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several problems, including (i) too much training time, (ii) too “rich” cache data, and (iii) too “perfect” training environment.

To address these problems, a model-free RL training framework based on two Koopman emulators is provided and validated

through simulation with respect to an UDS in a city located in eastern China. This framework achieves shorter training time

and higher efficiency of data usage through the fast nonlinear emulation capability of Koopman emulators and the equalization

between the dimension of emulator’s observable and RL’s state. Also, certain randomness is provided in RL training process

through emulation. According to the results, compared with model-based RLs, this framework achieves a similar control effect

with a 20 to 23 times faster training process and 79.67 times higher efficiency of data usage. The uncertainty analysis shows that

slight perturbation which does not statistically change the control system in the training and testing process will not leverage

the control effect of both model-based and model-free RLs. Meanwhile, the performances of the Koopman emulators of UDS

are strongly related to their hyperparameters and the similarity between training data and test data.

Hosted file

essoar.10507734.1.docx available at https://authorea.com/users/547063/articles/602628-

flooding-and-overflow-mitigation-through-a-model-free-deep-reinforcement-learning-based-

on-koopman-emulators-of-urban-drainage-system

1

https://authorea.com/users/547063/articles/602628-flooding-and-overflow-mitigation-through-a-model-free-deep-reinforcement-learning-based-on-koopman-emulators-of-urban-drainage-system
https://authorea.com/users/547063/articles/602628-flooding-and-overflow-mitigation-through-a-model-free-deep-reinforcement-learning-based-on-koopman-emulators-of-urban-drainage-system
https://authorea.com/users/547063/articles/602628-flooding-and-overflow-mitigation-through-a-model-free-deep-reinforcement-learning-based-on-koopman-emulators-of-urban-drainage-system


Flooding and Overflow Mitigation through a Model-free Deep Reinforcement
Learning based on Koopman Emulators of Urban Drainage System

Wenchong Tian1, Zhenliang Liao1†, Zhiyu Zhang1, Hao Wu2, Kunlun Xin1.
1 College of Environmental Science and Engineering, Tongji University, 200092
Shanghai, China.
2 School of Mathematical Sciences, Tongji University, 200092 Shanghai, China.

†Corresponding author: Zhenliang Liao

Email address: 04150@tongji.edu.cn

Tel: +86 18701974804

Abstract

Deep reinforcement learning has been used to establish real-time control of urban
drainage system (UDS) for flooding mitigation in recent studies. However, only
model-based reinforcement learning was under consideration, which means that
a mathematical model of UDS is necessarily needed during RL’s training process.
Although this is a natural way to establish RL system, it causes several problems,
including (i) too much training time, (ii) too “rich” cache data, and (iii) too
“perfect” training environment. To address these problems, a model-free RL
training framework based on two Koopman emulators is provided and validated
through simulation with respect to an UDS in a city located in eastern China.
This framework achieves shorter training time and higher efficiency of data
usage through the fast nonlinear emulation capability of Koopman emulators
and the equalization between the dimension of emulator’s observable and RL’s
state. Also, certain randomness is provided in RL training process through
emulation. According to the results, compared with model-based RLs, this
framework achieves a similar control effect with a 20 to 23 times faster training
process and 79.67 times higher efficiency of data usage. The uncertainty analysis
shows that slight perturbation which does not statistically change the control
system in the training and testing process will not leverage the control effect
of both model-based and model-free RLs. Meanwhile, the performances of the
Koopman emulators of UDS are strongly related to their hyperparameters and
the similarity between training data and test data.

Key words: Overflow and Flooding, Deep Reinforcement learning, Model-free,
Koopman emulator, Fast model training.

1. Introduction

Flooding and overflow are inevitable problems of urban drainage system (UDS)
(Xie et al., 2017; Liao et al., 2019; Ochoa et al., 2019; Zhi et al., 2020; Qi et al.,
2021). A natural solution to reduce overflow and flooding is to enhance drainage
infrastructure through pipeline expanding (Yazdi, 2018) and low-impact devel-
opment (Batalini et al., 2021; Chan et al., 2018). But these methods might
be financially and practically unfeasible in many places (Lund et al., 2020).
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Recently, solutions in the context of smart city and urban water management
received more attention. One of them is real time control, which uses system
observations, numerical modelling, and control strategies in coordination to en-
hance the use of the existing systems for a given objective (Schütze et al., 2002;
(García et al., 2015; Kerkez et al., 2016), and can be classified as heuristic con-
trol (Schütze et al., 2002; Lund et al, 2018) and optimization-based control
(Joseph-Duran et al., 2015; Sun et al., 2020).

Meanwhile, deep reinforcement learning (RL) was also used to establish RTC
systems for flooding mitigation (Mullapudi et al., 2020; Saliba et al., 2020). It
trains an AI agent to control an UDS, called environment in RL, in real time.
Currently, they are all model-based RL, which means that a model, such as
SWMM, is employed as the environment during training process. This is a
natural way to establish an agent-environment framework for the RLs of UDS,
but along with some problems. The very first one is training time. Model-
based RLs use a model as environment to simulate many times during training
process, causing a huge demand of computing resource (Mullapudi et al., 2020).
The second problem is the “richness” of cache data. Current RLs for UDS only
need some selected features for controlling (Mullapudi et al., 2020; Saliba et al.,
2020), while many other data provided by model are excluded, leading to low
efficiency of data usage and wasting of computer’s memory. The third problem is
that its training environment has zero noise, causing differences compared with
real-world conditions. If the RL is trained under ideal simulation conditions,
the input, or the state, can be obtained directly without any noise. However,
this doesn’t hold in real-world conditions as inputs usually contain randomness
(Saliba et al., 2020).

To address these problems, a basic solution in the field of RL is to use model-
free method. Usually, model-free RLs have two types, using real-world system
as environment (Mnih et al., 2015), or using a surrogate model as environment
(Chua et al., 2018; Kalweit & Boedecker, 2017), which means using an untrained
RL to control the real-world system or its surrogate model at the initial stage to
learn by trial and error. For the first type, the risk of this process is acceptable
for gaming (Shao et al., 2018) and robot (Song et al., 2012), as it only loses
a game or breaks a robot at most, but is not for UDS control, as it might
cause damage to property and public safety (Mullapudi et al., 2020). Thus,
a safe option is to use an accuracy surrogate model, or an emulator, as the
environment, rather than interact with real-world system directly.

Many promising emulators for UDS have been developed in the recent study.
For instance, mechanistic emulator (MEM) (Machac et al., 2018), data-driven
emulator (DDE) (Carbajal et al., 2017), and polynomial expansions emulator
(PEE) (Nagel et al., 2020), were established for sensitivity analysis and calibra-
tion of UDS. Linear surrogate model (LSM) (Lund et al., 2020) is also used
in model predictive control of stormwater system. However, these emulators
still suffer from the nonlinearity and diversity of water environmental dynamics.
MEM and PEE might fail to express some nonlinear dynamics, as they lack ob-

2



jectivity in model selection. DDE, LSM, and RSM are sensitive to the sparseness
of training data, causing a poor generalization when data is unevenly sampled.
Restricted by these, it is unknown how far the emulators can be helpful to other
applications, including the model-free framework of UDS.

The Koopman emulator is originated from Koopman operator, which is a con-
cept from statistical physics and dynamic system (Otto & Rowley 2019; Klus et
al., 2016; Klus et al., 2018; Wu & Noé, 2019; Mardt et al., 2018). Every dynam-
ical system, linear or nonlinear, has an associated Koopman operator, which
encodes properties of the system and characterizes the temporal evolution of
observables (Li et al., 2017). Its main idea is to approximate a non-linear dy-
namic system through a finite dimensional linear system that has an efficiency
trade-off between error and dimension (Williams et al. 2015) and can be used
as an emulator (Peitz & Klus, 2019). Importantly, this nearly optimal linear
emulator of original model can be automatically found through data and approx-
imation algorithms without using a user-defined model, thereby achieving better
objectivity and adaptability in nonlinear emulation than others. Benefit from
this, Koopman operator theory and related algorithms have been widely used
for model simplify (Rowley et al., 2009), prediction (Budišić & Mezić, 2012),
data fusion (Williams et al., 2015b), and system control (Brunton et al., 2016;
Korda & Mezić, 2018).

In this study, Koopman emulator is employed to set up a model-free RL train-
ing framework for (i) reducing the training time of RLs, (ii) improving the
efficiency of RLs’ data usage, and (iii) providing a training environment with
some randomness. Specifically, two Koopman emulators based on two approxi-
mation algorithms are provided and plugged into model-free framework to train
different RLs for flooding and overflow mitigation, and then compared with
model-based RLs. The remainder of this paper is organized as follows: In Sec-
tion 2, we briefly introduce some related works, including RL and its application
on UDS and Koopman operator theory. In Section 3, we describe the details
of our method. The case study is introduced in Section 4. The results and
corresponding discussions are given in Section 5 and 6. Conclusions are given
in Section 7.

1. Preliminaries and related works

(a) Brief review of RL and its application on UDS

RL is a kind of methods using experimental trials and relatively simple feed-
back to train an AI for controlling and planning under different situations and
maximizing the expectation of the weighted sum of reward signal (Sutton &
Barto, 2018). Usually, An RL model has an agent and an environment. The
environment is the system controlled by agent. The control loop of RL can be
described as Fig.1.
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Fig.1 Loop of RL control

All the RLs learn from job, regarding different training algorithms, means that
they collect information during controlling and use this to upgrade themselves.
After several loop of control, the states, actions, rewards will be collected and
used to train agent through a given RL algorithm to improve the its performance,
which mathematically means that it maximizes expected total rewards (value
function Eq.1 or q value Eq.2).

@ >p(- 4) * >p(- 4) * >p(- 4) * @

& 𝑉 (𝑠𝑡) = 𝔼𝑡 [∑∞
𝑘=0 [𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡]] &

(1)

& 𝑞 (𝑎𝑡, 𝑠𝑡, 𝑟𝑡) = 𝔼𝑡 [∑∞
𝑘=0 [𝛾𝑘𝑟𝑡+𝑘+1|𝑎𝑡, 𝑠𝑡, 𝑟𝑡]] &

(2)

The 𝑎𝑡, 𝑠𝑡, 𝑟𝑡 are action, state, reward, the discount factor 𝛾 is a hyperparameter
between 0 and 1 to guarantee the convergence of the functions and govern the
temporal context of the reward. The k is the forward step, which means how
many steps should the agent consider (Sutton & Barto, 2018). Usually, the RLs
at initial status will not be used for real-world controlling, thus some researches
separate the training from testing (Chen et al., 2015).

RLs can be classified as value-based and policy-based by its training algorithm
(Mnih et al., 2016). The former uses deep neural network to search a higher
value functions, and uses this to guide the selection of action (Mnih et al., 2015;
Hasselt, 2010). The latter uses deep neural network to find the high-value action
directly (Schulman et al., 2015; Schulman et al., 2017). Usually, the policy-
based methods have better performance in the continuous policy space, while
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the value-based methods are better in terms of the optimality of the control
process (Mnih et al., 2016; Sutton & Barto, 2018).

Model-based RLs use a specifical model, such as SWMM (Mulla-
pudi et al., 2020; Saliba et al., 2020), as an environment in training
process. While model-free RLs use a surrogate model (Chua et al.,
2018; Kalweit & Boedecker, 2017) or interact with real-world envi-
ronment directly (Mnih et al., 2015) in training process. They can
be described as Fig.2.

Fig.2 Model-based and model-free

Currently, RL becomes a state-of-art method in many different fields of study.
Such as autonomous driving (Pan et al., 2017), robotic control (Kober and
Peters, 2012), and game AI (Wu et al., 2018; Shao et al., 2018; Silver et al.,
2017). In recent years, RL has also been used in flow controlling (Ochoa et al.,
2019), multi-objective reservoir scheduling systems (Madani & Hooshyar, 2014;
Castelletti et al., 2013), in-line storage control (Labadie, 2014), and flooding
mitigation (Mullapudi et al., 2020; Saliba et al., 2020). However, RLs for UDS
are model-based RL (Mullapudi et al., 2020; Saliba et al., 2020), means that
a model of UDS, SWMM for example, is needed during RL’s training process.
This may lead to longer training time, lower efficiency of data usage, and the
zero noisy training environment.

1. Koopman operator and its approximation algorithm

(a) Dynamic system and Koopman operator

The definition of Koopman operator and its approximation theory can be found
in previous researches (Williams et al., 2015a; Li et al., 2017). We only pro-
vide a step-by-step introduction of it. Given a nonlinear dynamic system on
measurable space 𝑀
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𝑥(𝑛 + 1) = f (𝑥(𝑛)) , 𝑥(𝑛) ∈ 𝑀, 𝑛 ≥ 0 (3)

The Koopman formalism focuses on the evolution of observables represented by
functions on 𝑀 in a suitable Hilbert function space with measure 𝑝

𝐿2(𝑀, 𝑝) = {𝜙 ∶ 𝑀 → 𝐶 ∶ ‖𝜙‖𝐿2(𝑀,𝑝) < ∞} (4)

‖𝜙‖𝐿2(𝑀,𝑝) = ∫ |𝜙(𝑥)|2 pdx

Then, for any given observable function 𝜙 ∈ 𝐿2(𝑀, 𝑝), its Koopman operator
K can be given through Riesz representation theorem.

K𝜙 = 𝜙 ∘ f (5)

Suppose the Koopman operator is a bounded linear operator, it is amenable to
spectral analysis. The so called Koopman mode decomposition of Eq.3 can be
described by Eq.6, where {𝜑1, 𝜑2, … , 𝜑𝑘} and {𝜇1, 𝜇2, … , 𝜇𝑘} are the leading
eigenfunctions and eigenvalues of Koopman operator, {𝜉1, 𝜉2, … , 𝜉𝑘} are corre-
sponded Koopman modes.

𝔼 [𝑔 (𝑥(𝑛 + 1))] = 𝔼 [𝑔 (f (𝑥(𝑛)))] = K𝑇 𝔼 [𝑔 (𝑥(𝑛))] = ∑𝑖 𝜉𝑖K𝑇 𝜑𝑖(𝑥(𝑛)) = ∑𝑖 𝜉𝑖𝜇𝑖𝜑𝑖(𝑥(𝑛)) ≈ ∑𝑘
𝑖=1 𝜉𝑖𝜇𝑖𝜑𝑖(𝑥(𝑛)) (6)

Thus, a linear approximation can be obtained through Koopman operator and
its leading eigenfunctions and eigenvalues (Li et al., 2017; Otto & Rowley, 2019).

1. Approximation algorithm

The key idea of Koopman operator theory is to use a linear system
with finite dimension to approximate a nonlinear dynamic. How to
find a specific linear system is achieved by approximation algorithm.
Currently, data driven methods are mainly studied in this field, and
they can be classified as two types: Regression based and Rayleigh
Variational Principle based. The former projects the original nonlin-
ear system onto some Hilbert space, and use regression to find linear
dynamic system. The latter uses the singular functions of Koopman
operator as the basis functions of linear system and find the sin-
gular function directly through Rayleigh Variational Principle. We
provide reference of these two types of approximation algorithms in
Table1.

Table 1. Approximation algorithm
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Name Regression based or variational principle based Reference
DMD Regression based Page & Kerswell, 2018
EDMD Regression based Williams et al., 2015a
KEDMD Regression based Klus et al., 2018
DLEDMD Regression based Li et al., 2017
VAC Variational principle based Noé & Nüske, 2012
VAMP Variational principle based Wu & Noé, 2019
KVAD Variational principle based Tian & Wu, 2021

Recent study shows that Rayleigh Variational Principle based meth-
ods suffer from two drawbacks (Tian & Wu, 2021): First, it is neces-
sary to assume that the Koopman operator of given dynamic system
is compact so that the maximum values of variational scores exist.
But it can be proved that this assumption does not hold for most de-
terministic systems, including SWMM model. Second, the common
variational scores are possibly sensitive to small modeling variations,
which could affect the effectiveness.

1. Methodology

A model-free framework for RL training is provided based on Koopman emulator.
Specifically, two approximation algorithms, Kernel Extended Dynamic Mode
Decomposition (KEDMD) and Dictionary Learning Extended Dynamic Mode
Decomposition (DLEDMD), are used to construct two emulators of UDS model
(SWMM in this case) and plug them into a model-free RL system as training
environment. We provided the details of the method in this section, including
KEDMD emulator and DLEDMD emulator, model-free framework based on
these two emulators, and uncertainty analysis of control system. The route
map is given as Fig.3.

Fig.3 Route map of methodology
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1. Koopman emulator for UDS

We use two Koopman emulators to approximate UDS model. We take SWMM
(ver 5.1) as an example in this study. The basic mathematical formalism of
Koopman emulators, the approximation methods, and the index of their perfor-
mance are provided in this section.

1. Problem formulation

We first provided the mathematical formulation of SWMM in the
view of nonlinear dynamic system, which can be described as Eq.7.
The observable, or dynamic variable, 𝑥𝑡 is a vector variable repre-
senting information of SWMM at time point 𝑡, including current
overflow and flooding volume, current water level of some selected
junctions and subcatchments. The action 𝑎𝑡 is the vector variable
which represents the control signal of control assets, such as pumps,
from time point 𝑡 to 𝑡 + 1. The rain𝑡 is the rainfall intensity from
time point 𝑡 to 𝑡 + 1.

𝑥𝑡+1 = 𝑆𝑊𝑀𝑀 (𝑥𝑡, 𝑎𝑡, rain𝑡) (7)
𝑥𝑡 = [overflow𝑡 + flooding𝑡, junctions𝑡, subcatchments𝑡]
𝑎𝑡 = [pumps𝑡]

According to Koopman operator theory, the dynamic of SWMM can
be considered as a nonlinear dynamic system and has an associated
Koopman operator with respect to action and rainfall (Eq.8) encod-
ing the properties of the system characteristic and evolution (Li et
al., 2017).

f (𝑥𝑡+1) = K𝑎𝑡,rain𝑡
f (𝑥𝑡) (8)

The K𝑎𝑡,rain𝑡
and f are Koopman operator and dictionary functions. Because

the Eq.8 is linear and only focuses on the dynamic of some observables, its
computing time is faster than SWMM.

1. Approximation algorithms and training process

An explicit formulation of Eq.8 can be found through different approximation
algorithms and used as emulator of SWMM. We use two data-driven approxi-
mation algorithms to achieve this target. They are KEDMD (Klus et al., 2019)
and DLEDMD (Li et al., 2017), which are both regression-based methods. We
first introduce these two algorithms then provide our main steps of establishing
two emulators.

1. KEDMD
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KEDMD is original from Extend Dynamic Mode Decomposition (EDMD) which
uses user-defined basis functions to find linear approximation. A very obvious
drawback of EDMD is the selection of basis functions. A user-defined one may
lead more subjective and less optimization. To avoid this, KEDMD, a variant of
EDMD, is developed. It uses kernel functions as the basis functions, means that
appropriate basis functions are given by data rather than hand-made. More
detail can be found in previous research (Junge & Koltai, 2009; Klus et al.,
2018), we only provided basic steps of KEDMD:

1. Prepare 𝑀 training data (𝑥𝑡, 𝑎𝑡, rain𝑡, 𝑥𝑡+1)𝑖 , 𝑖 = 1, … , 𝑀 through the
simulation of SWMM with respect to different rainfalls and actions.

2. Define a kernel function 𝑘 (Gaussian kernel is used in this study), and com-
pute Gram matrix 𝐺YX and 𝐺XX by Eq.9. The 𝜎 is the kernel bandwidth
and is chosen as 1 in this study.

𝑘(𝑥, 𝑦) = 𝑒𝑥𝑝 (− ‖𝑥−𝑦‖2
2

𝜎 ) (9)

[𝐺YX]𝑖,𝑗 = 𝑘 (𝑌𝑗, 𝑋𝑖) , [𝐺XX]𝑖,𝑗 = 𝑘 (𝑋𝑖, 𝑋𝑗)
𝑋𝑖 = [𝑥𝑡, 𝑎𝑡, rain𝑡]𝑖, 𝑌𝑖 = [𝑥𝑡+1]𝑖

1. Solve the eigenvalue problem given by Eq.10, and obtain eigenfunctions
{𝜑1, 𝜑2, …} and eigenvalues {𝜆1, 𝜆2, …}

𝐺XX
−1𝐺YX𝜑 = 𝜆𝜑 (10)

1. Use the leading eigenfunctions and eigenvalues to reconstruct a linear sys-
tem through Eq.11, and use it as emulator. The number of leading eigen-
functions in this study is 𝐿.

𝔼[𝑌 ] ≈ ∑𝐿
𝑗=1 𝜆𝑗 ∑𝑀

𝑖=1 𝑘 (𝑋, 𝑥𝑖)𝜑𝑗(𝑥𝑖) (11)

𝑋 = [𝑥𝑡, 𝑎𝑡, rain𝑡] , 𝑌 = [𝑥𝑡+1]

1. DLEDMD

Similar to KEDMD, DLEDMD is also original from Extend Dynamic Mode
Decomposition (EDMD) but takes the advantage of deep learning to find better
basis functions through training and data. More detail can be found in previous
research (Li et al., 2017), we only provided basic steps of DLEDMD here:

1. Prepare 𝑀 training data (𝑥𝑡, 𝑎𝑡, rain𝑡, 𝑥𝑡+1)𝑖 , 𝑖 = 1, … , 𝑀 through the
simulation of SWMM with respect to different rainfalls.

2. Define a neural network 𝜓(𝑥; 𝑤) with a finite dimensional output layer,
and train it through the extended minimization problem given by Eq.12.

9



The 𝜆 (K̃,𝑤) is a suitable regularizer. The architecture of 𝜓(𝑥; 𝑤) is N-
10-10-N in this study where N is the dimension of observable or dynamic
variable.

(K, 𝑤) = argmin∑𝑀
𝑖=1 ∥K̃𝜓 (𝑋𝑖; 𝑤) − 𝑌𝑖∥

2
+ 𝜆 (K̃,𝑤) (12)

𝑋𝑖 = [𝑥𝑡, 𝑎𝑡, rain𝑡]𝑖, 𝑌𝑖 = [𝑥𝑡+1]𝑖

1. Use the K and 𝜓(𝑥; 𝑤) as emulator.

1. Training process

In this study, we use these two algorithms to obtain two emulators of SWMM.
We bring the training steps based on the above algorithms. For easy under-
standing, we call these two emulators KEDMD and DLEDMD in this paper.
First, different rainfall data and control actions are given and send into SWMM
to simulate, and obtaining the simulation results. Then, these results are used
as training data to train two emulators through KEDMD and DLEDMD algo-
rithms separately, and we have two emulators. These steps are given in Fig.4.

Fig.4 Training process of KEDMD and DLEDMD

1. The index of emulator performance

The mean square error (MSE, Eq.13) and Nash-Sutcliffe efficiency
coefficient (NSE, Eq.14) are used as the indices of emulators’ per-
formance in this study. The 𝑆𝑖,𝑡 is the 𝑖 variables given by SWMM
model at time point 𝑡, the 𝐸𝑖,𝑡 is the 𝑖 variable given by emulators
at time point 𝑡. A lower MSE and a higher NSE indicate better
performance of emulators.
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𝑀𝑆𝐸 = 1
TN ∑𝑇

𝑡=0 ∑𝑁
𝑖=0 (𝑆𝑖,𝑡 − 𝐸𝑖,𝑡)

2 (13)

𝑁𝑆𝐸 = 1 − ∑𝑇
𝑡=0 ∑𝑁

𝑖=0(𝑆𝑖,𝑡−𝐸𝑖,𝑡)2

∑𝑇
𝑡=0 ∑𝑁

𝑖=0(𝑆𝑖,𝑡−𝔼[𝐸𝑖,𝑡])2 (14)

1. Model-free RL based on emulators

Two emulators, KEDMD and DLEDMD, are used to establish a model-free
training framework for two RLs: deep q learning (DQN) and proximal policy
optimization (PPO), which are value-based RL and policy-based RL. Then, the
trained RLs are used to control the UDS in real-time for overflow and flood-
ing mitigation. Considering the risk of real-world implement, a well-calibrated
SWMM model (ver5.1) is used as the environment for the testing in this study.
The system is established through python 3.7, pyswmm 0.6.0, and tensorflow
1.14.0.

1. Training process of RLs

Although the training algorithm of RLs are different, they all share a similar
framework including sampling and upgrading. First, the untrained RL agents
are used to control the environment in a given time length (called training
sampling interval) with respect to some given rainfalls (the number of rainfall
events is called batch size). The state, reward, action data of these controlling
process are collected. Then, the collected data are used to upgrade RLs through
different RL algorithms, such as DQN and PPO in this study. This sampling-
upgrading process will be iterated for several times until the RL achieves a high
enough q value or the training step is equal to a user-defined maximum step.
This process can be described as Fig.5.
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Fig.5 Training process of RLs (with SWMM or emulators). In this study, the
training sampling interval is the time steps of rainfall, the batch size is 200, the
maximum step is 100. The threshold of q value is 3 times of it in the initial
step.

The main different between model-based and model-free is that a model-based
RL use a mathematic model (such as SWMM) as environment during sampling,
while a model-free RL use real-world system or emulator as environment during
sampling. Because the sampling-upgrading process needs to run multi times,
means that the environment will simulate many times, leading to the fact that
model-based methods have more computing time and cache data than model-
free methods.

Two RL algorithms, deep q learning (DQN) and proximal policy optimization
(PPO), are used in this study. Their configurations are given as follow.

1. The selection of state, reward, and action

There are few studies focuses on how to select state, reward, action in the RTC
of UDS. Therefore, the following only provides a benchmark selection. For easy
comparison, all the RLs use the same state, reward, and action in this study.
Their states 𝑠𝑡 are current flooding and overflow volume, current inflow volume,
current outflow volume, and current stored water volume in the pipeline. These
can be provided by the simulation results of SWMM and two emulators. Their
action are the variables representing the control signal of control assets, such
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as pumps in this study, from time point 𝑡 to time point 𝑡 + 1. Their reward
𝑟𝑡 is given by Eq.15 to evaluate their performance of overflow and flooding
mitigation.

@ >p(- 4) * >p(- 4) * >p(- 4) * @ & 𝑟𝑡 = { −1 𝑖𝑓 overflow and 𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 𝑖𝑛 [𝑡 − 1, 𝑡] 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒𝑟 𝑡ℎ𝑎𝑛 0
1 𝑒𝑙𝑠𝑒

&

(15)

1. DQN

The DQN is developed based on the theory of q learning. It uses deep neural
network to approximate q value function and maximizes it through training
(Mnih et al., 2015; Sutton & Barto, 2018). The deep neural network of DQN in
this case has an architecture with N-20-20-1, N is the dimension of state vector,
which is 4 in this study. The ReLU function (Eq.16) and the linear function
(Eq.17, 𝑊 𝑇 and 𝑏 are trainable parameters) are used as the activation function
in the hidden layers and the output layer. The discount factor is 0.9. The
training algorithm is Adam algorithm (LeCun et al. 2015). The iteration step
is 200, learning rate is 0.001.

x x > 0
(16)
linear(𝑥) = 𝑊 𝑇 𝑥 + 𝑏 (17)

1. PPO

Proximal policy optimization model uses a deep neural network to approximate
the policy function (input state, and output action) by computing an estimator
of the policy gradient (Eq.18) through sampled data (state, reward, action), and
plugging it into any kind of gradient ascent algorithm (Schulman et al., 2015;
Schulman et al., 2017).

@ >p(- 4) * >p(- 4) * >p(- 4) * @ & 𝑔 = 𝔼𝑡 [∇𝜃 log𝜋𝜃 (𝑎𝑡|𝑠𝑡) 𝑞] &
(18)

The 𝜋𝜃 (𝑎𝑡|𝑠𝑡) is policy function given by neural network with parameter 𝜃, 𝑞 is
the q value. The deep neural network has an architecture with N-100-100-M, N
and M are the dimension of state and action vector, which are 4 and 8 in this
study. The ReLU (Eq.16) and the hard-sigmoid function (Eq.19) are used as
the activation function in the hidden layers and the output layer. Their discount
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factor is 0.9, training algorithm is Adam algorithm (LeCun et al. 2015). The
iteration step is 200, learning rate is 0.001.

1 x_i > 0.5
(19)

1. Rainfall data used for training

The sampling process of RL is triggered by many rainfall data, therefore, the
Chicago rainfall (Eq.20) and historical research of the rainstorm intensity for-
mula parameters in the nearby area (Wang & Xu, 2016) are used to provide a
method to sample enough rainfall data for RL training. This method can also
be used in other area to provide random rainfall events. The range of rainfall
intensities are given in Table 2.

𝑖 (𝑡𝑏) = [𝐴(1+𝐶𝑙𝑜𝑔(𝑃))][ (1−𝑛)𝑡𝑏
𝐾 +𝑏]

( 𝑡𝑏
𝐾 +𝑏)

1+𝑛 (20)

𝑖 (𝑡𝑎) = [𝐴(1+𝐶𝑙𝑜𝑔(𝑃))][ (1−𝑛)𝑡𝑎
1−𝐾 +𝑏]

( 𝑡𝑎
1−𝐾 +𝑏)1+𝑛

Table 2. The range of rainfall parameters

𝐴 (mm) 𝐶 𝑃 (year) 𝑛 𝑏 𝐾
21~35 0.939~1.20 1~5 0.86~0.96 16~22 0.3~0.8

The 𝑡𝑎 and 𝑡𝑏 are the time, 𝑖 (𝑡𝑏) and 𝑖 (𝑡𝑎) are the rainfall intensity, 𝐴 is the
rainfall intensity with the recurrence period of one year, 𝐶 is an experience
parameter, 𝑃 is the rainstorm return period, 𝐾 is the peak intensity position
coefficient, 𝑛 and 𝑏 are parameters related to region. A total of 20 rainfall events
were generated and used for RLs’ training. Each rainfall event has a two-hour
duration.

1. Index of data usage efficiency

We provide an index called data usage rate (DUR, Eq.21) to measure
the efficiency of data usage.

𝐷𝑈𝑅 = NSD
NRD (21)

𝑁𝑆𝐷 = 𝑇 ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 𝑑𝑎𝑡𝑎 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑅𝐿
𝑁𝑅𝐷 = 𝑇 ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑑𝑎𝑡𝑎 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡
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It is the ratio of the number of state data to the number of result
data given by environment. For instance, if an environment, such as
SWMM model, provides total of 100 results in one loop of sampling,
but only 4 of them are selected as the state of RL, then its DUR is
4%. A higher DUR means better efficiency of data usage.

1. Uncertainty analysis

According to the modelling process given in Section 3.1 and 3.2, the uncertainty
of this system is coming from two aspects: i) the diversity of rainfall events, and
ii) the imperfect input of RLs. We analyze both of them in this study.

1. The index for uncertainty analysis

Usually, the flooding and overflow volume of a given UDS is strongly influenced
by rainfall conditions (van Daal et al., 2017; Lund et al., 2018; Lund et al.,
2020). Therefore, flooding and overflow volume may be unobjective when used
as the measure. Considering this, we use the ratio of the total flooding and
overflow to the total inflow (RCI) as an index to measure the performance of
the RLs in the uncertainty analysis.

@ >p(- 4) * >p(- 4) * >p(- 4) * @ & RCI = total overflow and flooding
total inflow &

(22)

For instance, a system with good control effect should have an RCI close to
zero, no matter what kind of rainfall. Therefore, it can reduce the fluctuations
caused by rainfall data to a certain degree. Compared with overflow and flooding
volume, it can reflect the drainage capacity of RLs more objectively.

1. The uncertainty of rainfalls

The trained RLs will face various rainfall events in real-world conditions. There-
fore, the randomness of rainfall events is one of the uncertainty resources. We
use the forward uncertainty analysis with Monte Carlo simulations to test this
uncertainty (van Daal et al., 2017). Because the rainfall pattern formula (Eq.20)
is adopted, the affected parameters are the 4 parameters including A, C, P, b.
For each RL, we randomly select 50 sets of 4 parameters within the range given
in Table 2 to generate 50 designed rainfalls (parameter K is 0.5), and use them
to simulate. Then the median value (50%) and upper (95%) and lower (5%)
boundaries of the RCI are extracted.

1. The uncertainty of imperfect input

The state of RLs is subjected to noise in real-world implementation (Saliba et
al., 2020), causing imperfect input and uncertainty to RLs. We us the method of
previous research (Saliba et al., 2020) to analyze this uncertainty. Given a test
rainfall and RLs, a uniform distribution 𝑈(0.95, 1.05) is sampled to generate a
value 𝑋 and added to the state through Eq.23.
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@ >p(- 4) * >p(- 4) * >p(- 4) * @ & 𝑠𝑡 = 𝑠𝑡 × 𝑋, 𝑋 ∼ 𝑈(0.95, 1.05) &

(23)

Then, the new state 𝑠𝑡 is used as the input of all the RLs at time point 𝑡. We
also use this method in this study.

1. Case study

(a) Urban drainage system

The UDS in a city located in eastern China is used as the case study. It is a
combined sewer system with 139 nodes, 140 pipelines, and three pump stations.
The maximum capacity of the pumping stations may exceed the max capacity of
the pipe during storm weather. Therefore, the control system needs to smartly
balance the water volume in both upstream and downstream. Considering the
risk to property and public safety, a SWMM model of this combined sewer
system is used as the testing environment. The schematic diagram of the model
is shown in Fig.6. More details of this model can be found in our previous
researches (Liao et al., 2019; Zhi et al., 2019).

Fig.6 The SWMM model of case study

A rule-based RTC system called water level system is currently used in this place.
It sets a sequence of water-level threshold values, or set-points, to operate the
pumps. The pump starts working if the water level of the forebay reaches its
onset threshold and shuts down when the water level falls down to the shutoff
threshold. The detailed onset/shutoff threshold values are given in Table 3.
As the pumps drain water when the water level is high, this RTC system has
a certain level of capability of reducing combined sewer overflow (CSO) and
flooding.

Table 3. The onset/shutoff threshold values of the water-level system.
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Onset threshold (m) Shutoff threshold (m)

Onset threshold (m) Shutoff threshold (m)
C-pump-1 4.56 3.26
C-pump-2 4.87 4.56
K-pump-1 4.56 3.26
K-pump-2 4.87 4.56
R-pump-1 5.00 4.71
R-pump-2 6.31 5.00
R-pump-3 7.00 6.31
R-pump-4 7.78 7.00

1. Test rainfall data

We use both designed rainfall and real rainfall (given in Fig.7) to test the
performance of the RLs in CSO and flooding reduction. The four designed
rainfalls have 10 minutes interval and 2 hours duration. Since there is no
rainfall data with 10 minutes interval in the study area, these 4 real rainfall
data come from online monitoring of surrounding city (a data API provide by
http://caiyunapp.com/index.html#api ). To further testing the system’s be-
havior under extreme rainfall, we enlarged the intensity of 4 real rainfalls by 10
times.

Fig.7 Test rainfalls. Designed rainfall and real rainfall

1. Emulators and RLs in the case study

First, 10 rainfall data with 2 hours duration are given through Eq.20 combined
with 10 random actions sets are sent into SWMM model to obtain 100 sets of
simulation results. Then, these data are used to train KEDMD and DLEDMD
through the methods in Section 3.1. The observable 𝑥𝑡 is vector including total
CSO and flooding, stored water volume, inflow volume, and outflow volume.
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The action 𝑎𝑡 is the control strategy of 8 pumps in the system, which is an
8-dimensional 0-1 vector. The rain𝑡 is the rain intensity of current time point.

Then these two emulators are used to train two types of RLs through the model-
free framework given in Section 3.2. Considering the combination of model-
based (SWMM) or model-free (KEDMD and DLEDMD), and DQN or PPO, we
provide 6 RLs in this study, they are KEDMD-DQN, KEDMD-PPO, DLEDMD-
DQN, DLEDMD-PPO, SWMM-DQN, and SWMM-PPO.

1. Results

5.1. Emulation of KEDMD and DLEDMD

The trained emulators are used to compare with SWMM in the simulation under
4 rainfalls given by Eq.20 and different actions of pumps. A linear model based
on LassoLars linear regression (Efron et al., 2004), called Linear in this paper, is
also provided for comparison. The MSE and NSE of these simulations are given
in Table 4. The trajectories of total CSO and flooding, stored water, inflow,
outflow of these two emulators as well as SWMM are given in Fig.8, from which
shows that DLEDMD and KEDMD achieve better performance than Linear.

Table 4. MSE and NSE of KEDMD, DLEDMD, and Linear

MSE NSE
Test rain1 KEDMD 0.935 0.994

DLEDMD 1.095 0.991
Linear 1.516 0.983

Test rain2 KEDMD 1.139 0.989
DLEDMD 1.143 0.989
Linear 1.445 0.983

Test rain3 KEDMD 1.076 0.991
DLEDMD 1.113 0.991
Linear 1.477 0.984

Test rain4 KEDMD 1.200 0.972
DLEDMD 1.169 0.973
Linear 1.310 0.966
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Fig.8 Simulations of KEDMD, DLEDMD, and Linear

5.2. Control effect, training time, and data usage of RLs

1. Control effect

We use the trained KEDMD and DLEDMD to replace the SWMM in the train-
ing of two RLs, DQN and PPO. And then use these trained RLs to control the
combined sewer system (SWMM in this study) under Rain1-8. A water-level
based control system and model-based RLs (SWMM-DQN and SWMM-PPO)
are also given for comparison. The trajectories of the CSO and flooding of each
RLs are shown in Fig.9 and Fig.10. The total CSO and flooding volume are
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listed in Table 5. According to the results, the RLs achieve better control effect
than the water-level system, proving that the model-free framework is capable
of training RLs to achieve a similar control effect compared with the model-
based method. Also, the DQNs are better in terms of the optimality of the
control process than PPOs, which is consistent with the conclusion of previous
researches (Mnih et al., 2016; Sutton & Barto, 2018).

Fig.9 Trajectories of CSO and flooding volume of SWMM-DQN, KEDMD-DQN,
and DLEDMD-DQN
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Fig.10 Trajectories of CSO and flooding volume of SWMM-PPO, KEDMD-PPO,
and DLEDMD-PPO

Table 5. CSO and flooding volume (103) of each RLs

KEDMD-DQN KEDMD-PPO DLEDMD-DQN DLEDMD-PPO SWMM-DQN SWMM-PPO Water-level system
Rain1 19.975 22.132 19.310 21.482 20.519 21.341 23.387
Rain2 23.754 26.127 23.201 25.210 23.101 25.875 27.660
Rain3 61.297 63.686 61.495 62.604 61.047 63.670 66.441
Rain4 35.437 37.531 35.524 37.852 35.118 38.227 40.125
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KEDMD-DQN KEDMD-PPO DLEDMD-DQN DLEDMD-PPO SWMM-DQN SWMM-PPO Water-level system
Rain5 8.884 10.696 8.654 11.729 9.377 10.358 12.127
Rain6 3.871 5.454 3.720 5.611 3.980 5.139 6.070
Rain7 9.882 12.417 9.802 12.189 9.888 11.654 14.015
Rain8 7.162 8.475 7.185 9.845 7.088 8.823 10.635

1. Training time and the efficiency of data usage

The training time and DUR of RLs are given in Table 6 and 7. It is obvious
that model-free RLs achieve about 20 to 23 times faster than model-based RLs
in training process under different sampling number. Also, their DUR is about
79.67 times higher than model-based RLs, indicating a better efficiency in data
usage.

Table 6. Training time of different RLs with different batch size of sampling

batch size = 20 batch size = 200 batch size = 2000
KEDMD-DQN 31 s 5 min 10 s 55 min 34 s
KEDMD-PPO 32 s 5 min 7 s 54 min 55 s
DLEDMD-DQN 31 s 5 min 12 s 55 min 20 s
DLEDMD-PPO 30 s 5 min 9 s 55 min 15 s
SWMM-DQN 10 min 58 s 1 h 48 min 18 h 32 min
SWMM-PPO 11 min 34 s 1 h 47 min 18 h 30 min

Table 7. DUR of RLs (batch size = 20)

NSD NRD DUR=NSD/NRD
KEDMD-DQN/PPO 3920 4000 0.98
DLEDMD-DQN/PPO 3920 4000 0.98
SWMM-DQN/PPO 3920 317520 0.0123

5.3. Uncertainty analysis

5.3.1. The uncertainty of rainfalls

We use the method in the section 3.2.2 to generate 50 different rainfalls and use
them to run the uncertainty analysis of different rainfalls. The control effect,
represented by RCI, are given in Table 8. From the results, it can be seen that
different RLs maintain a certain range of control effects when facing different
rainfalls, achieving a certain degree of reliability. And also, DQNs achieve better
control effect than PPOs, which is consistent with results of section 5.2.1 and
the previous researches (Mnih et al., 2016; Sutton & Barto, 2018)

Table 8. The RCI of all the RLs in 50 different designed rainfalls
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@ >p(- 6) * >p(- 6) * >p(- 6) * >p(- 6) * @ & 5% & 50% & 95%
DLEDMD-DQN

KEDMD-DQN

SWMM-DQN

DLEDMD-PPO

KEDMD-PPO

SWMM-PPO & 0.006 & 0.035 & 0.142
& 0.005 & 0.035 & 0.139
& 0.006 & 0.036 & 0.143
& 0.011 & 0.043 & 0.183
& 0.011 & 0.045 & 0.174
& 0.007 & 0.038 & 0.162

5.3.2. The uncertainty of imperfect input

For each of the Rain1-4, 50 trajectories based on the random states
in section 3.3.3 are simulated and used as the reference of imper-
fect input uncertainty analysis. The range of control trajectories are
given in Fig.11. It shows that all the trajectories of RLs with imper-
fect inputs achieve better performance than water level system. And
their trajectories stay in a range during control process, indicates a
certain robustness.
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Fig.11 the range of RLs’ control trajectories with respect to imperfect input

1. Discussions

6.1. The designing of RLs’ state and the observable of emulators

According to the results in section 5.2.2, model-free RLs achieve short train-
ing time and better efficiency in data usage. The reason is that the Koopman
emulators have an excellent nonlinear emulation capability and its observable
dimension and the RL’s state can be flexibly equalized. It means that the Koop-
man emulators are simplified models with linear structure and they only provide
the data needed for controlling, while model-based methods use nonlinear model
SWMM and compute a “full rank” data set but only use some of them.

In this view point, the training time and the DUR of model-free RLs are influ-
enced by their designing. If the dimension of emulator variable is high and the
size of model-free RL’s state is low, then its computing time will be high, and its
DUR will close to zero, indicating high demand of computing resource and low
efficiency of data usage. Considering this, we believe that a feasible model-free
framework should (i) equalize the dimension of emulator’s variable and RL’s
state, and (ii) achieve an acceptable control effect. The cross validation from
previous research (Wu & Noé, 2019) may help us in balancing these two aspects,
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and will be present in our future works.

6.2. Explanation to the influence of uncertainty

The results in section 5.3 and previous research (Saliba et al., 2020) show that
slight perturbation in training and testing process will not leverage the control
effect of RLs. An intuitive explanation can be given from a statistical view.
The main target of RLs is to use deep neural network and sampling data to find
a conditional distribution of action given state Ρ (𝑎𝑡|𝑠𝑡) and use it to achieve
higher value function 𝑉 (𝑠𝑡+1). The statistic model of this can be described
through RL theory and Bayesian formula:

@ >p(- 4) * >p(- 4) * >p(- 4) * @ & 𝑉 (𝑠𝑡+1) = max [𝑟𝑡+1 + ∫ Ρ (𝑎𝑡|𝑠𝑡) 𝑉 (𝑠𝑡) 𝑑𝑠𝑡]
&

(24)

& Ρ (𝑎𝑡|𝑠𝑡) = Ρ(𝑠𝑡|𝑎𝑡)Ρ(𝑎𝑡)
Ρ(𝑠𝑡) &

The Ρ (𝑎𝑡|𝑠𝑡) is the conditional probability of 𝑎𝑡 given 𝑠𝑡. The Ρ (𝑠𝑡|𝑎𝑡) is condi-
tional probability of 𝑠𝑡 given 𝑎𝑡, Ρ (𝑠𝑡) and Ρ (𝑎𝑡) are the probability distribution
of system state and action. All the probabilities are influenced by both UDS
and rainfall condition.

Theoretically, we use some data to training a neural network model to represent
the conditional probability Ρ̂ (𝑎𝑡|𝑠𝑡, 𝜃), where 𝜃 is the trainable parameters of
neural network. If the training process of RL is good, then we can say that
Ρ̂ (𝑎𝑡|𝑠𝑡, 𝜃) and Ρ (𝑎𝑡|𝑠𝑡) are close to each other, and we have

@ >p(- 4) * >p(- 4) * >p(- 4) * @ & Ρ̂ (𝑎𝑡|𝑠𝑡, 𝜃) ≈ Ρ (𝑎𝑡|𝑠𝑡) = Ρ(𝑠𝑡|𝑎𝑡)Ρ(𝑎𝑡)
Ρ(𝑠𝑡) &

(25)

However, if we import randomness into this system, the right side will change
and Eq.25 may not hold.

For instance, different rainfalls will lead to different state, causing various Ρ (𝑠𝑡)
and Ρ (𝑠𝑡|𝑎𝑡). Thus, the right side of Eq.25 will be changed and the trained
Ρ̂ (𝑎𝑡|𝑠𝑡, 𝜃) may no longer an approximated solution of Eq.24, leading to differ-
ent control effect. This is consistent with the results in Table 8, which shows
that the control effects of one RL are different under various rainfalls.

For imperfect input, the uniform distribution is used as a randomness of input.
Thus, the distribution of state and conditional probability of 𝑠𝑡 given 𝑎𝑡 will be
changed as:
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@ >p(- 4) * >p(- 4) * >p(- 4) * @ & Ρ (𝑠𝑡|𝑎) = Ρ(𝑋)Ρ (𝑠𝑡|𝑎) , Ρ (𝑠𝑡) =
Ρ(𝑋)Ρ (𝑠𝑡) , 𝑋 ∼ 𝑈(0.95, 1.05) &

(26)

And we have

@ >p(- 4) * >p(- 4) * >p(- 4) * @ & 𝑉 (𝑠𝑡+1) = max [𝑟 (𝑠𝑡+1) + ∫ Ρ̃ (𝑎𝑡|𝑠𝑡) 𝑉 (𝑠𝑡) 𝑑𝑠𝑡]
&

(27)

& Ρ̃ (𝑎𝑡|𝑠𝑡) = Ρ(𝑠𝑡|𝑎𝑡)Ρ(𝑋)Ρ(𝑎𝑡)
Ρ(𝑠𝑡)Ρ(𝑋) &

If we suppose the Ρ (𝑠𝑡) and Ρ (𝑠𝑡|𝑎𝑡) are normal distributions, then the Ρ (𝑠𝑡)
and Ρ (𝑠𝑡|𝑎) are also normal distributions with same expectation value and slight
changed variance. Therefore, the 𝑋 does not statistically change the control
system and the solution given by Eq.24 can still be used as an approximated
solution of Eq.27, thus the influence of 𝑋 to the control trajectories is not obvi-
ous. This is consistent with the Fig.11 that the RLs have a certain robustness
to imperfect input.

6.3. Two factors influence the performance of emulators

From the results in section 5.1, we can see that Koopman emulators achieve
better performance than linear model. The reason can be abstracted into two
aspects: (i) The Koopman emulators are more suitable to nonlinear dynamic
system, and (ii) the target of Koopman emulators is to find a linear structure be-
hind the nonlinear system, rather than pure reduce regression error. However,
these emulators are not perfect. Although they handle the nonlinear charac-
teristic well, some approximation errors still exist. Intuitively, approximation
error is hard to avoid when we use approximation algorithms to obtain Koop-
man emulators. And we find that their errors are related to the selection of
hyperparameters (Wu & Noé, 2019) and training data.

1. Hyperparameters

For the first one, we test KEDMD and DLEDMD with different hyperparame-
ters, and their performance are given Table 9 and 10. These results show that
different selection of hyperparameters will lead to different emulation perfor-
mance, thus, how to select the best hyperparameter set with respect to a given
training data set is still worth exploring. Usually, the “trial and error” is used
to achieve this target (Tian et al., 2019), but we believe that the posterior distri-
bution of hyperparameters will be able to provide a better method for selecting
hyperparameters (Liao et al., 2020). More researches will be given in our future
studies.
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Table 9. The performance of KEDMD with different kernel functions

MSE NSE
Test rain1 Polynomial kernel 2.739 0.945

Lapacian kernel 0.808 0.995
Chi-squared kernel 0.935 0.994

Test rain2 Polynomial kernel 17.752 -1.585
Lapacian kernel 1.448 0.983
Chi-squared kernel 1.139 0.989

Test rain3 Polynomial kernel 10.787 0.136
Lapacian kernel 0.992 0.993
Chi-squared kernel 1.076 0.991

Test rain4 Polynomial kernel 3.866 0.707
Lapacian kernel 1.726 0.942
Chi-squared kernel 1.200 0.972

Table 10. The performance of DLEDMD with different architectures, where N
is the dimension of observable or dynamic variable.

MSE NSE
Test rain1 N-10-N 1.356 0.987

N-10-10-N 0.790 0.995
N-10-10-10-N 0.781 0.996

Test rain2 N-10-N 1.431 0.983
N-10-10-N 0.903 0.993
N-10-10-10-N 0.919 0.993

Test rain3 N-10-N 1.677 0.979
N-10-10-N 1.275 0.988
N-10-10-10-N 0.949 0.993

Test rain4 N-10-N 1.492 0.956
N-10-10-N 1.011 0.980
N-10-10-10-N 1.033 0.979

1. Training data

We test KEDMD and DLEDMD under different training and testing data. First,
we use Eq.20 with different parameter P to provide 4 rainfall data and sent
them into the SWMM to obtain 4 set of simulation results. In this case, other
parameters of Eq.20 are fixed, and all the 8 pumps are replaced as pipeline.
Then, we use the simulation results given by the rainfall with P=1 as training
data to train the DLEDMD and KEDMD. After that, these trained emulators
are used to emulate other three rainfalls which have P=3, 5, 10. The MSE and
NSE of all emulations are provided in Table 11, from which we can see that their
MSE increase with the parameter P and their NSE decrease with the parameter
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P, indicating that the performance of Koopman emulators in UDS is related to
the similarity between training data and test data. That is, a trained Koopman
emulator will achieve better emulation if the test data is similar to its training
data. From this viewpoint, we believe that using different types of rainfall data
to provide “rich” training data set is a reasonable solution and is already used
in the above test. More details and theoretical analysis will be provided in our
future research.

Table 11. MSE and NSE of RLs under different parameter P.

P
KEDMD
DLEDMD

MSE NSE MSE NSE MSE NSE MSE NSE

1. Conclusion

Although model-based RL achieved a milestone of urban water management in
the direction of the smart city, some problems still exit, including large demand
of computing time, low efficiency of data usage, and zero noise training environ-
ment. To address these problems, a model-free framework is provided through
Koopman emulators to (i) reduce the training time, (ii) improve the efficiency
of data usage, and (iii) provide a training environment with certain random-
ness. Specifically, we take the advantage of the nonlinear emulation capability
of Koopman emulator and the equalization between observable’s dimension and
RL’s state to achieve faster RL training process and efficient data usage. Mean-
while, since the emulator is simplified model, its error and noise are able to
provide randomness for RL training process. According to the results, several
conclusions can be given:

1. Compared with model-based RLs, the model-free framework achieves a
similar control effect with a 20 to 23 times faster training process and
79.67 times higher efficiency of data usage. Also, it provides a training
environment with some randomness.

2. Slight perturbation which does not statistically change the control system
in training and testing process will not leverage the control effect of both
model-based and model-free RLs.

3. The Koopman emulators is able to be used as the surrogate model of UDS.
Their performances are related to the hyperparameters and the similarity
between training data and test data.
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