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Abstract

Ozone (O3) is an important trace and greenhouse gas in the atmosphere yet, and it threatens the ecological environment and

human health at the ground level. Large-scale and long-term studies of O3 pollution in China are few due to highly limited

direct measurements whose accuracy and density vary considerably. To overcome these limitations, we employed the ensemble

learning method of the extremely randomized trees model by utilizing the spatiotemporal information of a large number of input

variables from ground-based observations, remote sensing, atmospheric reanalysis, and model simulation products to estimate

ground-level O3. This method yields uniform, long-term and continuous spatiotemporal information of daily maximum eight-

hour average (MDA8) O3 over China (called ChinaHighO3) from 2013 to 2020 at a 10 km resolution without any missing values

(spatial coverage = 100%). Evaluation against observations indicates that our O3 estimations and predictions are reliable

with an average out-of-sample (out-of-station) coefficient of determination (CV-R2) of 0.87 (0.80) and root-mean-square error

of 17.10 (21.10) μg/m3 [units here are at standard conditions (273K, 1013hPa)], and are also robust at varying spatial and

temporal scales in China. This high-quality and full-coverage O3 dataset allows us to investigate the exposure and trends in O3

pollution at both long- and short-term scales. Trends in O3 concentrations varied substantially but showed an average growth

rate of 2.49 μg/m3/yr (p < 0.001) from 2013 to 2020 in China. Most areas show an increasing trend since 2015, especially in

summer ozone over the North China Plain. Our dataset accurately captured a recent national and regional O3 pollution event

from 23 April to 8 May in 2020. Rapid increase and recovery of O3 concentrations associated with variations in anthropogenic

emissions were seen during and after the COVID-19 lockdown, respectively. This carefully vetted and smoothed dataset is

valuable for studies on air pollution and environmental health in China.
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Abstract 23 

Ozone (O3) is an important trace and greenhouse gas in the atmosphere yet, and it threatens the 24 

ecological environment and human health at the ground level. Large-scale and long-term studies of 25 

O3 pollution in China are few due to highly limited direct measurements whose accuracy and 26 

density vary considerably. To overcome these limitations, we employed the ensemble learning 27 

method of the extremely randomized trees model by utilizing the spatiotemporal information of a 28 

large number of input variables from ground-based observations, remote sensing, atmospheric 29 

reanalysis, and model simulation products to estimate ground-level O3. This method yields uniform, 30 

long-term and continuous spatiotemporal information of daily maximum eight-hour average 31 

(MDA8) O3 over China (called ChinaHighO3) from 2013 to 2020 at a 10 km resolution without any 32 

missing values (spatial coverage = 100%). Evaluation against observations indicates that our O3 33 

estimations and predictions are reliable with an average out-of-sample (out-of-station) coefficient of 34 

determination (CV-R2) of 0.87 (0.80) and root-mean-square error of 17.10 (21.10) µg/m3 [units here 35 

are at standard conditions (273K, 1013hPa)], and are also robust at varying spatial and temporal 36 

scales in China. This high-quality and full-coverage O3 dataset allows us to investigate the exposure 37 

and trends in O3 pollution at both long- and short-term scales. Trends in O3 concentrations varied 38 

substantially but showed an average growth rate of 2.49 μg/m3/yr (p < 0.001) from 2013 to 2020 in 39 

China. Most areas show an increasing trend since 2015, especially in summer ozone over the North 40 

China Plain. Our dataset accurately captured a recent national and regional O3 pollution event from 41 

23 April to 8 May in 2020. Rapid increase and recovery of O3 concentrations associated with 42 

variations in anthropogenic emissions were seen during and after the COVID-19 lockdown, 43 

respectively. This carefully vetted and smoothed dataset is valuable for studies on air pollution and 44 

environmental health in China. 45 

 46 
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1. Introduction 49 

Ozone (O3) is an important atmospheric trace gas, where O3 in the stratosphere plays a crucial role 50 

in absorbing ultraviolet rays, protecting the environment and humans. Tropospheric O3 (< 12 km 51 

above the ground) is mainly produced by anthropogenic activity and affects radiative forcing at 52 

global scale with implications on climate change (Sinha et al., 1997; Chen et al., 2007; Shindell et 53 

al., 2013; Checa-Garcia et al., 2018; Gaudel et al., 2018). Exposure to high surface O3 is highly 54 

related to increased human health risks, including cardiovascular and respiratory disease (Bell et al., 55 

2004; Turner et al., 2015; Lim et al., 2019). It also affects the ecosystem and agricultural 56 

production, e.g., inhibiting plant growth, promoting leaf senescence, and affecting crop yields (Sitch 57 

et al., 2007; Ainsworth et al., 2012; Rai and Agrawal, 2012; Mills et al., 2018). 58 

Since the middle of the 20th century, many countries around the world have observed tropospheric 59 

and ground-level O3. In 2013, the Chinese Ministry of Environment and Ecology (MEE) established 60 

a national air quality observation network to monitor real-time O3, particulate matters (PM), and 61 

other near-surface air pollutants (MEE, 2018). However, the construction and maintenance of 62 

ground networks require a lot of manpower and material resources, and as such, monitoring stations 63 

are sparsely distributed. Satellite remote sensing can make up for such deficiency by providing 64 

spatially continuous atmospheric O3 distributions. The OMI/Aura satellite, launched in 2004, 65 

provides a variety of widely-used daily, global-coverage trace gas products (e.g., O3, NO2, and 66 

SO2). Existing techniques from space mainly provide the total column O3, tropospheric O3, and 67 

ozone profiles at different vertical ranges (Liu et al., 2010; Huang et al., 2018; Ziemke et al., 2006). 68 

Near-surface O3 typically accounts only for a few percent of total column O3, and the retrieval 69 

sensitivity to near-surface O3 from ultraviolet measurements is limited. In some cases, tropospheric 70 

totals can be helpful for understanding global and regional scale features, but values for ozone in 71 

the planetary boundary layer are challenging and at exposure heights (~2 m) even more so. Thus, it 72 

is particularly difficult to extract the near-surface O3 from satellite measurements. 73 

In recent years, great effort has been made to estimate near-surface O3 concentrations using three 74 

main methodologies: chemical transport models, statistical models, and artificial intelligence. 75 

Chemical transport methods mainly use mature models, e.g., WRF-Chem, CMAQ, and GEOS-76 

Chem, to simulate the O3 at the ground level by considering chemical reactions and transport of air 77 
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pollutants (Di et al., 2017; Hu et al., 2016; Qiao et al., 2019; Wang et al., 2015, 2016). Statistical 78 

models fit the relationships between the measured air pollution and their potential influence factors 79 

(e.g., satellite retrievals, precursors, and meteorology) by applying different regression methods, 80 

such as Land Use Regression (LUR; Beelen et al., 2009; Huang et al., 2017; Kerckhoffs et al., 81 

2015; Song et al., 2018), Bayesian maximum entropy (BME; Adam-Poupart et al., 2014; Chen et 82 

al., 2020), generalized additive model (GAM; Li et al., 2020b), and geographically weighted 83 

regression (GWR, Zhang et al., 2020). Artificial intelligence, i.e., machine and deep learning, 84 

allows to obtain more accurate parameter estimates by mining valuable information from big data 85 

using different methods, e.g., neural networks (Di et al., 2017), random forests (RF; Li et al., 2020b; 86 

Zhan et al., 2018), and XGBoost (Liu et al., 2020). 87 

In general, chemical/numerical methods can provide high spatiotemporal coverage of near-surface 88 

O3 simulations but are computationally intensive. Predictions with any chemical mechanism are 89 

sensitive in nonlinear ways to emissions and meteorology. Statistical models have been widely 90 

adopted because of their simplicity and rapidity, but they are sensitive to outliers, and easily 91 

affected by collinear variables, leading to poor estimates. Artificial intelligence has become very 92 

popular recently due to its strong data mining ability, but they are always directly applied and 93 

neglect the spatiotemporal heterogeneity of air pollution. Most past related studies are limited by 94 

input data sources, e.g., satellite total column gas products (e.g., OMI/Aura) with missing values, 95 

and meteorological products, e.g., NCEP, MERRA2, and ERA-Interim, at low spatiotemporal 96 

resolutions (e.g., 3–6 h, 0.25°–0.625°). 97 

Over the years, due to implemented environmental protection and control measures, PM pollution 98 

has decreased significantly (Zhang et al., 2019; Wang et al., 2020; Wei et al., 2021a), but O3 99 

pollution increased in China (Wang, et al., 2017; Lu et al., 2018; Li et al., 2019; Wang, 2020), 100 

attracting the major public health concern (Shen et al., 2019). Compared with PM studies, research 101 

on ground-level O3 is more meager for China. Therefore, aimed at addressing the above problems, 102 

according to the idea of ensemble learning and considering the spatiotemporal variations in O3 103 

pollution, we extended a space-time extremely randomized trees (STET) model to derive the daily 104 

ground-level O3 with full spatial coverage at a resolution of 10 km from 2013 to 2020 in China. 105 

Subsequently, we have tested the reliability of our O3 retrievals at different spatial and temporal 106 
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scales and investigated the short-term (i.e., on a daily basis) and long-term (i.e., multi-year time 107 

series) exposure and trends in O3 pollution across China. 108 

 109 

2. Materials and methods 110 

2.1 Data sources 111 

2.1.1 MEE network O3 observations 112 

Used are hourly ground-based O3 concentrations [in µg/m3 at standard conditions (273K, 1013hPa)] 113 

collected by MEE across mainland China starting from an initial ~940 monitoring stations in 2013 114 

and ending with ~1630 stations by 2020 (Figure S1). We first removed invalid values and abnormal 115 

values due to instrument calibration issues (Guo et al., 2009). More importantly, since 31 August 116 

2018, the reference state of gas observations was changed from the standard condition (i.e., 273 K 117 

and 1013 hPa) to room temperature and pressure (i.e., 298 K and 1013 hPa). The new 118 

measurements of O3 concentrations (in µg/m3) are thus correspondingly rescaled by a factor of 119 

1.09375 (MEE, 2018). For data presented here, 1 µg/m3 is equivalent to 0.467 ppbv. Additionally, 120 

we averaged maximum O3 concentrations over eight hours in a day to obtain MDA8 O3 values at 121 

each station in China for each year from January 1 2013 to December 31 2020.  122 

 123 

2.1.2 Potential factors affecting surface O3 124 

Surface O3, a secondary air pollutant, is the characteristic product of complex photochemical 125 

reactions affected by numerous natural and human factors. Most satellites (e.g., OMI) provide only 126 

the total-column or tropospheric O3 retrievals, rather than lower tropospheric O3 where there are 127 

large differences in O3 content. Long-term satellite O3 products with high spatial resolutions are 128 

rarely available, and these satellite retrievals have numerous missing values. In our study, we 129 

provide a new approach for estimating high-resolution surface O3 with full coverage by using two 130 

crucial meteorological parameters, namely, solar radiation intensity and surface temperature 131 

(Bloomer et al., 2009; Lee et al., 2014; Li et al., 2020).  132 

Atmospheric reanalysis. Available surface downward solar radiation (DSR) and air temperature 133 

(TEM) are used for ground-level O3 estimation. Other meteorological variables can also affect O3, 134 

e.g., an increase in relative humidity (RH) and surface pressure (SP) can pose diverse effects on O3 135 
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concentrations in the lower troposphere (Taubman et al., 2006; Loughner et al., 2011; He et al., 136 

2017). A change in planetary boundary layer height (BLH) can have variable impacts on O3 137 

pollution (Sánchez-Ccoyllo et al., 2006; Dickerson et al., 2007; Ma et al., 2011; Goldberg et al., 138 

2014; Benish et al., 2020). Winds, i.e., horizontal (WU) and vertical (WV) components, can affect 139 

the transport of O3 and produce high O3 levels in the downwind direction (Dickerson et al., 2007; 140 

Duan et al., 2008; Ma et al., 2011; Benish et al., 2020). Precipitation (PRE) and evaporation (ET) 141 

can also influence O3 pollution by affecting mixing and photolysis rates (Dickerson et al., 1997; 142 

Meleux et al., 2007). The above-nine daily meteorological variables were chosen from the latest 143 

released hourly ERA5 reanalysis data at a high spatial resolution reaching up to 0.1° × 0.1° (C3S, 144 

2017). The spatiotemporal resolution of ERA5 reanalysis is higher than from other atmospheric 145 

reanalysis products (e.g., NCEP and MERRA2) used in previous studies (Di et al., 2017; Li et al, 146 

2020b; Liu et al., 2020; Zhan et al., 2018). 147 

Satellite remote sensing products. Remote sensing measurements of OMI/Aura total-column O3 148 

products (Pawan, 2012) are also considered. NO2 concentrations may have large impacts on O3; 149 

thus OMI/Aura tropospheric NO2 products (Nickolay et al., 2019) are utilized. LandScanTM product 150 

is also selected to provide the population distribution (POP), and MODIS land cover type (LUC) 151 

and NDVI products, and SRTM DEM data are employed to describe the land-use and terrain 152 

changes across China. 153 

Model simulations. Anthropogenic emissions from fossil fuel combustion, industrial production, 154 

and vehicle exhaust are precursors affecting the formation of surface O3 concentrations (Li et al., 155 

2020). Therefore, the direct emissions of three main O3 precursors, i.e., NOx, VOCs, and CO, are 156 

provided by the Multiresolution Emission Inventory for China (MEIC) (Li et al., 2017; Zheng et al., 157 

2018) are used. 158 

Table 1 summarizes the ground-based, satellite remote sensing, atmospheric reanalysis, and model 159 

data used in this study. Except for meteorological conditions, the spatiotemporal resolutions of other 160 

auxiliary data are coarser than our targeted model resolution. The coarser-spatial-resolution 161 

variables (e.g., emissions and NO2) have smaller variations in space than meteorological variables, 162 

while they (e.g., DEM, LUC, and POP) change little over time. In addition, they are generally less 163 

important than two main predictors (i.e., DSR and TEM) in estimating surface O3 (Figure 1). 164 
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Therefore, similar to previous studies (Zhan et al., 2018; Liu et al., 2020; Zhang et al., 2020; Wei et 165 

al., 2021b), all the finer and coarser-resolution auxiliary data are resampled (regrided) to the same 166 

spatial resolution of 0.1°×0.1° using the bilinear interpolation approach, and the same time interval. 167 

 168 

[Please insert Table 1 here] 169 

 170 

2.2 Space-Time Extra-Trees modeling 171 

In this study, a space-time Extra-Trees (STET) model is extended for estimating the ground-level O3 172 

concentrations (Wei et al., 2021a). It is based on the ensemble learning named the extremely 173 

randomized trees (extra-trees, or ERT) (Geurts et al., 2006). 174 

 175 

2.2.1 Model training 176 

First, all the selected factors with potential effects on surface O3 are input to the ERT model for 177 

model training. This, to quantitatively evaluate the contribution of each variable on O3 to see if 178 

further model adjustments are needed by removing redundant variables. Four main steps are 179 

followed: 180 

1) A training and validation dataset (N) is generated by collocating the surface O3 measurements, 181 

satellite data, meteorological variables, and model emissions at each surface monitor for each 182 

day in one year. Then the entire training dataset is used to construct each decision tree. 183 

2) For each binary tree, a random split (S, a) is first generated according to the surface O3 184 

measurements by randomly selecting one arbitrary number (ac) between the maximum (amax) 185 

and the minimum (amin) value; next, the training samples are randomly assigned to two 186 

branches. 187 

3) All the auxiliary feature attributes (a1, …, ak) in the node are traversed to get the bifurcation 188 

values (s1, …, sk) for all feature attributes based on the Gini index (Jiang et al., 2009). Then the 189 

best split (s*) is determined when satisfying the scoring function: score(s*, S) = max[Score(si, 190 

S)] (Geurts et al., 2006). 191 

4) A decision tree is established using the CART algorithm (Breiman et al., 1984), and then 192 

thousands of decision trees are constructed by repeating the above steps. Last, all the weak 193 
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classifiers are combined to form a strong classifier, i.e., extremely randomized trees, allowing 194 

parallel processing. 195 

The ERT model enables us to evaluate the importance of each independent variable for surface O3 196 

estimation, named the importance score, calculated according to the Gini index (GI). It normalized 197 

the cumulative changes of GIs before and after node branching for each feature during the model 198 

training (Jiang et al., 2009). The higher this score, the more important this feature in the decision-199 

tree construction. The variables with high scores make great contributions to the model 200 

performance; by contrast, low-score variables may pose small effects on the model or even bring 201 

redundant information (Wei et al., 2020, 2021a). Variables with an importance score of less than 1% 202 

are eliminated from the model to improve its efficiency and avoid overfitting caused by redundant 203 

input variables. 204 

Per our analysis of each feature importance, DSR and TEM are the two most important variables for 205 

model construction, with high importance scores of 32% and 14%, respectively (Figure 1). Satellite 206 

OMI NO2 and O3 products are also highly valuable with importance scores of 6% and 5%; but they 207 

can only provide trace gas information of the troposphere and the whole atmosphere. Other 208 

meteorological variables (especially ET and RH), and two land-related variables (i.e., DEM and 209 

NDVI) also have significant impacts on O3 estimates with importance scores from 2% to 7%. The 210 

emissions of three main O3 precursors (i.e., NOx, VOCs, and CO) have influences on the model, 211 

with importance scores of about 2%. In general, all 18 selected independent variables have an 212 

impact with importance scores > 1.5%, which cannot be neglected, and are kept in the model. 213 

 214 

[Please insert Figure 1 here] 215 

 216 

2.2.2 Model extension 217 

In the second stage, we extended a STET model for surface O3 estimation by considering the 218 

autocorrelation of O3 pollution in space and its differences in time series using the original ERT 219 

model (Wei et al., 2021a). The position of one point in space is expressed by its longitude and 220 

latitude and the Haversine great-circle distances to the four corners and the center of the study 221 

region (i.e., 73.6°E-134.8°E, 15.8°N-53.7°N). The time is expressed by the day of the year (DOY), 222 
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set to identify each raw data record on each day under different air pollution conditions. The above-223 

mentioned independent variables, along with space and time terms, are input into the model to build 224 

a robust ground-level O3 estimation specific to China. 225 

 226 

2.3 Validation method 227 

In this study, the out-of-sample (sample-based) 10-fold cross-validation (10-CV) method, which has 228 

been widely adopted, is selected to test the overall model performance in near-surface O3 estimates 229 

(Di et al., 2017; Li et al., 2020b; Liu et al., 2020; Zhan et al., 2018). It stipulates that all data 230 

samples are first randomly divided into 10 groups, of which 9 groups (i.e., 90% of the samples) are 231 

used for model training, and the rest (i.e., 10% of the samples) are used for model validation. This 232 

operation runs 10 times to ensure that samples have been all tested (Rodriguez et al., 2010). 233 

Furthermore, an additional out-of-station (station-based) 10-CV method is employed to test the 234 

spatial prediction ability of the model in areas without ground-based measurements (Li et al., 2017; 235 

Wei et al., 2020; Wu et al., 2021). It is performed using the ground-based O3 monitoring stations; 236 

the monitors are randomly divided into 10 groups, of which the data samples from 9 groups (i.e., 237 

90% of the monitors) and the rest one group (i.e., 10% of the monitors) are employed for model 238 

training and validation. Thus, the training and validation samples are composed of data samples 239 

collected at different locations in space. This method enables us to evaluate the prediction accuracy 240 

of the model at locations where ground-based O3 measurements are unavailable. 241 

In addition, several main statistical metrics are used, including the ordinary least squares (OLS, 242 

Zdaniuk, 2014) regression (e.g., slope and intercept), coefficient of determination (R2), root-mean-243 

square error (RMSE), mean absolute error (MAE), and mean relative error (MRE). Deseasonalized 244 

O3 monthly anomalies are adopted to calculate the temporal trends (Wei et al., 2019b) and used to 245 

analyze the long-term spatiotemporal variations in O3 pollution across China. Figure 2 illustrates the 246 

flowchart of the mapping process of the ChinaHighO3 dataset in our study. 247 

 248 

[Please insert Figure 2 here] 249 

 250 

3. Results and discussion 251 
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In this study, using ground-based observations, satellite remote sensing data, atmospheric reanalysis 252 

products, and model simulations, we have generated a full-coverage and high-quality near-surface 253 

O3 dataset in China (i.e., ChinaHighO3) at a 10 km resolution using the STET model. This dataset 254 

was released on 30 December 2020 (DOI: 10.5281/zenodo.4400043) and is constantly updated. The 255 

ChinaHighO3 dataset includes daily MDA8 O3 maps from 1 January 2013 to 31 December 2020. It 256 

overcomes the problem of missing data in optical remote sensing products caused by cloud 257 

contamination and can provide full-coverage ground-level O3 distributions over China (i.e., 16–258 

54°N, 74–135°E). Monthly, seasonal, and annual MDA8 O3 maps from 2013 to 2020 are also 259 

available (Table S1). 260 

 261 

3.1 Accuracy assessment 262 

3.1.1 Overall model performance 263 

First, we validate the overall performance of the developed model using the out-of-sample approach 264 

at different spatial scales. Collocated are more than 3.5 million data samples (N = 3,567,344) from 265 

2013 to 2020 over China. The MDA8 O3 estimates are highly consistent (CV-R2 = 0.87) with the 266 

surface measurements, the slope, and y-intercept equal to 0.87 and 11.8 µg/m3 (Figure 3). The mean 267 

RMSE, MAE, and MRE values are 17.10 µg/m3, 11.29 µg/m3, and 18.38%, respectively, over the 268 

entire domain. Note that the overall accuracy of O3 estimates has been significantly improved 269 

compared to results derived from the original ERT model (i.e., CV-R2 = 0.78, slope = 0.81, RMSE = 270 

22.39 µg/m3, and MAE = 14.88 µg/m3) (Geurts et al., 2006). This confirms the necessity for 271 

spatiotemporal information on O3 pollution.  272 

 273 

[Please insert Figure 3 here] 274 

 275 

The model performance for each separate year (Table 2) was also evaluated. The overall accuracy 276 

of the MDA8 O3 estimates in the years since 2017 (i.e., out-of-sample CV-R2 = 0.89–0.93, RMSE = 277 

11.9–15.6 µg/m3, MAE = 7.9–10.8 µg/m3, and MRE = 10.3–15.0%) is generally better than that of 278 

the previous years (i.e., out-of-sample CV-R2 = 0.79–0.82, RMSE = 19.1–22.4 µg/m3, MAE = 279 

12.9–14.9 µg/m3, and MRE = 21.4–31.8%). The main reasons being the continuous increase in 280 
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density of the monitoring stations resulted in a sharp increase in the number of data samples (Wei et 281 

al., 2021a) and the instrument improvements and quality control upgrades. As shown, our model 282 

works well over the study period and for individual years over the study domain. 283 

 284 

[Please insert Table 2 here] 285 

 286 

Further tested was the model performance in typical regions in China (Figure 3b-f). The model 287 

works best over the Beijing-Tianjin-Hebei (BTH) region and the North China Plain (NCP) with out-288 

of-sample CV-R2 values of 0.91 and 0.89, respectively, and slopes from linear regression closest to 289 

1.0 (0.91 and 0.89, respectively). The model performance is slightly poorer (e.g., CV-R2 = 0.85–290 

0.86, and slope = 0.84–0.86) in the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and 291 

the Sichuan Basin (SCB). Overall, the model uncertainty is generally small and stable with small 292 

differences (e.g., RMSE = 18.9–21.3 µg/m3, MAE = 12.1–13.6 µg/m3, and MRE = 17.6–24.7%). 293 

These results suggest the varying robustness of our model at the regional scale in China, stemming 294 

chiefly from variable input parameters in terms of their density and accuracy. 295 

On the individual-station scale (Figure 4), the sample size varies from site to site due to differences 296 

in the observational record and the number of useful data samples from 2013 to 2020. Except for a 297 

few stations established later during the study period, most stations have sufficient data samples 298 

(Figure S2a), with an average sample size (N) of 2230 and with more than 83% of the stations 299 

having at least 5 years of data samples (i.e., N > 1825). In terms of model accuracy, CV-R2 values 300 

exceed 0.8 at ~83% of the stations, especially those located in central and eastern China (CV-R2 > 301 

0.9). In terms of model uncertainty, except for a few individual stations, ~83% of the stations have 302 

RMSE values < 21 µg/m3, ~88% have MAE values < 15 µg/m3, and ~85% have MRE values < 303 

25%. Overall, our model performs well at the station scale, with average CV-R2, RMSE, MAE, and 304 

MRE values of 0.86, 16.48 µg/m3, 11.23 µg/m3, and 18.36%, respectively. 305 

 306 

[Please insert Figure 4 here] 307 

 308 
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3.1.2 Spatial prediction capability 309 

Next, we focus on evaluating the spatial ability of our model to predict surface O3 using the out-of-310 

station approach at varying spatial scales. On the entire domain scale, our surface O3 predictions are 311 

well correlated to the observations (e.g., CV-R2 = 0.80, slope = 0.84) with a mean RMSE, MAE, 312 

and MRE values of 21.10 µg/m3, 13.87 µg/m3, and 23.18% (Figure 5a), which are a somewhat 313 

lower than the out-of-sample validation results (Figure 3a), indicating a strong spatial prediction 314 

ability. In addition, the spatial prediction ability of the model gradually increases over the years 315 

(Table 2). 316 

On the regional scale, the prediction ability of the model varies differently (Figure 5b-f), where 317 

better surface O3 predictions were observed in the BTH (e.g., CV-R2 = 0.87, RMSE = 21.51 µg/m3) 318 

and NCP (e.g., CV-R2 = 0.84, RMSE = 21.99 µg/m3) regions, while the opposite relatively less 319 

accurate predictions were observed in the YRD, SCB, and PRD regions (e.g., CV-R2 < 0.80, 320 

RMSE > 22.6 µg/m3). In comparison with the out-of-sample results (Figure 3b-f), the accuracy has 321 

not changed too much; nevertheless, the evaluation metrics of the former two regions declined 322 

slightly less than the other three regions. This is mainly caused by the differences in the density of 323 

monitoring stations among the regions. 324 

 325 

[Please insert Figure 5 here] 326 

 327 

Furthermore, the spatial prediction ability of the model shows spatial differences on the individual-328 

station scale (Figure 6). The prediction accuracy of surface O3 concentrations are poor with large 329 

estimated uncertainties (e.g., CV-R2 < 0.5, RMSE > 24 µg/m3, MAE > 18 µg/m3, and MRE > 25%) 330 

in most stations located in western China. By contrast, the model has a strong prediction ability in 331 

most stations in eastern China with high CV-R2 values > 0.8, and small RMSE MAE, and MRE 332 

values < 18, 12 µg/m3, and 15%, respectively. Because the number of monitors is smaller in western 333 

China; moreover, the natural and human conditions are largely different from eastern China. For 334 

locations that have never had air pollution monitoring, such as remote desert and plateau areas, the 335 

uncertainty in the model predictions can be larger. It can only be truly quantified when new 336 

observations become available. In general, ~80%, 78%, 86% and 70% of the stations have CV-R2, 337 
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RMSE, MAE, and MRE values > 0.7, < 24 µg/m3, 18 µg/m3, and 25%, showing an average value of 338 

0.79, 20.08 µg/m3, 13.82 µg/m3, and 23.17%, respectively.  339 

 340 

[Please insert Figure 6 here] 341 

 342 

3.1.3 Temporal-scale validation 343 

Subsequently, we plot the time series of model performance in daily O3 estimates during 2013-2020 344 

(Figure 7). The daily sample size is large, ranging from 8003 to 10,060, with an average of 9766 345 

and remains unchanged for a long period in particular (Figure S2b). This is due to the unique 346 

advantage of full coverage of our ChinaHighO3 dataset across China. While the performance varies 347 

somewhat with the season, the magnitudes of the changes are rather moderate throughout the year, 348 

with CV-R2s ranging from 0.69 to 0.89 (average = 0.81), exceeding 0.75 at about 88% of the days in 349 

a year. The absolute uncertainties (i.e., RMSE and MAE) of the ozone estimation have apparent 350 

seasonal variations, i.e., low in spring and winter, but high in summer (Fig. 7c-d); by contrast, the 351 

relative uncertainty (MRE) shows an opposite seasonal variation (Fig.7d). Surface MDA8 O3 352 

concentrations are relatively high in summer in most mid-latitude regions of China (Gong et al., 353 

2018). The reason for the larger errors in summer is the greater diurnal cycles and variations in 354 

summer ozone, where the averaged variables used in the model may not reflect the conditions 355 

associated with high O3 content in the afternoon, while the observations are likely driven by the 356 

afternoon peaks. In general, average RMSE, MAE, and MRE values are 18.82 µg/m3, 11.27 µg/m3, 357 

and 18.42%, and < 20, 15 µg/m3, 20% on ~86%, and 99%, and 75% of the days, respectively. 358 

 359 

[Please insert Figure 7 here] 360 

 361 

The monthly mean MDA8 O3 estimates for each year are also evaluated (Figure 8). High accuracy 362 

is seen, with strong slopes from linear regression of 0.83~0.97, high R2 values of 0.86~0.97, and 363 

small uncertainties with RMSE and MAE (MRE) values ranging from 5.5 and 4.0 µg/m3 (4.4%) to 364 

13.4 and 9.0 µg/m3 (13.8%) among different years. In general, the data quality of the monthly O3 365 

estimates (N = 119,194) is reliable (e.g., R2 = 0.93, RMSE = 9.42 µg/m3, MAE = 6.91 µg/m3, and 366 



14 

 

MRE = 8.56%) during the entire study period of 2013–2020. This allows us to accurately analyze 367 

the spatial and temporal distributions of and variations in O3 pollution in China. 368 

 369 

[Please insert Figure 8 here] 370 

 371 

3.2 Spatiotemporal surface O3 variations 372 

3.2.1 Spatial coverage and distribution 373 

Figure 9 presents two typical examples of MDA8 O3 maps on 18 June and 11 November 2019 and 374 

the annual map for 2019 in China. This dataset can uniquely capture MDA8 O3 concentrations 375 

anywhere in the country (i.e., spatial coverage = 100%) on any given day. In general, the O3 376 

concentration is particularly high (> 150 µg/m3) in northern China and much lower (< 80 µg/m3) in 377 

southern China on 18 June 2019 (average = 118.7 ± 36.1 µg/m3). High emissions of three main O3 378 

precursors (i.e., NOx, VOCs, and CO) are mainly observed in eastern China, especially the NCP 379 

(Figure S3). In general, about 2% differences in surface O3 concentrations between northern and 380 

southern China are derived by the emissions on this day. A completely different situation was 381 

observed on 11 November 2019 (average = 77.9 ± 24.6 µg/m3). On an annual scale, differences in 382 

O3 distribution between northern and southern China in 2019 decreased, with an average level of 383 

98.3 ± 11.3 µg/m3. The great differences in surface O3 concentrations between Northern and 384 

Southern China on different days are mainly dominated by differences in sunlight and ozone 385 

chemical formation during different seasons. A comparison with ground-based observations shows 386 

highly consistent spatial patterns on both daily and annual scales across China. As such, these 387 

results illustrate that spatially continuous O3 data, which is important for those places without 388 

monitoring stations, can be provided. 389 

 390 

[Please insert Figure 9 here] 391 

 392 

Figure 10 shows mean MDA8 O3 maps for different seasons from 2013 to 2020 across China. As 393 

evident, O3 concentrations change significantly on a seasonal scale; they are extremely high in 394 

summer (average = 103.6 ± 18.0 µg/m3), especially in the NCP (average = 138.8 ± 13.5 µg/m3). 395 

Followed by spring (average = 99.4 ± 9.2 µg/m3). By contrast, winter yields much lower O3 396 
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concentrations in China (average = 69.9 ± 7.7 µg/m3), especially the BTH (average = 55.4 ± 7.6 397 

µg/m3). The spatial pattern of O3 in autumn (average = 80.9 ± 10.1 µg/m3) is similar but generally 398 

higher than that in winter across China, especially in southeastern areas (Table S2). Figure S4 399 

shows zoomed-in summer mean O3 maps for four key regions in China. The ChinaHighO3 dataset 400 

can reflect and describe well the distribution and variation in ozone pollution at the local, even 401 

urban scales due to its high spatial resolution of 10 km. All four typical regions experience different 402 

degrees of O3 pollution in summer, especially the BTH (average = 142.9 ± 14.5 µg/m3) and YRD 403 

(average = 113.9 ± 13.7 µg/m3) regions. 404 

 405 

[Please insert Figure 10 here] 406 

 407 

3.2.2 A short-term severe O3 pollution event 408 

We closely examined a severe surface O3 pollution episode that occurred from 23 April to 8 May in 409 

2020 in eastern China (Figure 11). Before 25 April, O3 was at a low level across the whole country, 410 

then gradually increased. On 28 April, the O3 levels at BTH and all surrounding “2+26” cities 411 

(Figure S1) had exceeded the ambient air quality standard, i.e., MDA8 O3 = 160 µg/m3 (Figure S5). 412 

More severe O3 pollution occurred in most other areas on 29 April, with a maximum value of 124.0 413 

± 30.2 µg/m3 and 181.0 ± 17.8 µg/m3 in China and YRD (Figure S6). On 30 April, BTH 414 

experienced the maximum level of O3 pollution (average = 232.1 ± 47.2 µg/m3), and remained high 415 

till 2 May, when > 50% of the cities in China exceeded the daily ozone standard. The air quality 416 

was significantly improved in northern BTH starting on 3 May, but central and southern China still 417 

suffered from light to moderate pollution, with some cities experiencing severe pollution. This 418 

national heavy pollution event lasted for nearly a week. 419 

Surface O3 concentrations were generally low in SCB before 25 April, and gradually formed into 420 

regional pollution on 26 April, when the Chengdu Plain and southern and northeast Sichuan were 421 

polluted to varying degrees. By 28 April, most cities exceeded the ambient air quality standard; 422 

Pingyuan and southern Sichuan were heavily polluted, and the O3 concentrations remained high and 423 

reached the maximum on 3 May with an average value of 184.3 ± 29.8 µg/m3 in SCB (Figure S6). 424 

On 6 May, the polluted air moved southward, gradually decreasing in the pollution intensity. After 7 425 

May, accompanied by cooling and precipitation, this episode of ozone pollution ended, and the air 426 
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quality changed to good or excellent. This episode of severe regional pollution lasted for about 11 427 

days, the first severe ozone pollution event with a long duration and wide coverage in Sichuan 428 

province since the start of 2020.  429 

 430 

[Please insert Figure 11 here] 431 

 432 

3.2.3 Changes during the COVID-19 pandemic 433 

Coronavirus (COVID-19) broke out in Wuhan, Hubei Province at the end of 2019, and quickly 434 

spread to the whole country due mainly to the Spring Festival (WHO, 2020; Zu et al., 2020). To 435 

prevent the further spread of COVID-19, the entire Hubei Province was on lockdown starting at 436 

10am on 23 January 2020, soon followed by almost all other major cities in China, which lasted 437 

about three weeks (Su et al., 2020; Tian et al., 2020). To gain further insight of the ozone changes 438 

associated with the COVID-19, O3 changes in China are examined before (Period 1: 1–25 January), 439 

during (Period 2: 26 January to 17 February), and after (Period 3: 18 February to 31 March) the 440 

COVID-19 outbreak. Considering the increase in O3 in recent years, only compared are the relative 441 

difference in O3 concentrations across eastern China between 2020 and 2019 during the three 442 

periods (Figure 12). 443 

Before the COVID-19 outbreak, O3 concentrations remained near the historical values with relative 444 

changes within ± 10%. During the lockdown, significant increases in O3 concentrations were seen 445 

in most parts of eastern China, especially in Hubei Province and its surrounding areas, showing a 446 

relative change > 40%. In contrast, an opposite decline in O3 concentrations was observed in the 447 

PRD, mainly caused by the sharp decline in NOx emissions after the lockdown (Ding et al., 2020; 448 

Feng et al., 2020). Because O3 formation rates over northern China are under the NOx-saturated 449 

regime, a reduction in NOx would enhance the O3 generation rates (Liu and Wang, 2020; Shi and 450 

Brasseur, 2020; Benish et al., 2021). Ozone formation rates over the PRD are under the NOx-limited 451 

regime, so the same reduction in NOx would diminish the O3 generation rates (Liu and Wang, 2020; 452 

Wang et al., 2021; Li et al., 2021). After the COVID-19 outbreak, O3 concentrations changed little 453 

(within ± 10%) compared with concentrations in the previous year in most areas of eastern China, 454 

indicating that life had returned to normal. In southern China, there is a contrasting increase in O3 455 
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concentrations, likely related to increases in NOx and temperature (Wang et al., 2021). Although 456 

sensitivities change, the total amount of ozone produced, and the size of plume scale with NOx 457 

emissions, but the rate of ozone production is nonlinear, and air quality can worsen with initial 458 

emissions controls (Lin et al., 1988). 459 

 460 

[Please insert Figure 12 here] 461 

 462 

3.2.4 Long-term variations in the recent decade 463 

Figure 13 shows the MDA8 O3 trends (μg/m3/yr) during the study period (2013–2020) calculated 464 

from monthly anomalies across China. Surface O3 concentrations show diverse variations from the 465 

national to regional scales during the recent eight years. In general, most areas of the country show 466 

significant increasing O3 pollution, with an average of 2.49 μg/m3/yr (p < 0.001), especially in 467 

central China (> 5 μg/m3/yr, p < 0.05) and NCP (~4.42 μg/m3/yr, p < 0.001). The BTH and YRD 468 

regions had the stronger increasing trends by 3.84 and 3.43 μg/m3/yr (p < 0.001), respectively. In 469 

addition, other two typical regions, i.e., SCB (~1.78 μg/m3/yr, p < 0.001), and PRD (~1.41 470 

μg/m3/yr, p < 0.05) showed relatively low but obvious increasing trends. The increase in O3 over 471 

city clusters are closely associated with a decrease in NOx emissions and PM2.5 concentrations (Li et 472 

al., 2019; Zhang et al., 2019; Wang et al., 2020; Wei et al., 2021a) and meteorological variations (Li 473 

et al., 2020). By contrast, seen are opposite weakening trends in several coastal provinces in 474 

southern China (e.g., Guangxi and Zhejiang). 475 

 476 

[Please insert Figure 13 here] 477 

 478 

Next investigated are the variations in surface O3 pollution under the background of different 479 

implemented environmental policies (Table 3). During the Clear Air Action Plan (2013–2017), 480 

China showed a significant increasing trend of 1.33 μg/m3/yr (p < 0.05), especially in the NCP 481 

(~4.58 μg/m3/yr, p < 0.001) and BTH (~4.38 μg/m3/yr, p < 0.001) regions. In addition, increasing 482 

trends were also found in the YRD and SCB regions. By contrast, O3 pollution overall declined in 483 

the PRD region. During the Blue-Sky Defense Plan (2018–2020), O3 concentrations continued to 484 
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increase by 7.2% and 2.5–5.4% in China and typical urban agglomerations in 2020 than those in 485 

2017, respectively. In particular, considering the entire study period, O3 pollution increased the most 486 

in China (~4.40 μg/m3/yr, p < 0.001) and most typical regions during the period 2015–2019, 487 

especially NCP (~6.33 μg/m3/yr, p < 0.001) and YRD (~5.60 μg/m3/yr, p < 0.001). 488 

 489 

[Please insert Table 3 here] 490 

 491 

Taking into account the seasonal differences in O3 discussed above, we focus on the spatiotemporal 492 

variations in summer mean MDA8 O3 from 2013 to 2020 over eastern China (Figure 14). Ozone 493 

levels always remained at a high level in summer among different years in China, with an average 494 

value > 90 μg/m3. It was higher during the period 2017–2019 than in previous years, especially in 495 

the NCP (> 120 μg/m3). This is closely associated with the rising temperatures and increased 496 

number of hot days in the NCP (Li et al., 2020). Changes in O3 have been diverse in recent eight 497 

years, i.e., O3 concentrations were higher in 2014 than in 2013 in most areas of China, yet generally 498 

decreased in 2015, especially in southern China. O3 pollution has increased significantly since 2016, 499 

reaching a maximum in 2019 (~117.4 ± 23.6 μg/m3), especially in the NCP (~159.7 ± 14.1 μg/m3). 500 

This may be due to the decreasing PM2.5 concentrations by ~15% in the NCP (Li et al., 2020; Wei et 501 

al., 2021a), yet, the dominant reason remains controversial. By contrast, overall O3 pollution 502 

decreased in China and in most typical regions in China in 2020 (Table S1). The coordinated control 503 

measures of fine particulate matter and O3 implemented by the Chinese government (Xiang et al., 504 

2020) may explain this, as well as the ongoing effects of the COVID-19 in China. These results are 505 

highly consistent with those previously reported based on ground-based measurements made from 506 

2013 to 2019 (Li et al., 2020; Lu et al., 2020; Wang et al., 2020). Our predicted results also show 507 

similar patterns in spatial distribution compared to those derived from satellite OMI/Aura 508 

observations (Liu et al., 2020; Zhang et al., 2020) and air quality model simulations (Hu et al., 509 

2016; Xue et al., 2020) in previous studies. 510 

We have also calculated the percentage of O3 polluted days (i.e., MDA8 O3 > 160 μg/m3) for each 511 

grid in eastern China for each year from 2013 to 2020 (Figure 15). In 2013 and 2014, O3 pollution 512 

was mainly found along the east and south provinces of China, but the probability of occurrence 513 
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was generally low in most areas, with a percentage < 10%. The area where O3 pollution occurred 514 

overall decreased from 2014 to 2015, especially in southern China. From then on, the area covered 515 

by O3 pollution continuously expanded until 2020, covering most areas of eastern China. More 516 

importantly, the probability of occurrence of O3 pollution increased significantly from 2017 to 517 

2019, especially in the NCP; for example, 23% of the days in 2019 exceed the accepted O3 518 

standard. At the regional scale, the proportion of days exceeding the daily O3 standard also 519 

gradually increased in four typical regions, reaching 21%, 12%, 7%, and 3% in the BTH, YRD, 520 

PRD, and SCB regions in 2019, respectively (Figure S7). By contrast, the probability of occurrence 521 

of O3 pollution overall declined in most areas of Northern China (e.g., NCP, BTH, and YRD) in 522 

2020. Similar conclusions have been reported by previous studies (Liu et al., 2020; Xue et al., 2020; 523 

Zhan et al., 2018). 524 

Figure 16 shows the evolution of MDA8 O3 concentrations for each year at the “2+26” cities in 525 

Northern China, where pollution is of particular concern to the public (Figure S1). Until 2015, O3 526 

concentrations were generally lower than 120 μg/m3 in most cities, with much fewer days 527 

exceeding the air quality standard (i.e., MDA8 O3 = 160 μg/m3) than those after 2016. With time, 528 

the number of days with high O3 concentrations gradually increased from year to year. In particular, 529 

a significant increase in O3 concentrations can also be captured, i.e., from May to August in each 530 

year from 2017 to 2019, the MDA8 O3 concentrations in almost all cities frequently exceeded 200 531 

μg/m3, indicating a severe risk of ozone exposure. 532 

Surface monitoring stations are distributed unevenly across China and vary greatly in density from 533 

region to region. Most are located in urban areas, making it difficult to accurately predict air 534 

pollution on a wider scale. Our study helps make up for this deficiency by generating spatially 535 

continuous and full-coverage daily surface O3 maps, allowing users to obtain more accurate 536 

estimates of distributions and variations of O3 pollution, especially for those areas with no or 537 

minimal ground-based measurements. These maps can also help evaluate numerical models as well 538 

as pollution control measures and estimates of pollution exposure. 539 

 540 

3.3 Discussion 541 
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3.3.1 Uncertainty and error analysis 542 

We have first investigated the effects of varying training samples on the model results in surface O3 543 

estimates. For this purpose, we gradually increase the proportion of training samples from 50% to 544 

90% for model building, and the rest of the samples are used for validation by applying different N-545 

fold (i.e., 2, …, 10) CV methods using 2020 data over China (Table S4). In general, with the 546 

increase of training samples, the overall accuracy and spatial prediction ability of the STET model 547 

are gradually improved with increasing CV-R2 values and declined estimation uncertainties. Small 548 

changes in each evaluation indicator have been found, even when the training sample has changed 549 

by as much as 40%, indicating that our model is stable and robust (e.g., CV-R2 > 0.90 and RMSE < 550 

14.1 μg/m3). This is mainly attributed to the unique advantage of the full-coverage mapping, which 551 

provides a large enough sample size to cover most surface O3 conditions and variations across 552 

mainland China; in addition, it benefits from the robustness of ensemble learning, which has a 553 

strong anti-noise ability (Breiman, 2001; Geurts et al., 2006). 554 

We have trained and built the models separately for each characteristic region and compared the 555 

prominent features (Figure S8) and model performance (Table S5) with the national model. The top-556 

scoring features for regional models are similar to those for the national model, e.g., ERA5 DSR, 557 

TEM, ET, RH, and OMI NO2 and O3 (Figure 1). However, there are numerical differences in the 558 

importance scores for each variable. The model shows different accuracy and spatial prediction 559 

ability at the regional scale, with causes closely related to the density and spatial distribution of 560 

ground-level monitoring stations. The geographic, meteorological, and population conditions are 561 

different in each region. The performance of the national model is generally better with smaller 562 

estimation uncertainties than anyone regional model, but the differences in the statistics metrics are 563 

small. The whole model involves a much bigger number of data samples that can cover more O3 564 

conditions; it can also consider the impact of adjacent regions, especially the transition areas. Full 565 

coverage mapping provides the richest data set to train a robust model. 566 

 567 

3.3.2 Comparison with chemical reanalysis products 568 

We have compared our ChinaHighO3 dataset with long-term atmospheric reanalysis products 569 

generated from chemical models, including MERRA2 and ERA5, which have spatiotemporal 570 

coverages. For this purpose, 3-hour MERRA2 and 1-hour ERA5 Ozone Mixing Ratio (OMR, unit: 571 
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kg kg-1) simulations at a horizontal resolution of 0.25°×0.25° are collected to calculate the 2:00 p.m. 572 

and MDA8 O3 concentrations at the ground level (µg/m3) in 2020 in China and validated with the 573 

corresponding ground-based measurements, respectively (Figure S9). The ground-level O3 574 

simulations from the chemical reanalysis products are very poor, showing great uncertainties (e.g., 575 

R2 < 0.1, RMSE > 47 µg/m3). The main reason is that the chemical reactions in the assimilation 576 

models are substantially simplified and mainly reflect the impact of dynamic processes on 577 

stratospheric and tropospheric ozone (Knowland, et al., 2017). By contrast, our surface O3 estimates 578 

are highly consistent with the ground-based measurements (e.g., R2 = 0.96, RMSE = 8.6 µg/m3), 579 

which seem to be better than the chemical reanalysis products. 580 

 581 

3.3.3 Comparison with related studies 582 

We have compared our study with previous related studies, which used the same out-of-sample 10-583 

CV approach with the MEE network O3 observations, for the same study period focusing on China 584 

(Table 4). Our algorithm yields a higher accuracy with smaller estimation uncertainties (CV-R2 > 585 

0.83, RMSE < 15 µg/m3) than the RF (CV-R2 = 0.69, RMSE = 26.0 µg/m3; Zhan et al., 2018), 586 

XGBoost (CV-R2 = 0.78, RMSE = 21.47 µg/m3; Liu et al., 2020), data fusion (CV-R2 = 0.70, 587 

RMSE = 26.20 µg/m3; Xue et al., 2020), GWR (CV-R2 = 0.77, MAE = 8.14 µg/m3; Zhang et al., 588 

2020), and LUR/BME (CV-R2 = 0.80, RMSE = 23.5 µg/m3; Chen et al., 2020) models at different 589 

temporal scales for the same study period.  590 

In addition, different studies relied on different main predictors, i.e., key variables input to the 591 

model in estimating surface O3 concentrations. These O3 datasets in previous studies are derived 592 

from main predictors, including the satellite total-column O3/NO2, or CH2O, MERRA-2 reanalysis, 593 

model simulations, or in situ observations, showing a large number of missing values at coarse or 594 

false (e.g., forced resampling) spatial resolutions (i.e., 0.25°–0.625°) limited by the input data 595 

sources. By contrast, our study overcomes these issues and is a large improvement on previous 596 

studies, which provides a daily full-coverage (spatial coverage = 100%) and true-spatial-resolution 597 

(~0.1° × 0.1°) O3 dataset generated from two main predictors (i.e., DSR and TEM) provided by the 598 

ERA5 reanalysis. In addition, the dataset provided here constitutes the nearly continuous record of 599 

ground-level O3 concentrations from 2013 to 2020 in China. 600 

 601 
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[Please insert Table 4 here] 602 

 603 

4. Summary and conclusions 604 

Ground-level O3 is a major pollutant affecting our health. To compensate for the sparse and 605 

inhomogeneous coverage of ground-based ozone networks and the low data quality, missing values 606 

and low resolution of many existing satellite-based ozone estimation, we applied a spatiotemporal 607 

extremely randomized trees (STET) machine-learning model to develop a long-term near-surface 608 

ozone product that can overcome or lessen the above limitations. Besides ozone training data, the 609 

input variables include surface downward solar radiation, air temperature, meteorological variables, 610 

land use and topography, population distribution, and pollution emission inventory. The daily 611 

maximum 8-hour average (MDA8) O3 product (ChinaHighO3) with full coverage across China at a 612 

spatial resolution of 10 km from 2013 to 2020 are generated.  613 

The estimates are evaluated against surface observations at varying spatiotemporal scales and 614 

compared with previous related studies. The cross-validation (CV) results illustrate that our model 615 

yields a high overall accuracy (spatial prediction ability) with an average out-of-sample (out-of-616 

station) CV-R2, RMSE, MAE, and MRE values of 0.87 (0.80), 17.10 (21.10) μg/m3, 11.29 (13.87) 617 

μg/m3, and 18.38 (23.18) %, respectively. Nevertheless, in the current stage, we can only evaluate 618 

the surface O3 predictions by removing parts of the base data set using different 10-CV approaches, 619 

but the accuracy of predictions where there have never been O3 measurements still remains a 620 

challenge. In particular, the ChinaHighO3 product is superior to existing ones in terms of model 621 

accuracy, spatial coverage and resolution, and data record length. 622 

The spatial distributions and temporal variations of ground-level O3 concentrations are investigated 623 

during the recent decade. A long-term analysis showed that O3 concentrations have significantly 624 

increased by 2.49 μg/m3/yr (p < 0.001) in China from 2013 to 2020, especially in the North China 625 

Plain (~4.42 μg/m3/yr, p < 0.001). In addition, summer ozone changed diversely, which was much 626 

higher since 2017 than in previous years due to the rising temperatures and increased hot days. The 627 

number of days exceeding the ambient O3 air quality standard (MDA8 O3 = 160 μg/m3) and the 628 

areal extent of high O3 levels were also shown to be gradually increasing across China, especially in 629 

the “2+26” cities in the Northern China Plain. Benefiting from the unique advantages of the 630 

ChinaHighO3 dataset, a recent short-term national and regional severe O3 pollution event with its 631 
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formation and dissipation from the end of April to the beginning of May 2020 was well captured. 632 

Also observed was a rapid increase in O3 pollution during the COVID-19 lockdown, especially in 633 

Hubei and surrounding provinces (e.g., an increase of > 30%), followed by a return to normal levels 634 

after the lockdown ended in China. This is not a repudiation of NOx controls. Therefore, our 635 

ChinaHighO3 dataset will be of great significance for the related studies on air pollution in China, 636 

especially for those focusing on environmental health. 637 
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Tables 878 

 879 

Table 1. Summary of the data sources used in this study. 880 

Category 
Variable Description Unit 

Spatial 

Resolution 

Temporal 

Resolution 
Data Source 

Ground 

measurements 

O3 Ozone μg/m3 - Hourly CNEMC 

Atmospheric 

reanalysis 

DSR Downwelling surface radiation W/m2 0.1°×0.1° Hourly ERA5 

reanalysis BLH Boundary layer height m Hourly 

ET Evaporation mm  

PRE Precipitation mm Hourly 

RH Relative humidity % Hourly 

TEM 2-m air temperature K Hourly 

SP Surface pressure hPa Hourly 

WU 10-m u-component m/s Hourly 

WV 10-m v-component m/s Hourly 

Satellite 

remote 

sensing 

products 

O3 total-column O3 DU 0.25°×0.25° Daily OMI/Aura 

products NO2 tropospheric NO2 molec/cm2 

NDVI Normalized difference 

vegetation index 

- 0.05°×0.05° Monthly MODIS 

products 

LUC Land-use cover - 0.05°×0.05° Annual 

DEM Surface elevation m 90 m × 90 m - SRTM  

POP Ambient population - 1 km × 1 km Annual LandScanTM 

Emission 

inventory 

NOx Nitric oxide metabolite Mg/grid 0.25°×0.25° Monthly MEIC 

VOCs Volatile organic compounds 

CO Carbon monoxide 
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Table 2. Statistics of cross-validation results of MDA8 O3 estimates (µg/m3) for each year from 882 

2013 to 2020 in China. 883 

Year 
Sample size Overall accuracy Spatial prediction ability 

N R2 RMSE MAE MRE R2 RMSE MAE MRE 

2013 115,663 0.79 21.99 14.83 22.90 0.63 29.57 19.82 31.18 

2014 325,152 0.80 22.39 14.81 31.80 0.65 30.02 20.52 45.79 

2015 519,391 0.79 20.89 13.90 27.75 0.64 27.73 18.87 37.69 

2016 516,746 0.82 19.19 12.99 21.49 0.72 23.71 16.38 27.45 

2017 527,483 0.89 15.52 10.79 14.99 0.85 17.82 12.54 17.36 

2018 520,002 0.91 14.10 9.64 13.34 0.88 15.66 10.82 15.00 

2019 520,381 0.92 13.99 9.49 13.17 0.91 15.31 10.48 10.48 

2020 522,526 0.93 11.96 7.97 10.27 0.92 12.96 8.71 11.33 
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Table 3. Statistics of MDA8 O3 trends (μg/m3/yr) and relative change (%) in annual mean MDA8 885 

O3 concentrations (μg/m3) from 2013 to 2020 in China and each typical region. 886 

Region 
2013–2020 2013–2017 2015–2019 2017 2020 2017–2020 

Trend (p) Trend (p) Trend (p) Mean Mean Changed by 

China 2.49 (< 0.001) 1.33 (< 0.01) 4.40 (< 0.001) 91.8±10.1 98.4±10.8 7.2 % 

NCP 4.42 (< 0.001) 4.58 (< 0.001) 6.33 (< 0.001) 108.8±3.4 113.5±4.1 4.3 % 

BTH 3.84 (< 0.001) 4.78 (< 0.001) 4.90 (< 0.001) 104.8±4.7 107.4±7.2 2.5 % 

YRD 3.43 (< 0.001) 2.94 (< 0.01) 5.60 (< 0.001) 102.8±8.6 108.4±8.2 5.4 % 

PRD 1.41 (< 0.001) -0.72 (0.56) 4.38 (< 0.001) 89.8±5.3 94.2±6.0 4.9 % 

SCB 1.78 (< 0.001) 2.37 (< 0.001) 2.14 (< 0.001) 82.9±5.7 85.3±5.8 2.8 % 
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Table 4. Comparison of model performances with previous O3 studies focused on China as a whole. 888 

Model 
Temporal 

resolution 

Validation Study 

period 
Main Predictors 

Missing 

values 
Literature 

R2 RMSE MAE 

RF Daily 0.69 26.00 - 2015 MERRA2 Yes Zhan et al. (2018)  

XGBoost Daily 0.78 21.47 - 2013-2017 OMI O3, MERRA-2 Yes Liu et al. (2020) 

Data fusion Daily 0.70 26.20 16.70 2013-2017 CTM simulations Yes Xue et al. (2020) 

GWR Monthly 0.77 - 8.14 2014 OMI NO2, CH2O Yes Zhang et al. (2020) 

LUR/BME Daily 0.80 23.50 - 2015-2017 In situ observations Yes Chen et al. (2020) 

STET Daily 0.78 21.16 14.09 2015 ERA5 DSR and 

TEM 

No This study* 

  0.81 20.27 13.38 2013-2017   

  0.83 18.88 12.72 2015-2017   

 Monthly 0.90 12.43 8.82 2014   

BME: Bayesian maximum entropy; CTM: chemical transport model; XGBoost: eXtreme Gradient Boosting  889 
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Figures 890 

 891 

Figure 1. Sorted importance scores of variables used in estimating O3 concentrations using the 892 

STET model, where red, blue, and green colors indicate variables from satellites, ERA5 reanalysis, 893 

and MEIC emission inventory, respectively. The vertical red dashed line shows the importance 894 

score of 1%.  895 
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 896 

Figure 2. Flowchart of the mapping process of the ChinaHighO3 dataset for our study.  897 



38 

 

 898 

Figure 3. Out-of-sample cross-validation results of MDA8 O3 estimates (µg/m3) from 2013 to 2020 899 

(a) in China, (b) North China Plain (NCP), (c) Beijing-Tianjin-Hebei (BTH) region, (d) Yangtze 900 

River Delta (YRD), (e) Pearl River Delta (PRD), and (f) Sichuan Basin (SCB). Frequency in the 901 

right legend indicates the total number of data samples in each cell. 902 
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 903 

Figure 4. Individual-site-scale out-of-sample cross-validation results of MDA8 O3 estimates 904 

(µg/m3) from 2013 to 2020 in China.  905 
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 906 

Figure 5. Same as Figure 4 but for out-of-station cross-validation results. 907 

908 
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 909 

Figure 6. Same as Figure 5 but for out-of-station cross-validation results.  910 
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 911 

Figure 7. Time series of daily variations of the validation results of MDA8 O3 estimates (µg/m3) 912 

from 2013 to 2020. Minimum, maximum, and mean values are given in each panel.  913 



43 

 

 914 

Figure 8. Validation of monthly composite MDA8 O3 concentrations (μg/m3) for (a-g) each year 915 

and (h) all years from 2013 to 2020 in China.  916 



44 

 

 917 
Figure 9. (a-c) STET-model-derived and (d-f) ground-based MDA8 O3 maps on 18 June 2019 (a & 918 

d), 11 November 2019 (b & e), and the annual mean map for 2019 (c & f) covering China.  919 
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 920 

Figure 10. Multi-year seasonal mean MDA8 O3 maps (10 km) averaged over the period 2013–2020 921 

across China.  922 
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 923 

Figure 11. A typical example of a severe O3 pollution event that occurred from 23 April 2020 to 8 924 

May 2020 in eastern China.  925 
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 926 

Figure 12. Relative changes (%) in mean MDA8 O3 concentrations (µg/m3) in 2020 (during the 927 

COVID-19 epidemic) and 2019 during the same periods: (a) Period 1 (P1, 1–25 January), (b) Period 928 

2 (P2, 26 January to 17 February), and (c) Period 3 (P3, 18 February to 31 March) in eastern China.  929 
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 930 

Figure 13. Linear MDA8 O3 trends (μg/m3/yr) calculated from de-seasonalized monthly MDA8 O3 931 

anomalies from 2013 to 2020 across China. The surrounding panels show the variations of monthly 932 

MDA8 O3 anomalies in (a) China and (b-f) five typical regions. 933 

  934 
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 935 

Figure 14. Spatial distributions of summer mean MDA8 O3 concentrations (μg/m3) from 2013 to 936 

2020 in eastern China. 937 

  938 
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 939 

Figure 15. Spatial distributions of the percentage of days exceeding the ambient O3 standard (i.e., 940 

MDA8 O3 concentrations > 160 μg/m3) from 2013 to 2020 in China.  941 
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 942 

Figure 16. Heat maps of MDA8 O3 concentrations (μg/m3) for each year from 2013 to 2020 at the 943 

“2+26” cities in China. 944 


