate monitoring of the large-scale dynamics of snowpack is essential for understanding 3 
the details of climate dynamics and climate change (Robinson et al., 1993). Warming under a 4 
changing climate is expected to cause snowpack to melt earlier in the year (Zeng et al., 2018; Xiao, 5 
2021) and to reduce the amount of water stored as snow (Nijssen et al., 2001; Musselman et al., 6 
2021). This is expected to have broad and potentially severe impacts to ecosystem productivity 7 
(Boisvenue and Running 2006), winter flood risk (Musselman et al., 2018), groundwater recharge 8 
(Ford et al., 2020), agriculture and food security (Shindell et al., 2012; Qin et al., 2020), wildfire 9 
hazard (Westerling et al., 2016), and frequency and severity of drought (Arevalo et al., 2021). In 10 
western North America, snow is the primary source of water and streamflow (Li et al., 2017), 11 
while globally it supports the water supply needs for more than one billion people (Barnett et al., 12 
2005). Therefore, having accurate estimates of the quantity of water stored in snowpack, called 13 
snow water equivalent (SWE), is critical for the forecasting and management of water supply and 14 
hydropower (Mankin et al., 2015; Bales et al., 2016). 15 
[2] Several different physically-based snow models have been developed to simulate the co-16 
evolution of mass and energy within the snowpack system, and to thereby provide estimates of 17 
SWE. Examples include the temperature-index based SNOW-17 model (Anderson 1973), UEB 18 
(Tarboton and Luce 1996), SAST (Jin et al. 1999), ESCIMO (Strasser et al. 2002), and 19 
SNOWCAN (Tribbeck et al. 2004). More sophisticated snow models that focus on advanced 20 
representations of stratigraphy or internal dynamics (i.e., grain structure etc.) of the snowpack 21 
include Crocus (Brun et al., 1992), and the physics-based SNOWPACK model (Bartelt and 22 
Lehning, 2002). In practice, modelers typically use simpler physical-conceptual land-surface 23 
representations such as VIC (Liang et al., 1994) to estimate the broad changes in snowpack that 24 
might be expected under climate change. Meanwhile, the iSNOBAL model has been the modeling 25 
engine for spatially distributed SWE estimation within the Airborne Snow Observatory (ASO) 26 
product (Marks et al., 1999).  27 
[3] Nonetheless, the predictive performance of all such models depends on whether or not their 28 
representations of the underlying data-generating processes are adequate. To address poor 29 
predictive performance stemming from inadequate physical representations, modelers have 30 
explored a full spectrum of explicit process hypotheses (Noah-MP; Niu et al., 2011), synthesized 31 
multiple working hypotheses into a unifying modeling framework (SUMMA; Clark et al., 2010; 32 
Clark et al., 2016), linked the parameter values to local basin attributes by imposing spatial 33 
regularization constraints (Pokhrel et al., 2008) via parameter transfer functions (mHM; 34 
Samaniego et al., 2010), and explored implementations at finer spatial resolutions (HydroBlocks; 35 
Chaney et al., 2016). However, a potential downside of such methods is the large computational 36 
demands imposed when conducting simulations at practically useful resolutions over large spatial 37 
extents.  38 
[4] Following a complementary approach, statistical data-driven approaches (such as multiple 39 
linear regression and binary regression trees) have also been widely used to generate estimates of 40 
targeted snow variables at continental- and watershed-scales by exploiting the information 41 
provided by field measurements in conjunction with observed physiographic and meteorological 42 
covariates (see the review in Broxton et al., 2019).  Many studies have explored ML approaches 43 
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to the estimation of snow variables (e.g., snow depth, snowfall, SWE and the fractional snow cover) 44 
include the application of Random Forest and Support Vector Machine methods, using a variety 45 
of input data such as satellite sensors (Kuter et al. 2018; Kuter, 2020; Ehsani et al., 2021), 46 
terrestrial laser scanners (Revuelto et al., 2020), land models (Snauffer et al., 2018), and ground 47 
observations (Tabari et al., 2010; Buckingham et al., 2015; Gharaei‐Manesh et al., 2016). The 48 
results of these efforts, which draw upon recent advances in machine learning (ML), and 49 
particularly deep learning, suggest that ML-based methods have the potential to outperform state-50 
of-the-art techniques for many sophisticated domain problems (Krazert et al., 2019a). 51 
[5] In the context of snow hydrology, the artificial neural network (ANN; sometimes called the 52 
feedforward multilayer perceptron) has been used to improve the estimation of SWE in different 53 
ways, Such as the Snow Water Artificial Neural Network Modelling (SWANN) system (Broxton 54 
et al., 2017). Snauffer et al. (2018) used ANNs for multi-source data fusion, using SWE data from 55 
reanalysis products and manual snow surveys as network inputs, and reported improvements in 56 
the quality of gridded SWE products. Broxton et al. (2019) combined aerial remotely-sensed maps 57 
of snow depth with snow density maps generated via artificial neural network (ANN) processing 58 
of field measurements to improve the estimation of SWE. These successes can be attributed to the 59 
ability of ANNs to learn the nonlinear nature of the relationships between the relevant variables, 60 
resulting in improved performance over traditional statistical methods (Czyzowska-Wisniewski et 61 
al., 2015). Recently, the studies of how to improve SWE estimates has explored the use of multiple 62 
data types and a variety of features derived from meteorological quantities as inputs to the training 63 
of ensemble MLP models (Odry et al., 2020; Ntokas et al., 2021). In general, it seems reasonable 64 
that ML-based methods should be able to provide relevant and useful information over large spatial 65 
domains; see for example the pixel scale return-level design maps of SWE developed for modeling 66 
for snowmelt-driven floods over the entire CONUS (Cho and Jacobs, 2020; Wetly and Zeng, 2021).  67 
1.2 The Potential offered by Deep Learning 68 
[6] Deep learning (DL) has recently been proposed as a powerful strategy for hydrological 69 
modeling and time-series prediction (Shen, 2018; Shen et al., 2018). In particular, the long short-70 
term memory network (LSTM; Hochreiter and Schmidhuber 1997) has been reported to 71 
outperform the traditional ANN approach, provided that sufficient data is available for model 72 
development (Wunsch et al., 2021). In particular, Kratzert et al. (2018) showed that the knowledge 73 
encapsulated by the generic pre-trained LSTM network can be transferred to different locations in 74 
the context of rainfall-runoff modeling. By initializing the LSTM network parameters to those of 75 
the pre-trained model, and by conducting subsequent local fine-tuning (Yosinski et al., 2014;  76 
Kratzert et al.(2018), it should be possible to reduce local data requitements, thereby facilitating a 77 
variety of hydrological applications such as regionalization and prediction in ungauged basins 78 
(PUB; Hrachowitz et al., 2013; Sivapalan et al., 2003).  79 
[7] For rainfall-runoff modeling, Kratzert et al. (2019b) showed that a single regionally-trained 80 
LSTM network can provide better basin-specific predictions than traditional hydrological models 81 
locally calibrated basin-by-basin. Further, when the regionally-trained LSTM was applied to 82 
basins whose data was not used for model development (i.e., effectively treating them as 83 
“ungauged” basins) it performed, on average, better than instances of the Sacramento Soil 84 
Moisture Accounting Model (SAC-SMA) or the NOAA National Water Model that were directly 85 
calibrated to those same basins (Kratzert et al., 2019a). These asymmetrical comparisons illustrate 86 
the ability of a standard LSTM architecture to learn a model structure that performs better than a 87 



 5 

“physics-based” model, by effectively exploiting the relevant information available in the input-88 
output data.  89 

1.3 Problem Definition, Objectives, and Scope of this Work 90 
[8] This study explores the capability of LSTMs for modeling the dynamics of snow 91 
accumulation and melt. The main goal is to achieve accurate estimates of SWE over a large spatial 92 
domain by exploiting available pixel-scale datasets while maintaining a reasonable level of 93 
computational cost. Our approach involves step-wise training (Kratzert et al., 2018) of an LSTM 94 
network using a subset of pixel-scale data sampled across the entire CONUS, where we first use 95 
CONUS-wide network pre-training to initialize the network parameters, followed by regional fine-96 
tuning of the network. In particular, our modeling experiments were designed to examine the 97 
spatial transferability of predictive performance, thereby facilitating the application of PUB in the 98 
context of snow hydrology (Kratzert et al., 2019a).  99 
[9] To explore the best achievable performance for SWE modeling, we train the LSTM networks 100 
using different combinations of “available” input data and benchmark the network performance 101 
against the temperature-index-based SNOW17 model (Anderson, 2006; hereafter SN17). Our main 102 
interests are in (1) whether the LSTM can outperform the SN17 model used by the National 103 
Weather Service River Forecast Center (NWS RFC) for operational hydrologic prediction, and (2) 104 
to what extent the performance of the LSTM is affected by different system structure hypotheses, 105 
implemented as continental, regional and local training (calibration) strategies.  106 
[10] The scope of our research goes beyond simply pursuing accurate modeling of SWE dynamics, 107 
by investigating the possibilities of using LSTM-based ML as an upper benchmark in the context 108 
of hypothesis testing (Gong et al., 2013; Nearing et al., 2020), that can be used to facilitate and 109 
guide improvements to physically-based modeling of SWE dynamics. In section 2, we introduce 110 
the LSTM-based and SN17 strategies for modeling snow, and discuss the data used for this study. 111 
Section 3 discusses the details of our experimental design. In section 4 we present and discuss the 112 
results. In section 5, we summarize our findings and discuss the outlook for future work. 113 

2. Methods 114 

2.1 Models  115 
2.1.1 Long Short-Term Memory Network (LSTM) 116 
[11] An LSTM network is a type of recurrent neural network that includes memory cells that have 117 
the ability to store information over long time periods (Figure S1). These cells are subjected to 118 
three “gating” operations that effectively control the weight gradients and facilitate the learning of 119 
long‐term dependencies (Hochreiter and Schmidhuber, 1997). Further, each memory cell 120 
functions in a manner analogous to a “state vector” in a traditional dynamical systems model, 121 
which makes the LSTM architecture an ideal candidate for developing models of dynamical 122 
systems (Krazert et al., 2018); for a comprehensive hydrological interpretation of the LSTM 123 
architecture, please refer to Kratzert et al. (2018). In this study, we adopt the LSTM network 124 
architecture as used by Krazert et al. (2019b) where the network architecture equations are 125 
summarized in supplementary materials. 126 
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2.1.2 Snow Accumulation and Ablation Model (SNOW17) 127 
[12] The NWS is the US agency responsible for short-term and long-term streamflow predictions 128 
across the nation. The NWS RFC primarily uses the SN17 model (Anderson, 2006) for generating 129 
operational forecasts of snow accumulation and melt in snow-dominated areas.  SN17 is a 130 
spatially-lumped process-based model that simulates snow accumulation and ablation. It requires 131 
three input data sets; air temperature and precipitation data are used as meteorological inputs, while 132 
information regarding elevation is used to compute atmospheric pressure. The model outputs 133 
include a rain-plus-snowmelt time series, as well as SWE (Figure S2). In this work, we apply the 134 
parsimonious point-scale assumption of full snow cover at the pixel-scale. Therefore, it is 135 
configured as a physical-oriented empirical temperature index model. We adopt the model 136 
structure and associated feasible parameter ranges (Table 1) presented by He et al. (2011a,b). 137 
2.2 Data 138 
2.2.1 Meteorological Input Forcing 139 
[13] In this study, the LSTM and SN17 models were driven by meteorological forcing at the daily 140 
time scale. As inputs, we used daily values of precipitation, mean temperature, dewpoint 141 
temperature, and vapor pressure deficit from the Parameter-Elevation Regressions on Independent 142 
Slopes Model data set (PRISM; Daly et al. 1994). While PRISM data are more uncertain over 143 
complex terrain (Henn et al. 2018), it is arguably the best gridded climate dataset available at this 144 
time, particularly for the western CONUS. We also used hourly, 0.125° near‐surface downward 145 
longwave and shortwave radiation data from the near-real-time North American Land Data 146 
Assimilation Phase 2 data set (NLDAS-2; Xia et al., 2012). The hourly downward longwave and 147 
shortwave radiation data were first averaged to daily timescale and then resampled to 4-km 148 
resolution using nearest-neighbor interpolation onto the resulting grid coordinate with respect to 149 
PRISM. 150 

2.2.2 Snow Water Equivalent (SWE) Target Variables  151 
[14] As the target variable for LSTM training and for SNOW-17 calibration, and to evaluate the 152 
simulation results, we used the University of Arizona (UA) ground‐based daily 4‐km SWE data 153 
product (Broxton et al., 2016; Zeng et al., 2018). This data set was developed by assimilating in 154 
situ measurements of SWE and/or snow depth at thousands of sites (Broxton et al., 2016; Dawson 155 
et al., 2017) using 4‐km gridded PRISM precipitation and temperature data (Daly et al., 1994) 156 
over the CONUS. Accuracy and robustness of the UA snow product, and its use as a reference 157 
continental snowpack data set, have been assessed via four rigorous evaluation studies including 158 
point‐to‐point interpolation (Broxton et al., 2016), pixel‐to‐pixel interpolation (Broxton et al., 159 
2016), and evaluation against independent snow cover extent data and airborne lidar measurements 160 
(Dawson et al., 2018). The UA SWE data product was found to align closely with the CONUS 1‐161 
km SWE product from the Snow Data Assimilation System (SNODAS; Barrett, 2003) and to show 162 
much better agreement with gamma SWE than the Special Sensor Microwave Imager and Sounder 163 
(SSMI/S) SWE and GlobSnow‐2 SWE grid products for various land cover types and snow classes 164 
(Cho et al., 2020). 165 

2.2.3 Static Features  166 
[15] To obtain gridded spatial maps of static land-surface characteristics, we used the open-source 167 
Geospatial Data Abstraction Library (GDAL)’s gdal_translate command-line tool to perform 168 
spatial reprojection of the Shuttle Radar Topography Mission (SRTM; Jarvis et al. 2008) digital 169 
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elevation model elevation data to 4-km resolution; this is consistent with the PRISM latitude–170 
longitude grid using average upscaling interpolation.  171 
[16] The “majority” operation was used to upscale the 1-km MODIS land cover climatology 172 
dataset to the 4-km resolution grid (Broxton et al., 2014). We defined forested pixels to be those 173 
that included Evergreen Needleleaf, Evergreen Broadleaf, Deciduous Broadleaf, Mixed Forests, 174 
and Woody Savannas, whereas the remaining land cover types were classified as Non-Forested 175 
pixels. 176 

3. Experimental Approach  177 

3.1 Study Region  178 
[17] All the studies reported in this paper were conducted at 4-km pixel-scale over the CONUS, 179 
using a coordinate system and spatial coverage that is consistent with the PRISM meteorological 180 
forcing and UA SWE datasets. Roughly 0.31 million pixels were identified to be “snowy” from a 181 
total of approximately 0.46 million total pixels associated with the UA snow product data set. This 182 
categorization of snowy pixels was based on the snowpack climatology, where any pixel with 183 
median annual snowy season length less than 30 days, or median annual daily maximum SWE less 184 
than 10 mm, was classified as being “non-snowy”, as shown in Figure 1 (Zeng et al., 2018). 185 
[18] Next, we selected five regions (shown in Figure 1) to explore the potential for using the 186 
LSTM architecture as a regional modeling tool, where the objective was to simulate snow 187 
accumulation and melt behavior over a large number of different pixels at the daily timescale. 188 
Three western CONUS regions – the Colorado River Basin (hereafter CRB), Sierra Nevada 189 
(hereafter SN), and Cascades (hereafter CC) – were selected based on the important role that 190 
snowpack plays in contributing to their freshwater resources. The high elevation snowpack of the 191 
Rocky Mountains is known to contribute about 70% of the annual runoff of the Colorado River 192 
Basin (Christensen et al., 2004), while the Colorado River provides fresh water to over 40 million 193 
people in seven states and two countries (Deems et al., 2013). Also, in the SN and CC mountains 194 
(Simpkins, 2018), approximately 75% of freshwater originates from snow. To further ensure that 195 
the selected regions cover as wide a range of characteristics as possible in terms of geographic 196 
location, climatic regimes and local physiographic properties, we selected two additional USGS 197 
first level regions, namely Ohio (hereafter OH) and Missouri (hereafter MO), designated by a two-198 
digit Hydrologic Unit Code (HUC). 199 
[19] The five selected regions cover a variety of topography and land cover regimes. The pixel 200 
aspect was derived from SRTM digital elevation model (at its original resolution), and a consistent 201 
result was obtained by binning into eight directions; the two dominant aspects were determined to 202 
be north and south-facing slopes, together occupying around 30% of the total pixels over the five 203 
regions. For MO, the dominant aspect was determined to be north, and for the rest of the regions 204 
the dominant aspect was determined to be south. OH, MO and CC have mean elevations below 205 
1,500 m (low elevation zone), while CRB and SN are between 1,500 m and 2,500 m with 18.2% 206 
and 16.3% pixels respectively having mean elevations above 2,500 m (high elevation zone; Mote, 207 
2006). The OH, MO and CRB have relatively less percentage of forest pixel (about 36.6%, 3.81%, 208 
9.69 respectively) whereas the SN and CC are recognized as being forest-dominated, with more 209 
than half of the pixels classified as forested (about 52% and 83%). These factors are known to 210 
exert strong controls on the energy balance during snowmelt (Garvelmann et al., 2015), and can 211 
be highly variable in space and time (Pohl et al., 2006). 212 



 8 

3.2 Experimental Design 213 
[20] Data from the time period 1st October 1981 through 30th September 2000 were used for all 214 
model development runs – i.e., SN17 calibration and LSTM training. For both the steps of 215 
calibration/training and testing of the models, we used data from the same time period, but from 216 
different spatially located pixels. In other words, our testing procedure evaluates the ability of each 217 
model to extrapolate in space, which is analogous to the problem of prediction in ungauged basins 218 
(Hrachowitz et al., 2013; Sivapalan et al., 2003). Note that it is computationally challenging (or 219 
nearly impossible) to train either model (SN17 or LSTM) using data from the entire set of ~0.31 220 
million snowy pixels; nor does it seem necessary. Instead, we use a process of sampling to select 221 
different, but representative, subsets of pixels to be used for training and for testing, as described 222 
in the following sections. As a precedent for this, Huo et al (2019) have shown (in the context of 223 
sensitivity analysis) that the performance of a computationally intensive spatially distributed 224 
model can be reliably assessed by using only a sample of ~5% of the total number of pixels 225 
available over the CONUS.   226 
[21] The study reported here was conducted in several stages.  In the first experiment (Section 227 
3.2.1), we trained both model architectures (LSTM and SN17) to represent snowmelt dynamics at 228 
15,000 pixels selected randomly across the CONUS. This preliminary experiment had two 229 
purposes: 1) To determine whether the LSTM architecture is able to learn a better mapping 230 
relationship from inputs to outputs than the SN17 model, and 2) To examine whether the LSTM 231 
network architecture is able to exploit the information provided by other meteorological variables 232 
than those used by SN17, to achieve better model performance.  233 
[22] Then, in the second experiment (Section 3.2.2), we evaluated both model architectures on a 234 
different set of 15,000 pixels (none of which were used in the first experiment) but selected in such 235 
a manner so as to provide equal representation to each of the five study regions mentioned above 236 
–Ohio, Missouri, Colorado, Sierra Nevada and the Cascades.  The goals of this experiment were: 237 
1) To assess whether the model performance obtained in the first experiment remains consistent 238 
when applied to another independent dataset, and 2) To examine the possibility of regional 239 
differences in performance.  240 
[23] In the third experiment (Section 3.2.3), we examined the transferability of LSTM-based 241 
models across regions. The goal is to investigate the extent to which different spatial regions share 242 
a common model structural representation. 243 
3.2.1 Experiment 1: CONUS-wide modeling of snow accumulation and melt 244 
[24] The purpose of the first experiment was to investigate the potential of using the LSTM 245 
machine-learning architecture as an alternative to the SN17 model structure for pixel-based 246 
CONUS-wide modeling of snow accumulation and melt. To this end, one single LSTM network 247 
was trained using input-output data from the entire country. Since training the network using data 248 
from more than 0.31 million pixels would be computationally prohibitive, we randomly selected 249 
15,000 pixels from “snowy” areas across the CONUS (Figure 3). The goal was to obtain a 250 
representative subset of ~5% of the total number of possible snowy pixels. Then, to train the LSTM 251 
network, we constructed 15 bootstrap sample sets, each consisting of 1000 different pixels 252 
randomly selected from the total set of 15,000 snowy pixels. We collectively refer to these 15 253 
bootstrapped sets as Pixel Set A.  254 
[25] The LSTM network was trained for a total of 15 epochs, where each epoch used data from a 255 
different bootstrapped set of 1000 pixels taken from Pixel Set A. Here, an epoch refers to the LSTM 256 
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training procedure wherein each temporal data sample for the entire set of 1000 pixels is used once 257 
to update the values of the network parameters.  258 
[26] To investigate the informational value of different variables used as input data, we developed 259 
the 4 different LSTM models indicated below.  To keep track of the different models we adopt the 260 
following four-part naming convention where the first part refers to the model type (LSTM or 261 
SN17), the second part refers to the Pixel Set used (A or B; Pixel Set B will be introduced later), 262 
the third part refers to the model domain (CONUS or Region), and the fourth part refers to the 263 
variables used as input data (PT, PTE, 6M and 6ME). In regard to the latter, PT refers to 264 
precipitation and temperature, PTE refers to precipitation and temperature plus elevation, 6M 265 
refers to a set of 6 meteorological variables (precipitation, temperature, dew point temperature, 266 
vapor pressure deficit, longwave radiation and shortwave radiation), and 6ME refers to the set of 267 
6 meteorological variables plus elevation.   268 
[27] Accordingly, the four LSTM models developed for Experiment 1 were all CONUS-wide 269 
LSTMs trained on all pixels from Pixel Set A, as indicated below: 270 

LSTM-A-CONUS-PT: This LSTM was trained using only precipitation and mean temperature 271 
as forcing inputs; no information about local static pixel attributes (such as elevation, etc) was 272 
used for development of this model. 273 
LSTM-A-CONUS-PTE: This LSTM was trained using precipitation and mean temperature as 274 
forcing inputs, and with pixel mean elevation provided at each pixel. 275 
LSTM-A-CONUS-6M: This LSTM was trained using the set of 6 meteorological forcing 276 
inputs, without being provided any information about local static pixel attributes. 277 
LSTM-A-CONUS-6ME: This LSTM was trained using the set of 6 meteorological forcing 278 
inputs, and with pixel mean elevation provided for each pixel. 279 

[28] As benchmarks for comparison, we developed two SN17 models.  Note that SN17 currently 280 
uses only precipitation, temperature and elevation as input data.  281 

SN17-A-CONUS: A single CONUS-wide SN17 model was calibrated to obtain a single “best-282 
average” CONUS-wide set of parameters whose values were applied simultaneously to all of 283 
the pixels from Pixel Set A.   284 
SN17-A-PX: The SN17 model was calibrated separately at each pixel in Pixel Set A resulting 285 
in different parameter sets at each of the 15,000 pixels. 286 

As such, the SN17-A-CONUS model can be thought of as representing a “lower-benchmark” on 287 
SN17 performance at each pixel, since this model treats all pixels as having identical functional 288 
characteristics, and simply applies the same input-state-output transformation algorithm to every 289 
pixel regardless of its location or local static characteristics.  In contrast, the SN17-A-PX model 290 
can be thought of as representing an “upper benchmark” on SN17 performance at each of the 291 
calibrated pixels, since the model was tuned specifically to optimize performance at those pixels. 292 

3.2.2 Experiment 2: Regional modeling of snow accumulation and melt 293 
[29] For this second experiment, we developed another set of 15,000 pixels, hereafter referred to 294 
as Pixel Set B, by randomly selecting 3,000 pixels from each of the 5 study regions (OH, MO, 295 
CRB, SN and CC). Note that these five regions represent 13.11%, 3.53%, 13,79%, 67.93% and 296 
44.14% respectively of the total number of snowy pixels across the CONUS. Further, each region 297 
includes a different percentage of forested and non-forested areas.  As a result, Pixel Set B has 298 
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relatively dense representation of forested regions and is most sparsely representative of the 299 
Missouri river basin, which is the largest of the five regions.  300 
[30] Using Pixel Set B, we again trained the LSTM architecture at the CONUS level (a single 301 
model for the entire country), after which we trained separate LSTM models for each region (5 302 
separate models, one for each region).  The procedure used was as follows.  For each region, we 303 
partitioned the corresponding 3,000 pixels into sets of 1000 each for training, validation and testing. 304 
For the CONUS-wide model(s) the 1000 "training” pixels from each of the five regions were 305 
grouped together to obtain 5000 pixels to be used for network training (similarly for validation and 306 
testing).  For each of the regional models, only the corresponding regional pixels were used for 307 
network training, validation and testing.  308 
[31] To initialize each CONUS-wide LSTM model (see below), we initialized the weights and 309 
biases using the corresponding results obtained at the end of the 15th epoch of Experiment 1; in 310 
other words, the network architectures were considered to have been “pre-trained” using the 311 
information provided by Pixel Set A. The networks were then trained for 30 epochs, and the 312 
network parameters (weights and biases) were recorded for the epoch at which the highest average 313 
Kling–Gupta efficiency (KGE; Gupta et al., 2009) was achieved over the 5,000 validation pixels. 314 
By doing so, we took advantage of the results of Experiment 1 to minimize training costs, while 315 
achieving a consistent set of weights and biases for the CONUS-wide model that could be used 316 
when initializing the training of the separate regional models.  In this way, we took advantage of 317 
the benefits of “transfer learning” (Kratzert et al., 2018). 318 
[32] As in Experiment 1, we developed four different LSTM models at the CONUS level, trained 319 
on Pixel Set B, as indicated below: 320 

LSTM-B-CONUS-PT: This LSTM was trained using only precipitation and mean temperature 321 
as forcing inputs; no information about local static pixel attributes (such as elevation, etc) was 322 
used for development of this model. 323 
LSTM-B-CONUS-PTE: This LSTM was trained using precipitation and mean temperature as 324 
forcing inputs, and with pixel mean elevation provided at each pixel. 325 
LSTM-B-CONUS-6M: This LSTM was trained using the set of 6 meteorological forcing 326 
inputs, without being provided any information about local static pixel attributes. 327 
LSTM-B-CONUS-6ME: This LSTM was trained using the set of 6 meteorological forcing 328 
inputs, and with pixel mean elevation provided for each pixel. 329 

[33] Similarly, for each Regional LSTM model (see below), we initialized the weights and biases 330 
using the corresponding results obtained from the CONUS-wide models trained on Pixel Set B; in 331 
other words, the regional network architectures were considered to have been “pre-trained” using 332 
the information provided by the CONUS-wide model trained on Pixel Set B. The networks were 333 
then trained for 30 epochs, and the network parameters (weights and biases) were recorded for the 334 
epoch at which the highest average KGE value was achieved over the corresponding regional 335 
validation pixels. This approach took advantage of the results of CONUS-wide modeling to 336 
minimize training costs.  337 

[34] Accordingly, we developed four different LSTM models for each Region, as indicated below: 338 
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LSTM-B-Region-PT: Each regional LSTM was trained using only precipitation and mean 339 
temperature as forcing inputs; no information about local static pixel attributes (such as 340 
elevation, etc.) was used for development of these models. 341 
LSTM-B-Region-PTE: Each regional LSTM was trained using precipitation and mean 342 
temperature as forcing inputs, and with pixel mean elevation provided at each pixel. 343 
LSTM-B-Region-6M: Each regional LSTM was trained using the set of 6 meteorological 344 
forcing inputs, without being provided any information about local static pixel attributes. 345 
LSTM-B-Region-6ME: Each regional LSTM was trained using the set of 6 meteorological 346 
forcing inputs, and with pixel mean elevation provided for each pixel. 347 

[35] As benchmarks for comparison, we developed the following additional SN17 models:  348 
SN17-B-CONUS: A single CONUS-wide SN17 model calibrated to obtain a single “best-349 
average” CONUS-wide set of parameters for all of the pixels from Pixel Set B.   350 
SN17-B-Region: Five Regional SN17 models calibrated to obtain “best-average” region-wide 351 
sets of parameters for the pixels in each region of Pixel Set B.   352 
SN17-B-PX: The SN17 model was calibrated separately at each pixel in Pixel Set B resulting 353 
in different parameter sets at each of the 15,000 pixels. 354 

[36] For model evaluation/testing, we focused on how well the models perform on the 5,000 355 
testing pixels selected from Pixel Set B (1000 pixels from each of the 5 regions). First, we evaluated 356 
the LSTM-based models against the SN17 benchmarks when using only PTE (precipitation, mean 357 
temperature and elevation) as inputs, these being the same inputs used by SN17. The goal was to 358 
assess the capability of the LSTM network architecture to learn an appropriate representation of 359 
snow accumulation and melt over different training phases given the same input information that 360 
is available to the SN17 model. Then, we assessed which combination of inputs (PT, PTE, 6M or 361 
6ME) results in the best LSTM-based CONUS-wide predictions. Finally, we examined whether 362 
regional training results in better model performance than using the CONUS-wide model(s). Note 363 
that in all cases, the LSTM-based models were fine-tuned on Pixel Set B after initializing using 364 
weights and biases trained on Pixel Set A. 365 
3.2.3 Experiment 3: Exploring the benefits of transfer learning  366 
[37] For the third experiment, we investigated the extent to which different spatial regions can 367 
share a common model structure with different parameter values through transfer learning (TL) 368 
across regions. Each LSTM-B-Region model trained in Experiment 2 was applied to each of the 369 
other four regions, resulting in 20 TL models for each input combination (PT, PTE, 6M or 6ME):  370 

LSTM-B-TL from Ohio: For each of the regions MO, CRB, SN and CC, we obtain 4 TL-371 
LSTM networks, trained with different input combinations on the OH Region. 372 
LSTM-B-TL from Missouri: For each of the regions OH, CRB, SN and CC, we obtain 4 TL-373 
LSTM networks, trained with different input combinations on the MO Region 374 
LSTM-B-TL from CRB: For each of the regions MO, OH, SN and CC, we obtain 4 TL-LSTM 375 
networks, trained with different input combinations on the CRB Region 376 
LSTM-B-TL from SN: For each of the regions MO, CRB, OH and CC, we obtain 4 TL-LSTM 377 
networks, trained with different input combinations on the SN Region 378 
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LSTM-B-TL from Cascades: For each of the regions MO, CRB, SN and OH, we obtain 4 TL-379 
LSTM networks, trained with different input combinations on the CC Region 380 

[38] The goal of this experiment was to test the extent to which a regional LSTM model structure 381 
hypothesis, imposed in the form of different kinds of regularization strategies at the input, can be 382 
transferred (extrapolated) to other locations. We benchmarked these TL-LSTM networks against 383 
the 3 models listed in Experiment 2 (LSTM-B-Region, SN17-B-Region and SN17-B-PX) to 384 
examine how well the information about system structure extracted from region can be transferred 385 
to another. To ensure a clean evaluation, the results were only assessed over the 5,000 testing 386 
pixels. 387 
3.3 Objective Function  388 
[39] The objective function used for CONUS-wide and regional model training was 𝑁𝑆𝐸!"# , 389 
obtained by averaging the NSE values computed at each pixel that supplies training data (Krazert 390 
et al., 2019b) shown as Eqn (1):  391 
 392 
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 394 
where P is the number of pixels, N is the number of days per pixel,  𝑦0,  is the prediction of 395 
pixel 𝑛(1 ≤ 𝑛 ≤ 𝑁), 𝑦0  is the observation, and 𝑠(𝑝) is the standard deviation of the SWE in 396 
pixel 𝑝(1 ≤ 𝑝 ≤ 𝑃), calculated from the training period. The value of 𝜖 was set to 0.1 to avoid the 397 
loss function exploding to infinity for pixels with very low SWE variance. For training the pixel-398 
wise SN17 model we used the standard NSE shown in Eqn (2):  399 
 400 
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where 𝑦0555 is the mean of observed SWE for each day, 𝑦056 and 𝑦05 are the modeled and observed 403 
SWE at the training period time t(1 ≤ 𝑡 ≤ 𝑇) for a single pixel. 404 

3.4 Hyperparameter and Training Details  405 
[40] We mostly followed Krazert et al. (2019b) for setting the LSTM hyperparameters; 256 406 
hidden states, 1 stacked LSTM layer, a batch size of 256, a dropout rate of 0.4 and a sequentially 407 
decreased learning rate per 10 epochs from 1.0 × 10)6	𝑡𝑜	5.0	 × 10)7 then to 1.0	 × 10)7. The 408 
LSTMs were run in sequence-to-value mode, so that to predict a single daily SWE value the 409 
meteorological forcing from 242 preceding days, as well as the forcing data of the target day, were 410 
used (making the input sequences 243 time-steps long). This input sequence length follows 411 
suggestions from the land model community, where the snowy season is typically assumed to last 412 
from October 1st to May 31st resulting in a total of 243 days (Niu and Yang 2007; Swenson and 413 
Lawrence 2012). The relatively large number of hidden states (256) is believed to help circumvent 414 
the situation where the predictive performance of the LSTM is sensitive to weight initialization 415 
when using a small number of hidden state units (Bengio, 2012). The ADAM optimization 416 
algorithm was used for training (Kingma and Ba, 2014). Also, a single fixed random seed (2925) 417 
was applied to train all the LSTM networks. Our results indicated robust performance over 3 418 
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independent testing pixel sets (see section 4.1.3), and therefore no further hyperparameter tuning 419 
was performed.  420 
[41] Note that in experiment 1 we trained the LSTM network for a total of 15 epochs, where each 421 
epoch used data from a different bootstrapped set of 1000 pixels taken from Pixel Set A. The results 422 
of 15th epoch were then used to initialize the training for experiment 2, in which the LSTM network 423 
was trained for a total of 30 epochs using data from 5,000 training pixels selected from Pixel Set 424 
B. The results for the epoch having a minimum averaged KGE value over 5,000 validation pixels 425 
were then used to initialize the next stage of training for the 5 regional networks. Model 426 
performance was then assessed for an independent set of 5,000 testing pixels.  427 
[42] To calibrate the SN17 models, we used the Shuffled Complex Evolution (SCE) global 428 
optimization algorithm (Duan et al., 1992). Ten parameters were optimized, with the parameter 429 
range and model structure following He et al. (2011a). A standard batch calibration procedure was 430 
employed in which all training pixels were processed simultaneously at each iteration, in contrast 431 
to LSTM training where we randomly sampled pixels to make up each training batch to achieve 432 
faster convergence (LeCun et al., 2012).  433 
3.5 Evaluation Metrics for Assessing Model Performance 434 
[43] To assess the consistency, reliability, accuracy, and precision of the models, we used several 435 
metrics, including NSE (Nash and Sutcliffe, 1970; Eqn 2), the three components of KGE (Gupta 436 
et al., 2009) from Eqn(3) to Eqn(6), and the scaled KGE (hereafter KGEss; Khatami et al., 2020; 437 
Eqn 7):  438 
 439 
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 445 
where 𝜎+  and 𝜎;  are the standard deviation, and 𝜇+  and 𝜇;  are the mean of the simulated and 446 
observed SWE time series respectively, and	𝐶𝑜𝑣+; is the covariance between the simulated and 447 
observed values.  448 

4. Results and Discussion 449 

4.1 Experiment 1: CONUS-wide modeling of snow accumulation and melt  450 
[44] Figures 2 and 3 present a statistical assessment of the potential for using the LSTM 451 
architecture to model CONUS-wide snow accumulation and melt. The results show CDFs of 452 
testing-pixel performance over 15,000 pixels from Pixel Set A for the four CONUS-wide LSTM 453 
models (LSTM-A-CONUS-PT, -PTE, -6M and -6ME) that use different input data sets, the lower-454 
benchmark SN17-A-CONUS model, and the upper-benchmark SN17-A-PX model used as the bases 455 
for comparison.  Note that each of these six models uses a single architecture to model snow 456 
accumulation and melt dynamics across the entire CONUS.  Recall that the lower-benchmark 457 
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SN17-A-CONUS model and the four LSTM models each use a single set of CONUS-wide 458 
parameters, while the SN17-A-PX model is individually trained to each pixel.  459 

4.1.1 Comparative overall performance of the LSTM and SN17 model architectures 460 
[45] The NSE aggregate performance results (Figure 2) show clearly that the LSTM architecture 461 
provides better modeling of the general dynamics of snow accumulation and melt than the SN17 462 
model architecture.  All of the CDFs are shifted much further to the right, closer to the ideal value 463 
of 1.0.  With a single network architecture and set of parameters applied to the entire CONUS, 464 
each of the four LSTM models (solid lines) achieves significantly better distributions of testing-465 
pixel NSE scores than the lower- and upper-benchmark SN17 models (blue and red dashed lines 466 
respectively).  In particular, the LSTM network architecture, with CONUS-wide sets of parameters 467 
(red, orange, purple and green solid lines), provides better performance than the SN17-A-PX model 468 
for which parameters were optimized locally at each pixel.  The unavoidable conclusion is that the 469 
SN17 model architecture does not adequately capture the structural nature of the input-state-output 470 
transformations that express the dynamics of snow accumulation and melt.   471 

4.1.2 Ability of the LSTM and SN17 architectures to exploit information in the input data 472 
[46] Although the 𝑁𝑆𝐸 metric indicates better aggregate performance of the LSTM architecture, 473 
it does not provide much insight into the reasons why.  Note also that the use of different time 474 
periods to compute the aggregated NSE performance criterion can be informative (Schaefli et al., 475 
2005; Schaefli and Gupta, 2007). Here, we use the 𝐾𝐺𝐸𝑠𝑠 performance metric and its components 476 
to provide better discrimination between the models.  The top row (a to d) of subplots in Figure 3 477 
compares the results when both model types are provided with similar input data (precipitation, 478 
temperature and elevation).   479 
[47] First, both the LSTM-A-CONUS-PT and LSTM-A-CONUS-PTE networks (red and orange 480 
solid lines respectively) achieve significantly better 𝐾𝐺𝐸𝑠𝑠 performance than the SN17-A-CONUS 481 
model (blue dashed line). Further, the 𝛾𝐾𝐺𝐸 component shows that a major reason for this is that 482 
the LSTM is better able to simulate the shape and timing of snowmelt. So, even without any 483 
information regarding “local” properties of the landscape, the LSTM-A-CONUS-PT (which was 484 
not provided local elevation information) model is able to learn an input-state-output mapping that 485 
is better than that encoded by the SN17 model (which was provided with elevation information).  486 
In other words, the LSTM architecture is able to make better use of the information about snow 487 
dynamics provided by the input (precipitation and temperature) data. 488 
[48] Second, the LSTM-A-CONUS-PTE network with elevation information (orange solid line) is 489 
clearly better than the LSTM-A-CONUS-PT network without elevation information (red solid line). 490 
In particular, the use of elevation information results in a much better mass balance, as indicated 491 
by the 𝛽 − 𝐾𝐺𝐸 curve being closer to the ideal value of 1. This indicates, as might be expected, 492 
that there is considerable predictive value provided by the “local” information about elevation.   493 
[49] Third, the LSTM-A-CONUS-PTE network, with a single set of CONUS-wide parameters, 494 
achieves almost identical 𝐾𝐺𝐸𝑠𝑠 performance to that of the SN17-A-PX model that was calibrated 495 
individually to each pixel (note that both these models use the same physical input information). 496 
This indicates that the LSTM architecture is able to successfully learn a set of parameters that 497 
enables it to be confidently applied to pixels that were not used for network training. 498 
[50] The bottom row (e to h) of subplots in Figure 3 compares the results when the LSTM network 499 
architecture is provided with different types of input data (red, orange, purple and green solid lines). 500 
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As indicated above, there is significant improvement when going from PT where only precipitation 501 
and temperature are provided (red solid line) to PTE where elevation information is also provided 502 
(orange solid line).  However, even further improvement is achieved by the 6M network (purple 503 
solid line) that is provided with additional meteorological variables. Note that only the first two of 504 
these inputs (precipitation and temperature) are used by the SN17 model.  So, providing the 505 
network with additional meteorological information (here dew point temperature, vapor pressure 506 
deficit, longwave radiation and shortwave radiation) is clearly beneficial.  However, the 6ME 507 
model, which is provided with the 6 meteorological variables plus elevation, shows a clear decline 508 
in overall 𝐾𝐺𝐸𝑠𝑠 performance. This seems to suggest that the information provided by elevation 509 
may be redundant when the meteorological information is provided (i.e., the meteorological 510 
variables already encode the useful information that would otherwise be provided by elevation).  511 

[51] Overall, the 𝐾𝐺𝐸  metric and its components show that the LSTM-A-CONUS-6M model 512 
provides a much better representation of water balance and range of variability (curves are shifted 513 
closer to the center, where the ideal value is 1; Figures 3g & 3f), achieving a median 𝐾𝐺𝐸𝑠𝑠 514 
performance of 0.94 compared with the SN17-A-PX model (median 𝐾𝐺𝐸𝑠𝑠=0.93). In general, all 515 
of the models tend to underestimate the variability of snowmelt (𝛼 − 𝐾𝐺𝐸 < 1 ; Figures 3b & 3g). 516 
Both the LSTM-A-CONUS-PTE and LSTM-A-CONUS-6M models provide better representations 517 
of snow mass balance (𝛽 − 𝐾𝐺𝐸 closer to 1; Figures 3c & 3g) than the other 2 LSTMs. Use of 518 
only precipitation and mean temperature (LSTM-A-CONUS-PT) results in a tendency to positive 519 
bias, likely because it does not have access to humidity relevant information (vapor pressure deficit, 520 
dew point temperature) and is therefore unable to learn an accurate rain-snow partitioning 521 
threshold within the gating operation (Wang et al., 2019). Meanwhile, the SN17-A-PX model tends 522 
to underestimate mass balance suggesting that one should perhaps consider using other objective 523 
functions for pixel-wise training than NSE (or KGE, not shown, which results in similar 524 
underestimation bias).  525 
[52] In summary, the ability to exploit the information provided by a wider suite of meteorological 526 
variables enables the CONUS-wide implementation of the LSTM architecture to achieve a better 527 
representation of the dynamics of snow accumulation and melt, as assessed in terms of the ability 528 
to match the target SWE variable. However, even when provided with the same physical inputs as 529 
SN17, the LSTM architecture provides better results; such an implementation might be 530 
unavoidable when only Snow Telemetry (SNOTEL) information is available. 531 
4.1.3 Evaluation on Pixel Set B 532 
[53] We next evaluated the LSTM-A-CONUS-6M model trained using Pixel-Set-A on a different 533 
set of 15,000 pixels from Pixel Set B. Figure 4 summarizes the spatial distributions of the 5 534 
performance metrics separately for first independent sets (see other two sets in Figure S3) of 5,000 535 
pixels from Pixel Set B. Table 2 shows that, overall, the model continues to provide good predictive 536 
performance on all three independent datasets, with only 31.69% and 30.22% of the pixels having 537 
more than ±10%  bias in the values of 𝛼 − 𝐾𝐺𝐸  and 𝛽 − 𝐾𝐺𝐸  respectively. Further detailed 538 
evaluation performed on each of the five regions (see Experiment 2) reinforced these findings (see 539 
Figure S1).  Overall, these results indicate that the CONUS-wide LSTM-A-CONUS-6M model 540 
achieves a high degree of robustness with regard to predictive performance. As such, no further 541 
tuning of the LSTM model hyperparameters was performed in the later parts of this study. 542 
[54] The CDF plots related to Figure 6 are presented in Figure S4 of the Supplementary Materials. 543 
Generally, MO and CRB have an overall better performance in terms of KGEss and NSE whereas 544 
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the two forested areas, SN and CC, perform relatively worse, with OH being in between. A similar 545 
conclusion is found by examining three KGE components except that the OH shows a relatively 546 
large negative bias for the standard deviation error (𝛼 − 𝐾𝐺𝐸).  Table 3 summarizes the Pearson 547 
correlation coefficient (𝛾) for the pair of SWE hydrographs within the study period.  MO and CRB 548 
have the two lowest average 𝛾 values for all the pairs (0.47 and 0.47 respectively) which suggests 549 
that the LSTM-A-CONUS-6ME model trained over the entire country provides better performance 550 
when the region covers a more diversified climatic regime. Moreover, the model has worse average 551 
performance at forested (as opposed to non-forested) pixels, where the average KGEss skill 552 
difference between the two area equals 0.015, 0.079 and 0.023 over OH, SN and CC respectively. 553 
Further, the KGEss skill is only 0.55 and 0.75 for Mixed Forest and Woody Savanna pixels in the 554 
SN region, suggesting the need to either construct separate local models, or to add relevant local 555 
attributes to the CONUS-wide models to improve overall LSTM model performance.   556 
[55] Figure S5 and S6 show that the CONUS-wide LSTM is able to properly simulate the seasonal 557 
cycle dynamics of snow accumulation and melt. The figures show, for each region, time-series 558 
comparisons of simulated and observed SWE for the LSTM-A-CONUS-6M model and various 559 
versions of the SN17 model. Although a very large number of cases was investigated in this study, 560 
the results presented here can be considered to be representative.  561 

4.2 Experiment 2: Regional modeling of snow accumulation and melt 562 
4.2.1 Results of CONUS-wide Fine Tuning  563 
[56] Experiment 2 was conducted in stages, where the first stage was another round of CONUS-564 
wide network training. In the following discussion, we refer to the LSTM networks obtained by 565 
training on Pixel Set A as the “pre-trained” CONUS-wide networks. Initialized from the weights 566 
and bias parameters of these pre-trained networks we conducted a further stage of CONUS-wide 567 
network training using Pixel Set B (called the “fine-tuned” CONUS-wide networks).  The results 568 
of this second round of network training are the LSTM-B-CONUS-PT, -PTE, -6M and -6ME 569 
CONUS-wide models, as described in Section 3.2.2. 570 
[57] Performance comparison of the pre-trained (using Pixel-Set-A) and the fine-tuned (using 571 
Pixel-Set-B) CONUS-wide LSTM networks is shown in Figure 5. The results show performance 572 
on the 5,000 independent testing pixels from Pixel Set B. Note that while, performance was already 573 
quite good based on Pixel-Set-A training, the model skill, as measured by the median value of 574 
KGEss, improves by ~0.08 / ~0.06 / ~0.08 for the PT / PTE / 6ME models respectively, and by 575 
only ~0.01 for the 6M model.  This reinforces the earlier finding that use of a full suite of 576 
meteorological variables results in an efficient basis for training the LSTM network.  However, 577 
providing the network with additional information about elevation (-6ME model) does not result 578 
in further improvement.  579 
[58] This added value of fine-tuning is further demonstrated in Figure 6, which shows the change 580 
in model skill from LSTM-A-CONUS-6M to LSTM-B-CONUS-6M.  The left column of subplots 581 
shows the geographical distribution of change in model skill (blue indicates improvement) while 582 
the right column shows the corresponding performance difference CDFs individually for each of 583 
the five regions. In the right column, the metric 𝛼∗𝐾𝐺𝐸 is defined as 1 − |1 − 𝛼| and the metric 584 
	𝛽	∗ − 𝐾𝐺𝐸 is defined as 1 − |1 − 	𝛽	| so as to better illustrate the change in skill. Accordingly, 585 
positives values in the right column of subplots indicate improved performance of LSTM-B-586 
CONUS-6M over LSTM-A-CONUS-6M with respect to the corresponding metric.  587 
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[59] Accordingly, of the 5000 testing pixels, 58.0% have improved NSE while 57.8% have 588 
improved KGEss (with 59.6%, 54.2% and 55.8% improvement for the	𝛼, 𝛽 and 𝛾 components 589 
respectively). More than half of the pixels show improvements for NSE and all three components 590 
of KGE for the regions other than OH. In OH, as many as 60% of the pixels show a decrease in 591 
KGEss skill (due to 𝛾 − 𝐾𝐺𝐸). This may be because Pixel-Set-A contains a larger number of non-592 
forested snowy pixels (77%) over the CONUS than Pixel-Set-B (62%).  Since the CONUS-wide 593 
model has to select network parameters that balance performance over both forested and non-594 
forested areas, the result seems to be improved over forested areas (which are better represented 595 
by Pixel-Set-B) at the expense of non-forested areas. 596 

4.2.2 Regional Training of the LSTM models  597 
[60] Initialized from the weights and bias parameters of the fine-tuned CONUS-wide networks 598 
we next trained a separate LSTM network for each of the 5 regions, again using Pixel-Set-B (we 599 
refer to these as the “fine-tuned” regional networks).  Overall, at the CONUS-level, the regional 600 
tuning results in the median CDF of KGEss improving by a small amount – by 0.013, 0.012, 0.013 601 
and 0.025 for the PT, PTE, 6M and 6ME models respectively (see Figure S7 in the Supplementary 602 
Materials).  While the 6ME model shows the largest improvement, its overall performance is still 603 
worse than for the other models (consistent with previous results). 604 
[61] In contrast with the CONUS-wide fine-tuning stage (Figure 6), regional fine-tuning results 605 
in even more improvement of model skill across the five regions (Figure 7). The range of 606 
improvement is from 55% (SN) to 65% (MO) for 𝛼 − 𝐾𝐺𝐸, from 56% (SN) to 62% (CRB) for 607 
𝛽 − 𝐾𝐺𝐸, and from 77% (SN) to 88% (OH) for 𝛾	 − 𝐾𝐺𝐸. Overall, 81% of the testing pixels show 608 
improved NSE skill, while 64% show improved KGEss (60%, 59% and 81% for 𝛼 , 𝛽  and 𝛾 609 
components respectively). Meanwhile 85% (68%) of the forested pixels show greater improved 610 
NSE (KGEss) skill than the CONUS-wide fine-tuning 54% (51%) over the SN region. A general 611 
conclusion is that allowing the LSTM network to account for regional differences helps improve 612 
predictive performance, especially over forested areas. 613 
4.2.3 Comparison with SN17 Benchmarks 614 
[62] The results reported above indicate that the best performing model is the LSTM-B-Region-615 
6M deep learning network architecture trained separately to each region.  In this section, we 616 
evaluate the extent to which the LSTM architecture is able to “learn” a better input-output mapping 617 
than is encoded by the SN17 model, when both modeling strategies are provided with the exact 618 
same input information (precipitation, temperature and elevation) over different phase of model 619 
development. Figure 8 summarizes the progression of performance of the LSTM architecture 620 
(evaluated over the 5000 Pixel-Set-B testing pixels), starting with the pre-trained LSTM-A-621 
CONUS-PTE, proceeding to the fine-tuned LSTM-B-CONUS-PTE, and finally to the five fine-622 
tuned LSTM-A-Region-PTE models (here grouped together as one larger CONUS-wide model with 623 
regional differentiation).  As benchmarks for comparison we show the SN17-A-CONUS model 624 
(black dashed line) and corresponding SN17-B-CONUS model (red dashed line), each of which 625 
uses a single set of parameters to represent the entire CONUS, the SN17-B-Region model (blue 626 
dashed line) that uses five different parameter sets (one set for each of the five regions), and an 627 
“upper-benchmark” SN17-B-Pixel model (black dotted line) that is individually calibrated to each 628 
of the 5000 testing pixels (thereby reflecting the best possible performance achievable at those 629 
pixels by the SN17 model architecture given the available data). 630 
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[63] First, we notice that, as might reasonably be expected, the SN17 and LSTM models get 631 
progressively better (in terms of all of the reported metrics) as we proceed from the CONUS to 632 
Regional versions.  However, this progressive improvement is much more significant for the SN17 633 
model (see KGEss, 𝛼 − 𝐾𝐺𝐸 and 𝛽 − 𝐾𝐺𝐸 metrics) than for the LSTM models.  Further, the 634 
LSTM architecture has learned a far better than representation of the snow-accumulation and melt 635 
input-output mapping than is expressed by the SN17 model architecture.  In terms of the NSE 636 
metric, all three LSTM models (A-CONUS, B-CONUS and B-Regional) achieve median NSE 637 
values above 0.95, while the best comparable SN17 model (SN17-B-Regional) achieves a median 638 
NSE value of around 0.82. Note that the SN17-B-Pixel results, which represents a “best possible” 639 
SN17 model since the model was calibrated to the testing pixels is still worse (with a median NSE 640 
value of around 0.87) than all three of the LSTM models.  In contrast, the KGEss metric indicates 641 
that the pre-trained LSTM-A-CONUS-PTE model is only slightly better than the SN17-B-Region 642 
model and worse than the SN17-B-Pixel benchmark.  Meanwhile the LSTM-B-CONUS-PTE and 643 
LSTM-A-Region-PTE models have the best performance.  644 
[64] Finally, it should be noted that although the improvement from LSTM-B-CONUS-PTE to 645 
LSTM-A-Region-PTE is both clear and consistent, it is not very large; this indicates that a trained 646 
CONUS-wide LSTM model (based on PTE data) is capable of providing almost as good 647 
performance as a regionally trained one.  Further this CONUS-wide LSTM is better than the 648 
regionally trained SN17 model and is even better than the “perfect” SN17-B-Pixel model that was 649 
calibrated to achieve best possible performance at the “testing” pixels; this latter finding is 650 
consistent with the “prediction in ungauged basins” results reported by (Krazert et al., 2019a; 651 
Krazert et al., 2019b) in the context of rainfall-runoff modeling.   652 
4.2.4 Some General Remarks 653 
[65] In general, the good performance of the LSTM-based models should (perhaps) not be too 654 
surprising since it is likely that a much larger amount of information has been assimilated by the 655 
deep learning process than was available to the developers of the SN17 model architecture.  What 656 
does seem remarkable is that the collective-regionally-differentiated (“fine-tuned” CONUS-wide) 657 
LSTM model is not very much better than the single CONUS-wide representation, suggesting that 658 
the latter may be capable of providing acceptably good predictions of SWE at locations that are 659 
not necessarily similar, in terms of local attributes, to the conditions experienced by the model 660 
during training; in other words, the conditions determining the dynamics of snow accumulation 661 
and melt depend largely on meteorological and local conditions may have only marginal impact, 662 
at least at the scale of the individual pixels used for this study. 663 
4.3 Experiment 3: Exploring the benefits of transfer learning  664 
[66] In Experiment 1, we demonstrated the ability of a CONUS-wide LSTM to make accurate and 665 
robust predictions at continental scale, across different pixel sets. In Experiment 2, we showed that 666 
a regionally trained LSTM also shows promising performance when tested on independent pixels 667 
within the same region. Here, we explore the potential for transfer learning (TL), in which we 668 
evaluate the extent to which an LSTM trained to one region can be used outside of the original 669 
regional for which it was developed. This is achieved by applying the regional LSTM network 670 
(LSTM-B-Region) trained from one region to the remaining 4 corresponding regions and 671 
evaluating performance on 1,000 testing pixels selected (within that region) from Pixel Set B. The 672 
evaluation results in total 20 TL evaluations for each type of LSTM (PT, PTE, 6M, 6ME) that uses 673 
different input information.  674 
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4.3.1 Evaluation Metric for Transfer Learning 675 
[67] To quantify the KGEss performance of each regional TL-LSTM network, we compute the 676 
area under the CDF curve integrated between 0 and 1 (i.e., positive values of KGEss). We then 677 
obtain the 𝜙B→D TL metric by subtracting the integrated area from 1.0 as shown by Eqn (8): 678 

𝜙B→D = 1 −R𝑓=>?++𝑑(𝐾𝐺𝐸++)
$

E

																																																			(8) 679 

[68] The symbol 𝑆 refers to the source region where the TL network was developed, 𝑇 refers to 680 
the target region that the network is applied to, and 𝑓=>?++ indicates the KGEss performance CDF 681 
of the TL network. Because KGEss performance is generally positive for all of the cases examined, 682 
we neglect area under the CDF curve corresponding to KGEss less than 0. Accordingly, the 𝜙B→D 683 
metric is bounded between 0 and 1 with larger values indicating better TL performance. Finally, 684 
the degree of transferability of each regional LSTM is evaluated as the ratio written as Eqn (9): 685 

𝑅B→D =
𝜙B→D
𝜙D

																																																																										(9) 686 

where 𝜙D refers to the metric (Eqn 8) computed for the model when trained specifically to the 687 
target region (i.e., not transferred). Accordingly, we compare the regional TL-LSTM networks 688 
against three benchmarks, including the regional LSTM model trained to the target region (𝜙D)*$+), 689 
the regional SN17 model trained to the target region (𝜙D*,&-./012(!) and the SN17 pixel model 690 
trained to the target region (𝜙D*,&-.34).  Thus, values of 𝑅B→D larger than 1.0 indicate that the TL 691 
model is able to outperform the benchmark model, while values less than one indicate poor ability 692 
to exploit transfer learning. 693 

4.3.2 Evaluation of regional TL networks against three benchmarks 694 
[69] We first compare the TL-LSTMs against the target region LSTMs (see Figure 9). We ignore 695 
the 6ME network, because it performs worse than the PT, PTE and 6M networks while requiring 696 
more input information. Overall, we see that the LSTM-PT networks, which require fewer input 697 
data provide better TL performance (Figure 9a) than the PTE (Figure 9b) and 6M networks 698 
(Figure 9c), as indicated by the majority of the 𝑅B→D values being close to or larger than 1.0. This 699 
suggests that the LSTM-gating operations have been able to learn a better universal representation 700 
of the processes that control the rain-snow partitioning and snowmelt dynamics, by exploiting only 701 
the information provided by precipitation and mean temperature. This finding also suggests the 702 
existence of a tradeoff between model transferability and model complexity (in the sense of the 703 
number of input variables used for training the LSTM network) (Lute and Luce, 2017). However, 704 
whether this finding is general requires further investigation and consideration of issues such as 705 
data quality and quantity (Schoups et al., 2008). 706 
[70] As shown by Figures 9b and c, the TL results deteriorate when elevation is included as an 707 
input for LSTM network training. In particular, the 𝑅B→D  metric for LSTM-B-TL from CRB 708 
decreases to 0.88 (6M) and 0.65 (PTE) when applied to Ohio, while conversely the LSTM-B-TL 709 
from Ohio decreases to 0.92 (6M) and 0.57 (PTE) when applied to CRB. So, the inclusion of 710 
elevation as training information tends to cause the LSTM to learn a regional representation that 711 
does not transfer well to other regions.  712 
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[71] Similarly, the PTE and 6M versions of the Cascades LSTM-B-TL do not transfer well to the 713 
other four regions, and especially to the three non-forest regions (for which the 𝑅B→D values are 714 
all less than 0.50). This makes sense, since the Cascades is a relatively unique region where the 715 
spatial coverage is relatively narrow and is located at higher latitudes, so that a representation is 716 
learned that is locally-specific and therefore does not transfer well to geographical regions that are 717 
not similar. However, this result may also be due to the way that we have fine-tuned the LSTM 718 
network, because the 6ME results (Figure S8) also transfer poorly from CRB and SN to OH and 719 
MO. Because we have allowed all of the weights and biases to be tunable at each level of network 720 
training, the regional CC networks for PTE and 6M have lilely forgotten some of the general 721 
learning achieved through CONUS-level training. It is possible that freezing some of the weight 722 
and biases during regional training may help to address the reasons for poor network transferability 723 
(Ma et al., 2021). 724 
[72] Next, we compare the TL-LSTMs to the target region SN17 benchmarks (SN17-Regional 725 
and SN17-PX). We see that about 80% (Figure 9d). and more than half (55%; Figure 9g) of the 726 
TL-LSTMs that used only precipitation and mean temperature as inputs outperform (indicated by 727 
the blue-green color) the corresponding target region SN17-Regional and SN17-PX models. When 728 
using all 6 meteorological inputs (6M) this success rate decreases to only 64% (Figure 9f) and 729 
52% (Figure 9i) against the target region SN17-Regional and SN17-PX models respectively. 730 
Although the TL-LSTM using PTE use the exact same type of input information as SN17, its 731 
transferability shows a further decrease to 52% and 36%. So, although the LSTM may not be fully 732 
exploiting the information provided by the elevation data, LSTMs trained for other regions are still 733 
able (to a certain extent) to outperform the regionally or pixel-trained SN17 models. This suggests 734 
that future investigations may focus on how to improve the SN17 model by either incorporating 735 
more meteorological variables, or by enhancing the parameterized process representations within 736 
the model.   737 
[73] Finally, we note that the LSTM architecture exhibits better regional transferability than the 738 
SN17 model structure (Figure S9). This points to a fundamental difference between what is 739 
achieved when training an LSTM network as opposed to calibrating the SN17 model, where the 740 
former corresponds more closely to a structure learning problem, while the latter is restricted to 741 
only parameter learning given a predefined model structure.  742 
4.3.3 Remarks on spatial proximity assumption for region delineation 743 
[74] Finally, we note that the success of network transferability seems to be related to the spatial 744 
proximity of the source and target regions. From Figure 9, we see that TL networks tend to transfer 745 
well only to the nearest adjacent regions. For example, the TL networks that use only precipitation 746 
and temperature (PT in Figure 9a), transfer well from MO to OH and CRB, and from SN to CRB 747 
and CC. As an exception, the same PT network structure transfers well from CC to CRB even 748 
though they are not geographically adjacent to each other. In general, however, one might 749 
speculate that the traditional method for region delineation may not be optimal from the point of 750 
view of knowledge transferability. Future study could focus on the use of other approaches for 751 
grouping pixels, based on important climatologic characteristics such as aridity, seasonality and 752 
fraction of precipitation falling as snow (Knoben et al., 2018), and seasonal precipitation and 753 
temperature patterns (Beck et al., 2018), or by data-based clustering of pixels based on patterns 754 
within the available data. 755 
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5. Conclusion, Remarks and Outlook 756 

5.1 Conclusions  757 
[75] In this study we have investigated the potential for continental-scale LSTM-based modeling 758 
of snow accumulation and melt dynamics at the 4-km pixel scale over the CONUS. We have 759 
further investigated whether regional differences, based on geographical proximity, can be 760 
exploited to result in improved model performance. We followed a hierarchical training strategy 761 
in which a general LSTM architecture was first learned by assuming that a single network could 762 
represent SWE dynamics across the entire CONUS, followed by regional fine-tuning. We also 763 
investigated the benefits of using different kinds of input information, beyond that required by the 764 
SN17 model used by the US National Weather Service. 765 
[76] Overall, our results indicate that a single LSTM network, trained using data sampled from 766 
across the entire CONUS can provide remarkably good performance, as assessed via a variety of 767 
metrics, and that further regional-scale fine-tuning of the network results in only marginal 768 
improvement. Of particular relevance to future attempts to improve process-based representations 769 
(e.g., to improve the structure of SN17) is that the most accurate and robust performance is 770 
achieved when the network can access a variety of meteorological information (precipitation, 771 
temperature, dew point temperature, vapor pressure deficit, longwave radiation and shortwave 772 
radiation), indicating that precipitation, temperature and local elevation are not, by themselves, 773 
sufficiently informative to model the variability of snow dynamics at the continental scale. Further, 774 
when this range of meteorological information is provided to the network, the local information 775 
provided by elevation becomes redundant. 776 
[77] Comparison of the LSTM-PTE network with the physical-conceptual temperature-index-777 
based  SN17 model (where both are provided the same input information) indicates that the gating-778 
operation and cell-states architecture of the LSTM enables it to learn a better representation of 779 
snow accumulation and melt dynamics than is encoded by SN17, and that by doing so a single 780 
CONUS-wide LSTM can significantly outperform an implementation of SN17 that is locally 781 
calibrated to each pixel. This result continues to hold even when regionally-trained LSTMs are 782 
tested for regional transferability, suggesting considerable potential for improving physical-based 783 
representations to be applied CONUS-wide at the pixel resolution. In this context, LSTM-based 784 
modeling can serve as a valuable data compression tool that can assist the process of scientific 785 
hypothesis testing (Nearing et al., 2020), by providing insights regarding what kinds of 786 
information may be missing from existing process-based representations. 787 
[78] Of course, the data-intensive nature of LSTM-based modeling poses a potential barrier to the 788 
application of such techniques to data-scarce parts of the world where real-world meteorological 789 
forcing and SWE data are not widely available or have only limited temporal coverage. However, 790 
one reason for our sequential experimental design (proceeding from generic/global to 791 
specific/regional) was to explore the extent to which the use of a “pre-trained” LSTM network 792 
might be a reasonable way to circumvent the need for large amount of “local” training data (see 793 
also Krazert et al., 2018). Our results indicate that such a strategy may indeed be viable, and future 794 
work should continue to explore to what specific/local extent this strategy can be pursued.  In 795 
particular, it could be useful to investigate the smallest homogenous-local areal extents that can be 796 
differentiated while continuing to realize robust performance improvements.  In this regard, studies 797 
will also need to be done regarding the minimum number of pixels for which data must be provided 798 
to efficiently achieve stable versions of trained CONUS-wide, Regional, and Local LSTM 799 
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networks, and to assess what factors must be considered when designing a robust stratified 800 
sampling strategy for selecting representative pixels to ensure maximally informative data sets for 801 
training, evaluation and testing.  This latter will need to consider snow-process-relevant diversity 802 
in terms of local ancillary variables related to various properties such as topographic and vegetation 803 
(Broxton et al., 2020).  804 
5.2 Remarks on Model Benchmarks 805 
[79] Here, we have demonstrated only that a single ML algorithm (LSTM) can provide better 806 
performance than a single physical-conceptual temperature-index-based algorithm (SN17). While 807 
this is a good start, it clearly leaves many questions unasked and unanswered. In particular, we 808 
have not yet conducted a comparison with a variety of physically/process-based models – to 809 
cleanly perform such a comparison is nontrivial (Krazert et al., 2019b; Lee et al., 2021) since 810 
different models may use different input information. However, this is certainly something that 811 
should be explored in future work, and the potential for gaining deeper insights into the relative 812 
strengths of data-based and physics-based approaches is high. 813 
[80] We note that a problem when comparing “physically-based” models against data-based ones 814 
is that the former is typically constrained by conservation principles to limit the amount of SWE 815 
accumulation in a day to be less than or equal to the incoming precipitation. Precipitation 816 
undercatch encoded in the data, can be a source of bias that affects the comparison. Under such 817 
circumstances, a physically-based model can be expected to consistently simulate lower values for 818 
snow accumulation, whereas a data-based approach that is restricted by mass balance constraints 819 
may be able to produce a better quality simulation (Hoedt et al., 2021). In this regard, when the 820 
underlying data used is not internally consistent and adequate data preprocessing does not occur 821 
to remove biases from the data, data-based methods can have a real advantage.  822 
5.3 Outlook  823 
[81] We expect that LSTM-based modeling of snow dynamics can be used to learn a universal 824 
model structure by leveraging the commonalities of meteorological data at various spatial locations 825 
and resolutions, thereby providing benefits in terms of hydrological modeling for data-scarce 826 
regions (Ma et al., 2021).  Our study suggests that our LSTM-based strategy has the potential to 827 
be expanded to the development of continental and even global-scale systems for forecasting snow 828 
dynamics. In such systems, uncertainty quantification can be achieved either by applying Monte 829 
Carlo dropout (Fang et al., 2020; Klotz et al., 2021) or the use of multiple ML-based algorithms 830 
(Fleming and Goodbody, 2019). Given the large amount of data that is potentially available, further 831 
rigorous testing of the LSTM-based approach at pixel-scale resolution should be performed in both 832 
space and time (Gupta et al., 2014) with an emphasis on simulation performance with regard to 833 
various snow signatures including April 1st SWE and snow residence time (Lute and Luce, 2017; 834 
Zeng et al., 2018).  835 
[82] Finally, physical explainability of ML-based results is a central contemporary challenge, one 836 
that is key to widespread acceptance of Artificial Intelligence (AI). So far, the success of ML has 837 
not been translated into significantly improved knowledge of the processes underlying snow 838 
dynamics. More efforts should be made to tackling this issue in a hydrologic context (Fleming et 839 
al., 2021). In our view, this can be advanced by symbiotic integration of physically-based and 840 
data-based models. Recent attempts have included replacing internal process equations with 841 
networks that have the ability to learn from data (Bennett and Nijssen, 2021), the embedding of 842 
physically-based representations into ML networks (Jiang et al., 2020), and the imposition of mass 843 
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balance constraints into ML (Hoedt et al., 2021; Nearing et al., 2021). Another potential approach 844 
is to use symbolic regression to facilitate the development of hybrid modeling systems that can 845 
learn “physically understandable” process representations (Udrescu and Tegmark, 2020) while 846 
adhering to the principle of parsimony (Occam's Razor; see discussion by Weijs and Ruddell, 2020). 847 
One of the directions that we intend to pursue is to automate the search for physically-consistent 848 
parameter transfer functions by a process of learning from large data sets (Klotz et al., 2017; Feigl 849 
et al., 2020; Gharari et al., 2021). 850 
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Figures 

 

 
 
Figure 1.  Geographic locations of five US regions include two Hydrologic Unit Code 2 (HUC2) 
basins (Ohio and Missouri) and three other regions in western CONUS (Colorado River Basin, 
Sierra Nevada and Cascades). The “snowy” pixels are shaded gray and the non-snowy pixels are 
shaded white. Sierras = Sierra Nevada; CRBasin = Colorado River Basin.  
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Figure 2. Aggregate NSE performance for the LSTM networks (solid lines) and the benchmark 
SN 17 models (dashed lines) when applied to the 15,000 pixels from Pixel Set A 
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Figure 3. Aggregate performance, in terms of KGEss and the three KGE components, for the LSTM networks 
(solid lines) and the benchmark SN 17 models (dashed lines) when applied to the 15,000 pixels from Pixel Set A 
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Figure 4.  Spatial map indicating skill of the LSTM-A-CONUS-6M model (trained on Pixel Set A) when tested on 
an independent testing pixel set from Pixel Set B 
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Figure 5. Aggregate performance of the trained CONUS-wide LSTM networks after fine-tuning using Pixel Set 
B compared to when pre-trained using Pixel Set A, where the evaluation is conducted over 5,000 independent 
testing pixels from Pixel Set B
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Figure 6. Difference in model skill between the CONUS-wide LSTMs trained on Pixel Set B and Pixel Set A, 
when using the 6 meteorological variables, evaluated over the 5,000 testing pixels from Pixel Set B. Note that 
𝛼∗ = 1 − |1 − 𝛼|, 𝛽∗ = 1 − |1 − 𝛽|. Movement of the CDFs to the right (to more positive values) indicate that 
the LSTM-B-CONUS models have better performance than the corresponding LSTM-A-CONUS models  
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Figure 7. Difference in model skill between the regional LSTM and CONUS-wide LSTMs trained on Pixel Set 
B, when using the 6 meteorological variables, evaluated over the 5,000 testing pixels from Pixel Set B. Note that 
𝛼∗ = 1 − |1 − 𝛼|, 𝛽∗ = 1 − |1 − 𝛽|. Movement of the CDFs to the right (to more positive values) indicates that 
the LSTM-B-Region models have better performance than the corresponding LSTM-B-CONUS models 
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Figure 8. Aggregate performance of the LSTM models (solid lines) benchmarked against the SN17 models 
(dashed lines) when both are given the same input information (precipitation, temperature and elevation), 
evaluated over the 5,000 testing pixels from Pixel Set B 
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Figure 9. Results of the transfer learning experiments.  In the top row the transferred LSTM networks are 
compared to their local-region trained counterparts. In the middle row, the transferred LSTM networks are 
compared to the corresponding local-region-trained SN17 models. In the bottom row, the transferred LSTM 
networks are compared to the corresponding local-pixel-trained SN17 models.  Values larger than 1.0 indicate 
good relative performance of the transferred LSTM models.  
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Tables 

 
Table 1. Parameters for the SNOW17 model summarized by He et al. (2011a,b) with ranges estimated from 
Anderson (1973) 

Parameters Explanation Unit Range 
SCF Snow fall correction factor - 0.7-1.4 
MFMAX Maximum melt factor mm per 6 h per 𝐶; 0.5-2.0 
MFMIN Minimum melt factor mm per 6 h per 𝐶; 0.05-0.49 
UADJ The average wind function during rain-on-snow periods mm per mbar per 𝐶; 0.03-0.19 
NMF Maximum negative melt factor mm per 6 h per 𝐶; 0.05-0.50 
MBASE Base temperature for non-rain melt factor 𝐶; 0.0-1.0 
PXTEMP Temperature that separates rain from snow 𝐶; -2.0-2.0 
PLWHC Percent of liquid water capacity - 0.02-0.3 
DAYGM Daily melt at snow-soil interface 𝑚𝑚	𝑑)$ 0.0-0.3 
TIPM Antecedent snow temperature index parameter - 0.1-1.0 
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Table 2. Summary statistics for the LSTM-A-CONUS-6M model evaluation results over Pixel Set B 
 

Evaluation over Pixel Set B 

Model Skill 

Percentage of 
Pixels for  

Independent 
Test Set 1 

Percentage of 
Pixels for  

Independent  
Test Set 2 

Percentage of 
Pixels for  

Independent 
Test Set 3 

Percentage of 
Pixels for All 

Test Sets 

|𝛼 − 𝐾𝐺𝐸| > 10% 31.92% 31.74% 31.40% 31.69% 
|𝛽 − 𝐾𝐺𝐸| > 10% 30.24% 30.20% 30.22% 30.22% 
𝛾 − 𝐾𝐺𝐸 > 0.95 82.08% 82.42% 80.92% 81.81% 
𝐾𝐺𝐸++ > 0.95 32.72% 30.84% 31.06% 31.54% 
𝑁𝑆𝐸 > 0.95 41.18% 40.34% 41.84% 41.12% 

𝛾 − 𝐾𝐺𝐸 < 0.85 2.20% 1.96% 1.88% 2.01% 
𝐾𝐺𝐸++ < 0.70 3.96% 3.90% 4.22% 4.03% 
𝑁𝑆𝐸 < 0.70 3.72% 3.70% 3.70% 3.71% 
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Table 3. Summary of SWE hydrograph pairwise correlation statistics over Pixel Set B 
 

SWE Pairwise Correlation for Pixel Set B (WY1982-2000) 

Regions Statistics Independent 
Test set 1 

Independent 
Test Set 2 

Independent 
Test Set 3 

All 
Pixels 

Ohio 
Mean 0.59 0.59 0.60 0.60 

Median 0.56 0.60 0.60 0.60 
Stdev 0.17 0.17 0.17 0.17 

Missouri 
Mean 0.46 0.47 0.47 0.47 

Median 0.47 0.48 0.49 0.48 
Stdev 0.19 0.19 0.19 0.19 

CRB 
Mean 0.48 0.47 0.47 0.47 

Median 0.48 0.48 0.48 0.48 
Stdev 0.23 0.23 0.23 0.23 

SN 
Mean 0.52 0.54 0.52 0.53 

Median 0.51 0.53 0.52 0.52 
Stdev 0.25 0.25 0.25 0.25 

Cascades 
Mean 0.55 0.53 0.54 0.54 

Median 0.54 0.52 0.53 0.53 
Stdev 0.24 0.24 0.24 0.24 
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Text S1. 

An LSTM network is a type of recurrent neural network that includes memory cells that have the 
ability to store information over long periods of time. As shown in Figure S1, the network contains 
cell states and three gating operations (input, forget, output). Here, we summarize the 
mathematical formulation of the LSTM network. 

Given an input sequence 𝑥 = [𝑥[1], 𝑥[2]…… , 𝑥[𝑇]] with 𝑇 time steps, where each element 𝑥[𝑡] is 
a vector containing input features (model inputs) at time step 𝑡	(1 ≤ 𝑡 ≤ 𝑇), Equations (1) to (6) 
specify a single forward pass through the LSTM: 

                                           𝑖[𝑡] = 𝜎(𝑊!𝑥[𝑡] + 𝑈!ℎ[𝑡 − 1] + 𝑏!)																																																														(1)  

                                            𝑓[𝑡] = 𝜎8𝑊"𝑥[𝑡] + 𝑈"ℎ[𝑡 − 1] + 𝑏"9                                            			(2) 

                                            𝑔[𝑡] = 𝑡𝑎𝑛ℎ(𝑊#𝑥[𝑡] + 𝑈#ℎ[𝑡 − 1] + 𝑏#)                                         (3) 

                                            𝑜[𝑡] = 𝜎(𝑊$𝑥[𝑡] + 𝑈$ℎ[𝑡 − 1] + 𝑏$)                                           				(4) 
                                           𝑐[𝑡] = 𝑓[𝑡] ⊙ 𝑐[𝑡 − 1] + 𝑖[𝑡] ⊙ 𝑔[𝑡]                                           					(5) 
                                                  ℎ[𝑡] = 𝑜[𝑡] ⊙ tanh	(𝑐[𝑡])                                                    						(6) 

where 𝑖[𝑡],	𝑓[𝑡], 𝑜[𝑡] are the input, forget and output gates respectively, 𝑔[𝑡] is the cell input, 𝑥[𝑡] 
is the network input at time step 𝑡	(1 ≤ 𝑡 ≤ 𝑇), and ℎ[𝑡 − 1] is the recurrent input. The terms 𝑐[𝑡] 
and 𝑐[𝑡 − 1] indicate the cell states at the current and previous time step. At the first-time step, 
the hidden and cell states are initialized as vectors of zeros. The terms W, U and b are learnable 
parameters for each gate. The subscript refers to at which gate the particular weight matrix, or the 
bias vector is used. The sigmoid activation function 𝜎	(∙) outputs a value between 0 and 1, while 
the hyperbolic tangent activation function  tanh	(∙) outputs a value between -1 and 1. The symbol 
⊙ indicates element-wise multiplication.  

The values of the cell states can be modified by the forget gate 𝑓[𝑡], which can delete states. The 
cell update 𝑔[𝑡] can be interpreted as information that is added, while the input gate 𝑖[𝑡] controls 
into which cells new information is added. The output gate 𝑜[𝑡] controls which of the information 
stored in the cell states is output. Note that the cell states 𝑐[𝑡] characterize the memory of the 
system, and its characteristic of simple linear interactions with the remaining LSTM cells helps to 
prevent the problem of exploding or vanishing gradients during the back-propagation step of 
network training (Hochreiter and Schmidhuber, 1997). 

The output of the final LSTM layer ℎ[𝑡] is connected through a dense layer to a single output 
neuron, which computes the final output 𝑦[𝑡] prediction, as indicated by Equation 7: 

 
                                                𝑦[𝑡] = 𝑊%ℎ[𝑡] + 𝑏%                                                            (7) 

where 𝑊% and 𝑏% are the learnable weight and bias of the output dense layer.  
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Figure S1.  Schematic illustration of the architecture of a standard LSTM cell as defined by 
supplementary materials Eqs. (1)–(6). The symbols × and + denote element-wise multiplication 
and addition.
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Figure S2.  Conceptual schematic of the processes and associated parameters represented by the 
SN17 model. Inputs and outputs are highlighted in bold. Illustration derived from He et al., (2011b)
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Figure S3.  Spatial map indicating skill of the LSTM-A-CONUS-6M model (trained on Pixel Set A) when tested on 
two of the independent testing pixel sets from Pixel Set B (Results for independent test set 1 appear in the main 
text) 
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Figure S4. Aggregate performance of the LSTM-A-CONUS-6M network, evaluated on the training, evaluation 
and testing pixels from Pixel Set B  
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Figure S5.  Comparisons between UA-SWE observations (solid black) and SWE predicted by the LSTM (solid 
blue) and SN17 models (dash lines) at pixels selected from each of the five regions. The pixels are from 
independent test set 1 (pixel set B) and represent locations corresponding to the 95th percentile of KGEss 
performance for the LSTM-A-CONUS-6M model. The corresponding KGEss skill for each of the models is listed 
in Table S1. The results only shown from WY1991 to WY2000. 
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Figure S6.  Comparisons between UA-SWE observations (red) and SWE predicted by the LSTM-A-CONUS-6M 
model (blue) at pixels selected from each of the five regions. The pixels are from independent test set 1 (pixel set 
B) and represent locations corresponding to the 10th, 25th, 50th, 75th, and 90th percentiles of KGEss 
performance for the model. The results only shown from WY1991 to WY2000. 
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Figure S7. Aggregate performance of the Regional trained LSTM networks compared to CONUS-
wide trained LSTM networks using Pixel set B, evaluated over 5,000 testing pixels from Pixel Set B  
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Figure S8. The results of transfer learning when the transferred 6ME regional LSTM 
networks are benchmarked against their corresponding local-regional LSTM networks, 
regional SN17 models and pixel-wise SN17 models. 
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Figure S9. The results of transfer learning when the transferred regional SN17 models are 
benchmarked against their corresponding local regional SN17 models, and pixel-wise 
SN17 models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

13 
 

Table S1. The results of KGEss skill for Figure S5 which Comparing the UA-SWE 
observations and SWE predicted by the LSTM and SNOW17 models at pixels selected from 
each of the five regions. 
 

Models/Regions Ohio Missouri CRB SN Cascades 
LSTM-B-CONUS-6M 0.97 0.98 0.99 0.98 0.98 

SN17-A-CONUS 0.88 0.94 0.62 0.81 0.88 
SN17-B-CONUS 0.68 0.85 0.65 0.97 0.92 
SN17-B-Region 0.90 0.72 0.86 0.90 0.79 

SN17-B-PX 0.81 0.96 0.86 0.95 0.92 
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