
P
os
te
d
on

24
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
77
39
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

A DISCRETE FRACTURE NETWORK GENERATION AND

ANALYSIS LIBRARY FOR USE IN CAD SOFTWARE

ENVIRONMENTS

YUSUF FALOLA1

1TEXAS A&M UNIVERSITY

November 24, 2022

Abstract

Discrete Fracture Network (DFN) modelling and simulation is an active area of research in earth science due to the inability to

observe detailed 3D structure of the subsurface fracture network. There are few software packages available for DFN modelling

and simulation. However, they are mostly complex to use, commercial, and closed sourced. Thereby, precluding any form of

adaptability by researchers to functionalities not included in these packages. This work introduces an easy to use, open source

library, Y-Frac, for DFN modelling and analysis. Y-Frac is built upon the python APIs available on Rhinoceros 6. Hence,

Y-Frac is fit for use on Rhinoceros software package. Y-Frac can model fracture networks containing circular, elliptical and

regular polygonal fractures. This library is computationally cheap for DFN modelling and analysis. Some of the functionalities

of this library for DFN analysis include fracture intersection analysis, cut-plane analysis, and percolation analysis. Algorithms

for constructing an intersection matrix and determining percolation state of a fracture network are also included in this work.

The output text file from this library containing modelled fracture networks’ parameters can serve as input for appropriate

software packages to simulate flow and perform mechanical analysis in fracture networks. The practical applicability of Y-Frac

was demonstrated by performing percolation threshold analysis of 3D fracture networks and comparing the results to published

data.

1

IMPERIAL COLLEGE LONDON

DEPARTMENT OF EARTH SCIENCE AND ENGINEERING

APPLIED COMPUTATIONAL SCIENCE AND ENGINEERING MSc

INDEPENDENT RESEARCH PROJECT

A DISCRETE FRACTURE NETWORK GENERATION AND ANALYSIS LIBRARY FOR USE IN CAD

SOFTWARE ENVIRONMENTS

BY

FALOLA, YUSUF

Fyf17@ic.ac.uk

https://github.com/Falfat

AUGUST 2019

SUPERVISORS: DR ADRIANA PALUSZNY AND DR ROBIN THOMAS

mailto:Fyf17@ic.ac.uk
https://github.com/Falfat

1

ABSTRACT

Discrete Fracture Network (DFN) modelling and simulation is an active area of research in earth

science due to the inability to observe detailed 3D structure of the subsurface fracture network. There

are few software packages available for DFN modelling and simulation. However, they are mostly

complex to use, commercial, and closed sourced. Thereby, precluding any form of adaptability by

researchers to functionalities not included in these packages. This work introduces an easy to use,

open source library, Y-Frac, for DFN modelling and analysis. Y-Frac is built upon the python APIs

available on Rhinoceros 6. Hence, Y-Frac is fit for use on Rhinoceros software package. Y-Frac can

model fracture networks containing circular, elliptical and regular polygonal fractures. This library is

computationally cheap for DFN modelling and analysis. Some of the functionalities of this library for

DFN analysis include fracture intersection analysis, cut-plane analysis, and percolation analysis.

Algorithms for constructing an intersection matrix and determining percolation state of a fracture

network are also included in this work. The output text file from this library containing modelled

fracture networks’ parameters can serve as input for appropriate software packages to simulate flow

and perform mechanical analysis in fracture networks. The practical applicability of Y-Frac was

demonstrated by performing percolation threshold analysis of 3D fracture networks and comparing

the results to published data.

Keywords: Discrete Fracture Networks, Python, Rhinoceros, DFN modelling, Percolation threshold,

Y-Frac.

Code metadata:

Current code version v 1.0.0

Link to repository used for this
code version

https://github.com/msc-acse/acse-9-independent-research-
project-Falfat

Legal Code License MIT

Code versioning system used git

Programming languages, tools and
services used

Python, Spyder IDE

Technical platform for software
implementation

Rhinoceros 6 for windows
https://www.rhino3d.com/download
Rhinoceros user guide
http://docs.mcneel.com/rhino/6/usersguide/en-
us/index.htm

Compilation/hardware
requirements, operating
environments and dependencies

Operating system supported: Windows 10, 8.1 or 7 SPI
Hardware: 8GB RAM or higher, 600MB disk space, 63 CPU
cores or less, a multiple-button mouse with scroll wheel.

Link to software documentation https://github.com/msc-acse/acse-9-independent-research-
project-Falfat/tree/master/Documentation

Link to Rhinoceros API library https://developer.rhino3d.com/api/RhinoScriptSyntax/

Support email for questions Fyf17@ic.ac.uk

https://github.com/msc-acse/acse-9-independent-research-project-Falfat
https://github.com/msc-acse/acse-9-independent-research-project-Falfat
https://www.rhino3d.com/download
https://www.rhino3d.com/download
http://docs.mcneel.com/rhino/6/usersguide/en-us/index.htm
http://docs.mcneel.com/rhino/6/usersguide/en-us/index.htm
http://docs.mcneel.com/rhino/6/usersguide/en-us/index.htm
http://docs.mcneel.com/rhino/6/usersguide/en-us/index.htm
https://developer.rhino3d.com/api/RhinoScriptSyntax/

2

1.0 Introduction

Generally, fractures represent a space between planes [1] and are ubiquitous in many natural,

engineered and biological materials. This discontinuity may be because of mechanical failure, from

tectonic events [2] or human factors such as hydraulic fracturing, tunnel evacuation [3] or chemical

processes, e.g. weathering [4]. The term therefore includes faults, joints, fissures, cleavages and even

discontinuities between mineral particles [5]. A fracture can be on a scale of a few microns (e.g.

microcracks) to several kilometres (e.g. faults). Fractures are essential in science and engineering as

they play a significant role in material strength, rock block stability, and in creating pathways for fluid

flow [6,7]. Fractures are of great research interest in various fields of studies, not limited to,

geotechnical applications, reservoir engineering, waste disposal, mining engineering, and earthquake

studies [8].

A fracture network is a system of fractures developed within the same rock volume. A network may

involve several distinct fracture sets, which may or may not intersect [9]. These sets generally evolve

and vary in their spatial distribution [10]. Fracture network modelling and simulation is an active area

of research which has received much attention in the last decade, primarily due to the challenge of

directly observing the detailed 3D structure of fracture networks deep in the crust [11]. Fractures are

complex objects in terms of their geometry and topology, and they occur at all scales, which make

their modelling and simulation an exciting area of research. Increased computing software and

hardware capabilities have contributed to the rapid growth in the modelling of fractured rock [12].

Direct observations of fracture networks are relatively scarce and are limited to surface outcrops (2D),

tunnel wall (2D), and core drilling (1D) [13,14]. Although seismological surveys may be able to locate

3D large-scale structures, current technology can hardly detect widespread medium and small

fractures due to resolution limits [11].

Lei et al. [11] defined a Discrete Fracture Network (DFN) as “a computational model that explicitly

represents the geometrical properties of each fracture (e.g. size, orientation, position, shape and

aperture), and the topological relationships between individual fractures and fracture sets”, as

opposed to continuum modelling which models the entire system as one domain [14,15]. DFN models

provide an effective method for simulating and studying features of fractured rock [16]. There are few

commercial and non-commercial software capable of DFN modelling. However, they are often;

expensive (e.g. MVE [17], NAPSAC [18], FracMan [19], MoFrac [20]), designed for specific tasks, have

limited or no functionality for extensive research in the academia by being closed source, and complex

to use [21,22].

This work presents a python-based open-source library, Y-Frac, library for simulation and analysis of

three-dimensional stochastic discrete fracture networks, utilising the Rhinoceros 3D commercial CAD

(Computer-Aided Design) application. Rhinoceros CAD software is an industry-standard tool, which

offers a user-friendly and cost-effective platform for handling and manipulating 3D geometries. Y-Frac

adds some functionalities, pertinent to geoscience and engineering, to Rhinoceros software. Y-Frac

expands on the python API provided by Rhinoceros to put forward a state-of-the-art python library

for DFN generation and analysis. Additionally, with the availability of various output file formats on

Rhinoceros software, results from this library can be exported for use on a variety of software

applications. Y-Frac consists of methods for DFN generation, regeneration, analysis/characterisation

and postprocessing. Y-Frac provides an efficient tool for studying the science of fracture networks.

3

Based on fracture data retrieved from rock samples by geoscientists and engineers, this free and non-

sophisticated tool can be used to generate a synthetic rock mass (SRM) model. This fracture model

can thus be analysed for fracture intensity, cut-plane features, network connectivity, and percolation

state using Y-Frac.

The main contributions of this work include provision of: a computationally cheap object-oriented

Rhinoceros’ python script library for Discrete Fracture Networks generation, a platform to generate

fracture networks of different shapes (disks, ellipses and polygons) and sizes, fracture network analysis

via Rhinoceros and postprocessing on python IDEs for visualisations, a method for re-generating

fracture networks from a text file containing fracture properties of pre-generated fracture networks,

an innovative technique for fracture network intersection analysis and determination of percolation

state.

This work is divided into sections. Section 2 gives a brief review of DFN’s history and some important

recent work on the subject matter. It further summarises some existing DFN simulation tools, their

functionalities and shortcomings. A short discussion on fracture network analysis and background of

Rhinoceros 6 are also contained in this section. Section 3 introduces the architecture and discusses

the structure of Y-Frac. The section also contains an explanation of the software development strategy

employed in this project. It further describes some of the essential functionalities (with example

codes) of Y-Frac and provides algorithms of some Y-Frac’s essential methods. In section 4, the usage

of Y-Frac was demonstrated. Furthermore, analysis of its computational cost and percolation

threshold was presented. Lastly, section 5 presents the conclusion of this study and future work to

improve the applications of Y-Frac.

2.0 Review on Discrete Fracture Network

Various modelling approaches have been employed to represent fractured rock. Xing & Sanderson

[23] categorised these approaches into discrete and continuous models. The primary assumption of

continuum-based methods is that the computational domain is treated as a single body [24], as

opposed to discrete methods in which each fracture is characterised within a structural domain [25].

However, hybrid models exist which involve the combination of these methods [16].

Stochastic DFN studies began in the 1980s to investigate two essential topics: percolation theory and

hydrogeology [16]. Long et al. [26] developed methods to determine if between fractured systems

should be treated as an equivalent porous (continuum) medium or as a collection of the discrete

fracture flow path. They extended their work to 3-D when they modelled the steady flow of fluid in

disc-shaped random network fractures [27]. Endo et al. [28] and Endo [29] performed tracer

experiments and suggested that not all fractures behave like equivalent porous media. They observed

that fracture systems with continuous fractures have directionally dependent hydraulic effective

porosity which negates the idea of an equivalent porous medium. Balberg et al. [30] used stochastic

networks to study the dependence of the percolation threshold of the 3-D sticks systems on aspect

ratio and macroscopic anisotropy. They employed the Monte Carlo technique to determine

percolation thresholds for randomly placed sticks in a domain. Andersson & Dverstorp [31]

investigated how to predict flow through a network of discrete fractures in 3-D space. This technique

has continuously developed afterwards with many applications in civil, environmental and reservoir

engineering and other geoscience fields.

4

A recent review on DFN by Lei et al. [11], grouped DFNs into three categories:

Geological-mapped DFNs, which are generated using datasets observed from outcrops such as

analogue mapping, borehole imaging, aerial photographs, and seismic surveys. This method ensures

the preservation of geological realism and fair characterisation of complex topologies (e.g.

intersection, spacing, clustering, truncation and hierarchy). However, it can be quite challenging to

collect geological data, mainly due to limited access to the subsurface [32]. Besides, sampled

geological data cannot be said to be fully representative, since observations are usually made from a

locality of the rock mass [33]. Geological measurements are mostly in 2-D. Therefore, accuracy is lost

when upscaling to 3-D. Although seismic measurements are in 3-D, they are limited in terms of

resolution.

Stochastic DFNs use statistical principles to create fracture datasets. Fracture properties used as

variables include fracture lengths, orientations, locations and shapes. Advantages of this method

include ease of generation as compared to geological mapping, the possibility of automation, efficient

fracture generation, viability for both 2-D and 3-D, and applicability for various scales. However, the

shortcomings of this technique involve oversimplification of fracture geometries and topologies,

uncertainties in statistical parameters, and negligence of physical processes.

Geo-mechanical DFNs incorporate fracture physics and fracture network evolution in simulating

fracture datasets. This technique involves the use of rock and fractures mechanical properties and

paleo-stress conditions as inputs. It links geometry with physical mechanisms and ensures the

correlation between different fracture attributes. However, they require large amounts of

computational resources, have difficulties in including hydrological, thermal and chemical processes

into simulations and uncertainties in input properties. Nonetheless, modern DFN studies have

continuously made use of fracture data collected from geological mapping to refine the input

parameters required for stochastic DFNs [25], both as a standalone tool [14,34,35] or integrated

within more complex geomechanical simulations [16,36,37], leveraging the strengths of the three

techniques to create more realistic fracture datasets.

2.1 Existing DFN tools.

There are many DFN simulation tools, both as standalone commercial software programmes and

closed source in-house computer codes. Notable standalone DFN commercial software include

Midland Valley Exploration, NAPSAC, FracMan, and MoFrac;

Midland Valley Exploration (MVE) fracture modelling tool uses geometrical properties such as stress

and strain values and statistical properties such as curvature as proxies for intensity and orientation

for DFN generation. It allows for multiple direct inputs of filed data to constrain the production of

DFNs. This tool is applicable to fracture networks characterisation and provides direct output on a

geocellular model, which shows the current state of the subsurface in 3-D by representing a complex

geological reservoir with millions of cells [17].

NAPSAC generates fracture networks stochastically, ensuring fracture properties have the same

statistical attributes as those of the geologically mapped field data. It employs the finite element

method to simulate fluid flow in fracture networks. Users can validate model predictions against data

from hydro-geological experiments (e.g. well tests). Its applications include effective permeability

determination, porosity prediction, geometric and percolation analysis, transport and flow modelling.

[38].

5

GOLDER’s FracMan software suite allows users to generate both randomly generated DFNs and DFNs

guided by information from mapped structures. DFNs upscaling to an equivalent porous medium

(continuum) model is possible, without losing previous details of DFNs. It is a versatile software suite

used in various sectors including mining engineering (e.g. fragmentation assessment and

hydrogeological evaluation), nuclear (e.g. groundwater and solute transport), oil and gas (e.g. fracture

modelling and geomechanics simulation), and civil engineering (e.g. groundwater evaluation) [19].

MoFrac computer software generates DFNs from user-defined fracture properties, including fracture

intensity, orientation, truncation rules, size, shape and undulation. The generated models simulate

realistic fracture representation by constraining the fracture lengths and intensities using cumulative

length distribution (CLD) and cumulative area distribution (CAD) respectively. It ensures the input data

is honoured during the stochastic process of fracture generation. Its applications are mainly in

geomechanical and hydraulic flow modelling such as mine design, hydraulic fracturing, rock

characterisation, blast optimisation, fracture mechanics, reservoir modelling and waste transport [20].

Summarily, these software packages are stand alone and not to be integrated. By generating DFNs

using CAD software, we can produce various output file formats which can be used in other software

packages. This project also aims to make its DFN tool easy to use in terms of network generation and

analysis. Users only need to define input parameters using a text file. Furthermore, being an open-

source code, there is room for its continuous development by the public and adaptation to suit

different needs.

Other hybrid, complex, industry and academic DFN simulation tools include SIDNUR, Flow123d,

FracSim3D, ADFNE, DFNWorks, and ICGT.

SIDNUR [21,39] generates different realisations of DFNs following the Monte Carlo process and solves

for steady-state flow in each of these networks whose statistical properties are constrained by in-situ

experiments. They adopted a non-conforming discretisation of the DFN to minimise the number of

unknowns and ease mesh refinements. Fracture edges and domains are discretised in a staircase-like

manner [39]. Additionally, the mortar method is used to handle fracture-fracture intersections. This

method involves specifying one of the fractures as a master and the other a slave [40]. The resulting

linear system is a semi-positive definite matrix containing millions of unknowns after a Dirichlet

boundary condition is enforced. The Balanced Domain Decomposition [41] algorithm is applied to

solve the linear system. This highly parallelised tool is distinguished by its method of discretisation of

the fracture networks and solving of the linear system. However, it only simulated steady-state flow

in fracture networks.

Flow123d [42–47] combines continuum and DFN models to simulate water, solute and heat transport

in fractured porous media. This software is distinct in that it supports numerical computations on

complex meshes, which consists of elements of various dimensions. This enables Flow123d to

combine both continuum and discrete fracture models. Additionally, unlike SIDNUR, it solves both

steady and unsteady Darcy flow in fracture networks. It applies different solvers for specific problems.

Heat transfer and solute transport problems in fracture networks are solved with finite volume

method, discontinuous Galerkin method solves convective transport model, and mixed-hybrid

formation of finite element method is applied to solve steady and unsteady Darcy flow in fracture

networks.

FracSim3D [48–52] uses marked point process, a technique which considers fracture properties as

marks associated with stochastic points, to simulate 2D and 3D DFNs. Geometries and properties of

fractures are modelled using probability distribution. Fracture locations are simulated using the Cox

6

process model, homogeneous Poisson point process, non-homogeneous Poisson point process, and

cluster point process. Fracture orientation and size are determined by Monte-Carle simulation of their

probability distribution. The probability distribution for fracture orientation includes uniform,

wrapped normal, Von-Mises and Fisher’s, while those for fracture size are uniform, exponential and

lognormal. Additionally, functionalities for cut-plane, rectangular window, scanline, and core

samplings are available on this tool. It provides an output CSV file containing information about

fracture networks for subsequent use in fracture network flow modelling.

ADFNE [12] is a DFN tool capable of 2D and 3D simulation. It is written in Matlab and contains various

functions for fracture generation and characterisations. Fraction locations are simulated using uniform

or Poisson’s distribution, fracture lengths are modelled by a negative exponential distribution, and

orientations are determined by Fisher’s distribution. This tool can be used for fracture

characterisations (e.g., clustering, intersection and connectivity analyses), fluid flow applications

(using Finite Difference Method) and geometric modelling (e.g., complex polygonal fracture faces).

However, this tool does not provide functionality for determining percolation state of fracture

networks and fracture intensity.

DfnWorks [22] is a parallelised 3D DFN tool kit which uses the Finite Volume Method to solve flow

equations for transport simulation. It requires several additional packages like PETSC libraries,

Mathematica, PFLOTRAN and LaGrit. DfnWorks consists of three main packages; DFNGEN, DFNFLOW

and DFNTRANS. DFNGEN creates the fracture network from observed data and does the Delaunay

triangulation of the medium using LaGrit. PFLOTRAN calculates steady-state pressure in the fractured

medium after the mesh output from DFNFLOW has been converted to an appropriate input in

DFNFLOW. Lastly, DFNTRANS reconstructs the Darcy flow rate from DFNFLOW to track particles in the

fractured medium, while the Lagrangian approach introduced by Painter et al. [53] to determines

pathlines through the network and simulates transport.

ICGT [54–61] is a 3D DFN simulator based on the Finite Element Method. It grows discrete fractures

from initial flaws and takes the geomechanical properties of fractures into consideration to ensure

fracture growth and interactions are realistic. It is integrated with CSMP++, an object-oriented finite

element-based library for automatic meshing. Fracture geometries are represented by NURBS

surfaces, which ensures geometries are kept distinct from meshes. The workflow of this tool

summarily involves defining and updating fracture geometry by resolving thermo-hydro-mechanical

and flow models until fracture growths are no longer perceived. Fracture growth is benchmarked by

input failure and propagation. During this process, conditions in the fractured medium such as thermo-

poroelastic deformation, contact stresses, fracture tip growth and stress intensity factor, local

aperture, and permeability, are calculated continuously and updated.

Except for ADFNE, which employs a simple finite difference method to solve for fluid flow, all other

tools depend on involved mathematical formulations to simulate fluid flow in fractured networks,

which makes them complex to use and understand their backends. These codes are closed source,

except DfnWorks and ADFNE, preventing any form of development and adaptation by other

researchers.

2.2 Rhinoceros and CAD Softwares

Groover and Zimmers [62] defined Computer-Aided Design (CAD) as a form of technology which

creates, modifies, analyses, and optimises a design on a computer system. CAD software packages

have been in use since the early 1970s [63]. Examples of modern CAD software packages include;

7

AutoCAD [64], SolidWorks, CATIA [65], Inventor [66], Pro/ENGINEER [67], Rhinoceros [68] and 3ds Max

[69]. CAD software packages are the backbone of modern engineering designs, due to benefits such

as automation of repeated tasks, tracking of previous design realisations, making changes without

reproducing an entire drawing, and high-quality rendering [70].

Rhinoceros is a 3D computer graphics and CAD software package developed by Robert McNeel and

Associates [71]. It is primarily a surface modelling tool, based on NURBS (Non-Uniform Rational B-

splines) [68]. NURBS are mathematical representations for modelling geometry ranging from simple

lines to a complex 3D surface or solid [72]. The primary geometry objects in Rhinoceros used in this

are points, curves, surfaces, and poly-surfaces [73]. Professionals in aerospace, marine, automobile,

sport and medical industries make use of Rhinoceros for standard designs [73]. In this work, we chose

Rhinoceros because it allows the user to write python scripts and includes a Python API to facilitate

this. Rhinoceros is well documented and actively developed, fast, relatively cheap to procure, and

available for student’s download on a free trial [74,75].

Figure 1. Rhinoceros 6 user interface

Figure 1 depicts the Rhinoceros 6 user interface. Label (1) indicates the menu which groups

Rhinoceros’ commands by function. Label (2) specifies the command history window which displays

previous commands and prompts, and it also shows the print statements of Rhinoceros python script.

Label (3) designates the command prompt, which displays prompts for current command actions.

Label (4) points at the toolbars containing graphical icon buttons for starting commands. Label (5)

indicates the viewports displaying the Rhino working environment. The panels containing layers,

properties and settings are indicated by label (6) [68]. Fracture networks created on Y-Frac are

displayed on the Rhinoceros interface. The perspective view mode displays the networks in 3-D.

Rhinoceros python script is run by clicking the Tools tab, then PythonScript tab, and lastly the Edit tab,

where Y-Frac’s functionalities can be used.

8

2.3 Fracture Network Analyses

There are various measures employed to characterise and analyse fracture networks. One of such

methods used in DFN studies to describe fracture abundance, which can be quantified in several ways,

including fracture frequency [76,77], fracture density [78] and fracture intensity [77]. Fracture

frequency refers to the number of fractures normalised by the line length [1D, L-1], sample area [2D,

L-2] or domain volume [3D, L-3]. Fracture intensity originally referred to the total trace length per unit

area with dimensions [L-1] but has been extended to 1- and 3-dimensions with same units [L-1] [9].

Fracture intensity includes fracture size in its calculation, and it is more common in DFN studies [16].

However, these three terms have been used interchangeably in the literature [79,80]. Dershowitz and

Herda [76] formally introduced the Pxy system to describe these features, where x refers to the feature

dimension, and y depicts the sampling region dimension. Figure 2 summarises these features.

Figure 2: Pxy system for fracture intensity, frequency and density definitions (Adapted from Sanderson

and Nixon [9]).

Fracture connectivity is essential in studying the flow behaviour and stability of a rock mass [81].

Fracture connectivity can be described as a measure of the extent to which the fractures in a network

are interconnected, or, in terms of the percolation concept- a threshold below which the system is not

connected and above which it is connected [9]. The percolation threshold of a system correlates with

its permeability and thus defines the transport properties of the system [82]. Domain connectivity is

of great importance in DFN applications such as oil and gas recovery and waste disposal. Various

studies [30,82–84] have been carried out to discuss percolation theory and percolation threshold in

2D and 3D systems. Dimensionless parameters are involved in defining connectivity because

connectivity is scale-independent. Therefore, measures such as fracture intensity [L-1] are unsuitable

for determining fracture connectivity [9]. Balberg et al. [30] introduced the concept of “excluded

volume” for determining the percolation threshold of fracture networks. They defined the excluded

volume of a fracture as “the volume surrounding it, in which the centre of another object must be

9

found for the two objects to intersect”. This concept underscores the scale independence of the

percolation threshold. The dimensionless density is

𝜌′ = 𝜌𝑉𝑒𝑥 [1.0]

Where 𝜌 is the fracture density and 𝑉𝑒𝑥 is the excluded volume [85]. For two dimensional convex

objects F1 and F2 with Areas A1 and A2 and perimeters P1 and P2 which are randomly oriented, their

excluded volume is

𝑉𝑒𝑥 =
1

4
(𝐴1𝑃1 + 𝐴2𝑃2) [2.0]

If they are identical, this formula reduces to

𝑉𝑒𝑥 =
1

2
𝐴𝑃 [3.0]

Fracture intersections create pathways in a network. Increased number of intersections in a network

inmproves the chances for the network to percolate [86]. Various measures reported in literature such

as intersection per unit length, lengths of intersections per unit of surface area [9], connectivity index

[49], and intersection density [87] all rely on fracture intersection analysis.

Cut-planes provides the opportunity to visualise the internal geometry of a 3D fracture network in 2D.

Inference about the hydraulic properties of fracture networks and intersection observations are

possible through cut-plane analysis [16]. Studying the cut-planes is also a useful way to decipher if the

fracture percolates or not. See appendix 3 for examples of fracture network cut planes.

3.0 Software Development Strategy and Features

This library consists of various independent methods. The library was developed from scratch
leveraging on Rhinoceros 6 python API and is not an extension of pre-existing code. Rhinoceros APIs
give access to python functions stored in Rhinoceros. Hence, this work currently serves as the state-
of-the-art in the realm of DFN generation and analysis on CAD software environments.

In building this library, git [88] was used as a version control tool for efficient code merging, tracking
and integration, while this library is being released and monitored via GitHub. Git and GitHub were
adopted for this project because they are open-sourced, easy to use and manage, ability to push and
pull from the GitHub repository without connecting to the internet, strong community support due to
their popularity, and the availability of git’s built-in support in every major IDE.

The development of this library follows the V-Model[89] method of software development, a variant
of Waterfall methodology [90]. This method is also known as the verification and validation model.
This method is a sequential development approach in which the following phases are followed
sequentially: software requirement analysis and specification, software architecture design, module
design, coding, deployment and maintenance. This methodology was preferred for various reasons. It
involves testing after each development phase, it makes the project more natural to understand and
manage, the project plan and schedule was made easy to follow. For example, the methods to
generate fractures needed to be tested and confirmed functional before writing modules for fracture
analysis such as P21, P32, intersection analysis. Modifications were made to previous phases when there
was a need, but testing was always done to confirm the functionality of each method. A module, as
used here, refers to a python file containing classes, methods and functions.

The library built for DFN generation and analysis through this research was based on modular
programming. This coding style was employed to make this library as compact as possible,

10

maintainable and simple to use. Each module contains functions, classes or both. The basic modules
could further be categorised based on their roles, namely; DFN generation, DFN analysis, DFN
regeneration, DFN postprocessing, and DFN input. Tables 1, 2 and 3 show the architectural design of
this library, containing the modules and the function and classes they contained.

Modules and Methods for Discrete Fracture Generation

DFN_Gen Domain Frac

+ GeneratePoint()
+ FractureSize()
+PolyOrientation()
+InclinePlane()
+FixedFractureGen()
+RandomFractureGen()
+SeparatedFractureGen()

+_init_()
+Show()
+NumberOfFractures()
+CreateBoundary()
+GetSurfaceFromFractureLayer()
+ConvertPolySurfaceToSurface()
+CreateSetOfExtensionBounsaries()
+RemoveSurfacesIfAnyIntersectBoundary()
+RemoveSurfacesOutsideOfBox()

Frac.Fracture
+Intersect()

+OldFracturesGuid()
+NewFracturesGuid()

Table 1: Architecture for fracture network generation

Modules and Methods for Fracture Network Analysis

Domain DFN_Analysis Matrix

Domain.Domain
+_init_()
+IntersectionMatrix()
+Percolate()

DFN_Analysis.IntersectionAnalysis
+LengthOfIntersection()
+FractureSurfaceArea()
+FractureIntensity_P32()
+IntersectionsPerUnitArea()

Matrix.Matrix
+_init_()
+PrintMatrix()
+MatrixToFile()
+ConvertObjectToIndex()

DFN_Analysis.CutPlane
+_init_()
+DrawPlane()
+TotalLengthOfFractures()
+NumberOfIntersectingFractures()
+FractureIntensity_P21()
+PlaneLines()
+IntersectionMatrix()
+Percolate()

+IntersectionsPerFracture()

Table 2: Architecture for fracture network analysis

Modules for Fracture Network Regeneration and Post-processing

DFN_ReGen
+RedrawNetwork()

DFN_PostProcessing
+IntersectionMatrixColorMap()
+IntersectionHistogram()
+IntersectionsPerFracturePlot()

Modules for DFN Input

Input
+ReadFile()

StatInput
+ReadFile

Table 3: Architecture for DFN regeneration, postprocessing and input

3.1 Y-Frac Fracture Network Representation and Generation

11

Fracture Networks created by Y-Frac are stored as NURBS surfaces on Rhinoceros 6 interface. NURBS

representation of fractures has been used in various works on fracture studies, suggesting its

acceptance in geoscience [91,92]. NURBs surfaces are precise, quick to generate, smooth without

sharp edges, and can be moved between various modelling, rendering, and animation programs

[93,94]. They also require less parameters to generate them and their memory consumption is

independent of resolution [92,95]. Individual fractures are stored as Globally Unique Identifiers

(GUIDs) in python. GUIDs are identifiers of an object on the Rhinoceros interface. A GUID is a 128-bit

value, represented by a string of 32 alphanumeric characters separated by hyphens in the form 8-4-4-

4-12 [96]. GUIDs are beneficial in representing Rhinoceros objects because they are guaranteed to be

unique every time they are generated. All fractures and in the network have separate layers and

names displayed under the layers tab on the panels, labelled “6” in figure 1. Rhinoceros layers enable

a user to make changes to all objects on a layer at once and keep track of the objects. For example,

the display colour of all objects on a layer can be changed at once. Layers in Rhinoceros are also used

by python to store a set of surfaces together. The setup of the DFNs ensures single fracture or fracture

sets can be studied distinctly through identification by their layers and GUIDs.

Fracture networks are generated on Y-Frac by creating a domain and inserting a specified or random

number of fractures. Domains are made by creating an instance of the Domain class. The class method

Show() is then used to display the domain on Rhinoceros interface. Fractures are inserted into the

created medium using any of these three functions in DFN_Gen module: FixedFracureGen(),

RandomFractureGen(), and SeparatedFractureGen(). Fracture parameters such as shape and size are

specified in a text file and read using the input modules to provide arguments for these functions.

Statistical distributions are also specified in a text file and serve as global variables for the functions.

Fracture shapes available on Y-Frac include circle, ellipse and regular polygons. The basic DFN

modelling approach involves using statistical distribution to describe cardinal variables such as spatial

location, intensity, orientation and size [25]. A uniform distribution is used for fracture orientation,

location, intensity, and fracture sizes.

Undoubtedly, some of the fractures in the network will extrude beyond the fractured medium. The

domain class’ method RemoveSurfacesOutsideOfBox() trims the out of bounds fractures. This method

utilises CreateBoundary(), GetSurfaceFromFractureLayer(), ConvertPloySurfaceToSurface(),

CreateSetOfExtensionBoundaries(), and RemoveSurfacesIfAnyIntersectBoundaries().

The specific procedure taken by RemoveSurfacesOutsideOfBox() to trim extruding fractures is

described in Algorithm 1.

Algorithm 1. RemoveSurfacesOutsideOfBox(): Trimming out of bound fractures

1: Create a fracture domain boundary and store its identifier.

2: Get and store all fracture identifiers into list k.

3: Initialise a list p to store all fractures’ identifiers post trimming.

4: for all fractures in the list k:
 check if the fracture intersects the boundary and split it.
 append the identifier of the non-extruding part of the fracture in the list p.
 If the fracture does not intersect the boundary:
 append it to list p as well.
 end if
end for

5: Delete all old fractures using identifiers in list k.

12

6: Display all new fractures using the identifiers in list p.

3.2 Methods for Fracture Network Analysis

The DFN_Analysis module holds most methods for fracture analysis and characterisation in the library

developed. Its methods perform fracture analysis in both 3D on a DFN, and 2D on a cut-plane. The

Class IntersectionAnalysis contains four methods for a 3D DFN analysis: LengthOfIntersection(),

FracturesSurfaceArea(), FractureIntensity_P32(), and IntersectionsPerUnitArea(). The CutPlane class

draws the cut-plane using the DrawPlane() method to produce a 2D plane in a 3D domain.

TotalLengthOfFractures(), FractureIntensity_P21(). IntersectionMatrix(), and Percolate() are other

methods contained in the CutPlane class.

The Domain module also does fracture analysis with the functions. Its IntersectionMatrix() and

Percolate() functions perform same roles as those of cut-plane, however in 3D for this case. The Matrix

module is an auxiliary module containing the Matrix class which stores the matrix created by the

intersection matrix function and its properties. It has three methods: PrintMatrix(), MatrixToFile() and

ConvertObjectToIndex().

IntersectionMatrix() creates a square matrix of fracture-fracture and fracture-boundary intersections

for a fracture network and Percolate() uses the matrix created to determine if the domain percolates

or not. These two methods are pivotal features of Y-Frac and contribute the most to the computational

cost of fracture analysis using this software. The description of Percolate() and IntersectionMatrix()

are contained in Algorithm 2 and 3 respectively.

Algorithm 2. Percolate(): Determine if two opposite boundary percolates

1: Create an object list containing all fractures and boundaries identifiers.

2: Create a list of all other boundaries other than the two we want to check percolation for.

3: Get the index of the 1st boundary in the boundary list and its row number in the matrix

4: Get the index of the 2nd boundary in the boundary list and its row number in the matrix

5: Check if all the elements of both the 1st and 2nd boundaries rows are zero
 If this check is True:
 return False (No percolation)
 end if

6: Initialise an index list with the 1st boundary’s index, to store matrix indices as we check for
percolation.

7: Initialise a list, say track_list, with the 1st boundary’s identifier, to store fracture identifiers
and possibly the 2nd boundary’s identifier as we check for percolation.

8: Set a variable, say k, to zero. It moves through the columns of the matrix.

9: Set a variable, say old_length, with the length of track_list. It keeps track of the length of the
list in 7, after each phase.

10: Set a variable, say l, to zero. It is updated after each phase.

11: While True:
 for every column of the intersection matrix:
 if any column of the boundary is greater than 0, and the corresponding boundary’s or
 fracture’s identifier is not already in the lists created in 7 and 2 above.
 append the fracture’s identifier in the list created in 7 and its index in the index list
 end if
 end for

13

 if l is equal to k (that is, all rows of “old_length” number of fractures have been visited)
 check the number of fractures added
 if no fracture or boundary 2 was not added:
 return False (No percolation)
 end if
 increment l and old_length by the number of fractures added
 end if
 if the second boundary’s identifier is in track_list created in 7 above:
 return True (There is percolation)
 end if
 increment k by 1

3.3 Discrete Fracture Network Library functionalities

The core functionalities of this library are demonstrated in this section. The following examples

illustrate some of the usages of this library for fracture generation, analysis and characterisation. The

lines of code demonstrating the functionalities of Y-Frac in figures 3 to 8 are continuous but broken

into snippets. We start by generating a fixed number of disc-shaped fractures in a domain.

Figure 3: code snippet providing an example script which creates a fracture network

The code snippet starts by importing the required modules. We disabled redraw to prevent the

drawing of objects on Rhinoceros interface while Rhinoceros is computing because drawing while

computing adds to the computational cost of the python script. The fracture network data required

are read in using the Input module, accessed through ReadFile(). An instance of the Domain class was

created and named “dom”. The domain was drawn on the Rhinoceros interface by Show(). Finally, we

inserted a specified number of disc-shaped fractures into the domain through the FixedFractureGen()

function. The other arguments of the function are not needed for adding disc fractures. The fracture

shape was specified as “circle” in the text file “DataFile”. Fracture size, domain length, the number of

14

fractures and fracture shape are specified in DataFile.txt. It is noteworthy that here the fractures were

not trimmed, and it is possible of fractures may extrude the boundaries of the domain.

Figure 4: Code snippet showing Y-Frac’s functionality to trim out of bound fractures

A further illustration of the library’s functionality for fracture generation is shown in Figure 4. The next

step after generating the fractures is to trim the extruding ones, performed by

RemoveSurfaceOutsideBox(). New fracture objects, of which none goes outside the domain

boundaries, are generated during trimming at the location of old fractures. Therefore, there is a need

to delete the previous fractures and replace the GUIDs of our fracture objects in the Fracture class

with the new GUIDs. This process is carried out by the Frac.NewFracuturesGuids() method. Figure 4

also shows how the total number of fractures generated can be printed to the console, which is very

useful in the case of random fractures generation. It is also possible to check if a fracture intersects

another using the Intersect() method.

3D intersection analysis can be done after generating the fracture network. Figure 5 shows a set of

possible 3D analysis for a fracture network using this library.

Figure 5: Code snippet showing 3D analysis of fracture network using Y-Frac.

15

The process starts by importing the DFN_Analysis module and then creating an instance of the

IntersectionAnalysis class. The sum of intersection lengths in the network was determined with the

LengthOfIntersection() method. The P32 fracture intensity is also found using the

FractureIntensity_P32() method, and IntersectionsPerUnitArea() gives the total lengths of intersection

per unit area of the domain. One of the current assumptions of this library is that the domain is a cube,

which is the reason why its width, length and height have the same value. With our fracture network

adequately set up, it can be determined if the system percolates or not, as shown in Figure 6.

Figure 6: Code snippet demonstrating the percolation test using Y-Frac.

The check for percolation of a fracture network is of great importance in earth sciences. It is an

essential part of studies for unconventional oil recovery, radioactive and waste disposal, underground

water hydrology and underground CO2 storage. A percolation test is done by first creating a list of

boundaries GUIDs, the six sides of the domain. The Domain class method IntersectionMatrix() creates

a square intersection matrix, as explained previously. Of course, the domain sides do not intersect one

another. Consequently, the intersection values will be zero. The Percolate() method returns a bool

indicating if the domain percolates or not. The Intersection Matrix is an innovative tool for performing

percolation analysis. It reduces the computational cost drastically if we are check percolation between

two other opposite sides of the domain other than the ones used previously. The cost reduction is

evident since we only must check through the matrix, rather than performing the intersection tests

between all fracture domain’s sides once again.

Even though the network is a 3D fracture model, Analysis can also be performed on a 2D cut-plane.

An example of this is shown in Figure 7.

An instance of the CutPlane class is created, specifying the direction of the plane, in this case, ‘YZ’, and

the width and height of the plane. DrawPlane() draws the plane, inclined at the fixed angle. The plane

is stored as a surface on Rhinoceros, and its GUID is stored in python. The cut-plane is set up at this

stage. Fracture analysis can then be carried out, with TotalLengthOfFractures() providing the total

lengths of fracture intersecting the plane, NumberOfIntersectingFractures() returning the number of

fractures that crossed the plane and FractureIntensity_P21() determines the P21 fracture intensity.

Percolation analysis can be performed on the 2D cut-plane.

Steps like the 3D case are carried out to determine the percolation state of the cut plane in Figure 8.

The GUIDs of the fractures intersecting the plane must be found, which the CutPlane class object

“intersecting_fractures” detects. PlaneLines() method returns a list of the plane boundary GUIDs. The

intersection matrix is then created, and percolation state is determined by the method Percolate().

16

Another important ability of this library is to regenerate fracture networks. When a fracture is being

generated, the library writes the necessary features required for fracture regeneration in a text file,

which is used for fracture regeneration. This functionality is shown in Figure 9.

The steps involve importing the appropriate module, DFN_ReGen, specifying the path where the text

file is saved and regenerating the network using the RedrawNetwork() function. Information exported

into fracture_data.txt by Y-Frac includes fracture orientation, size, domain size, plane coordinates,

number of sides of fracture polygons, and coordinates of fracture polygons. Details in this text file can

serve as input variables for appropriate software packages to simulate flow and perform mechanical

analysis in fracture networks.

Postprocessing is done outside the Rhinoceros environment because it does not support the

matplotlib python library for visualisation. Therefore, the part of the script in Figure 10 after the

dashed line must be run in a python IDE. The arguments are created by copying the results from the

Rhinoceros console to the python IDE.

Figure 7: Code snippet demonstrating cut-plane analysis with Y-Frac

Figure 8: Code snippet demonstrating further cut-plane analysis with Y-Frac

17

Figure 9: Code snippet demonstrating fracture regeneration with Y-Frac

Figure 10: Code snippet demonstrating fracture network postprocessing with Y-Frac

It is necessary to import the postprocessing module for these tasks. Instances of modules imported

earlier were used. The three functions, IntersectionHistogram(), IntersectionMatrixColorMap(), and

IntersectionsPerFracturePlot() use their respective arguments to display their plots.

4.0 DFN Library Case Study

This section contains the results and analyses of case studies evaluated in this work. A 20m x 20m x

20m domain was created, and 50 fractures of different shapes – disc, ellipse, polygon (square) – of

size 4m were inserted. Figures 11-16 show the fracture network for these cases pre and post trimming

of extruding fractures.

18

Fracture
System

Total length of
intersections

(m)

Total length of
intersections per
unit area (m-1)

Fracture Intensity (P32)
(m-1)

Percolation state

Circular 370.888 0.0464 0.265 True

Elliptical 126.397 0.0158 0.133 False

Square 178.927 0.0224 0.173 False

Table 4: 3D analysis results for fracture networks.

Figure 11: Fracture Network containing 50
circular fractures before trimming.

Figure 12: Fracture Network containing 50
circular fractures after trimming.

Figure 13: Fracture Network containing 50
elliptical fractures before trimming.

Figure 14: Fracture Network containing 50
elliptical fractures after trimming.

19

Figure 15: Fracture Network containing 50
square fractures before trimming.

Figure 16: Fracture Network containing 50
square fractures after trimming.

The fracture networks were generated with the DFN_Gen() module without trimming. They were then

regenerated and trimmed using the DFN_ReGen() module. The circular fractures expectedly occupy

most space in the domain, due to having the largest surface area, followed by the square fractures

then the elliptical fractures being the least. Further analyses were carried out on these three fracture

systems, using the fracture regeneration module along with relevant modules and methods. The

fractures were regenerated to show the possibility of analysis on pre-generated fracture networks.

The code snippets for these could be found in the implementation folder on this library’s GitHub page.

The table below contains the 3D analyses conducted on these systems.

Circular fracture system has the highest numerical values for all the parameters considered as

contained in table 4, while the elliptical system has the least. This trend further confirms the role the

fractures’ surface areas play on the lengths of intersection and fracture intensity. It is necessary to

point out that only the circular fracture system percolates, specifically between top and bottom of the

domain.

The results from the cut-plane analysis done on these systems are summarised in Table 5.

Fracture
System

Direction Total lengths of
intersections
between fractures

Number of
intersecting
fractures

Fracture Intensity
(P21)

(m-1)

Percolation
state

Circular YZ 139.16 23 0.348 False

XY 84.84 18 0.212 False

ZX 97.53 16 0.244 False

Elliptical YZ 63.43 18 0.159 False

XY 38.75 10 0.097 False

ZX 24.10 8 0.060 False

Square YZ 46.19 12 0.115 False

XY 63.41 16 0.159 False

ZX 83.57 19 0.209 False

Table 5: Cut-plane 2D analysis results for fracture networks.

20

All three directions were considered in the 2D analysis. A 20m x 20m cut-plane was introduced at the

centre of the domain in the three directions. Although this library permits for the inclination of planes

in these directions, the cut planes for these analyses were not rotated. A critical look at the table

above shows the trend in the 3D analysis is being followed in the cut-plane assessment of the systems.

The circular network has the highest values for all the variables considered, and the elliptical system

has the least. However, none of the cut-plane systems percolates. Lang et al. [97] studied the extent

to which cut-planes percolate. They obtained a set of 75 cut-planes, each obtained in a random

manner from 11 3D fracture network. They concluded that the dimensionless density 𝜌′ at which the

3D networks percolate is linearly related to that of cut-planes by a multiple of 4. That is, 𝜌3𝐷
′ = 4𝜌2𝐷

′ .

Therefore, at low fracture densities, percolation may occur in 3D networks but not in any of the 2D

cut-planes. Similar analysis is possible with Y-Frac, as a scenario has been demonstrated with this

example.

Postprocessing of these fracture network characteristics was done. Postprocessing aids in visualisation

of the characteristics of fracture networks and gives some insights on this network, which could be

tedious with numerical values only. Figures 17(a), (b) and (c) present the postprocessing visualisations

for these systems.

(a)

(b)

(c)

Figures 17(a), (b) & (c): Histograms of intersection lengths for circular, elliptical and square fracture

systems respectively.

The lengths of intersections for all the fracture networks ranges mostly between 0 – 3.5m. The disc

radius used to generate the fractures in this system is 4m. The circular fracture system has the highest

21

length of fracture intersection, 7.5m, which is expected since its fractures have the largest surface

area. It can also be deduced that the probability of fracture overlapping is negligible.

The colour map plots in (see appendix 1) of the fracture networks' intersection matrix also confirm

higher lengths of fracture-fracture intersection occur in the circular network. The boundaries have

larger surface areas than the fractures, which leads to more significant surface-surface interaction;

consequently, all networks have lengths of intersection >7m for fracture-boundary intersections.

Plots of the number of intersections per fracture (see appendix 2) made known isolated fractures -

that is, fractures which do not intersect any other fracture - in all networks.

4.1 Computational Cost

The computational cost to generate different fracture shapes was investigated. Ten realisations of

fracture systems containing 100 to 500 fractures were performed, and the timings averaged to

determine the computational cost of each system on the Rhinoceros 6 interface. These tests were

performed on a laptop computer with 4 cores, 1.7GHz clock rate, and 8GB RAM. This computer

specification represents a typical environment for using Y-Frac rather than a high-performance

computing platform. Figure 18 shows the result of this study.

Figure 18: computational cost to generate fracture networks of different shapes.

The plot above indicates that the circular fractures cost least to generate, followed by the elliptical

fractures. Additionally, it can be deduced that the higher the number of sides of the polygon, the

greater the computational cost. The higher cost is due to the additional cost involved in generating

22

and connecting more points as the number of sides increases. The most populated fracture system

studied contains 500 fractures. The highest computational cost is less than 1 second. Overall, this

analysis has shown that it is very cheap to generate fracture networks using Y-Frac. Hence, users do

not need to worry about computational cost when using this library.

Another essential operation is the intersection analysis between fractures. The cost of preparing the

intersection matrix for postprocessing and percolation analysis was also studied as shown in Figure

19. This operation is expected to be costlier than fracture generation due to the number of

intersection operations. Here, ten realisations were carried out for each number of fractures, and the

timings were averaged.

Figure 19: computational cost for preparing intersection matrix

The highest computational cost, for a network of 500 fractures, is about 2.5 seconds. This cost is

relatively cheap for an operation involving 125,000 intersection operations. As previously mentioned,

the intersection matrix is an innovative and very cheap way of checking for percolation between more

than one opposite boundary for a fracture system. It is cheaper than the traditional method of

determining percolation by performing intersection tests when considering two opposite boundaries

of a domain.

4.2 Percolation Threshold Analysis

Huseby et al. [83] performed studies to determine percolation analysis for regular polygons in a 3D

domain. Convex, identical fractures were considered. They are also assumed to be isotropically

oriented and uniformly distributed. The fracture medium was considered periodic as described by

Alder [98]. The finite polygons were embedded in a disk whose centres were uniformly distributed.

23

They performed their simulation, with 500 realisations, on seven types of equally sized polygons

including triangles, squares, hexagons, octagons, 20-gons, rectangles with aspect ratio of 2, and

uniform sized distributed rectangles of aspect ratio of 2. They obtained a range for the percolation

threshold, the fracture dimensionless density above which the fracture percolates, as 𝜌𝑐
′ = 2.26 ±

0.04. Basically, the percolation threshold is the value of the dimensionless density, 𝜌′, at which the

percolation probability is 0.5. Percolation probability is the ratio of the number of fracture network

realisations that percolate to the total number of realisations.

Furthermore, Adler et al. [99] did a percolation study on simulated fracture networks in excavated

damage zones and concluded that 𝜌𝑐
′ is in the range of 2.3 ± 0.1. Sisavath et al. [100] also conducted

a study on percolation properties of fracture networks from line data and found 𝜌𝑐
′ to be

approximately 2.254.

This library was used to perform simulation for determining the percolation threshold. Various sets of

250 realisations were done using a 20m x 20m x 20m fracture domain with a fracture disc size of 4m.

The fractures were identical, uniformly distributed and oriented. Triangle, Square, hexagonal and

octagonal shaped fractures were considered. The percolation threshold of range, 𝜌𝑐
′ = 2.205 ± 0.55

was obtained. This result clearly is within the range of published result. This further demonstrates the

applicability of this library for practical purposes. The summary of the results is contained in table 6.

Figure 20 shows the plot of percolation probability against dimensionless density.

Shape Triangle Square Hexagon Octagon

Percolation threshold 2.32 2.26 2.37 2.37

Table 6: summary of percolation analysis results

Figure 20: Plot for the percolation threshold analysis.

24

4.3 Testing

It was not feasible to do a continuous integration test, for instance, with Travis CI [101]. Travis CI is a

continuous integration test service that runs tests on codes a user commits on GitHub. Various factors

preclude this option. This work was based on Rhinoceros 6 python API. Hence, almost all the functions

involve the use of Rhinoscryptsythax library, which is unknown to Travis and could not be imported.

Also, being a library for geometrical modelling on Rhinoceros, most methods and functions return

Rhinoceros GUIDs, which are unusual data type and are not recognised for pytest either. Additionally,

the Rhinoceros python script environment does not allow for unit testing of functions. Even though

results from various functions of this library are visibly seen on the Rhinoceros Interface, a python

script that can be run on Rhinoceros, containing various code blocks which can be uncommented for

testing essential functions and methods in this library has been provided on the GitHub page.

Algorithm 3. IntersectionMatrix(boundary_list, domain_fractures): Creating intersection matrix

1: Initialise the matrix as a list.

2: Get the number of fractures in the domain from the domain fractures’ list.

3: Calculate the number of rows and columns of the matrix.

4: for each row of the matrix:
 append an empty list to the previous matrix list. It then becomes a list of lists
 for each column of the matrix:
 append zero as the matrix element
 end for
end for

5: for every fracture:
 for every fracture:
 if the fractures are not the same:
 check for intersection
 if there is an intersection:
 set the element of symmetric matrix indices as the intersection length (for 3D)
 set the element of symmetric matrix indices as one (for 2D)
 end if
 end if
 end for
end for

6: for every fracture:
 for every boundary:
 check for intersection
 if there is an intersection:
 set the element of the symmetric matrix indices as the intersection length (for 3D)
 set the element of symmetric matrix indices as one (for 2D)
 end if
 end for
end for

25

5.0 Conclusion and Recommendation

This work has put forward an open-source, easy to use library for Discrete Fracture Network

generation, regeneration and analysis for use in Rhinoceros 6 CAD environment. The requirements for

this library - both hardware and software – have been stated in the code metadata. Instructions on

how to install and use this library are contained in ReadMe file on the library’s GitHub page.

Rhinoceros was chosen for this work due to the opportunity to write python scripts exploiting

Rhinoceros’ python API. It is also easy to learn and work with, and relatively cost-effective both

computationally and economically.

This library contains various modules (python file) for specific purposes. Modules were written for

fracture input, fracture generation, fracture regeneration, fracture analysis and postprocessing. This

library can generate fracture networks containing fractures of circular, elliptical and regular polygonal

shapes. Fractures in this library are objects, with each knowing its name, GUID and location. The GUID

are identifiers of objects which are stored in python and object’s surfaces are stored in Rhinoceros.

Fixed, random and separated (by a threshold) fractures are possible to model with this library. Being

a fracture simulation tool, statistical distributions were employed to generate basic fracture

parameters. Fracture location, size, intensity and orientation all follow a uniform distribution. Both 3D

and cut-plane (2D) analysis in all directions can be done on fracture networks using this library. 3D

fracture analysis and characterisation functionalities in this library include; total lengths of fracture

intersection, fracture intensity (P32), total intersection length per unit area and percolation state. Also,

the number of intersecting fractures, total lengths of intersecting fractures, fracture intensity (P21) and

percolation state can be calculated in 2D on cut-planes. A fast technique of determining percolation

state was introduced in this work using the intersection matrix. Fracture Networks can be saved and

loaded using a text file, which is automatically populated when either fixed or random fractures are

generated. Information contained in the output text file can serve as input for appropriate software

packages to simulate flow and perform mechanical analysis in fracture networks. The third section of

this work contains several code snippets showing how to use some of these functionalities.

The computation cost for fracture and intersection matrix generation was evaluated. The circular

fractures cost the least to generate, and the polygonal fractures cost most. Furthermore, the higher

the number of sides of a polygon, the higher its cost. Overall, it costs less than 200 milliseconds to

generate 500 fractures of the shapes considered. The cost of intersection matrix generation studies

shows that the most significant operation consisting of over 125,000 intersection operations costs

about 2.5 seconds, which is quite fast. Therefore, this library is suitable for important and

computationally intensive geoscience study such as percolation analysis.

Y-Frac was demonstrated for practical usage to confirm the percolation threshold of regular polygons

in an isotropic network. Lastly, it is expected that students and researchers in geoscience will use this

tool for practical research, exploiting the current functionalities of Y-Frac for DFN generation and

analysis.

Suggested future work on this library includes determination of percolation in space as against

boundaries, the inclusion of irregular polygons as fracture shapes, including more statistical

distributions for fracture parameters, determination of percolation clusters, flexibility in domain

shapes, permeability determination, integration of geomechanical properties for DFN simulation and

fluid and heat flow in fracture networks.

26

References

1. Hernqvist L. Characterization of the Fracture System in Hard Rock for Tunnel Grouting.
Chalmers University of Technology; 2009.

2. Gillespie PA, Howard CB, Walsh JJ, Watt J. Measurement and characterisation of spatial
distributions of fractures. 1993;226:113–41.

3. Baek SH, Kim SS, Kwon JS, Um ES. Ground penetrating radar for fracture mapping in
underground hazardous waste disposal sites: A case study from an underground research
tunnel, South Korea. Journal of Applied Geophysics. 2017;141:24–33.

4. Lachassagne P, Wyns R, Dewandel B. The fracture permeability of Hard Rock Aquifers is due
neither to tectonics, nor to unloading, but to weathering processes. Terra Nova.
2011;23(3):145–61.

5. Lacazette. Natural Fracture Types [Internet]. 2001 [cited 2019 Jun 13]. Available from:
https://www.naturalfractures.com/1.1.1.htm

6. National Research Council. Rock Fractures and Fluid Flow: Contemporary Understanding and
Applications. Washington, DC: National Academy Press; 1996. 568 p.

7. Dverstorp B, högskolan KT. Analyzing flow and transport in fractured rock using the discrete
fracture network concept. Stockholm : Hydraulic Engineering, Royal Institute of Technology;
1991.

8. Brian B. Characterizing flow and transport in fractured geological media: A review. Advances
in Water Resources [Internet]. 2002;25(2002):861–84. Available from:
http://www.sciencedirect.com/science/article/pii/S0309170802000428

9. Sanderson DJ, Nixon CW. The use of topology in fracture network characterization. Journal of
Structural Geology [Internet]. 2015;72:55–66. Available from:
http://dx.doi.org/10.1016/j.jsg.2015.01.005

10. Bear J, Verruijt A. Theory and applications of transport in porous media. Modeling of
groundwater flow and pollution, Dordrecht: Reidel. 1987.

11. Lei Q, Latham JP, Tsang CF. The use of discrete fracture networks for modelling coupled
geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics
[Internet]. 2017;85:151–76. Available from:
http://dx.doi.org/10.1016/j.compgeo.2016.12.024

12. Fadakar Alghalandis Y. ADFNE: Open source software for discrete fracture network
engineering, two and three dimensional applications. Computers and Geosciences [Internet].
2017;102(September 2016):1–11. Available from:
http://dx.doi.org/10.1016/j.cageo.2017.02.002

13. Maillot J, Davy P, Goc R Le, Darcel C, de dreuzy LR. Connectivity, permeability, and channeling
in randomly distributed and kinematically defined discrete fracture network models. Water
Resources Research: 2016;52(11).

14. Alghalandis YF. Stochastic Modelling of Fractures in Rock Masses. PhD Thesis. University of
Adelaide. 2014;(March).

15. Neuman SP. Trends, prospects and challenges in quantifying flow and transport through
fractured rocks. Hydrogeology Journal. 2005;13(1):124–47.

16. Thomas RN. Permeability of fracture networks generated through geomechanical fracture-

27

growth simulations. PhD Thesis. Imperial College London. 2019;(March).

17. Midland Valley ltd. 2018 Brochure FractureModelling [Internet]. 2018 [cited 2019 Jun 24].
Available from: https://www.mve.com/media/2018_Brochure_FractureModelling.pdf

18. Wheeler AF. NAPSAC Technical Summary. 2016;(July). Available from:
https://www.amecfw.com/documents/downloads/specialist-services/connectflow/dfn-
technical-summary.pdf

19. Golder. FracMan Software [Internet]. 2019 [cited 2019 Jun 24]. Available from:
https://www.golder.com/fracman/

20. MoFrac. Discrete Fracture Network Modelling Software [Internet]. 2019 [cited 2019 Jun 24].
Available from: http://www.mofrac.com/

21. Erhel J, Gander MJ, Halpern L, Pichot G, Griebel M. Methods in Science and Engineering XXI
Editorial Board. 2014. 970 p.

22. Hyman JD, Karra S, Makedonska N, Gable CW, Painter SL, Viswanathan HS. DfnWorks: A
discrete fracture network framework for modeling subsurface flow and transport. Computers
and Geosciences [Internet]. 2015;84:10–9. Available from:
http://dx.doi.org/10.1016/j.cageo.2015.08.001

23. Xing Zhang and Sanderson DJ. Numerical Modelling and Analysis of Fluid Flow and
Deformation of Fractured Rock Masses. London, UK: Elsevier; 2002. 300 p.

24. Lisjak A, Grasselli G. A review of discrete modeling techniques for fracturing processes in
discontinuous rock masses. Journal of Rock Mechanics and Geotechnical Engineering
[Internet]. 2014;6(4):301–14. Available from: http://dx.doi.org/10.1016/j.jrmge.2013.12.007

25. Rogers S, Elmo D, Stead D, Guidelines for the quantitative description of discontinuities for
use in DFN modeling. 2015;(May):1–11.

26. Long JCS, Remer JS, Wilson CR, Witherspoon PA. Porous media equivalents for networks of
discontinuous fractures. Water Resources Research. 1982;18(3):645–58.

27. Long JCS, Gilmour P, Witherspoon PA. A Model for Steady Fluid Flow in Random Three‐
Dimensional Networks of Disc‐Shaped Fractures. Water Resources Research.
1985;21(8):1105–15.

28. Endo HK, Long JCS, Wilson CR, Witherspoon PA. A Model for Investigating Mechanical
Transport. Water Resources Research. 1984;20(10):1390–400.

29. Endo HK. Mechanical transport in two-dimensional networks of fractures. PhD Thesis.
University of California, Berkeley; 1984.

30. Balberg I, Binenbaum N, Wagner N. Percolation thresholds in the three-dimensional sticks
system. Physical Review Letters. 1984;52(17):1465–8.

31. Andersson J, Dverstorp B. Conditional simulations of fluid flow in three‐dimensional networks
of discrete fractures. Water Resources Research. 1987;23(10):1876–86.

32. Palleske, C., Lato MJ, Hutchinson DJ, Elmo D, Diederichs MS. Impacts of limited spacing and
persistence data on DFN modelling of rockmasses. Proceedings of GeoMontreal. Montreal;
2013.

33. Vazaios I. Factors affecting realism of DFNs for Mechanical Stability Analysis in Tunneling
Environment. International Discrete Fracture Network Engineering Conference. 2014;(July

28

2016).

34. Mauldon M. Estimating mean fracture trace length and density from observations in convex
windows. Rock Mechanics and Rock Engineering. 1998;31(4):201–16.

35. Min KB, Jing L, Stephansson O. Determining the equivalent permeability tensor for fractured
rock masses using a stochastic REV approach: Method and application to the field data from
Sellafield, UK. Hydrogeology Journal. 2004;12(5):497–510.

36. Rogers S, Elmo D, Webb G, Catalan A. Volumetric Fracture Intensity Measurement for
Improved Rock Mass Characterisation and Fragmentation Assessment in Block Caving
Operations. Rock Mechanics and Rock Engineering. 2014;48(2):633–49.

37. Elmo D, Rogers S, Stead D, Eberhardt E. Discrete Fracture Network approach to characterise
rock mass fragmentation and implications for geomechanical upscaling. Mining Technology.
2014;123(3):149–61.

38. Amec Foster Wheeler. Modelling of Discrete Fracture Networks (DFN) [internet]. 2019 [Cited
2019 July 16] Availabe from: https://www.amecfw.com/services/specialist-
services/connectflow/connectflow-dfn.

39. Pichot G, Poirriez B, Erhel J, De Dreuzy J-R. A mortar BDD method for solving flow in
stochastic discrete fracture networks. In: Proceedings of the 21st international conference in
Domain decomposition methods in science and engineering XXI. Inria Rennes Center, France;
2012.

40. Pencheva G, Yotov I. Balancing domain decomposition for mortar mixed finite element
methods. Numerical Linear Algebra with Applications. 2003;10(1–2):159–80.

41. Dryja M, Proskurowski W. On preconditioners for mortar discretization of elliptic problems.
Numerical Linear Algebra with Applications. In: Numerical Libear Algebra with Applications
2003;10(1–2):65–82.

42. Hokr JBM. Mixed-Hybrid Formulation of Multidimensional Fracture Flow. In: Numerical
Methods and Applications, Lecture Notes in Computer Science. 2011. p. 125–32.

43. Březina J, Exner P. Fast algorithms for intersection of non-matching grids using Plücker
coordinates. Computers and Mathematics with Applications. 2017;74(1):174–87.

44. Březina J, Stebel J. Analysis of model error for a continuum-fracture model of porous media
flow. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). 2016;9611:152–60.

45. Exner P, Březina J. Partition of unity methods for approximation of point water sources in
porous media. Applied Mathematics and Computation. 2016;273:21–32.

46. Brezina J. Mortar-like mixed-hybrid methods for elliptic problems on complex geometries.
Proceedings of ALGORITMY. 2012;200–8.

47. Šístek J, Březina J, Sousedík B. BDDC for mixed-hybrid formulation of flow in porous media
with combined mesh dimensions. Numerical Linear Algebra with Applications.
2015;22(6):903–29.

48. Xu C, Dowd PA, Mardia KV, Fowell RJ. Parametric pointintensity estimation for stochastic
fracture modeling. LUMA(LeedsUniversityMining Association) Journal. 2003;16:85–93.

49. Xu C, Dowd PA, Mardia KV, Fowell RJ. A connectivity index for discrete fracture networks.
Mathematical Geology. 2006;38(5):611–34.

29

50. Dowd PA, Martin JA, Xu C, Fowell RJ, Mardia K V. A three-dimensional fracture network data
set for a block of granite. International Journal of Rock Mechanics and Mining Sciences.
2009;46(5):811–8.

51. Mardia KV, Nyirongo VB, Walder AN, Xu C, Dowd PA, Fowell RJ, Kent J. Markov Chain Monte
Carlo implementation of rock fracture modeling. Mathematical Geology. 2007;39:355–81.

52. Xu C, Dowd PA. A new computer code for discrete fracture network modelling. Computers
and Geosciences. Computers and Geosciences [Internet]. 2010;36(3):292–301. Available
from: http://dx.doi.org/10.1016/j.cageo.2009.05.012

53. Painter SL, Gable CW, Kelkar S. Pathline tracing on fully unstructured control-volume grids.
Computational Geosciences. 2012;16(4):1125–34.

54. Nejati M, Paluszny A, Zimmerman RW. On the use of quarter-point tetrahedral finite
elements in linear elastic fracture mechanics. Engineering Fracture Mechanics [Internet].
2015;144:194–221. Available from: http://dx.doi.org/10.1016/j.engfracmech.2015.06.055

55. Nejati M, Paluszny A, Zimmerman RW. A disk-shaped domain integral method for the
computation of stress intensity factors using tetrahedral meshes. International Journal of
Solids and Structures [Internet]. 2015;69–70:230–51. Available from:
http://dx.doi.org/10.1016/j.ijsolstr.2015.05.026

56. Nejati M, Paluszny A, Zimmerman RW. A finite element framework for modeling internal
frictional contact in three-dimensional fractured media using unstructured tetrahedral
meshes. Computer Methods in Applied Mechanics and Engineering [Internet]. 2016;306:123–
50. Available from: http://dx.doi.org/10.1016/j.cma.2016.03.028

57. Paluszny A, Matthai SK. Impact of fracture development on the effective permeability of
porous rocks as determined by 2-D discrete fracture growth modeling. Journal of Geophysical
Research. 2010;115(B2).

58. Paluszny A, Matthäi SK. Numerical modeling of discrete multi-crack growth applied to pattern
formation in geological brittle media. International Journal of Solids and Structures [Internet].
2009;46(18–19):3383–97. Available from: http://dx.doi.org/10.1016/j.ijsolstr.2009.05.007

59. Salimzadeh S, Usui T, Paluszny A, Zimmerman RW. Finite element simulations of interactions
between multiple hydraulic fractures in a poroelastic rock. International Journal of Rock
Mechanics and Mining Sciences. 2017;99(March):9–20.

60. Salimzadeh S, Paluszny A, Zimmerman RW. Three-dimensional poroelastic effects during
hydraulic fracturing in permeable rocks. International Journal of Solids and Structures.
2017;108:153–63.

61. Thomas RN, Paluszny A, Zimmerman RW. Quantification of Fracture Interaction Using Stress
Intensity Factor Variation Maps. Journal of Geophysical Research: Solid Earth.
2017;122(10):7698–717.

62. Mikell P. Groover EWZ. CAD/CAM: Computer-Aided Design and Manufacturing. Prentice-Hall;
1984. 489 p.

63. Tian F, Tian X, Geng J, Li Z, Zhang Z. A hybrid interactive feature recognition method based on
lightweight model. 2010 International Conference on Measuring Technology and
Mechatronics Automation, ICMTMA 2010. 2010;1:113–7.

64. Autodesk. AutoCad [Internet]. 2019 [cited 2019 Aug 7]. Available from:
http://usa.autodesk.com/autocad/

30

65. Dasault Systems. Solid Works. [Internet]. 2019 [cited 2019 Aug 7]. Available from:
https://www.solidworks.com/

66. Autodesk. Inventor Overview. [Internet]. 2019 [cited 2019 Aug 7]. Available from:
https://www.autodesk.com/products/inventor/overview

67. PTC. Creo Parametric 3D Modeling Software [Internet]. 2019 [cited 2019 Aug 7]. Available
from: https://www.ptc.com/en/products/cad/creo/parametric

68. Mcneel R. Rhinoceros 5 - Training Manual Level 1. 2013.

69. Autodesk. 3ds-max Overview [Internet]. 2019 [cited 2019 Aug 7]. Available from:
https://www.autodesk.co.uk/products/3ds-max/overview

70. De Weck O. Lecture 4: Computer Aided Design (CAD). 16810: Engineering Design and Rapid
Prototyping. 2005.

71. Associates MN and. Welcome to Rhino [Internet]. [cited 2019 Aug 7]. Available from:
http://docs.mcneel.com/rhino/6/help/en-us/index.htm

72. Bingol OR, Krishnamurthy A. NURBS-Python: An open-source object-oriented NURBS
modeling framework in Python. SoftwareX [Internet]. 2019;9:85–94. Available from:
https://doi.org/10.1016/j.softx.2018.12.005

73. Mcneel R. Rhinoceros 5 User ’ s Guide Table of Contents Section I : Introduction. 2014.

74. Gorjanc S, Jurkin E. Introducing 3D Modeling into Geometry Education at Technical Colleges.
The Visual Language of Technique. 2015;57–67.

75. Nassery F. 3d Models of Regular Polyhedrons in: Rhinoceros 3d, Autocad, 3ds Max – Possible
Applications in the Teaching of Engineering Graphics. The Journal of Polish Society for
Geometry and Engineering Graphic. 2015;27:37–44.

76. Dershowitz WS, Associates G, Herda HH. Interpretation of fracture spacing and intensity.
Rock Mechanics. 1992;757–66.

77. Dershowitz, W. S ; Einstein HH. Characterizing rock joint geometry with joint system models.
Rock Mechanics and Rock Engineering 21. 1988;(1):21–51.

78. Mauldon M. Intersection probabilities of impersistent joints. International Journal of Rock
Mechanics and Mining Sciences and. 1994;31(2):107–15.

79. Ebigbo A, Lang PS, Paluszny A, Zimmerman RW. Inclusion-Based Effective Medium Models for
the Permeability of a 3D Fractured Rock Mass. Transport in Porous Media. 2016;113(1):137–
58.

80. Nixon CW, Sanderson DJ, Bull JM. Analysis of a strike-slip fault network using high resolution
multibeam bathymetry, offshore NW Devon U.K. Tectonophysics [Internet]. 2012;541–
543:69–80. Available from: http://dx.doi.org/10.1016/j.tecto.2012.03.021

81. Einstein HH, Locsin J-LZ. Modeling Rock Fracture Intersections and Application to the Boston
Area. Journal of Geotechnical and Geoenvironmental Engineering. 2012;138(11):1415–21.

82. Adler TM, Thovert J-F, Mourzenko VV. Percolation of three-dimensional fracture networks
with power-law size distribution. Physical Review E - Statistical, Nonlinear, and Soft Matter
Physics. 2005;72(3):1–14.

83. Huseby O, Thovert J-F, Adler PM. Geometry and topology of fracture systems. Journal of
Physics A: Mathematical and General. 1997;3–11.

31

84. Dietrich S, Amnon A. Introduction To Percolation Theory. Revised Se. CRC press; 1994. 192 p.

85. Pierre M, Adler J-FT, Mourzenko VV. Frcatured Porous Media. Oxford: Oxford University
Press; 2013. 175 p.

86. Thovert JF, Mourzenko V V., Adler PM. Percolation in three-dimensional fracture networks for
arbitrary size and shape distributions. Physical Review E. 2017;95(4):1–14.

87. Alghalandis YF, Xu C, Dowd PA. A general framework for fracture intersection analysis:
algorithms and practical applications. Australian Geothermal Energy Conference 2011. 2011;

88. Straub SC and Ben. Git [Internet]. 2019 [cited 2019 Aug 28]. Available from: https://git-
scm.com/

89. Tutorialspoint. V-Model (software development) [Internet]. 2019 [cited 2019 Aug 26].
Available from: https://www.tutorialspoint.com/sdlc/sdlc_v_model.htm

90. Oxagile. Waterfall Software Development Model [Internet]. 2014 [cited 2018 Aug 26].
Available from: https://www.oxagile.com/article/the-waterfall-model/

91. Luiz F. Martha, Paul A. Wawrzynek ARI. Arbitrary crack representation using solid modeling.
Engineering with Computers. 1993;9(2):63–82.

92. Paluszny A, Zimmerman RW. Numerical fracture growth modeling using smooth surface
geometric deformation. Engineering Fracture Mechanics [Internet]. 2013;108:19–36.
Available from: http://dx.doi.org/10.1016/j.engfracmech.2013.04.012

93. Digicams S. Understanding NURBS in Computer Graphics [Internet]. 2019 [cited 2019 Aug 28].
Available from: http://www.steves-digicams.com/knowledge-center/how-tos/video-
software/understanding-nurbs-in-computer-graphics.html#b

94. Vision R. Advantages of using NURBS in organic modeling and reverse engineering [Internet].
2019 [cited 2019 Aug 28]. Available from:
https://rangevision.com/en/application/examples/revers-inzhiniring-i-kontrol-
geometrii/advantages-of-using-nurbs-in-organic-modeling-and-reverse-engineering/

95. McNeel Wiki. NURBS surfaces [Internet]. 2019 [cited 2019 Aug 28]. Available from:
https://wiki.mcneel.com/rhino/nurbs

96. Microsoft. GUID [Internet]. 2006 [cited 2019 Aug 28]. Available from:
https://docs.microsoft.com/en-us/previous-versions/aa373931(v=vs.80)

97. Lang PS, Paluszny A, Zimmerman RW. Permeability tensor of three-dimensional fractured
porous rock and a comparison to trace map predictions. Journal of Geophysical Research:
Solid Earth. 2014;6288–307.

98. Adler PM. Porous media geometry and transports. Boston, USA: Butterworth-Heinemann;
1992. p. 551.

99. Mourzenko V V., Thovert JF, Adler PM. Percolation and permeability of fracture networks in
excavated damaged zones. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics.
2012;86(2):1–13.

100. Sisavath S, Mourzenko V, Genthon P, Thovert J-F, Adler PM. Geometry, percolation and
transport properties of fracture networks derived from line data. Geophysical Journal.
1965;157(2):917–34.

101. Travis CI. Core Concepts for Beginners [Internet]. 2019. p. August 27 2019. Available from:

32

https://docs.travis-ci.com/user/for-beginners/

33

Appendices

Appendix 1

Colour map visualisation of intersection matrix for circular, elliptical and square fracture networks

respectively.

(a)

(b)

34

(b)

(c)

35

Appendix 2

Plots of the number of intersections per fracture for circular, elliptical and square fracture networks

respectively.

(a)

36

(b)

37

(c)

Appendix 3

Examples of 2D cut-planes in YZ direction for 50 and 500 fractures respectively.

50 fractures

 500 fractures

