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Abstract

Discrete Fracture Network (DFN) modelling and simulation is an active area of research in earth science due to the inability to

observe detailed 3D structure of the subsurface fracture network. There are few software packages available for DFN modelling

and simulation. However, they are mostly complex to use, commercial, and closed sourced. Thereby, precluding any form of

adaptability by researchers to functionalities not included in these packages. This work introduces an easy to use, open source

library, Y-Frac, for DFN modelling and analysis. Y-Frac is built upon the python APIs available on Rhinoceros 6. Hence,

Y-Frac is fit for use on Rhinoceros software package. Y-Frac can model fracture networks containing circular, elliptical and

regular polygonal fractures. This library is computationally cheap for DFN modelling and analysis. Some of the functionalities

of this library for DFN analysis include fracture intersection analysis, cut-plane analysis, and percolation analysis. Algorithms

for constructing an intersection matrix and determining percolation state of a fracture network are also included in this work.

The output text file from this library containing modelled fracture networks’ parameters can serve as input for appropriate

software packages to simulate flow and perform mechanical analysis in fracture networks. The practical applicability of Y-Frac

was demonstrated by performing percolation threshold analysis of 3D fracture networks and comparing the results to published

data.
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ABSTRACT 

Discrete Fracture Network (DFN) modelling and simulation is an active area of research in earth 

science due to the inability to observe detailed 3D structure of the subsurface fracture network. There 

are few software packages available for DFN modelling and simulation. However, they are mostly 

complex to use, commercial, and closed sourced. Thereby, precluding any form of adaptability by 

researchers to functionalities not included in these packages. This work introduces an easy to use, 

open source library, Y-Frac, for DFN modelling and analysis. Y-Frac is built upon the python APIs 

available on Rhinoceros 6. Hence, Y-Frac is fit for use on Rhinoceros software package. Y-Frac can 

model fracture networks containing circular, elliptical and regular polygonal fractures. This library is 

computationally cheap for DFN modelling and analysis. Some of the functionalities of this library for 

DFN analysis include fracture intersection analysis, cut-plane analysis, and percolation analysis. 

Algorithms for constructing an intersection matrix and determining percolation state of a fracture 

network are also included in this work. The output text file from this library containing modelled 

fracture networks’ parameters can serve as input for appropriate software packages to simulate flow 

and perform mechanical analysis in fracture networks. The practical applicability of Y-Frac was 

demonstrated by performing percolation threshold analysis of 3D fracture networks and comparing 

the results to published data.  

Keywords: Discrete Fracture Networks, Python, Rhinoceros, DFN modelling, Percolation threshold, 

Y-Frac. 
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1.0 Introduction 

Generally, fractures represent a space between planes [1] and are ubiquitous in many natural, 

engineered and biological materials. This discontinuity may be because of mechanical failure, from 

tectonic events [2] or human factors such as hydraulic fracturing, tunnel evacuation [3] or chemical 

processes, e.g. weathering [4]. The term therefore includes faults, joints, fissures, cleavages and even 

discontinuities between mineral particles [5].  A fracture can be on a scale of a few microns (e.g. 

microcracks) to several kilometres (e.g. faults). Fractures are essential in science and engineering as 

they play a significant role in material strength, rock block stability, and in creating pathways for fluid 

flow [6,7]. Fractures are of great research interest in various fields of studies, not limited to, 

geotechnical applications, reservoir engineering, waste disposal, mining engineering, and earthquake 

studies [8].  

A fracture network is a system of fractures developed within the same rock volume. A network may 

involve several distinct fracture sets, which may or may not intersect [9]. These sets generally evolve 

and vary in their spatial distribution [10]. Fracture network modelling and simulation is an active area 

of research which has received much attention in the last decade, primarily due to the challenge of 

directly observing the detailed 3D structure of fracture networks deep in the crust [11]. Fractures are 

complex objects in terms of their geometry and topology, and they occur at all scales, which make 

their modelling and simulation an exciting area of research. Increased computing software and 

hardware capabilities have contributed to the rapid growth in the modelling of fractured rock [12]. 

Direct observations of fracture networks are relatively scarce and are limited to surface outcrops (2D), 

tunnel wall (2D), and core drilling (1D) [13,14]. Although seismological surveys may be able to locate 

3D large-scale structures, current technology can hardly detect widespread medium and small 

fractures due to resolution limits [11].  

Lei et al. [11] defined a Discrete Fracture Network (DFN) as “a computational model that explicitly 

represents the geometrical properties of each fracture (e.g. size, orientation, position, shape and 

aperture), and the topological relationships between individual fractures and fracture sets”, as 

opposed to continuum modelling which models the entire system as one domain [14,15]. DFN models 

provide an effective method for simulating and studying features of fractured rock [16]. There are few 

commercial and non-commercial software capable of DFN modelling. However, they are often; 

expensive (e.g. MVE [17], NAPSAC [18], FracMan [19], MoFrac [20]), designed for specific tasks, have 

limited or no functionality for extensive research in the academia by being closed source, and complex 

to use [21,22]. 

This work presents a python-based open-source library, Y-Frac, library for simulation and analysis of 

three-dimensional stochastic discrete fracture networks, utilising the Rhinoceros 3D commercial CAD 

(Computer-Aided Design) application. Rhinoceros CAD software is an industry-standard tool, which 

offers a user-friendly and cost-effective platform for handling and manipulating 3D geometries. Y-Frac 

adds some functionalities, pertinent to geoscience and engineering, to Rhinoceros software. Y-Frac 

expands on the python API provided by Rhinoceros to put forward a state-of-the-art python library 

for DFN generation and analysis. Additionally, with the availability of various output file formats on 

Rhinoceros software, results from this library can be exported for use on a variety of software 

applications. Y-Frac consists of methods for DFN generation, regeneration, analysis/characterisation 

and postprocessing. Y-Frac provides an efficient tool for studying the science of fracture networks. 



3 
 

Based on fracture data retrieved from rock samples by geoscientists and engineers, this free and non-

sophisticated tool can be used to generate a synthetic rock mass (SRM) model. This fracture model 

can thus be analysed for fracture intensity, cut-plane features, network connectivity, and percolation 

state using Y-Frac.  

The main contributions of this work include provision of: a computationally cheap object-oriented 

Rhinoceros’ python script library for Discrete Fracture Networks generation, a platform to generate 

fracture networks of different shapes (disks, ellipses and polygons) and sizes, fracture network analysis 

via Rhinoceros and postprocessing on python IDEs for visualisations, a method for re-generating 

fracture networks from a text file containing fracture properties of pre-generated fracture networks, 

an innovative technique for fracture network intersection analysis and determination of percolation 

state. 

This work is divided into sections. Section 2 gives a brief review of DFN’s history and some important 

recent work on the subject matter. It further summarises some existing DFN simulation tools, their 

functionalities and shortcomings. A short discussion on fracture network analysis and background of 

Rhinoceros 6 are also contained in this section. Section 3 introduces the architecture and discusses 

the structure of Y-Frac. The section also contains an explanation of the software development strategy 

employed in this project. It further describes some of the essential functionalities (with example 

codes) of Y-Frac and provides algorithms of some Y-Frac’s essential methods. In section 4, the usage 

of Y-Frac was demonstrated. Furthermore, analysis of its computational cost and percolation 

threshold was presented. Lastly, section 5 presents the conclusion of this study and future work to 

improve the applications of Y-Frac.  

 

 

2.0  Review on Discrete Fracture Network  

Various modelling approaches have been employed to represent fractured rock. Xing & Sanderson 

[23] categorised these approaches into discrete and continuous models. The primary assumption of 

continuum-based methods is that the computational domain is treated as a single body [24], as 

opposed to discrete methods in which each fracture is characterised within a structural domain [25]. 

However, hybrid models exist which involve the combination of these methods [16].  

Stochastic DFN studies began in the 1980s to investigate two essential topics: percolation theory and 

hydrogeology [16]. Long et al. [26] developed methods to determine if between fractured systems 

should be treated as an equivalent porous (continuum) medium or as a collection of the discrete 

fracture flow path. They extended their work to 3-D when they modelled the steady flow of fluid in 

disc-shaped random network fractures [27]. Endo et al. [28] and Endo [29] performed tracer 

experiments and suggested that not all fractures behave like equivalent porous media. They observed 

that fracture systems with continuous fractures have directionally dependent hydraulic effective 

porosity which negates the idea of an equivalent porous medium. Balberg et al. [30] used stochastic 

networks to study the dependence of the percolation threshold of the 3-D sticks systems on aspect 

ratio and macroscopic anisotropy. They employed the Monte Carlo technique to determine 

percolation thresholds for randomly placed sticks in a domain. Andersson & Dverstorp [31] 

investigated how to predict flow through a network of discrete fractures in 3-D space. This technique 

has continuously developed afterwards with many applications in civil, environmental and reservoir 

engineering and other geoscience fields. 
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A recent review on DFN by Lei et al. [11], grouped DFNs into three categories: 

Geological-mapped DFNs, which are generated using datasets observed from outcrops such as 

analogue mapping, borehole imaging, aerial photographs, and seismic surveys. This method ensures 

the preservation of geological realism and fair characterisation of complex topologies (e.g. 

intersection, spacing, clustering, truncation and hierarchy). However, it can be quite challenging to 

collect geological data, mainly due to limited access to the subsurface [32]. Besides, sampled 

geological data cannot be said to be fully representative, since observations are usually made from a 

locality of the rock mass [33]. Geological measurements are mostly in 2-D. Therefore, accuracy is lost 

when upscaling to 3-D. Although seismic measurements are in 3-D, they are limited in terms of 

resolution. 

Stochastic DFNs use statistical principles to create fracture datasets. Fracture properties used as 

variables include fracture lengths, orientations, locations and shapes. Advantages of this method 

include ease of generation as compared to geological mapping, the possibility of automation, efficient 

fracture generation, viability for both 2-D and 3-D, and applicability for various scales. However, the 

shortcomings of this technique involve oversimplification of fracture geometries and topologies, 

uncertainties in statistical parameters, and negligence of physical processes.  

Geo-mechanical DFNs incorporate fracture physics and fracture network evolution in simulating 

fracture datasets. This technique involves the use of rock and fractures mechanical properties and 

paleo-stress conditions as inputs. It links geometry with physical mechanisms and ensures the 

correlation between different fracture attributes. However, they require large amounts of 

computational resources, have difficulties in including hydrological, thermal and chemical processes 

into simulations and uncertainties in input properties. Nonetheless, modern DFN studies have 

continuously made use of fracture data collected from geological mapping to refine the input 

parameters required for stochastic DFNs [25], both as a standalone tool [14,34,35] or integrated 

within more complex geomechanical simulations [16,36,37], leveraging the strengths of the three 

techniques to create more realistic fracture datasets. 

 

2.1    Existing DFN tools. 

There are many DFN simulation tools, both as standalone commercial software programmes and 

closed source in-house computer codes. Notable standalone DFN commercial software include 

Midland Valley Exploration, NAPSAC, FracMan, and MoFrac;  

Midland Valley Exploration (MVE) fracture modelling tool uses geometrical properties such as stress 

and strain values and statistical properties such as curvature as proxies for intensity and orientation 

for DFN generation. It allows for multiple direct inputs of filed data to constrain the production of 

DFNs. This tool is applicable to fracture networks characterisation and provides direct output on a 

geocellular model, which shows the current state of the subsurface in 3-D by representing a complex 

geological reservoir with millions of cells [17].  

NAPSAC generates fracture networks stochastically, ensuring fracture properties have the same 

statistical attributes as those of the geologically mapped field data. It employs the finite element 

method to simulate fluid flow in fracture networks. Users can validate model predictions against data 

from hydro-geological experiments (e.g. well tests). Its applications include effective permeability 

determination, porosity prediction, geometric and percolation analysis, transport and flow modelling. 

[38].  
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GOLDER’s FracMan software suite allows users to generate both randomly generated DFNs and DFNs 

guided by information from mapped structures. DFNs upscaling to an equivalent porous medium 

(continuum) model is possible, without losing previous details of DFNs. It is a versatile software suite 

used in various sectors including mining engineering (e.g. fragmentation assessment and 

hydrogeological evaluation), nuclear (e.g. groundwater and solute transport), oil and gas (e.g. fracture 

modelling and geomechanics simulation), and civil engineering (e.g. groundwater evaluation) [19].  

MoFrac computer software generates DFNs from user-defined fracture properties, including fracture 

intensity, orientation, truncation rules, size, shape and undulation. The generated models simulate 

realistic fracture representation by constraining the fracture lengths and intensities using cumulative 

length distribution (CLD) and cumulative area distribution (CAD) respectively. It ensures the input data 

is honoured during the stochastic process of fracture generation. Its applications are mainly in 

geomechanical and hydraulic flow modelling such as mine design, hydraulic fracturing, rock 

characterisation, blast optimisation, fracture mechanics, reservoir modelling and waste transport [20]. 

Summarily, these software packages are stand alone and not to be integrated.  By generating DFNs 

using CAD software, we can produce various output file formats which can be used in other software 

packages. This project also aims to make its DFN tool easy to use in terms of network generation and 

analysis. Users only need to define input parameters using a text file. Furthermore, being an open-

source code, there is room for its continuous development by the public and adaptation to suit 

different needs.  

Other hybrid, complex, industry and academic DFN simulation tools include SIDNUR, Flow123d, 

FracSim3D, ADFNE, DFNWorks, and ICGT. 

SIDNUR [21,39] generates different realisations of DFNs following the Monte Carlo process and solves 

for steady-state flow in each of these networks whose statistical properties are constrained by in-situ 

experiments. They adopted a non-conforming discretisation of the DFN to minimise the number of 

unknowns and ease mesh refinements. Fracture edges and domains are discretised in a staircase-like 

manner [39]. Additionally, the mortar method is used to handle fracture-fracture intersections. This 

method involves specifying one of the fractures as a master and the other a slave [40]. The resulting 

linear system is a semi-positive definite matrix containing millions of unknowns after a Dirichlet 

boundary condition is enforced. The Balanced Domain Decomposition [41] algorithm is applied to 

solve the linear system. This highly parallelised tool is distinguished by its method of discretisation of 

the fracture networks and solving of the linear system. However, it only simulated steady-state flow 

in fracture networks. 

Flow123d [42–47] combines continuum and DFN models to simulate water, solute and heat transport 

in fractured porous media. This software is distinct in that it supports numerical computations on 

complex meshes, which consists of elements of various dimensions. This enables Flow123d to 

combine both continuum and discrete fracture models. Additionally, unlike SIDNUR, it solves both 

steady and unsteady Darcy flow in fracture networks. It applies different solvers for specific problems. 

Heat transfer and solute transport problems in fracture networks are solved with finite volume 

method, discontinuous Galerkin method solves convective transport model, and mixed-hybrid 

formation of finite element method is applied to solve steady and unsteady Darcy flow in fracture 

networks. 

FracSim3D [48–52] uses marked point process, a technique which considers fracture properties as 

marks associated with stochastic points, to simulate 2D and 3D DFNs. Geometries and properties of 

fractures are modelled using probability distribution. Fracture locations are simulated using the Cox 
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process model, homogeneous Poisson point process, non-homogeneous Poisson point process, and 

cluster point process. Fracture orientation and size are determined by Monte-Carle simulation of their 

probability distribution. The probability distribution for fracture orientation includes uniform, 

wrapped normal, Von-Mises and Fisher’s, while those for fracture size are uniform, exponential and 

lognormal. Additionally, functionalities for cut-plane, rectangular window, scanline, and core 

samplings are available on this tool. It provides an output CSV file containing information about 

fracture networks for subsequent use in fracture network flow modelling.  

ADFNE [12] is a DFN tool capable of 2D and 3D simulation. It is written in Matlab and contains various 

functions for fracture generation and characterisations. Fraction locations are simulated using uniform 

or Poisson’s distribution, fracture lengths are modelled by a negative exponential distribution, and 

orientations are determined by Fisher’s distribution. This tool can be used for fracture 

characterisations (e.g., clustering, intersection and connectivity analyses), fluid flow applications 

(using Finite Difference Method) and geometric modelling (e.g., complex polygonal fracture faces). 

However, this tool does not provide functionality for determining percolation state of fracture 

networks and fracture intensity.  

DfnWorks [22] is a parallelised 3D DFN tool kit which uses the Finite Volume Method to solve flow 

equations for transport simulation. It requires several additional packages like PETSC libraries, 

Mathematica, PFLOTRAN and LaGrit. DfnWorks consists of three main packages; DFNGEN, DFNFLOW 

and DFNTRANS.  DFNGEN creates the fracture network from observed data and does the Delaunay 

triangulation of the medium using LaGrit. PFLOTRAN calculates steady-state pressure in the fractured 

medium after the mesh output from DFNFLOW has been converted to an appropriate input in 

DFNFLOW. Lastly, DFNTRANS reconstructs the Darcy flow rate from DFNFLOW to track particles in the 

fractured medium, while the Lagrangian approach introduced by Painter et al. [53] to determines 

pathlines through the network and simulates transport.   

ICGT [54–61] is a 3D DFN simulator based on the Finite Element Method. It grows discrete fractures 

from initial flaws and takes the geomechanical properties of fractures into consideration to ensure 

fracture growth and interactions are realistic. It is integrated with CSMP++, an object-oriented finite 

element-based library for automatic meshing. Fracture geometries are represented by NURBS 

surfaces, which ensures geometries are kept distinct from meshes. The workflow of this tool 

summarily involves defining and updating fracture geometry by resolving thermo-hydro-mechanical 

and flow models until fracture growths are no longer perceived. Fracture growth is benchmarked by 

input failure and propagation. During this process, conditions in the fractured medium such as thermo-

poroelastic deformation, contact stresses, fracture tip growth and stress intensity factor, local 

aperture, and permeability, are calculated continuously and updated.   

Except for ADFNE, which employs a simple finite difference method to solve for fluid flow, all other 

tools depend on involved mathematical formulations to simulate fluid flow in fractured networks, 

which makes them complex to use and understand their backends. These codes are closed source, 

except DfnWorks and ADFNE, preventing any form of development and adaptation by other 

researchers.  

 

2.2 Rhinoceros and CAD Softwares 

Groover and Zimmers [62] defined Computer-Aided Design (CAD) as a form of technology which 

creates, modifies, analyses, and optimises a design on a computer system. CAD software packages 

have been in use since the early 1970s [63]. Examples of modern CAD software packages include; 
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AutoCAD [64], SolidWorks, CATIA [65], Inventor [66], Pro/ENGINEER [67], Rhinoceros [68] and 3ds Max 

[69]. CAD software packages are the backbone of modern engineering designs, due to benefits such 

as automation of repeated tasks, tracking of previous design realisations, making changes without 

reproducing an entire drawing, and high-quality rendering [70]. 

Rhinoceros is a 3D computer graphics and CAD software package developed by Robert McNeel and 

Associates [71]. It is primarily a surface modelling tool, based on NURBS (Non-Uniform Rational B-

splines) [68]. NURBS are mathematical representations for modelling geometry ranging from simple 

lines to a complex 3D surface or solid [72]. The primary geometry objects in Rhinoceros used in this 

are points, curves, surfaces, and poly-surfaces [73].  Professionals in aerospace, marine, automobile, 

sport and medical industries make use of Rhinoceros for standard designs [73]. In this work, we chose 

Rhinoceros because it allows the user to write python scripts and includes a Python API to facilitate 

this. Rhinoceros is well documented and actively developed, fast, relatively cheap to procure, and 

available for student’s download on a free trial [74,75].  

 
Figure 1. Rhinoceros 6 user interface 
 

Figure 1 depicts the Rhinoceros 6 user interface. Label (1) indicates the menu which groups 

Rhinoceros’ commands by function. Label (2) specifies the command history window which displays 

previous commands and prompts, and it also shows the print statements of Rhinoceros python script. 

Label (3) designates the command prompt, which displays prompts for current command actions. 

Label (4) points at the toolbars containing graphical icon buttons for starting commands. Label (5) 

indicates the viewports displaying the Rhino working environment. The panels containing layers, 

properties and settings are indicated by label (6) [68]. Fracture networks created on Y-Frac are 

displayed on the Rhinoceros interface. The perspective view mode displays the networks in 3-D. 

Rhinoceros python script is run by clicking the Tools tab, then PythonScript tab, and lastly the Edit tab, 

where Y-Frac’s functionalities can be used. 
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2.3 Fracture Network Analyses 

 

There are various measures employed to characterise and analyse fracture networks. One of such 

methods used in DFN studies to describe fracture abundance,  which can be quantified in several ways, 

including fracture frequency [76,77], fracture density [78] and fracture intensity [77]. Fracture 

frequency refers to the number of fractures normalised by the line length [1D, L-1], sample area [2D, 

L-2] or domain volume [3D, L-3]. Fracture intensity originally referred to the total trace length per unit 

area with dimensions [L-1] but has been extended to 1- and 3-dimensions with same units [L-1] [9]. 

Fracture intensity includes fracture size in its calculation, and it is more common in DFN studies [16]. 

However, these three terms have been used interchangeably in the literature [79,80]. Dershowitz and 

Herda [76] formally introduced the Pxy system to describe these features, where x refers to the feature 

dimension, and y depicts the sampling region dimension. Figure 2 summarises these features. 

 
Figure 2: Pxy system for fracture intensity, frequency and density definitions (Adapted from Sanderson 

and Nixon [9]).  

 

Fracture connectivity is essential in studying the flow behaviour and stability of a rock mass [81]. 

Fracture connectivity can be described as a measure of the extent to which the fractures in a network 

are interconnected, or, in terms of the percolation concept- a threshold below which the system is not 

connected and above which it is connected [9]. The percolation threshold of a system correlates with 

its permeability and thus defines the transport properties of the system [82]. Domain connectivity is 

of great importance in DFN applications such as oil and gas recovery and waste disposal. Various 

studies [30,82–84] have been carried out to discuss percolation theory and percolation threshold in 

2D and 3D systems. Dimensionless parameters are involved in defining connectivity because 

connectivity is scale-independent. Therefore, measures such as fracture intensity [L-1] are unsuitable 

for determining fracture connectivity [9]. Balberg et al. [30] introduced the concept of “excluded 

volume” for determining the percolation threshold of fracture networks. They defined the excluded 

volume of a fracture as “the volume surrounding it, in which the centre of another object must be 
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found for the two objects to intersect”. This concept underscores the scale independence of the 

percolation threshold. The dimensionless density is 

𝜌′ =  𝜌𝑉𝑒𝑥                                                                          [1.0] 

Where 𝜌 is the fracture density and 𝑉𝑒𝑥 is the excluded volume [85]. For two dimensional convex 

objects F1 and F2 with Areas A1 and A2 and perimeters P1 and P2 which are randomly oriented, their 

excluded volume is   

𝑉𝑒𝑥 =  
1

4
(𝐴1𝑃1 + 𝐴2𝑃2)                                                   [2.0] 

If they are identical, this formula reduces to 

𝑉𝑒𝑥 =  
1

2
𝐴𝑃                                                                          [3.0] 

Fracture intersections create pathways in a network. Increased number of intersections in a network 

inmproves the chances for the network to percolate [86]. Various measures reported in literature such 

as intersection per unit length, lengths of intersections per unit of surface area [9], connectivity index 

[49], and intersection density [87] all rely on fracture intersection analysis.  

 

Cut-planes provides the opportunity to visualise the internal geometry of a 3D fracture network in 2D. 

Inference about the hydraulic properties of fracture networks and intersection observations are 

possible through cut-plane analysis [16]. Studying the cut-planes is also a useful way to decipher if the 

fracture percolates or not. See appendix 3 for examples of fracture network cut planes. 

 

 

 

3.0 Software Development Strategy and Features 

 

This library consists of various independent methods. The library was developed from scratch 
leveraging on Rhinoceros 6 python API and is not an extension of pre-existing code. Rhinoceros APIs 
give access to python functions stored in Rhinoceros.  Hence, this work currently serves as the state-
of-the-art in the realm of DFN generation and analysis on CAD software environments.  
 
In building this library, git [88] was used as a version control tool for efficient code merging, tracking 
and integration, while this library is being released and monitored via GitHub. Git and GitHub were 
adopted for this project because they are open-sourced, easy to use and manage, ability to push and 
pull from the GitHub repository without connecting to the internet, strong community support due to 
their popularity, and the availability of git’s built-in support in every major IDE.  
 
The development of this library follows the V-Model[89] method of software development, a variant 
of Waterfall methodology [90]. This method is also known as the verification and validation model. 
This method is a sequential development approach in which the following phases are followed 
sequentially: software requirement analysis and specification, software architecture design, module 
design, coding, deployment and maintenance. This methodology was preferred for various reasons. It 
involves testing after each development phase, it makes the project more natural to understand and 
manage, the project plan and schedule was made easy to follow. For example, the methods to 
generate fractures needed to be tested and confirmed functional before writing modules for fracture 
analysis such as P21, P32, intersection analysis. Modifications were made to previous phases when there 
was a need, but testing was always done to confirm the functionality of each method. A module, as 
used here, refers to a python file containing classes, methods and functions. 
 
The library built for DFN generation and analysis through this research was based on modular 
programming. This coding style was employed to make this library as compact as possible, 
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maintainable and simple to use. Each module contains functions, classes or both. The basic modules 
could further be categorised based on their roles, namely; DFN generation, DFN analysis, DFN 
regeneration, DFN postprocessing, and DFN input. Tables 1, 2 and 3 show the architectural design of 
this library, containing the modules and the function and classes they contained.  
 

Modules and Methods for Discrete Fracture Generation 

DFN_Gen Domain Frac 

+ GeneratePoint() 
+ FractureSize() 
+PolyOrientation() 
+InclinePlane() 
+FixedFractureGen() 
+RandomFractureGen() 
+SeparatedFractureGen() 

+_init_() 
+Show() 
+NumberOfFractures() 
+CreateBoundary() 
+GetSurfaceFromFractureLayer() 
+ConvertPolySurfaceToSurface() 
+CreateSetOfExtensionBounsaries() 
+RemoveSurfacesIfAnyIntersectBoundary() 
+RemoveSurfacesOutsideOfBox() 

Frac.Fracture 
+Intersect() 

+OldFracturesGuid() 
+NewFracturesGuid() 

Table 1: Architecture for fracture network generation 
 

Modules and Methods for Fracture Network Analysis 

Domain DFN_Analysis Matrix 

Domain.Domain 
+_init_() 
+IntersectionMatrix() 
+Percolate() 

DFN_Analysis.IntersectionAnalysis 
+LengthOfIntersection() 
+FractureSurfaceArea() 
+FractureIntensity_P32() 
+IntersectionsPerUnitArea() 

Matrix.Matrix 
+_init_() 
+PrintMatrix() 
+MatrixToFile() 
+ConvertObjectToIndex() 

DFN_Analysis.CutPlane 
+_init_() 
+DrawPlane() 
+TotalLengthOfFractures() 
+NumberOfIntersectingFractures() 
+FractureIntensity_P21() 
+PlaneLines() 
+IntersectionMatrix() 
+Percolate() 

+IntersectionsPerFracture() 

Table 2: Architecture for fracture network analysis 
 

Modules for Fracture Network Regeneration and Post-processing 

DFN_ReGen 
+RedrawNetwork() 

DFN_PostProcessing 
+IntersectionMatrixColorMap() 
+IntersectionHistogram() 
+IntersectionsPerFracturePlot() 

Modules for DFN Input 

Input 
+ReadFile() 

StatInput 
+ReadFile 

Table 3: Architecture for DFN regeneration, postprocessing and input 
 

 

3.1 Y-Frac Fracture Network Representation and Generation 
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Fracture Networks created by Y-Frac are stored as NURBS surfaces on Rhinoceros 6 interface. NURBS 

representation of fractures has been used in various works on fracture studies, suggesting its 

acceptance in geoscience [91,92]. NURBs surfaces are precise, quick to generate, smooth without 

sharp edges, and can be moved between various modelling, rendering, and animation programs 

[93,94]. They also require less parameters to generate them and their memory consumption is 

independent of resolution [92,95]. Individual fractures are stored as Globally Unique Identifiers 

(GUIDs) in python. GUIDs are identifiers of an object on the Rhinoceros interface. A GUID is a 128-bit 

value, represented by a string of 32 alphanumeric characters separated by hyphens in the form 8-4-4-

4-12 [96]. GUIDs are beneficial in representing Rhinoceros objects because they are guaranteed to be 

unique every time they are generated. All fractures and in the network have separate layers and 

names displayed under the layers tab on the panels, labelled “6” in figure 1. Rhinoceros layers enable 

a user to make changes to all objects on a layer at once and keep track of the objects. For example, 

the display colour of all objects on a layer can be changed at once. Layers in Rhinoceros are also used 

by python to store a set of surfaces together. The setup of the DFNs ensures single fracture or fracture 

sets can be studied distinctly through identification by their layers and GUIDs. 

 

Fracture networks are generated on Y-Frac by creating a domain and inserting a specified or random 

number of fractures. Domains are made by creating an instance of the Domain class. The class method 

Show() is then used to display the domain on Rhinoceros interface. Fractures are inserted into the 

created medium using any of these three functions in DFN_Gen module: FixedFracureGen(), 

RandomFractureGen(), and SeparatedFractureGen(). Fracture parameters such as shape and size are 

specified in a text file and read using the input modules to provide arguments for these functions. 

Statistical distributions are also specified in a text file and serve as global variables for the functions. 

Fracture shapes available on Y-Frac include circle, ellipse and regular polygons. The basic DFN 

modelling approach involves using statistical distribution to describe cardinal variables such as spatial 

location, intensity, orientation and size [25]. A uniform distribution is used for fracture orientation, 

location, intensity, and fracture sizes.  

 

Undoubtedly, some of the fractures in the network will extrude beyond the fractured medium. The 

domain class’ method RemoveSurfacesOutsideOfBox() trims the out of bounds fractures. This method 

utilises CreateBoundary(), GetSurfaceFromFractureLayer(), ConvertPloySurfaceToSurface(), 

CreateSetOfExtensionBoundaries(), and RemoveSurfacesIfAnyIntersectBoundaries(). 

 

The specific procedure taken by RemoveSurfacesOutsideOfBox() to trim extruding fractures is 

described in Algorithm 1. 

 

Algorithm 1. RemoveSurfacesOutsideOfBox(): Trimming out of bound fractures 

1: Create a fracture domain boundary and store its identifier. 

2: Get and store all fracture identifiers into list k. 

3: Initialise a list p to store all fractures’ identifiers post trimming.  

4: for all fractures in the list k: 
     check if the fracture intersects the boundary and split it. 
      append the identifier of the non-extruding part of the fracture in the list p. 
      If the fracture does not intersect the boundary: 
           append it to list p as well. 
      end if 
end for 

5: Delete all old fractures using identifiers in list k. 
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6: Display all new fractures using the identifiers in list p. 

 

 

3.2 Methods for Fracture Network Analysis 

 

The DFN_Analysis module holds most methods for fracture analysis and characterisation in the library 

developed. Its methods perform fracture analysis in both 3D on a DFN, and 2D on a cut-plane. The 

Class IntersectionAnalysis contains four methods for a 3D DFN analysis: LengthOfIntersection(), 

FracturesSurfaceArea(), FractureIntensity_P32(), and IntersectionsPerUnitArea(). The CutPlane class 

draws the cut-plane using the DrawPlane() method to produce a 2D plane in a 3D domain. 

TotalLengthOfFractures(), FractureIntensity_P21(). IntersectionMatrix(), and Percolate() are other 

methods contained in the CutPlane class. 

 

The Domain module also does fracture analysis with the functions. Its IntersectionMatrix() and 

Percolate() functions perform same roles as those of cut-plane, however in 3D for this case. The Matrix 

module is an auxiliary module containing the Matrix class which stores the matrix created by the 

intersection matrix function and its properties. It has three methods: PrintMatrix(), MatrixToFile() and 

ConvertObjectToIndex(). 

 

IntersectionMatrix() creates a square matrix of fracture-fracture and fracture-boundary intersections 

for a fracture network and Percolate() uses the matrix created to determine if the domain percolates 

or not. These two methods are pivotal features of Y-Frac and contribute the most to the computational 

cost of fracture analysis using this software. The description of Percolate() and IntersectionMatrix() 

are contained in Algorithm 2 and 3 respectively.  

 

Algorithm 2.  Percolate(): Determine if two opposite boundary percolates 

1: Create an object list containing all fractures and boundaries identifiers. 

2: Create a list of all other boundaries other than the two we want to check percolation for. 

3: Get the index of the 1st boundary in the boundary list and its row number in the matrix 

4: Get the index of the 2nd boundary in the boundary list and its row number in the matrix 

5: Check if all the elements of both the 1st and 2nd boundaries rows are zero 
     If this check is True: 
          return False (No percolation) 
     end if 

6: Initialise an index list with the 1st boundary’s index, to store matrix indices as we check for 
percolation. 

7: Initialise a list, say track_list, with the 1st boundary’s identifier, to store fracture identifiers 
and possibly the 2nd boundary’s identifier as we check for percolation. 

8: Set a variable, say k, to zero. It moves through the columns of the matrix. 

9: Set a variable, say old_length, with the length of track_list. It keeps track of the length of the 
list in 7, after each phase. 

10: Set a variable, say l, to zero. It is updated after each phase. 

11: While True: 
     for every column of the intersection matrix: 
         if any column of the boundary is greater than 0, and the corresponding boundary’s or  
         fracture’s identifier is not already in the lists created in 7 and 2 above. 
              append the fracture’s identifier in the list created in 7 and its index in the index list 
         end if 
     end for  
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     if l is equal to k (that is, all rows of “old_length” number of fractures have been visited) 
          check the number of fractures added 
          if no fracture or boundary 2 was not added: 
               return False (No percolation) 
          end if 
          increment l and old_length by the number of fractures added 
     end if 
     if the second boundary’s identifier is in track_list created in 7 above: 
          return True (There is percolation) 
     end if 
     increment k by 1 

 

 

3.3  Discrete Fracture Network Library functionalities 

  

The core functionalities of this library are demonstrated in this section. The following examples 

illustrate some of the usages of this library for fracture generation, analysis and characterisation. The 

lines of code demonstrating the functionalities of Y-Frac in figures 3 to 8 are continuous but broken 

into snippets. We start by generating a fixed number of disc-shaped fractures in a domain. 

 

 
Figure 3: code snippet providing an example script which creates a fracture network 

 

The code snippet starts by importing the required modules. We disabled redraw to prevent the 

drawing of objects on Rhinoceros interface while Rhinoceros is computing because drawing while 

computing adds to the computational cost of the python script. The fracture network data required 

are read in using the Input module, accessed through ReadFile(). An instance of the Domain class was 

created and named “dom”. The domain was drawn on the Rhinoceros interface by Show(). Finally, we 

inserted a specified number of disc-shaped fractures into the domain through the FixedFractureGen() 

function. The other arguments of the function are not needed for adding disc fractures. The fracture 

shape was specified as “circle” in the text file “DataFile”. Fracture size, domain length, the number of 
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fractures and fracture shape are specified in DataFile.txt.  It is noteworthy that here the fractures were 

not trimmed, and it is possible of fractures may extrude the boundaries of the domain.  

 
Figure 4: Code snippet showing Y-Frac’s functionality to trim out of bound fractures 

 

A further illustration of the library’s functionality for fracture generation is shown in Figure 4. The next 

step after generating the fractures is to trim the extruding ones, performed by 

RemoveSurfaceOutsideBox(). New fracture objects, of which none goes outside the domain 

boundaries, are generated during trimming at the location of old fractures. Therefore, there is a need 

to delete the previous fractures and replace the GUIDs of our fracture objects in the Fracture class 

with the new GUIDs. This process is carried out by the Frac.NewFracuturesGuids() method. Figure 4 

also shows how the total number of fractures generated can be printed to the console, which is very 

useful in the case of random fractures generation. It is also possible to check if a fracture intersects 

another using the Intersect() method. 

 

3D intersection analysis can be done after generating the fracture network. Figure 5 shows a set of 

possible 3D analysis for a fracture network using this library. 

 
Figure 5: Code snippet showing 3D analysis of fracture network using Y-Frac. 
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The process starts by importing the DFN_Analysis module and then creating an instance of the 

IntersectionAnalysis class. The sum of intersection lengths in the network was determined with the 

LengthOfIntersection() method. The P32 fracture intensity is also found using the 

FractureIntensity_P32() method, and IntersectionsPerUnitArea() gives the total lengths of intersection 

per unit area of the domain. One of the current assumptions of this library is that the domain is a cube, 

which is the reason why its width, length and height have the same value. With our fracture network 

adequately set up, it can be determined if the system percolates or not, as shown in Figure 6.  

 
Figure 6: Code snippet demonstrating the percolation test using Y-Frac. 

 

The check for percolation of a fracture network is of great importance in earth sciences. It is an 

essential part of studies for unconventional oil recovery, radioactive and waste disposal, underground 

water hydrology and underground CO2 storage.   A percolation test is done by first creating a list of 

boundaries GUIDs, the six sides of the domain. The Domain class method IntersectionMatrix() creates 

a square intersection matrix, as explained previously. Of course, the domain sides do not intersect one 

another. Consequently, the intersection values will be zero. The Percolate() method returns a bool 

indicating if the domain percolates or not. The Intersection Matrix is an innovative tool for performing 

percolation analysis. It reduces the computational cost drastically if we are check percolation between 

two other opposite sides of the domain other than the ones used previously. The cost reduction is 

evident since we only must check through the matrix, rather than performing the intersection tests 

between all fracture domain’s sides once again. 

 

Even though the network is a 3D fracture model, Analysis can also be performed on a 2D cut-plane. 

An example of this is shown in Figure 7.  

 

An instance of the CutPlane class is created, specifying the direction of the plane, in this case, ‘YZ’, and 

the width and height of the plane. DrawPlane() draws the plane, inclined at the fixed angle. The plane 

is stored as a surface on Rhinoceros, and its GUID is stored in python.  The cut-plane is set up at this 

stage. Fracture analysis can then be carried out, with TotalLengthOfFractures() providing the total 

lengths of fracture intersecting the plane, NumberOfIntersectingFractures() returning the number of 

fractures that crossed the plane and FractureIntensity_P21() determines the P21 fracture intensity. 

Percolation analysis can be performed on the 2D cut-plane. 

 

Steps like the 3D case are carried out to determine the percolation state of the cut plane in Figure 8. 

The GUIDs of the fractures intersecting the plane must be found, which the CutPlane class object 

“intersecting_fractures” detects. PlaneLines() method returns a list of the plane boundary GUIDs. The 

intersection matrix is then created, and percolation state is determined by the method Percolate().  
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Another important ability of this library is to regenerate fracture networks. When a fracture is being 

generated, the library writes the necessary features required for fracture regeneration in a text file, 

which is used for fracture regeneration. This functionality is shown in Figure 9. 

 

The steps involve importing the appropriate module, DFN_ReGen, specifying the path where the text 

file is saved and regenerating the network using the RedrawNetwork() function. Information exported 

into fracture_data.txt by Y-Frac includes fracture orientation, size, domain size, plane coordinates, 

number of sides of fracture polygons, and coordinates of fracture polygons. Details in this text file can 

serve as input variables for appropriate software packages to simulate flow and perform mechanical 

analysis in fracture networks. 

 

Postprocessing is done outside the Rhinoceros environment because it does not support the 

matplotlib python library for visualisation. Therefore, the part of the script in Figure 10 after the 

dashed line must be run in a python IDE. The arguments are created by copying the results from the 

Rhinoceros console to the python IDE. 

 

 
Figure 7: Code snippet demonstrating cut-plane analysis with Y-Frac 

 

 
Figure 8: Code snippet demonstrating further cut-plane analysis with Y-Frac 
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Figure 9: Code snippet demonstrating fracture regeneration with Y-Frac 

 

 
Figure 10: Code snippet demonstrating fracture network postprocessing with Y-Frac 

 

It is necessary to import the postprocessing module for these tasks. Instances of modules imported 

earlier were used. The three functions, IntersectionHistogram(), IntersectionMatrixColorMap(), and 

IntersectionsPerFracturePlot() use their respective arguments to display their plots.  

 

 

 

4.0 DFN Library Case Study 

 

This section contains the results and analyses of case studies evaluated in this work. A 20m x 20m x 

20m domain was created, and 50 fractures of different shapes – disc, ellipse, polygon (square) – of 

size 4m were inserted. Figures 11-16 show the fracture network for these cases pre and post trimming 

of extruding fractures. 
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Fracture 
System 

Total length of 
intersections 

(m) 

Total length of 
intersections per 
unit area (m-1) 

Fracture Intensity (P32) 
(m-1) 

Percolation state 

Circular 370.888 0.0464 0.265 True 

Elliptical 126.397 0.0158 0.133 False 

Square 178.927 0.0224 0.173 False 

Table 4: 3D analysis results for fracture networks. 

 

 
Figure 11: Fracture Network containing 50 
circular fractures before trimming. 

 
Figure 12: Fracture Network containing 50 
circular fractures after trimming. 

 
Figure 13: Fracture Network containing 50 
elliptical fractures before trimming. 

 
Figure 14: Fracture Network containing 50 
elliptical fractures after trimming. 
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Figure 15: Fracture Network containing 50 
square fractures before trimming. 

 
Figure 16: Fracture Network containing 50 
square fractures after trimming. 

 

 

The fracture networks were generated with the DFN_Gen() module without trimming. They were then 

regenerated and trimmed using the DFN_ReGen() module. The circular fractures expectedly occupy 

most space in the domain, due to having the largest surface area, followed by the square fractures 

then the elliptical fractures being the least. Further analyses were carried out on these three fracture 

systems, using the fracture regeneration module along with relevant modules and methods. The 

fractures were regenerated to show the possibility of analysis on pre-generated fracture networks. 

The code snippets for these could be found in the implementation folder on this library’s GitHub page. 

The table below contains the 3D analyses conducted on these systems. 

 

Circular fracture system has the highest numerical values for all the parameters considered as 

contained in table 4, while the elliptical system has the least. This trend further confirms the role the 

fractures’ surface areas play on the lengths of intersection and fracture intensity. It is necessary to 

point out that only the circular fracture system percolates, specifically between top and bottom of the 

domain.  

 

The results from the cut-plane analysis done on these systems are summarised in Table 5.  
 

Fracture 
System 

Direction Total lengths of 
intersections 
between fractures 

Number of 
intersecting 
fractures 

Fracture Intensity 
(P21) 

(m-1) 

Percolation 
state 

Circular YZ 139.16 23 0.348 False 

XY 84.84 18 0.212 False 

ZX 97.53 16 0.244 False 

Elliptical YZ 63.43 18 0.159 False 

XY 38.75 10 0.097 False 

ZX 24.10 8 0.060 False 

Square YZ 46.19 12 0.115 False 

XY 63.41 16 0.159 False 

ZX 83.57 19 0.209 False 

Table 5: Cut-plane 2D analysis results for fracture networks. 
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All three directions were considered in the 2D analysis. A 20m x 20m cut-plane was introduced at the 

centre of the domain in the three directions.  Although this library permits for the inclination of planes 

in these directions, the cut planes for these analyses were not rotated. A critical look at the table 

above shows the trend in the 3D analysis is being followed in the cut-plane assessment of the systems. 

The circular network has the highest values for all the variables considered, and the elliptical system 

has the least. However, none of the cut-plane systems percolates. Lang et al. [97] studied the extent 

to which cut-planes percolate. They obtained a set of 75 cut-planes, each obtained in a random 

manner from 11 3D fracture network. They concluded that the dimensionless density 𝜌′ at which the 

3D networks percolate is linearly related to that of cut-planes by a multiple of 4. That is, 𝜌3𝐷
′ = 4𝜌2𝐷

′ . 

Therefore, at low fracture densities, percolation may occur in 3D networks but not in any of the 2D 

cut-planes. Similar analysis is possible with Y-Frac, as a scenario has been demonstrated with this 

example. 

 

Postprocessing of these fracture network characteristics was done. Postprocessing aids in visualisation 

of the characteristics of fracture networks and gives some insights on this network, which could be 

tedious with numerical values only. Figures 17(a), (b) and (c) present the postprocessing visualisations 

for these systems. 

 

 
(a) 

 

 
(b) 

  
(c) 

Figures 17(a), (b) & (c): Histograms of intersection lengths for circular, elliptical and square fracture 

systems respectively. 

 

The lengths of intersections for all the fracture networks ranges mostly between 0 – 3.5m. The disc 

radius used to generate the fractures in this system is 4m. The circular fracture system has the highest 
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length of fracture intersection, 7.5m, which is expected since its fractures have the largest surface 

area. It can also be deduced that the probability of fracture overlapping is negligible.  

 

The colour map plots in (see appendix 1) of the fracture networks' intersection matrix also confirm 

higher lengths of fracture-fracture intersection occur in the circular network. The boundaries have 

larger surface areas than the fractures, which leads to more significant surface-surface interaction; 

consequently, all networks have lengths of intersection >7m for fracture-boundary intersections. 

 

Plots of the number of intersections per fracture (see appendix 2) made known isolated fractures - 

that is, fractures which do not intersect any other fracture - in all networks.  

 

4.1 Computational Cost 

The computational cost to generate different fracture shapes was investigated. Ten realisations of 

fracture systems containing 100 to 500 fractures were performed, and the timings averaged to 

determine the computational cost of each system on the Rhinoceros 6 interface. These tests were 

performed on a laptop computer with 4 cores, 1.7GHz clock rate, and 8GB RAM. This computer 

specification represents a typical environment for using Y-Frac rather than a high-performance 

computing platform. Figure 18 shows the result of this study. 

 
Figure 18: computational cost to generate fracture networks of different shapes. 
 

The plot above indicates that the circular fractures cost least to generate, followed by the elliptical 

fractures. Additionally, it can be deduced that the higher the number of sides of the polygon, the 

greater the computational cost. The higher cost is due to the additional cost involved in generating 



22 
 

and connecting more points as the number of sides increases. The most populated fracture system 

studied contains 500 fractures. The highest computational cost is less than 1 second. Overall, this 

analysis has shown that it is very cheap to generate fracture networks using Y-Frac. Hence, users do 

not need to worry about computational cost when using this library.  

 

Another essential operation is the intersection analysis between fractures. The cost of preparing the 

intersection matrix for postprocessing and percolation analysis was also studied as shown in Figure 

19. This operation is expected to be costlier than fracture generation due to the number of 

intersection operations. Here, ten realisations were carried out for each number of fractures, and the 

timings were averaged.  

 
Figure 19: computational cost for preparing intersection matrix 
 

The highest computational cost, for a network of 500 fractures, is about 2.5 seconds. This cost is 

relatively cheap for an operation involving 125,000 intersection operations. As previously mentioned, 

the intersection matrix is an innovative and very cheap way of checking for percolation between more 

than one opposite boundary for a fracture system. It is cheaper than the traditional method of 

determining percolation by performing intersection tests when considering two opposite boundaries 

of a domain. 

 

 

4.2 Percolation Threshold Analysis 

 

Huseby et al. [83] performed studies to determine percolation analysis for regular polygons in a 3D 

domain. Convex, identical fractures were considered. They are also assumed to be isotropically 

oriented and uniformly distributed. The fracture medium was considered periodic as described by 

Alder [98]. The finite polygons were embedded in a disk whose centres were uniformly distributed. 
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They performed their simulation, with 500 realisations, on seven types of equally sized polygons 

including triangles, squares, hexagons, octagons, 20-gons, rectangles with aspect ratio of 2, and 

uniform sized distributed rectangles of aspect ratio of 2. They obtained a range for the percolation 

threshold, the fracture dimensionless density above which the fracture percolates, as   𝜌𝑐
′ = 2.26 ±

0.04. Basically, the percolation threshold is the value of the dimensionless density, 𝜌′, at which the 

percolation probability is 0.5. Percolation probability is the ratio of the number of fracture network 

realisations that percolate to the total number of realisations.  

 

Furthermore, Adler et al. [99] did a percolation study on simulated fracture networks in excavated 

damage zones and concluded that 𝜌𝑐
′  is in the range of 2.3 ± 0.1. Sisavath et al. [100] also conducted 

a study on percolation properties of fracture networks from line data and found  𝜌𝑐
′  to be 

approximately 2.254. 

 

This library was used to perform simulation for determining the percolation threshold. Various sets of 

250 realisations were done using a 20m x 20m x 20m fracture domain with a fracture disc size of 4m. 

The fractures were identical, uniformly distributed and oriented. Triangle, Square, hexagonal and 

octagonal shaped fractures were considered. The percolation threshold of range, 𝜌𝑐
′ = 2.205 ± 0.55 

was obtained. This result clearly is within the range of published result. This further demonstrates the 

applicability of this library for practical purposes. The summary of the results is contained in table 6. 

Figure 20 shows the plot of percolation probability against dimensionless density. 

 

Shape Triangle Square Hexagon Octagon 

Percolation threshold 2.32 2.26 2.37 2.37 

Table 6: summary of percolation analysis results 

 
Figure 20: Plot for the percolation threshold analysis. 
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4.3 Testing 

 

It was not feasible to do a continuous integration test, for instance, with Travis CI [101]. Travis CI is a 

continuous integration test service that runs tests on codes a user commits on GitHub. Various factors 

preclude this option. This work was based on Rhinoceros 6 python API. Hence, almost all the functions 

involve the use of Rhinoscryptsythax library, which is unknown to Travis and could not be imported. 

Also, being a library for geometrical modelling on Rhinoceros, most methods and functions return 

Rhinoceros GUIDs, which are unusual data type and are not recognised for pytest either. Additionally, 

the Rhinoceros python script environment does not allow for unit testing of functions. Even though 

results from various functions of this library are visibly seen on the Rhinoceros Interface, a python 

script that can be run on Rhinoceros, containing various code blocks which can be uncommented for 

testing essential functions and methods in this library has been provided on the GitHub page. 

 

Algorithm 3. IntersectionMatrix(boundary_list, domain_fractures): Creating intersection matrix 

1: Initialise the matrix as a list. 

2: Get the number of fractures in the domain from the domain fractures’ list. 

3: Calculate the number of rows and columns of the matrix. 

4: for each row of the matrix: 
     append an empty list to the previous matrix list. It then becomes a list of lists 
          for each column of the matrix: 
               append zero as the matrix element 
          end for  
end for 

5: for every fracture: 
     for every fracture: 
          if the fractures are not the same: 
               check for intersection 
                    if there is an intersection: 
                         set the element of symmetric matrix indices as the intersection length (for 3D) 
                         set the element of symmetric matrix indices as one (for 2D) 
                    end if 
           end if 
      end for 
end for 

6: for every fracture: 
     for every boundary: 
          check for intersection 
          if there is an intersection: 
               set the element of the symmetric matrix indices as the intersection length (for 3D) 
               set the element of symmetric matrix indices as one (for 2D) 
          end if 
     end for 
end for 
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5.0 Conclusion and Recommendation 

 

This work has put forward an open-source, easy to use library for Discrete Fracture Network 

generation, regeneration and analysis for use in Rhinoceros 6 CAD environment. The requirements for 

this library - both hardware and software – have been stated in the code metadata. Instructions on 

how to install and use this library are contained in ReadMe file on the library’s GitHub page. 

Rhinoceros was chosen for this work due to the opportunity to write python scripts exploiting 

Rhinoceros’ python API. It is also easy to learn and work with, and relatively cost-effective both 

computationally and economically.  

 

This library contains various modules (python file) for specific purposes. Modules were written for 

fracture input, fracture generation, fracture regeneration, fracture analysis and postprocessing. This 

library can generate fracture networks containing fractures of circular, elliptical and regular polygonal 

shapes. Fractures in this library are objects, with each knowing its name, GUID and location. The GUID 

are identifiers of objects which are stored in python and object’s surfaces are stored in Rhinoceros. 

Fixed, random and separated (by a threshold) fractures are possible to model with this library. Being 

a fracture simulation tool, statistical distributions were employed to generate basic fracture 

parameters. Fracture location, size, intensity and orientation all follow a uniform distribution. Both 3D 

and cut-plane (2D) analysis in all directions can be done on fracture networks using this library. 3D 

fracture analysis and characterisation functionalities in this library include; total lengths of fracture 

intersection, fracture intensity (P32), total intersection length per unit area and percolation state. Also, 

the number of intersecting fractures, total lengths of intersecting fractures, fracture intensity (P21) and 

percolation state can be calculated in 2D on cut-planes. A fast technique of determining percolation 

state was introduced in this work using the intersection matrix. Fracture Networks can be saved and 

loaded using a text file, which is automatically populated when either fixed or random fractures are 

generated. Information contained in the output text file can serve as input for appropriate software 

packages to simulate flow and perform mechanical analysis in fracture networks. The third section of 

this work contains several code snippets showing how to use some of these functionalities. 

 

The computation cost for fracture and intersection matrix generation was evaluated. The circular 

fractures cost the least to generate, and the polygonal fractures cost most. Furthermore, the higher 

the number of sides of a polygon, the higher its cost. Overall, it costs less than 200 milliseconds to 

generate 500 fractures of the shapes considered. The cost of intersection matrix generation studies 

shows that the most significant operation consisting of over 125,000 intersection operations costs 

about 2.5 seconds, which is quite fast. Therefore, this library is suitable for important and 

computationally intensive geoscience study such as percolation analysis.  

 

Y-Frac was demonstrated for practical usage to confirm the percolation threshold of regular polygons 

in an isotropic network. Lastly, it is expected that students and researchers in geoscience will use this 

tool for practical research, exploiting the current functionalities of Y-Frac for DFN generation and 

analysis.  

 

Suggested future work on this library includes determination of percolation in space as against 

boundaries, the inclusion of irregular polygons as fracture shapes, including more statistical 

distributions for fracture parameters, determination of percolation clusters, flexibility in domain 

shapes, permeability determination, integration of geomechanical properties for DFN simulation and 

fluid and heat flow in fracture networks. 
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Appendices 

Appendix 1 

Colour map visualisation of intersection matrix for circular, elliptical and square fracture networks 

respectively. 

 
(a) 

 
(b) 
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Appendix 2 

Plots of the number of intersections per fracture for circular, elliptical and square fracture networks 

respectively. 
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(c) 

 

Appendix 3 

Examples of 2D cut-planes in YZ direction for 50 and 500 fractures respectively. 

 
50 fractures 

 
        500 fractures 


