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Abstract

Nearly all frictional interfaces strengthen as the logarithm of time when sliding at ultra-low speeds. Observations of also

logarithmic-in-time growth of interfacial contact area under such conditions has led to constitutive models which assume that

this frictional strengthening results from purely time-dependent, and slip-insensitive, contact area growth. The main laboratory

support for such strengthening has traditionally been derived from increases in friction during ‘load-point hold’ experiments,

wherein a sliding interface is allowed to gradually self-relax down to sub-nanometric slip rates. In contrast , following step

decreases in the shear loading rate, friction is widely reported to increase over a characteristic slip scale, independent of the

magnitude of the slip-rate decrease-a signature of slip-dependent strengthening. To investigate this apparent contradiction, we

subjected granite samples to a series of step decreases in shear rate of up to 3.5 orders of magnitude, and load-point holds of up to

10,000 s, such that both protocols accessed the phenomenologi-cal regime traditionally inferred to demonstrate time-dependent

fric-tional strengthening. When modeling the resultant data, which probe interfacial slip rates ranging from 3 μm/s to less

than 10ˆ-5 μm/s, we found that constitutive models where low slip-rate friction evolution mimics log-time contact area growth

require parameters that differ by orders of magnitude across the different experiments. In contrast, an alternative constitutive

model in which friction evolves only with interfacial slip fits most of the data well with nearly identical parameters. This leads

to the surprising conclusion that frictional strengthening is dominantly slip dependent even at sub-nanometric slip rates.
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Nearly all frictional interfaces strengthen as the logarithm of time
when sliding at ultra-low speeds. Observations of also logarithmic-
in-time growth of interfacial contact area under such conditions has
led to constitutive models which assume that this frictional strength-
ening results from purely time-dependent, and slip-insensitive, con-
tact area growth. The main laboratory support for such strengthen-
ing has traditionally been derived from increases in friction during
‘load-point hold’ experiments, wherein a sliding interface is allowed
to gradually self-relax down to sub-nanometric slip rates. In con-
trast, following step decreases in the shear loading rate, friction is
widely reported to increase over a characteristic slip scale, indepen-
dent of the magnitude of the slip-rate decrease – a signature of slip-
dependent strengthening. To investigate this apparent contradiction,
we subjected granite samples to a series of step decreases in shear
rate of up to 3.5 orders of magnitude, and load-point holds of up
to 10,000 s, such that both protocols accessed the phenomenologi-
cal regime traditionally inferred to demonstrate time-dependent fric-
tional strengthening. When modeling the resultant data, which probe
interfacial slip rates ranging from 3 µms−1 to less than 10−5µms−1,
we found that constitutive models where low slip-rate friction evo-
lution mimics log-time contact area growth require parameters that
differ by orders of magnitude across the different experiments. In
contrast, an alternative constitutive model in which friction evolves
only with interfacial slip fits most of the data well with nearly identi-
cal parameters. This leads to the surprising conclusion that frictional
strengthening is dominantly slip dependent even at sub-nanometric
slip rates.
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Frictional surfaces across a wide range of materials are1

known to strengthen at low sliding rates. In the laboratory,2

this strengthening is often explored through slide-hold-reslide3

experiments, where a sample previously driven at a constant4

sliding speed is perturbed by abruptly holding the external5

load at fixed displacement or a fixed, low, stress level (1–8).6

In the former protocol, which we call a load-point hold, slip7

along the frictional interface continues at an ever-decreasing8

rate as the mechanical system (testing machine plus sample)9

elastically unloads and the shear stress on the frictional inter-10

face decreases. For hold durations longer than a few seconds,11

the static friction peak observed upon resliding at the pre-hold12

rate has been shown to increase as the logarithm of the hold13

duration, across a wide range of materials including rocks14

(1, 4, 5, 8, 9) (Figure S1).15

In providing a physical explanation for these observations16

of frictional strengthening, reference has often been made to17

the similarly logarithmic-in-time growth of interfacial contact18

area (in transparent polymer glasses and plastics) during peri- 19

ods of little to no slip (10, 11). The connection of frictional 20

strength to contact area dates back to Bowden and Tabor (12), 21

who imagined frictional strength of an interface (τf ) as the 22

product of an average velocity dependent contact strength (τc) 23

(6) and the ratio of the real contact area to the total contact 24

area (Σr): τf = τcΣr. Logarithmic growth of contact area is 25

expected if contacts deform via thermally-activated creep at 26

normal stresses close to the indentation hardness of the sample 27

(6, 8, 13). In the Bowden and Tabor view, this contact area 28

growth then leads to a logarithmic-in-time increase in friction 29

measured relative to the steady-state pre- and post-hold slid- 30

ing rate. One consequence of this view is that the strength 31

increase during the hold portion of slide-hold-reslides should 32

be predictable from the hold duration alone, and be insensitive 33

to the small amount of interfacial slip that accumulates during 34

the hold (4). 35

The largely empirical rate-state friction (RSF) equations are 36

widely used to model such time-varying friction phenomenology 37

in rock (4, 5, 14) and a diverse set of industrial materials (6, 15– 38

19). However, the two most widely used versions offer opposing 39

views of the importance of slip for friction evolution. The 40

more commonly used Aging formulation (1, 14) predicts that 41

frictional strengthening loses all sensitivity to slip whenever the 42
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interface is subjected to a sufficiently large and rapid decrease43

in slip rate. In the limit of a truly stationary interface, it44

implies strengthening as the logarithm of time, even in the45

absence of slip. When viewed in conjunction with the evidence46

for log-time growth of contact-area across stationary interfaces,47

this is consistent with the Bowden and Tabor view of contact48

area being the primary determinant of macroscopic strength.49

Its more empirical alternative – the Slip formulation – instead50

predicts no strengthening in the absence of sliding, and retains51

slip-sensitivity at all slip rates (20).52

Over the last three decades, phenomenological details of53

frictional strengthening derived from laboratory slide-hold-54

reslide experiments have been widely interpreted as support-55

ing the Aging formulation view – that frictional strengthening56

loses sensitivity to slip under the extreme slip-rate reduc-57

tions imposed during load-point holds (3–7, 21). In contrast,58

friction evolution in response to less extreme, but still 1–259

orders of magnitude, velocity step decreases in the laboratory60

demonstrates strengthening over a characteristic slip distance61

independent of the final slip rate, a feature consistent with the62

slip dependence of friction predicted by the Slip formulation63

(22, 23). Therefore, somewhat paradoxically, while load-point64

holds and large velocity-step decreases both probe the evo-65

lution of friction following large reductions in slip rate, the66

traditional interpretations of these two protocols seem to pro-67

vide entirely contradicting versions of the processes underlying68

frictional strengthening.69

One resolution to this paradox is to hypothesize a rate-70

sensitive transition from slip- to time-dependent strengthening71

that is hidden within the orders-of-magnitude gap in the slip72

rates typically probed by these two sliding protocols (24). To73

test this hypothesis, and to eliminate any effects of differ-74

ences in samples or experimental conditions, we ran a suite75

of extremely large velocity step decreases (0.5 to 3.5 orders of76

magnitude between 3µms−1 and 0.001µms−1) and load-point77

holds (of durations 10 − 104 s) on an initially bare granite78

sample, all during the same experimental run. For our experi-79

mental conditions, these extreme velocity step decreases reach80

slip rates as low as those accessed during hold durations of81

a few 100 s – durations comfortably larger than those above82

which time-dependent strengthening has been widely inferred83

(4, 5, 11). Crucially, this means that the data from either84

the velocity-step or slide-hold protocols are independently85

sufficient to test for a rate-sensitive transition from slip- to86

time-dependent strengthening with decreasing slip speed.87

Contrary to conventional wisdom, we find that data derived88

from both sliding protocols support dominantly slip depen-89

dent strength evolution, even for nearly stationary surfaces90

(minimum estimated slip speeds < 10−5µm/s). In particular,91

we find that the Slip equation describes most of the data quite92

well using nearly identical parameters, even across these many93

orders-of-magnitude variations in slip rate. In contrast, the94

Aging equation produces worse fits to the data while also95

requiring orders-of-magnitude variations in the inferred RSF96

parameters across the diverse sliding conditions. We trace97

these failures of the Aging equation back to one central flaw –98

its prediction that strength increases primarily with time and99

not slip following large, rapid decreases in slip rate.100

Rate-State friction and probing strengthening with ve- 101

locity steps and holds 102

Within the RSF framework (1, 5, 9, 20, 25), the friction coeffi- 103

cient is expressed as a function of the sliding rate (V ) and the 104

‘state variable’ (θ) describing the state of the sliding surface. 105

In its simplest form the friction equation is: 106

µ = τf

σ
= µ∗ + a ln

(
V

V∗

)
+ b ln

(
V∗θ

Dc

)
, [1] 107

where µ is the friction coefficient, τf is the shear stress during 108

sliding, σ is the normal stress, and the parameters a and b deter- 109

mine the amplitude of the log velocity and log state dependence 110

of friction. µ∗ is the steady-state friction value at an aribtrary 111

reference sliding speed V∗. At moderate temperatures a and b 112

are of order 0.01 (26), much smaller than the nominal friction 113

value µ∗ of ∼ 0.6 − 0.8. Despite being small, the rate- and 114

state-dependence of friction is important; it determines, for 115

example, whether surfaces slide stably at the applied loading 116

rate (a > b, referred to as “velocity-strengthening”), or poten- 117

tially undergo stick-slip motion (a < b, “velocity-weakening”). 118

The velocity dependence is universally positive (a > 0) and 119

is generally interpreted to result from a thermally-activated 120

Arrhenius process associated with breaking chemical bonds 121

between asperities that bridge the sliding surface (27, 28). The 122

source of the state-dependence is poorly understood. Despite 123

apparent similarities in the phenomenology of state evolution 124

among many classes of solids, including rock, glass, metal, 125

paperboard, wood, plastics and rubber (6, 8, 10, 16, 18), it is 126

not at all obvious that the physical and chemical processes 127

underlying this evolution are shared. 128

It is commonly assumed that the time derivative of the 129

state variable, θ̇, can be written as functions of the current 130

values of V and θ only, although this assumption might be 131

somewhat restrictive (20). For decades the most widely used 132

forms of the state evolution equations have been: 133

Aging (Dieterich) Equation : θ̇ = 1− V θ

Dc
[2a]

Slip (Ruina) Equation : θ̇ = −V θ
Dc

ln
(
V θ

Dc

)
[2b]

where Dc is a characteristic slip scale, often associated with 134

the size of contacting asperities on the interface (2, 20). State 135

here has units of time. 136

At steady-state sliding (θ̇ = 0), both equations yield 137

V θ/Dc = 1, or θ = Dc/V , consistent with the interpreta- 138

tion that at steady-state θ reflects ‘contact age’. For both 139

equations, V θ/Dc < 1 leads to θ̇ > 0. We refer to this as 140

being ‘below steady state’. The increase in friction resulting 141

from the below-steady-state increase in θ is what we mean by 142

frictional strengthening. 143

The Aging and Slip formulations differ in their predictions 144

for strengthening when V θ/Dc drops to values much smaller 145

than 1. Given that neither equation allows for instantaneous 146

changes in state, such ‘far below steady state’ regimes can 147

be attained via sufficiently large and rapid reductions in slip 148

rate from steady-state sliding. In response, state evolution 149

under the Aging formulation loses all sensitivity to slip rate, 150

as Eq. (2a) reduces to θ̇ ∼ 1. State then evolves purely 151

as a function of time, and again invites the interpretation 152

that state is contact age. Note that cessation of slip is not 153

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Bhattacharya et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

required to satisfy θ̇ ∼ 1; it is sufficient that θ � Dc/V . In154

contrast, under the Slip formulation the rate of state evolution155

decreases to progressively smaller values as the size of the156

velocity reduction increases, with no strengthening in the157

limit V → 0. Nevertheless, in practice, due to the finite158

compliance of testing machines, slip speed never decays to159

zero. Under these circumstances, both formulations predict160

an approximately logarithmic-in-time increase in frictional161

strength during long-duration load-point holds (strictly so162

under the Aging formulation, as θ̇ ∼ 1) (20, 23).163

Therefore, that frictional strength increases nearly logarith-164

mically with hold duration in slide-hold-slide experiments does165

not by itself distinguish between evolution of friction with slip166

or with elapsed time.167

The slip sensitivity of strengthening was explored by Beeler168

et al. (4) in an experiment consisting of the same sequence of169

holds at two very different machine stiffnesses. They showed170

that the rate of increase in peak friction with log hold du-171

ration was independent of the adopted stiffness, and hence172

independent of the very different amounts of slip that ac-173

crued during the holds. Beeler et al. interpreted these data174

as supporting time-dependent strengthening during holds. To-175

gether with the discovery of logarithmic-in-time contact area176

growth (10, 11), and the correpsondence between Aging-law-177

style time-dependent strengthening and contact area growth178

when viewed within the Bowden-Tabor picture (8, 13), the179

experiments of Beeler et al (4) have been cited as evidence180

in support of time-dependent contact-area growth leading to181

frictional strengthening during holds.182

The strongest evidence against this viewpoint, and for the183

importance of slip in determining friction evolution far below184

steady state, comes from velocity step experiments as men-185

tioned before. The Slip formulation, in fact, was introduced186

because it matches so well the results of laboratory velocity-187

step experiments, where friction is observed to approach its188

future steady-state value as roughly a decaying exponential189

over a characteristic slip distance (Dc), independent of the190

final slip speed as well as the magnitude and sign of the ve-191

locity step (20). For velocity step decreases this clearly calls192

into question the universality of the hypothesis that frictional193

strengthening far below steady state depends upon time rather194

than slip.195

Recently, Bhattacharya et al. (23) resolved some of this co-196

nundrum by reinterpreting the slide-hold-reslide experiments197

of Beeler et al. Bhattacharya et al. showed that the Slip for-198

mulation can model the stiffness-independence of the healing199

rate inferred from the peak friction data as well as the Aging200

formulation, albeit over a narrower range of parameter values.201

Moreover, the holds preceding these peak friction values ex-202

hibit strongly stiffness-dependent stress relaxation rates which,203

with constant RSF parameters, cannot be captured by the Ag-204

ing formulation but are well modeled by the Slip formulation.205

However, this does not rule out the possibility that this appar-206

ent failure of the Aging formulation has nothing to do with the207

prescription of state evolution, and is, instead, just an artifact208

of the assumption of velocity-independent RSF parameters.209

To explore the latter possibility, it is necessary to increase the210

size of the velocity-step decreases, and drop the target velocity211

into the range accessed by moderately long holds. This will212

effectively allow any rate-dependence of the RSF parameters213

to be detected by the rate steps alone. The Tullis rotary shear214

apparatus at Brown University (25, 29, 30) is uniquely suited 215

to our purpose given that it can be servo-controlled using 216

a resolver near the sliding interface to artificially stiffen the 217

machine to around 30-40 times its natural stiffness (4, 23). 218

All the experiments reported in this paper make use of this 219

stiffened setting. Increasing the apparatus stiffness ensures 220

that a large velocity step imposed at the load point is trans- 221

lated to the sample with greater fidelity. This maximizes the 222

departure from steady state for a given velocity step decrease 223

at the load point (31), which facilitates distinguishing slip- 224

from time-dependence when inverting the resulting friction 225

data. 226

As we will show, the dataset generated from the experiments 227

described herein provide sufficient diagnostic power to join a 228

growing body of work, referenced later, suggesting that (1) 229

frictional “state” is not synonymous with contact area, and 230

(2) slip is essential to frictional strengthening as observed in 231

the laboratory. 232

Large velocity-step decreases on a stiff apparatus. The veloc- 233

ity steps were carried out at 25 MPa normal stress on a hollow, 234

cylindrical sample of Westerly granite with outer and inner 235

diameters of 54 and 44 mm (for details of the apparatus and 236

sample see SI Appendix and Figures S2 and S3). The sample 237

was initially ground flat and then roughened at a fine scale 238

using 60 grit grinding compound. We report experimental 239

results only after about 120 mm of slip. At these large values, 240

the sample reached a stable, quasi-constant, steady-state ve- 241

locity weakening value of a−b ≈ −0.003 (Figure S6). Previous 242

studies on the same apparatus under similar conditions have 243

shown that, during the accumulation of ∼ 40 − 100 mm of 244

slip, a 70-100 µm thick layer of gouge develops on Westerly 245

granite samples, with the total shear being accommodated in 246

a narrow (20-30 µm wide), quasi-planar, shear zone within 247

this gouge (29). 248

To estimate the slip velocity from the displacement mea- 249

sured by the resolver (what we term the ‘load point’), we 250

must correct for elastic deformation of the intervening mate- 251

rial (about 5 mm of rock plus a thin layer of glue). The elastic 252

stiffness k (expressed as friction change per differential slip 253

distance between the surface and the load point) was deter- 254

mined to be 0.065 µm−1 (see Materials and Methods and SI 255

Appendix, Figure S4). Assuming homogeneous shear stress and 256

slip distribution on the sliding interface, the elastic relation 257

between the measured shear traction on the sample (τ), the 258

load-point displacement (δlp), and the surface slip (δ), is 259

τ = kσ(δlp − δ), [3] 260

Taking the time-derivative enables us to estimate the slip 261

speed V in terms of the servo-controlled load-point velocity 262

Vlp and the time-derivative of the shear load: 263

V = Vlp −
τ̇

kσ
. [4] 264

Because the surface is always sliding, even at the end of the 265

longest load-point holds (V = 0.02± 5% nm s−1 at the end 266

of our 10000s holds; see SI Appendix Figure S5 ), and because 267

slip speeds and accelerations are small enough that inertia is 268

negligible, we can relate changes in friction to changes in shear 269

load throughout these experiments via ∆µ = ∆τ/σ. 270

Figure 1A shows friction data from a large number of 271

velocity-step decreases and increases. In these tests, the sample 272

Bhattacharya et al. PNAS | August 8, 2021 | vol. XXX | no. XX | 3



DRAFT
A

B

C

Fig. 1. (A) Large velocity-step decreases and in-
creases on initially bare granite. Beyond 120 mm of
total slip, 16 velocity-step decreases and 13 increases
were carried out spanning 0.5-3.5 orders of magnitude.
This plot shows 15 of these step decreases and 4 of
the increases; the remainder are shown in Figure S18.
The legend shows log10(Vf/Vi) values coded by
color; in parentheses are the final slip speeds Vf in
µm/s. The slip is set to zero at the stress minimum
(or maximum for the step increases). The data are
smoothed over 0.2µm for the step downs and over
0.4µm for the step ups. The main panel shows the
friction normalized by its change between 0 and 4µm
of slip. (B) and (C) show the evolution of friction for
the range of step increases and decreases shown in A
(colors denote step-sizes as in A) for the Aging and Slip
formulations respectively. The changes in friction are
measured from its value at 4µm and are normalized by
the maximum amplitude of this change, as in (A). The
parameters used for the Aging and Slip simulations are
derived from fitting the velocity-step decreases (see
SI Appendix and Table 1). The modeled time series
is smoothed identically to the data. In (A), the friction
values for the two largest step decreases begin well
above zero because of the normalization scheme (the
friction by 4 µm of slip remains well below its future
steady state value; see Figure 2).

is initially run to steady state at a velocity Vlp = Vi, and then273

Vlp is changed to Vf over ∼0.02 s. When servo-controlling off274

the near-fault resolver we are able to impose sliding rates of 3275

to 0.001µms−1, allowing velocity jumps of up to 3.5 orders of276

magnitude. Previously published jumps have been limited to277

2 orders of magnitude.278

Each friction curve in Figure 1A has been normalized by279

the amplitude of its total change from its extremum to its280

value measured at 4µm of slip, with slip defined as zero at the281

extremum. Over this initial 4µm post-minimum slip, the plot282

clearly shows that frictional strength evolves over a length283

scale that is independent of both the step size and final slip284

speed Vf .285

For comparison, we have plotted numerical simulations286

of velocity-step decreases using both the Aging formulation287

(Figure 1B) and the Slip formulation (Figure 1C). These sim-288

ulations were run with the appropriate stiffness and a, b and289

Dc values derived by fitting the first 3 µm of the post-step290

friction evolution from a subset of the velocity steps shown291

in Figure 1A (see Materials and Methods and SI Appendix,292

Figures S6, S7 and S8).293

Note, that in both the observations and the simulations,294

after a step decrease in Vlp, the stress first decreases to a295

minimum before increasing to its future steady-state value296

at V = Vf . In the simulations, the steep stress decay prior297

to the minimum is dominated by changes in the a ln(V/V∗)298

term in (1) (a rapid velocity drop at relatively constant state),299

whereas the subsequent steep stress increase is dominated by300

changes in the b ln(V∗θ/Dc) term (state increases at nearly301

constant V = Vf ; see SI Appendix, Figure S7). Therefore,302

across the many order-of-magnitude slip rate variations in303

Figure 1A, friction evolution for the first 4 µm of slip follow-304

ing the stress minimum represents frictional strengthening305

over elapsed times that vary by more than three orders of306

magnitude. This suggests that the collapse (for these short307

slip distances) of the whole suite of post-minimum velocity308

step data onto nearly the same curve implies the primacy of309

interfacial slip accumulation over time elapsed in determining310

this strengthening. The Slip formulation inherently captures 311

this phenomenology, given its prediction that friction evolves 312

to steady state over a characteristic slip scale, independent of 313

the step size and Vf (20) (Figure 1C). 314

On the other hand, following a large velocity-step decrease, 315

the Aging formulation predicts strengthening over length 316

scales that decrease dramatically as the size of the velocity 317

step increases (note this feature in the progression of colors 318

subsequent to the stress minimum in Figure 1B). For veloc- 319

ity decreases that push the interface far below steady state 320

(V θ/Dc � 1), the rate of friction change with slip dµ/dδ in- 321

creases almost as rapidly with increasing velocity reduction as 322

the velocity ratio Vi/Vf (SI Appendix and Figure S12). This 323

is in clear contradiction with the data. 324

The velocity step data from Figure 1 are shown again as 325

non-normalized friction versus slip in Figure 2A, with the 326

changes in friction referenced to the pre-step steady-state level. 327

The corresponding simulation results using the Aging and Slip 328

formulations are shown in Figures 2D and 2E. Notably, for 329

the experimental data the amplitude of the stress minimum 330

∆µmin increases linearly with the logarithm of the size of the 331

velocity step (inset in Figure 2A), with a slope of around 332

−0.01. Using parameters derived from fits to the velocity-step 333

decreases (Table 1), Slip formulation simulations also show a 334

linear growth in ∆µmin with log step size with a slope ∼ −0.009 335

(Figure 2C). The data also show (Figure 2A and Figure S13 336

in SI Appendix) that the slip accumulated between the start 337

of the velocity step and the friction minimum increases quasi- 338

linearly with the log of the step size, again consistent with the 339

Slip formulation simulations (Figure 2E). 340

The Aging formulation, on the other hand, predicts a non- 341

linear relationship between ∆µmin and log step size with the 342

rate of increase in ∆µmin decreasing systematically with larger 343

steps (Figure 2B). In general, any increase in state (strength- 344

ening) between the onset of the velocity step and the friction 345

minimum reduces the eventual amplitude of ∆µmin. For large 346

velocity step decreases (Vf/Vi � 1), V θ/Dc � 1 prior to 347

the friction minimum. Under an Aging-style formulation this 348

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Bhattacharya et al.
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A

B

C

F G H I J K L

D

E

Fig. 2. (A) Same set of velocity step decreases as in Figure 1 color coded identically according to log10(Vf/Vi), but plotted as non-normalized friction versus slip. The
numbers in the legend show Vf in µms−1. Slip is set to zero at minimum stress and shear stress is set to zero at the pre-step level. The data are smoothed as in Figure 1.
Inset shows the evolution of the stress minimum (∆Frictionmin) with log step size. (B) Stress minima following velocity-step decreases as a function of log step size, from the
(smoothed) finite stiffness simulations in Figure 1B for the Aging formulation. (C) Same as (B) but for the Slip formulation. Note that the Slip formulation predicts linear evolution
of the stress minima with log step size, while the Aging formulation predicts that the stress minima deviate to significantly shallower values from the initial linear trend as step
size increases, due to increased state evolution. The black dashed lines in (B) and (C) have the slope of a = 0.0144 for the Aging and a = 0.013 for the Slip formulation. The
trend of the stress minima from the data in (A) is linear, as predicted by the Slip formulation. (D) and (E) show the evolution of friction for the Aging and Slip simulations of
Figures 1B and 1C, respectively, but referenced to the pre-step steady value as in 2A. (F)-(L) show Slip formulation fits to one step of each size. These fits are allowed to use
different a and Dc (a− b for each is fixed at−0.003), and are a subset of the fits to all the step decreases in Figure S8. Note the similarity in inferred a and Dc values across
the steps and the excellent fit to the data.

leads to θ̇ ∼ 1 and a much larger increase in θ prior to the349

friction minimum than for the Slip formulation. This leads to350

considerable shallowing of the curve of ∆µmin with decreasing351

Vf/Vi.352

Figures 2F-L show Slip formulation fits to the first 3 µm353

of post-step friction evolution of one each of the different step354

sizes in our experimental suite (all steps are fit in Figure S9).355

Unlike the fits used to infer the RSF parameters for the simula-356

tions in Figures 1C, 2C and 2E, the fits in Figures 2F-L allow357

different values of a and Dc (while fixing a− b = −0.003) for358

every velocity step shown in Figure 1A. These fits reveal that359

the Slip formulation requires almost no variation in a, and Dc360

variations of less than a factor of 2, to fit the whole suite of361

velocity step decreases equally well. To the extent that the362

larger values of Dc for the two largest velocity steps might363

be statistically meaningful, note that this would imply an364

even slower rate of fault strengthening with slip for the largest365

velocity reductions, whereas time-dependent strengthening366

requires the opposite. However, the 95% confidence intervals367

shown in Figure S11 seem to allow the possibility that any368

trends in Dc with step size are not significant.369

While we have thus far focused on state evolution in re-370

sponse to velocity-step decreases, for completeness we point371

out that the velocity-step increases in Figure 1A also show372

systematic support for the Slip formulation. The data ex-373

hibit a quasi-characteristic length scale for stress evolution374

following the friction peak, independent of the sign as well as375

the size of the velocity step – a feature consistent with the 376

Slip formulation (Figure 1C) (28, 32–34). The Aging formula- 377

tion, in contrast, predicts linear slip weakening post-peak for 378

velocity-step increases that push the sliding surface far above 379

steady state (V θ/Dc � 1) (28, 35) (see Fig. 1B). Further, 380

since the amplitude of the friction peak increases with step 381

size, a constant rate of weakening implies that steady state 382

friction is attained over slip distances that also increase with 383

step size – opposite to the trend predicted for step decreases. 384

It is well established that such asymmetry in the frictional 385

response between large velocity step increases and decreases 386

is not supported by experiments (20, 22, 25, 28, 32, 36) and 387

neither is it seen in our data. 388

Before concluding this section, we point out that most of 389

our velocity step increases and decreases show a long-term 390

evolution in stress over slip distances much larger than the Dc 391

derived by fitting the first few microns of slip following the 392

step. Neither the Aging nor the Slip formulation can capture 393

this feature with a single state variable (20, 25). This is the 394

main reason we avoid fitting more than the first 3 microns 395

of slip following the step with our one state variable models 396

(see Materials and Methods). Note that in obtaining the value 397

a− b = −0.003 (supplementary Figure S6), we use the steady 398

state values at more than 50µm of slip following our velocity 399

steps. This value of a − b probably corresponds better to 400

a two state variable picture (25). But, on the other hand, 401

the joint fit to the velocity steps in supplementary Figure S7, 402
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Fig. 3. Changes in friction, referenced to the prior steady-state value at slip speed Vi, for velocity-step decreases (solid colored lines) and holds (gray lines and dashed red
line). Solid colored lines in (A) show the same finite stiffness simulations for the Aging formulation as in Figure 1B, now plotted vs. the logarithm of scaled time Vit. The dashed
red curve shows the stress relaxation trajectories of a 3000s hold with Vi = 3µms−1 and the same a, b and Dc as the velocity steps. The gray curves are for the same
parameters as the red dashed curve except for the different indicated Vi. (B) is the same as (A), but for the Slip formulation with its corresponding velocity-step-derived RSF
parameters. (C) shows that the friction evolution during laboratory holds of 3163 s at 3 different initial slip speeds from 0.03 to 1 µm/s collapse onto nearly the same trajectory
when plotted vs. log scaled time Vit. (D) shows the same data when plotted as function of time. (E) shows the same hold data and all the velocity step-decrease data of
Figures (1) and (2), using the same scaling of time and color scheme as panels (A) and (B).

using the Slip formulation with a single state variable, requires403

a− b = −0.003 without any a priori constraints. Given this,404

and for its analytical simplicity, we have restricted ourselves405

to the one-state-variable picture.406

In summary, the fact that the data from far below steady407

state – both the pre-minimum stress decrease and the post-408

minimum increase – are so consistent with the Slip formulation409

over the first few microns of slip, where (for all but the largest410

step) most of the post-minimum stress increase occurs, indi-411

cates that slip-dependent strengthening is responsible for most412

of the state evolution observed in these data. And, even when413

the data deviate from single-state-variable Slip formulation414

predictions, as do the two largest step decreases, they do so415

by strengthening less rapidly with slip than predicted (see416

also Figure S6). This is still inconsistent with time-dependent417

strengthening, which predicts more rapid strengthening with418

slip in response to larger step decreases (see SI appendix).419

Comparing holds to the large velocity-step decreases. Our420

study stands apart from previous work in that it analyzes421

velocity step decreases and holds within a unified framework.422

For this reason it is useful to examine the extent to which our423

largest velocity step decreases and holds access similar sliding424

conditions. In Figure 3 we compare the stress evolution in425

laboratory and simulated velocity-step decreases (solid colored426

lines) to that in holds (gray lines). Figures 3A-B show numer-427

ical simulations comparing the shear stress relaxation during428

∼3000s holds from the different laboratory pre-hold driving429

rates we used (Vi = 1, 0.3 and 0.03 µms−1), to the shear stress430

evolution following the different laboratory velocity step sizes.431

In Figures 3C-E we show corresponding laboratory hold 432

and velocity-step data with Figure 3E being the analog of 433

Figures 3A and B. 434

The simulations show that most of the stress decrease 435

between the onset of the velocity steps and the subsequent 436

friction minimum follows the stress relaxation trajectory of the 437

different load point holds, when the data are plotted against 438

rescaled time Vit. This scaling removes any dependence of 439

friction evolution on Vi, within the traditional RSF framework 440

(i.e., constant a, b and Dc with no intrinsic velocity scale; 441

see Materials and Methods) (37, 38). Figure 3C applies the 442

same scaling to data from three ∼ 3000s holds initiated at 443

different Vi (Figure 3D), and Figure 3E adds to this to all the 444

velocity steps from Figure 1A. Note that the measured stress 445

relaxations across the entire suite of holds (gray curves) also 446

collapse to a single trajectory in Figures 3C and 3D. This is a 447

significant result, as it provides no evidence for the hypothesis 448

that the RSF parameters values change substantially at sliding 449

velocities intermediate between Vi and the velocities reached 450

by the ends of the holds (see Materials and Methods). 451

Figures 3B and E show that the velocity steps and holds 452

share friction phenomenology down to slip rates as low as 453

that of the largest velocity step decreases (∼ 10−3µms−1). 454

The longest holds then extend the slip rates accessed to values 455

below 10−5µms−1. We show in the following section that these 456

holds are fit well by the Slip formulation, using parameters very 457

similar to those inferred from the velocity steps. Figure S15A 458

shows that, for the Slip formulation, the largest velocity steps 459

in our experiments access the same slip rates as holds of a 460

few hundred seconds in duration irrespective of their pre-hold 461
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sliding rates. This shows the utility of the large velocity-462

step decreases in our experiments – they clearly exhibit slip-463

dependent healing at the same sliding velocities achieved in464

holds long enough to clearly show logarithmic-in-time growth465

of both peak friction (4, 5) and contact area (10, 11).466

Slide-hold experiments. Fits to our hold data (shown in Fig-467

ure 4) are all constrained with a− b = −0.003, as determined468

from the steady-state friction value as a function of sliding469

speed (SI Appendix Figure S6). Holds of all durations from470

a particular Vi were fit jointly. The only exception are those471

with with Vi = 1µms−1 (Figures 4C and F), where we do not472

fit the two longest holds. For unknown reasons, and unlike473

the holds with Vi ∼ 0.3 and 0.03 µms−1in the other panels,474

the longer holds with Vi = 1µms−1 do not track the trajecto-475

ries of the nominally identical shorter holds over their shared476

duration. Figures 4A-C show fits using the Aging formulation.477

Although the fits up to modest values of Vit (.102) appear478

not too bad, they require values of Dc orders of magnitude479

larger than those inferred from the velocity steps (Table 1). To480

rationalize this feature of the fits, we note that under an Aging481

formulation with a < b, the rate of shear stress relaxation482

in response to a load point hold, dτ/d log(t), decreases with483

time, ultimately vanishing in the limit Vit� Dc (23). This is484

a direct implication of time-dependent strengthening (θ̇ ∼ 1485

far below steady state), and can be viewed as the ‘infinitely486

large step’ limit of the pronounced shallowing of the friction487

minima with increasing step size already seen in Figure 2B.488

For a− b = −0.003, the Aging formulation predicts that the489

shear stress decay during holds begins to significantly shallow490

for Vit/Dc & 2, or Vit & 20 for Dc ∼ 10µm (Figure 3A). The491

hold data, however, show nearly log-linear stress relaxation for492

hold durations orders of magnitude larger than this. Therefore,493

an Aging formulation with a < b can produce good fits to494

these hold sequences only by requiring that Dc be not much495

smaller than the values of Vit accessed during these holds.496

The inset in Figure 4A shows the distribution of Dc values497

estimated using a Monte Carlo inversion method (see Methods498

and Materials), obtained by fitting each of the three holds in499

the sequence individually. The inferred values of Dc increase500

with hold duration thold, as expected to satisfy the requirement501

that Vithold not be much larger than Dc. For the same reason,502

the inferred values of Dc increase with Vi when fitting holds503

of the same duration in Figures 4A–C (Table 1; the only504

exception to the latter statement is a second set of holds with505

Vi = 0.316µms−1 shown in Figures S16B and C).506

To further evaluate the suitability of the Aging formulation507

to model these data, we utilize the velocity-weakening fit to508

the velocity steps obtained from the Aging formulation to509

numerically predict the stress relaxation during the longest510

hold in each panel (dashed orange lines in Figures 4A-C).511

These numerical predictions significantly underestimate the512

shear stress decrease observed during the longer holds. This513

is expected, given the velocity steps are equivalent to hold514

durations much shorter than the longest holds at each Vi (for515

relevant Aging equation predictions see Figure S14A).516

In contrast to the Aging formulation, the Slip formulation517

fits these holds very well (Figures 4D-F) with parameters nearly518

identical to those inferred from the velocity steps (Table 1).519

For the sets of holds in Figures 4D-E, these Slip equation fits520

capture the observed stress relaxation across the whole range521

of hold durations equally well with the same set of parameters.522

This is formally shown in the inset of Figure 4D, where it can be 523

seen that, in contrast to the Aging formulation, the distribution 524

of acceptable values of Dc inferred by fitting each of the three 525

holds in the sequence individually are statistically equivalent. 526

For the set of holds in Figure 4F, as noted previously only 527

the three shortest holds were fit. The Dc inferred from this 528

set of holds is about twice as large as those in panels D and 529

E, within the range of variation in Dc inferred when all the 530

velocity steps are fit independently. 531

So, overall, and consistent with the findings of (23), the Slip 532

equation fits to the internally consistent holds in Figures 4D-E 533

capture the stress relaxation at the longest hold times better 534

than the corresponding Aging equation fits. The good Slip 535

equation fit to the shear stress data at such low slip rates 536

(as low as 0.02 nms−1; see Figure S5) implies, remarkably, 537

that state evolution in these experiments is controlled by slip 538

rather than elapsed time even at rates more than an order of 539

magnitude below plate tectonic rates. 540

Before finishing this discussion, we point out that, unlike 541

the holds, the corresponding reslides are not well modeled by 542

either the Slip or the Aging formulation (Figures S17 and S18). 543

For example, the Slip equation fits to the holds in Figures 4D-F 544

both under-predict the static friction peaks upon resliding, and 545

fail to capture the post-peak strength evolution (red curves 546

in Figures S17 A-D). Therefore, neither of these widely used 547

empirical formulations fit the entire range of laboratory data 548

equally well. 549

Discussion 550

The main goal of this work was to determine whether the fric- 551

tional strengthening of surfaces sliding at conditions far below 552

steady state is dominantly slip-dependent or time-dependent. 553

For both velocity step decreases and slide-hold laboratory pro- 554

tocols we have established that the surface strengthens (that is, 555

state increases) primarily with slip. In doing so, we have also 556

demonstrated that the conventional (but self-contradictory) 557

wisdom that state evolution in response to velocity-step de- 558

creases is slip-dependent, while that in response to load-point 559

holds is time-dependent, is incorrect. Instead, by treating 560

holds as the limit of increasingly large velocity step decreases, 561

we have shown that the phenomenology of frictional healing is 562

not only slip-dependent but is well explained by the standard 563

Slip formulation to within a few tens of percent of variation 564

in the RSF parameters. This consistency is observed across 565

more than 5 orders of magnitude in slip rates, from 3µms−1
566

to < 10−5µms−1. 567

In contrast, we have shown that any formulation in which 568

the state contribution to friction increases as log time, anal- 569

ogously to the log-time contact area growth observed at low 570

slip rates, makes the interface too strong to match the stress 571

relaxation observed during both load-point holds and, prior 572

to their stress minima, step velocity decreases. The Aging 573

equation is a particular example of such a formulation. 574

In this context, it is worth remembering that log-time 575

growth of contact area is not only well established in obser- 576

vations in transparent materials (10, 11), it also has a well- 577

accepted theoretical basis (39). In rock, the same log-time 578

growth of contact area has been inferred from proxy measure- 579

ments of fault-normal displacement and acoustic transmissivity 580

during load-point holds (31, 40) or from log-time compaction 581

of granular wear material accumulated on initially bare rock in- 582
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A B C

D E F

Vi = 0.316 mms-1 Vi = 0.0316 mms-1 Vi = 1.0 mms-1

Fig. 4. Fits to the hold portions of the slide-hold-slide tests carried out during the same experimental run as the velocity steps in Figure 1. The data are represented in various
shades of blue with lighter colors representing longer holds. The joint fits to all holds in each sequence are shown in the respective panels in colors other than blue. The friction
change from the prior steady state is plotted as a function of scaled time Vit as in Figure 3. (A)-(C) Fits using the Aging formulation; note that these require unreasonably
large values of Dc (Table 1). Dashed orange lines are predictions for the longest hold in the panel that was fit, using Aging parameters inferred from the velocity steps (see
Table 1). (D)-(F) Fits to the same holds but now using the Slip formulation. The values of a and Dc required by the fits in (D) and (E) are nearly identical to those required to fit
the velocity steps (Table 1 and Figure S3). The fit in (F) requires a Dc 65 % larger than that required to fit the velocity steps. The insets in (A) and (D) show the posterior
distributions of Dc inferred from Monte Carlo inversions that fit the holds of different durations separately. Note that the Aging formulation requires progressively larger values of
Dc for longer holds, while Dc inferred for the Slip formulation is statistically invariant across the range of hold durations. In Figures 4C and F (Vi = 1.0 µms−1) we did not fit
the two longest holds because they showed very atypical behavior – concave-down friction vs. log time curves at long hold times, and static friction peaks that decrease for hold
durations longer than 103s (Figures 4F and S15).

Table 1. Rate-State parameters from fitting the friction data

Type Vi EE TH a b Dc Fig#
Steps a – A – 0.014 – 10.05 S4
Steps – A – 0.022 0.018 0.99 S4
Holds a 0.032 A 10000s 0.012 – 84.85 4B
Holds a 0.32 A 1000s 0.013 – 103.40 4A
Holds a 0.32 A 3163s 0.012 – 3055.33 S16
Holds a 1.0 A 1000s 0.013 – 663.66 4C
Steps – S – 0.013 0.016 2.07 S7
Holds a 0.032 S 10000s 0.014 – 1.99 4E
Holds a 0.32 S 1000s 0.015 – 2.10 4D
Holds a 0.32 S 3163s 0.014 – 4.63 S16
Holds a 1.0 S 1000s 0.015 – 3.43 4F

EE denotes choice of evolution equation – A for Aging, S for Slip.
TH denotes the longest hold duration fit as part of this series.
Fig# denotes the figure number for the listed fits.
Vi values in µms−1, Dc in µm.
a denotes a− b = −0.003 constraint imposed on these fits.

terfaces (41). Therefore, it is quite remarkable how poorly the 583

Aging formulation performs in reproducing friction evolution 584

during holds, even though it mimics very well the observed 585

phenomenology of contact area growth under similar condi- 586

tions. Our results, thus, add to a growing body of evidence 587

that the evolution of ‘state’ embodies more than just changes 588

in contact area (42–45). 589

The bigger surprise is the extreme slip-sensitivity of fric- 590

tion at even sub-nanometric slip rates. Several underlying 591

mechanisms could give rise to slip-dependent state evolution. 592

Asperities might retain a memory of the velocity(ies) at which 593

they formed, in which case reaching a new steady state might 594

require swapping out the old contacts for the new, regardless 595

of how long that takes (46). Additionally, contact area might 596

grow during holds or normal stress increases, but that new 597

contact area might have to undergo some strain-hardening 598

(via slip) before reaching its steady-state strength (44). Al- 599

though these ideas have been explored numerically (46, 47), 600

no formulation developed thus far does better than the Slip 601

formulation in describing lab friction data. 602

However, recent Discrete Element Method (DEM) simula- 603

tions of a granular gouge layer sheared between two parallel 604

plates, as a model for fault friction, behaved very similar to 605

the Slip formulation with nearly constant RSF parameters 606

during velocity-step and slide-hold protocols, consistent with 607

laboratory experiments (48). The model gouge also under- 608

went log-time compaction during the holds, meaning that the 609

8 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Bhattacharya et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

DEM simulations share with lab experiments the property610

that although the interface normal displacements are seem-611

ingly consistent with the conventional understanding of the612

Aging formulation, the simulated shear stress decay follows613

the Slip formulation. Although these simulation results appear614

quite promising, the microscopic mechanisms giving rise to the615

macroscopically lab-like behavior remain unknown. However,616

granular systems are known to exhibit the same slow dynamics617

of other disordered systems near the ‘glass transition temper-618

ature’, behavior that has previously been invoked to explain619

non-monotonic contact area changes in PMMA at times of620

constant normal load (49).621

It is possible, even likely, that at slip rates even lower than622

those accessed in our experiments, some additional process623

operates that involves time-dependent healing and also con-624

tributes to frictional strengthening. For example, it is known625

that interfaces continue to strengthen even when held truly626

stationary by unloading to zero shear stress (3, 6, 21, 50). It627

is also important to note that while the Slip formulation fits628

our velocity steps and holds with nearly identical parameters,629

it cannot fit well the peak friction upon resliding after the630

holds. This might indicate that the interface undergoes some631

additional physical change during the stress increase between632

the minimum at the end of the hold and the subsequent stress633

peak that is not captured by any existing state evolution634

formulation.635

What also remains to be examined is the extent to which636

this phenomenology of rock friction extends to other materi-637

als. The clearest evidence for log-time contact area growth638

comes from transparent acrylic (PMMA), but PMMA sam-639

ples have yet to be subjected to as exhaustive a set of sliding640

conditions as reported in this manuscript. This wide range of641

conditions has proven to be necessary to distinguish between642

time-dependent and slip-dependent strengthening for surfaces643

far below steady state. A comprehensive study of the universal-644

ity of friction phenomenology among other important natural645

and industrial material is necessary, particularly given the646

diversity of materials and purposes across which RSF is used –647

elastomers to plastics/acrylics to metals to soft materials and648

micromachines (6, 15, 16, 51, 52).649

Given that ‘state’ must in general depend upon both con-650

tact area and the quality of chemical bonding across those651

contacts (42, 43, 53, 54), it would be surprising if friction652

could be accurately described by a single state variable. It is653

thus remarkable that the empirical Slip formulation for state654

evolution does as well as it does, fitting velocity steps of both655

signs and load point holds with near identical parameters.656

This suggests that it is a good starting point for developing657

a state evolution formulation to better fit the reslides after658

holds. This is in contrast to earlier attempts at revising state659

evolution equations which considered time-dependent strength-660

ening as embodied by the Aging formulation to be a desirable661

property of state evolution at low slip rates (24, 31). Our662

results, instead, show that this is the portion of the parameter663

space where time-dependent strengthening descriptions such664

as the Aging formulation are least compatible with laboratory665

friction data.666

Materials and Methods667

668

Estimating stiffness and a− b from independent constraints. Our ex- 669

periments were carried out on the Tullis rotary shear apparatus 670

at Brown University, which was artificially stiffened using servo 671

feedback from a near-fault transducer. To obtain an estimate of 672

this higher stiffness, we used the initial loading curve of the reslides 673

following a sequence of long holds carried out during the same 674

experimental run. At the end of long holds, the block is sliding at 675

rates orders of magnitude smaller than the pre-hold steady sliding 676

rate Vi. Therefore, following the reslide, also at the rate Vi, there 677

is an initial time window over which the slip rate of the block con- 678

tinues to satisfy V � Vi. During this initial portion of the reload, 679

assuming quasi-static force balance between the driving shear stress 680

and friction, we have 681

∆µ = k(δlp − δ) = kδlp

(
1 −

δ

δlp

)
≈ kδlp, [5] 682

where δ and δlp are surface and load point displacements since the 683

reslide respectively, and initially δ/δlp � 1 for reslides following 684

long holds. Note that k is the stiffness normalized by normal stress 685

and ∆µ is the change in friction. A linear fit to the ∆µ vs. δlp plot 686

over this initial portion following the reslide gives k as the slope 687

(Figure S4). We use the reslides following a sequence of 3000 s and 688

10000 s holds carried out at three different values of Vi spanning 689

more than an order of magnitude – 1, 0.3162 and 0.03162 µms−1. 690

For the linear fit, we chose one-seventh of the total number of points 691

between the onset of the reslide and eventual peak strength to 692

evaluate k. This fraction was chosen based on trial-and-error such 693

that the spread in the estimated value of k was the least between 694

our six chosen reslides. We found k ∼ 0.065µm−1 to be the mean 695

stiffness from our fits. 696

For constant RSF parameters, the slope of the curve of steady- 697

state friction vs. ln(V ) is equal to (a − b). In Figure S6 we show 698

the estimation of a− b from all the 0.5 to 2.0 order velocity steps 699

in Figure 1A. The post-step steady state is chosen for all steps at 700

45 µm of post-minimum slip (brown stars in each panel). We did 701

not use larger steps for a− b estimation because of the prominent 702

post-minimum transients present at 45 µm slip distance for these 703

steps. We find that a− b ∼ −0.003 explains the data well from the 704

3µms−1 to 0.03µms−1 slip rates covered between these steps. 705

Estimating a and Dc by fitting the velocity-step decreases. To con- 706

strain a and Dc, we fit either a representative size range of the 707

velocity-step decreases (3.5-1 orders of magnitude) or all of the ve- 708

locity steps in Figure 1A with the Slip equation. The forward model 709

is simulated by equating the time derivative of ∆µ in Eq. (5) (using 710

the load point displacement history recorded during the experiment 711

and k = 0.065µm−1) with that in the friction law (Eq. (1)), with 712

the Slip equation being used for state evolution (Eq. (2b)). All data 713

are sampled uniformly at 50 Hz in these experiments. We fit the 714

velocity step decreases in two ways – (i) parameters a, b and Dc 715

are simultaneously and jointly inferred from all the velocity-step 716

decreases shown in Figures S6 A-E, and (ii) parameters a and Dc are 717

inferred independently by fitting all the velocity steps individually 718

with the constraint that a− b = −0.003 (Figures S9 A-O). For the 719

fits of type (i), we weight the misfit for each velocity step by the 720

inverse of the total number of data samples in the fitting window to 721

ensure that the data from all the velocity steps contribute equally to 722

the aggregate misfit. For the inversion, we use an adaptive proposal, 723

small-world, Markov chain Monte Carlo code. The algorithm and 724

the general inversion procedure are described in the Supplementary 725

materials accompanying (22). We minimize the weighted square 726

root misfit between the modeled time series and the data at every 727

time sample in the data. We model the evolution of friction only 728

over the first 3 µm of slip after the onset of the velocity step. This 729

avoids fitting secondary long term transients in the evolution of 730

friction present in the data. For completeness, we carry out a set 731

of Aging equation fits for all the velocity steps in Figure 1 jointly 732

with the same a and Dc (see SI Appendix and Figure S8 for details). 733

The inferred a and Dc values are reported in Table 1. 734

Scaling of friction response of holds and steps from different initial 735

velocities under single-state variable RSF. Rate-state friction with 736

constant parameter values and no intrinsic velocity scale predicts 737

that friction evolution is independent of the pre-step or pre-hold 738
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sliding rate Vi, when time is rescaled as Vit. To show this, we begin739

by generalizing equation (1) to two state variables, and use Vi for740

the arbitrary reference velocity V∗:741

µ =
τf

σ
= µ∗ + a ln

(
V

Vi

)
+ b1 ln

(
Viθ1

D1

)
+ b2 ln

(
Viθ2

D2

)
[6]742

(extension to additional state variables is straightforward). We743

assume, as in equations (2), that the evolution equation for each744

θn can be expressed as a function of the dimensionless parameter745

V θn/Dn:746

dθ1

dt
= F

(
V θ1

D1

)
;
dθ2

dt
= F

(
V θ2

D2

)
. [7]747

To obtain an evolution equation for V following a velocity step or748

hold, dividing (3) by σ, equating this to the right hand side of (6),749

and taking the time derivative yields750

dV

dt
= V

b1

a

[
k

b1

(
Vf − V

)
−
θ̇1

θ1
−
b2

b1

θ̇2

θ2

]
, [8]751

where Vf is the post-step load-point velocity (zero for a hold). Next,752

we make (7) and (8) dimensionless by normalizing velocities by Vi753

and time (as well as θ1 and θ2) by D1/Vi:754

dθ̃1

dt̃
= F

(
Ṽ θ̃1

)
;
dθ̃2

dt̃
= F

(
Ṽ θ̃2

D1

D2

)
; [9]755

756

dṼ

dt̃
= Ṽ

b1

a

[
kD1

b1

(
Vf

Vi
− Ṽ

)
−
dθ̃1/dt̃

θ̃1
−
b2

b1

dθ̃2/dt̃

θ̃2

]
; [10]757

where tildes represent dimensionless variables. Assuming steady-758

state sliding before the step/hold, the initial conditions on θ at the759

time of the step are760

θ̃1
∣∣
t̃=0

= 1 ; θ̃2
∣∣
t̃=0

=
D2

D1
. [11]761

Equations (9)–(11) show that, provided the RSF parameters a,762

bn, and Dn are independent of sliding speed, Ṽ (t̃) and θ̃n(t̃) depend763

upon Vf/Vi (term in parentheses in (10)), but do not depend on Vi764

independently. Furthermore, taking the time-derivative of equation765

(3) and equating µ with τ/σ,766

dµ

d(Vit)
= k

(
Vf

Vi
− Ṽ

)
. [12]767

As both terms within the parentheses on the right side of (12) depend768

only upon Vf/Vi, again provided the RSF parameters are constant,769

plots of the friction change during holds should be independent770

of Vi when plotted vs. scaled time Vit. In addition, velocity step771

decreases should be indistinguishable from holds as long as V � Vf .772

Thus, the generally clean overlap of the stress relaxation trajectories773

during the holds in Figure 3C is consistent with the RSF parameters774

being nearly constant across the > 5 orders of magnitude range of775

velocities accessed in these experiments.776
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1. Experimental apparatus and sample preparation13

The friction experiments were performed on paired rings of Westerly granite using a gas-medium, high-pressure, rotary14

shear deformation apparatus at Brown University (Figure S2). The apparatus consists of a cylindrical pressure vessel, a15

pressure-generating system for confining pressure (Pc) and pore pressure (Pp), and axial and torsional loading systems (1–4).16

The torque (i.e., shear stress), the axial load, the axial shortening, and the rotation (i.e., shear displacement) are measured17

inside the pressure vessel nearby the sample rings (Figure S3). Therefore, frictional resistances from high pressure seals are18

not included for both stress and displacement measurements. The rotation is measured using a resolver with a digital 24-bit19

resolution per revolution pegging the resolution for the rotation of the sample at about 2 × 10−5 degree. This corresponds to a20

resolution of 9.2 nm on the recorded displacement with a circumferential sample length of 153.6 mm.21

In this system, the axial load is controlled by a hydraulic servo-system. In addition, to minimize any elastic distortion22

being recorded as apparent slip during the velocity step, the torsional loading system is also controlled by a combination of23

hydraulic servo-system and an electro-hydraulic stepping motor with a feedback of the signal from the internal resolver for the24

shear displacement. This servo control system artificially increases the apparatus stiffness k more than an order of magnitude,25

depending on the experimental sample type, from about 0.0019 µm−1 (5, 6) to about 0.065 µm−1 (expressed as friction, i.e.,26

shear stress/normal stress) at a normal stress of 25 MPa (Figure S4). This value implies that the elastic distortion by a change27

of shear stress ∆τ of 2.5 MPa (equivalent to 0.1 change in friction at 25 MPa) is about 1.5 µm for the artifically stiffened28

experimental setup.29

We used a block of Westerly granite (from Westerly, Rhode Island, United States) for the experiments reported in this30

paper. The granite block was cored and polished to ring specimens. The outer diameter is 53.98 mm and the inner diameter is31

44.45 mm. The rock rings were glued into the steel sample grip, and ground flat on a surface grinder to a height of 2.4 mm.32

The fault surfaces were then hand ground to a uniform roughness using #60 SiC powder on a glass plate. The ring specimens33

were jacketed both inside and outside by inner split Teflon rings and outer O-rings (Figure S2).34

In the rotary shear sample geometry used in this study, the normal stress on the fault surface is a sum of the confining35

pressure and the axial stress. At the start of an experiment, confining pressure was raised to 20 MPa and servo-controlled36

within the measurement precision of 0.05 MPa. Axial load was then applied to bring the normal stress to 25 MPa. Axial load37

was also servo-controlled, generally to within the measurement precision of 0.07 MPa (7).38

Shear displacement δ and shear stress τ are calculated from the total rotation R [?] and the torque Γ [Nm] as follows (8):39

δ = 4π
3

R

360
r3
out − r3

in

r2
out − r2

in

, [1]

∆τ = 3
2Γ 1

π(r3
out − r3

in) [2]

where rout and rin are outer and inner radii of the sample ring, respectively. Data were collected at a sampling rate of 50 Hz40

throughout the experiments.41

2. Servo control resolution and resulting velocity resolution42

Figure S5A shows measured shear stress and resolver displacement and inferred sample slip (from Eq. 5, main text) from43

a 10,000 s hold which started from steady-state sliding at a velocity of 0.03162 µms−1. During the pre-hold steady state44

sliding the shear stress is constant, but shows some high-frequency oscillations due to electronic noise. During this time the45

resolver displacements increase at a constant rate (not shown on the plot due to the sensitive scale of the resolver plot). For46

the same reason the inferred sample displacements are also not shown during steady sliding. During the hold the resolver47

(load-point) displacement is servo-controlled to be constant (Vlp = 0). But, as shown in Figure S5B, the resolver position48

undergoes abrupt variations having a magnitude of slightly less than 10 nm (these are control system corrections, arising from49

the finite resolution of the resolver), which is consistent with the expected 9.2 nm resolution for the resolver displacement. The50

measured shear stress as shown in Figure S5 helps to understand what is occurring in terms of actual fault slip and resolver51

load-point motion during the hold, even in the time intervals where the resolution of the resolver leads to uncertainty in the52

load-point motion. During the periods between the 9.2 nm “spikes” when the resolver signal is constant, the shear stress is53

slowly increasing (Figure S5B). Referring to equation (5) of the main text, this can only be due to forward motion of the load54

point or backward motion of the fault. Given that backward motion of the fault is impossible without changing the sign of the55

shear stress, forward motion of the load point must occur that is too small to be measured by the resolver. The reason for this56

forward drift of the displacement and shear stress between the servo corrections is likely that oil in the hydraulic cylinders57

slowly leaks past the internal piston in them due to pressure differences in the two chambers that arise from a combination58

of their different internal areas and the externally applied force. However, continued forward motion of the load eventually59

results in enough motion that it is measured by the resolver. The servo control using the resolver as feedback then corrects the60

load-point position, moving it back to the intended constant value. This results in a rapid decrease in the shear stress as is61

shown in Figure S5B. The calculated fault slip in Figure S5 assumes that during the hold the load point displacement is zero,62

which is correct at the scale of the hold portion of Figure S5A, and so the gradual overall decay of the shear stress and the63

gradual overall increase in fault slip shown there is correct. However, on the scale of Figure S5B the incorrect assumption of no64
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displacement of the load point between the corrective spikes, together with the observed increase in the shear stress, leads to a65

erroneous calculation of a decrease in fault slip between the spikes. Immediately following each servo correction, the decrease66

in the shear stress leads to a calculated increase in fault slip.67

As the indicated slope on the plot of fault slip in Figure S5A shows, the slip velocity near the end of this specific hold68

gets as low as 0.02 nms−1. The largest error in estimating the slip rate must accompany near instantaneous variations in the69

resolver position by 9.2 nm. Across such rapid resolver motions, the sample’s motion at an average at 0.02 nms−1 can be70

ignored. This resolver motion would, under these circumstances, lead to a change in the shear stress of magnitude ∆τ = kσδlp.71

To estimate the magnitude of slip rate variations this change in shear stress could cause, which is the uncertainty in our slip72

rate estimation, we turn to the rate-state friction equations, which seem to do a good job describing our experiments at the73

lowest sliding speeds we can resolve. Assuming the load point motion to be nearly instantaneous, one can assume that this74

shear stress change will be balanced by the change in friction due almost entirely to the direct velocity effect. This assumption75

is likely accurate even for ‘non-instantaneous’, sub 9.2 nm, excursions in the resolver. From eq. 1 of the main text, we get76

V = V0 exp
(

∆τ
aσ

)
= V0 exp

(
kσδlp

aσ

)
. [3]77

Using k = 0.065µm−1, δlp = 9.2 nm and a = 0.013, we get V/V0 ∼ 1.05 for positive changes in load point displacement78

suggesting that the actual velocity does not vary by more than 5% from the average of 0.02 nms−1. Note that this estimate is79

independent of the long-term, background slip rate as long as the ∼ 10 nm fluctuations in load-point displacement occur at80

orders-of-magnitude faster rates than the slip rate. Therefore, the velocity resolution in these experiments is roughly 5% near81

the termination of long holds.82

3. Notes on the Slip and Aging equation fits to the velocity steps83

The methodology used to fit the velocity step decrease data shown in the main text is described under the Materials and84

Methods section accompanying the main text. Here we present a brief discussion on the principal features of these fits. The85

data from the velocity step decreases shown in Figure 1 in the main text were fit with the Slip equation in two ways – a86

common fit to a subset of the velocity steps and independent fits to all the velocity steps. For the first of these, the initial87

3µm of post-step friction evolution for one each of 1.0, 2.0, 2.5, 3.0 and 3.5 order steps were fit with a common set of Slip88

equation parameters. These Slip equation fits are shown in Figures S7A-E. Even though the fits to the steps are reasonable,89

the post-peak friction evolution is underestimated for the 3.0 and 3.5 order steps (Figure S7A and B) but overestimated for the90

1 order step (Figure S7E). In particular, these patterns of misfit seem consistent with too small a value of Dc being used for91

the fits compared to the data from the two largest step which, at the same time, is slightly too large compared to the data92

from the smallest step. The value of a for these fits is around 0.013 and Dc ∼ 2µm. Figures S7F-J show the slip rate evolution93

predicted by the corresponding fits to the friction data. All the fits capture the slip rate excursions reasonably well. It is also94

noteworthy that the value of a− b derived from the fits is −0.0031 which is in good agreement with the independent estimate95

of a− b in Figure S6. The Slip equation simulations in Figures 1, 2 and 3 and Table 1 in the main text use the parameters96

derived from these first set of fits.97

To further explore the slight step-size or slip-rate dependence of Dc suggested by the fits in Figure S7, we tried a second98

family of Slip equation fits to the velocity steps by allowing independent fits to every velocity step decrease in Figure 1 with99

a − b = −0.003. As with the fits in Figures S7 and S8, we fit friction evolution over only the first 3 µm of post-step slip.100

Figure S9 shows these fits while Figure S10 the corresponding predictions of slip rate. While the data from each individual101

step is very well matched by the particular parameter choices for that fit, the Slip equation parameters do vary somewhat102

across these different fits. The most pronounced is the variation of Dc, but even that varies by a factor of less than two.103

These variations can be seen in the posteriors of both a and Dc in Figures S11A-D. The panels A and B in these figures show104

the posteriors for the 0.5 and 1.0 order steps alone, while the panels C and D show their corresponding variations for the105

MCMC fits to the larger steps. Comparing the posteriors of a between Figures S11A and C immediately reveal that there is no106

statistically significant variation in a between the different models required to fit the vastly different step sizes. Interestingly,107

the variations in Dc required to fit the various 0.5 order steps was also found to be similar to the variations in Dc required to108

fit the larger steps. When either the value corresponding to the minimum RMSE fit or the median value of Dc are extracted109

from these posteriors and plotted as a function of the post-step velocity (inset of Figure S11B), the observed variations in110

Dc turn out to be within the bootstrapped 95% confidence levels suggested by the posteriors inferred from the MCMC fits.111

Therefore, given the data variations between the different velocity steps of the same step size, it is difficult to conclude that the112

variations in Dc observed between the fits to the different sized steps necessarily reflect a trend with step size.113

With the Aging equation, we have tried only the one-fit-to-all-steps strategy for the velocity step decreases in Figure S7A-E.114

These fits are shown in Figure S8A-E. As is to be expected from the arguments presented in the main text, the Aging equation115

generally does a worse job of fitting the post-minimum friction evolution than the Slip equation with no a priori constraints on116

a − b (red curves in Figure S8A-E). With the root mean square misfit for all the velocity steps weighted equally, the joint117

best fit to all of the steps did the best job of fitting the medium-sized steps. In particular, for the largest slip rate decreases118

the fitted friction evolved to steady state over a smaller slip scale than the data. Also, these fits required a − b = 0.0035119

which is clearly at odds with our independent estimate of a− b = −0.003 in Figure S6. Bhattacharya et al. (6) have shown120

that the Aging equation needs to be velocity strengthening in order to match the monotonically decreasing stress relaxation121

trajectories observed during long holds. In keeping with the view that holds are similar to the pre-minimum strength evolution122
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following large velocity steps (Figure 3C-F in the main text), it seems reasonable that only velocity-strengthening Aging123

equation solutions allow the friction minima to monotonically decrease in response to increasing step size at a rate comparable124

to the data. For completeness, we also present Aging equation fits to the data with the a priori constraint a − b = −0.003125

(purple curves in Figure S8A-E). In keeping with the analytical prediction that a velocity-weakening Aging equation fit would126

predict much shallower friction minima compared to the data for large velocity steps (as discussed in the main text), these fits127

grossly under-predict the friction minima for the largest velocity steps. This shows that the failure of the Aging equation to fit128

the velocity step decrease data is inherently connected to its failures in fitting stress evolution during long holds (6). The129

Aging equation simulations in Figures 1, 2 and 3 and Table 1 in the main text use the parameters derived from these set of fits130

with the Aging equation.131

4. Slip scale for friction evolution following large Aging-equation velocity-step decreases132

One of the features of Aging equation simulations incompatible with the ‘short slip distance’ strengthening observed after the133

stress minimum in our velocity step decreases is the ever-decreasing length scale of strength evolution with increasing step size134

(Figure 1B in the main text). Here, we rationalize this feature for velocity decreases that push the interface far below steady135

state (V θ/Dc � 1). To do this, we approximate the post-minimum friction evolution under the Aging formulation as136

dµ

dδ
≈ b

d

dδ
ln(θ) ≈ b

Dc

Dc
V θ

, [4]137

where δ is slip distance. The first equality in Eq. (4) follows from equation (1) with a near-constant sliding velocity (equal138

to Vf ), and the second from the Aging law approximation θ̇ ≈ 1 far below steady state. In Figure S12, we show that for139

Aging-equation velocity step decreases, V θ/Dc shortly beyond the strength minimum (we choose an arbitrary level at 0.9 of140

the total stress drop) is only modestly larger than the velocity ratio Vf/Vi. This is because V is slightly above Vf and θ is141

modestly above θi = Dc/Vi. Thus, the Aging formulation predicts that the rate of restrengthening dµ/dδ just beyond the142

stress minimum increases almost as rapidly as Vi/Vf .143

The above result is for a finite-stiffness system. For an instantaneous velocity step applied directly to a surface previously144

sliding at steady state, or equivalently a load-point velocity step in an idealized infinite-stiffness system, the Aging equation145

(2a) in the main text can be integrated analytically for θ and the result substituted into the friction equation (1). Relative to146

the future steady-state value, the friction is (9)147

∆µ = b ln
(

1 + (Vf − Vi)e−δ/Dc

Vi

)
. [5]148

Differentiating with respect to δ and evaluating at the stress minimum (δ = 0),149

dµ

dδ
= b

Dc

(
Vi
Vf

− 1
)
. [6]150

For large step decreases Vi/Vf � 1, dµ/dδ increases linearly with Vi/Vf . The Tullis rotary shear apparatus is stiff enough that151

Aging formulation simulations that use its stiffness qualitatively capture this infinite stiffness result.152
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Fig. S1. Frictional strengthening in laboratory slide-hold-reslide experiments. (A) Variation in friction (blue) and loading rate (orange) with time during a sequence of
slide-hold-reslides for the section of the experiments shown in Figures 4B and E. (B) Evolution of peak friction and the friction at the end of the holds with hold duration from
the same experiment section. The data shows the classical linear with log hold duration increase in the peak friction. Also note the also nearly linear with log hold duration
decrease in the minimum friction shown by the data. Such continual decrease in the friction minimum is generally inconsistent with a velocity weakening Aging RSF model (6).
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Fig. S2. Schematic of the rotary shear apparatus at Brown used for the experiments in the paper. The major parts are labeled.
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Granite sample

O-ring

PTFE
ring

LVDT - measures axial sample motion

LVDT core

Resolver - measures rotary sample motion

Resolver shaft

Bellows protects resolver from axial motion

Alignment bearing assembly

Sample

Sliding jacket assembly

Upper wedge assembly

Spacer

Lower sample grip

Lower wedge assembly

Pore fluid inlet
/hole for thermocouple

25 mm

Steel

Fig. S3. Close-up view of the region enclosed by the dashed, red rectangle in Figure S2 showing the pressure vessel, sample assembly and the measurement set-up. On the
right inset, the sample assembly showing the granite ring sample, the sample grips and the O-ring.
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Fig. S4. Estimation of stiffness for the servo-controlled, artificially stiffened, rotary shear apparatus. (A) Change in friction (∆µ) since reslide versus load point displacement
(δlp), both evaluated since the start of the reslide, following holds of ∼ 3000s and ∼ 10000s at three reslide rates each – squares at 1 µms−1, crosses at 0.3162 µms−1

and dots at 0.03162 µms−1. The initial reloading rate fixes the stiffness; we used 1/7th of the total number of points between the onset of reslide and eventual peak strength
for the fits. (B) A zoomed in version of the fits in (A). We use a stiffness of 0.065 µm−1 in our analyses.

8 of 24 Pathikrit Bhattacharya, Allan M. Rubin, Terry E. Tullis, Nicholas M. Beeler and Keishi Okazaki



Start of hold

Reslide

Resolver 

displacement

1
0
 n

m

A B

B
a
c
k
w

a
rd

 m
o
tio

n
F

o
rw

a
rd

 m
o

tio
n

B
a
c
k
w

a
rd

 m
o
tio

n

Fig. S5. (A) Shear stress, load-point displacement, and fault slip during a 10,000 s hold, following steady-state sliding at 0.0316 µms−1. The load-point displacement is servo-controlled to be constant during the hold to a resolution of
10 nm, which allows attaining very small fault-slip displacements and velocities. The shear stress (green curve) is measured with a torque-cell and the load-point displacement (blue curve) is measured with a high-resolution resolver,
both being mounted internal to the pressure vessel. Note that some blue data points from the resolver appear to suggest even better resolution than 10 nm, but these data points result from some temporal averaging; they reflect
contributions from values at the nominal one as well as from values differing by 10 nm. Averaged over time windows encompassing many resolver “corrections”, small changes in shear stress result from relaxation of the frictional stress
due to slowing fault slip. This fault slip can be calculated (red curve) using the known stiffness of the rock between the fault and the load-point and knowledge of the load-point displacement. As shown by the slope of the red curve near
the end of the hold, the average fault slip velocity becomes as low as 0.02 nms−1. The corresponding rate of decrease in shear stress, kσV with V = 0.02nms−1, is also shown to capture the trend in the shear stress data very
closely. As discussed in the text, the variations in this average velocity are estimated to be only 5 percent due to the 10 nm displacement corrections at the load-point resulting from the servo control resolution. (B) Zoomed in view of the
transient shear stress changes in response to the resolved fluctuations in the resolver position between 8825 and 8875 seconds. Note how rapid stress decreases always accompany resolvable backward movements of the load point.
Also note the subsequent slower increase in shear stress even when the load point shows no resolvable motion. This can only happen when the resolver moves forward by less than 9.2 microns even though the data shows it to be
nominally at rest.
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Fig. S6. Estimation of a − b from all the 0.5 to 2.0 order velocity steps in Figure 1. (A)-(P) Velocity step increases and decreases of 0.5 to 2.0 orders showing steady state velocity weakening beyond total accumulated slip of 120 mm
(16 in total) since the beginning of the experimental run. Color coding of the data according to step sizes is identical to the one used in the figures in the main text. The steady state change in friction, ∆µss, is measured between the
points shown by yellow and red stars in each panel. In particular, the post-step steady state is assumed at 40 µm of slip since the onset of the step to avoid long-term transients in the data. For most of the larger velocity steps excluded
from this analysis, measurements had either not been continued for long enough to reach steady state or the shear stress did not saturate to a steady state level consistent with the vast majority of other velocity steps. (Q) ∆µss versus
ln(Vf/Vi) from the sequence of velocity steps shown in (A)-(P). Mean a − b ∼ −0.003 explains the data well.
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Fig. S7. Fits to a subset of the sequence of large velocity step decreases from Fig. 1A with the Slip equation jointly with the same set of parameters. Friction evolution was
modeled for only the first 3 µm of slip following the onset of the velocity step to avoid potential problems with the long-term stress transients seen in some of the steps. (A)-(E)
Fits to the stress data, (F)-(J) predictions of slip rate from the corresponding fits to the stress data. The data is color coded identically to the figures in the main text, Slip
equation fits are shown in red. Note that a − b was not pre-constrained; the inversion constrained a value which agrees well with our independent, a priori estimate of a − b.
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Fig. S8. Aging equation fits, with equivalent weights, to the same sequence of velocity steps in Fig. S7. (A)-(E) Fits to the stress data, (F)-(J) predictions of slip rate from
the corresponding fits to the stress data. The data are once again color coded identically to the figures in the main text and Figure S7. The Aging equation fits in red were
constrained with a − b = −0.003. Aging equation fits with a − b unconstrained are shown in purple. Note that the fits with a − b unconstrained naturally require a > b,
unlike the corresponding Slip equation fits.
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K L M N O

Fig. S9. Independent Slip equation fits to each of the velocity step decreases in Figure 1 from the main text. The different parameters for each of these fits are shown in the legend in each panel. Each of these fits was constrained with
a − b = −0.003. The data are color coded according to step size identically to Figures 1, 2 and 3 in the main text. The red curves show the modeled friction response.

P
athikritB

hattacharya,A
llan

M
.R

ubin,Terry
E

.Tullis,N
icholas

M
.B

eeler
and

K
eishiO

kazaki
13

of24



A B C D E

F G H I J

K L M N O

Fig. S10. Velocity predictions from the Slip equation fits in Figure S9 compared to estimated velocity variations from the data. Once again, the data are color coded according to step size identically to Figures S9. Red curves show slip
rate variations estimated from the modeled fits in Figure S9.
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A B

C D

Fig. S11. Posteriors for a and Dc from the Slip law fits in Figure S9. (A) and (B) show the posteriors for 0.5 and 1 order steps, (C) and (D) for the larger step decreases.
The posteriors are color coded according to step size identically to Figures 1, 2 and 3 in the main text. Inset of (B) - Dc estimates from the minimum RMSE error parameter
combination found from sampling the posterior (squares) and the medians from the posteriors (crosses with 95% error bars).
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Fig. S12. Evolution of the value of V θ/Dc evaluated at strength minimum µmin (yellow solid line) and at 0.9µmin post-minimum (blue dashed line) with size of velocity step
decreases for the Aging equation. Model parameters were derived by fitting the velocity-step decreases in Figure S8 with the Aging equation (Table 1). Note that V θ/Dc at
µmin (and also at 0.9µmin post-minimum) decreases sub-linearly with increasing step size.
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A B

Fig. S13. Estimation of the slip accrued between the onset of the velocity step decreases in Figure 2A and the stress-minima – (A) The velocity-step data is shown again
for comparison; (B) Comparison between the pre-minimum slip distance from the data (triangles), Aging equation simulations from Figure 3A (+ signs) and Slip equation
simulations from Figure 3B (x signs). The color of the symbol correspond to the color coding of velocity-step size in A. Note how only the Slip equation simulations agree well
with the data. The Aging equation simulations also show a quasi-linear increase in the pre-minimum slip accumulation with log step size but its rate of increase is several times
smaller than that of the data.
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A B

Aging Slip

Fig. S14. Comparison of slip rate evolution during the different steps and 3163s long holds from the same set of numerical simulations shown in Figures 3(A) and (B) in the
main text with the same color code. As in Figures 3(A) and (B), here (A) shows Aging and (B) Slip equation simulations. Note that the minimum velocity attained during Slip
equation holds is nearly independent of the pre-hold slip rate. For the Aging equation, holds of equal duration attain smaller minimum slip rates if the initial slip rate is higher.
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A B

Fig. S15. Simulations of velocity steps and holds with the Slip equation parameters derived from fits to the velocity step data from Figure S7 (Table 1 in the main text).
(A) Variation in slip rate with time during the pre-minimum friction evolution for the velocity steps and holds shown in Figure 3C. Note that the largest velocity steps in the
experimental suite of our study access the same slip rates as hold durations of several 100s of seconds. The color scheme is identical to Figure 3. (B) Normalized slip
accumulated with time for the same set of simulations as in (A). Note that the different pre-hold slip rates lead to different amounts of slip during the hold.
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A

B C

D E

Fig. S16. (A) Peak strength evolution with hold time for all the sets of slide-hold-slides run during our experimental suite. Note the anomalous decrease in peak strength for
hold durations longer than 1000 s for the set of holds with Vi = 1µms−1. This is an additional reason we chose not to fit the two longest holds at Vi = 1µms−1. (B) Aging
equation joint fits to 100s – 3163s-long holds with Vi = 0.316µms−1 (Series 1 in A, not included in the main text). The 10000s hold is not included due to the MCMC not
converging for this hold duration. Note that Series 2 in A is used in Figures 4A and D in the main text as representative data for Vi = 0.316µms−1. We made this choice
since those data closely reproduced the hold-duration dependence of peak strength for the other sets of holds at different Vi. (C) Same as (B) but for the Slip equation. The
inferred parameters from these joint fits are listed in Table 1. (D) and (E) show posteriors for Dc when the holds in panels (B) and (C) are fit individually with a different a and
Dc inferred from each hold, with a − b = −0.003 fixed. Note that the trend of inferring larger Dc for longer hold durations with the Aging law is seen here as well, though
obscured slightly by the anomalous posterior for the 100s hold with both the Aging and Slip equations.
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(A) (B)

(C) (D)

(E)
a = 0.0181, Dc = 1.83 𝜇m

Fig. S17. Slip equation fits and predictions of the static friction peaks and evolution length scales following reslides for the set of holds in Figure 4E. (A)-(D) show the reslides
following holds of duration 316 sec - 10000 sec with longer holds plotted respectively in progressively lighter shades of blue. Zero friction level is fixed at the pre-hold
steady-state value of the friction coefficient. The red curves in each panel are the predictions of the fits to the holds alone taken from Figures 4E, the corresponding weights
used are depicted as red dotted lines (weighting scales indicated on right axis). The green curves in each panel show fits which have been weighted equally between the hold
and a fixed time window covering the reslide from its beginning to future steady state (green dotted lines). Differential weighting is applied around the peak friction to achieve
maximum fidelity to the observed peak strength. Note how, when compared to the fits to the holds alone, the green curves underestimate the shear strength at the end of the
preceding holds. (E) shows the strength evolution following the reslides in (A)-(D) but normalized by the peak to residual strength drop measured at 15 µm of post-peak
slip. Also shown are the corresponding predictions of the fits to the holds alone scaled identically to the data (red curves). The darker to lighter shades of blue correspond to
increasing hold durations as in (A)-(D). The slip weakening length scale appears to increase with hold duration.
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Fig. S18. Aging equation predictions of the static friction peaks and evolution length scales following reslides for the set of holds in Figure 4E. (A)-(D) show the reslides following
holds of duration 316 sec - 10000 sec with longer holds plotted respectively in progressively lighter shades of blue. Zero friction level is fixed at the pre-hold steady-state value
of the friction coefficient. The red curves in each panel are the predictions of the fits to the holds alone taken from Figures 4E, the corresponding weights used are depicted as
red dotted lines (weighting scales indicated on right axis). (E) shows the strength evolution following the reslides in (A)-(D) but normalized by the peak to residual strength drop
measured at 15 µm of post-peak slip. Also shown are the corresponding predictions of the fits to the holds alone scaled identically to the data (red curves). The darker to
lighter shades of blue correspond to increasing hold durations as in (A)-(D). The Aging equation predicts strictly linear slip-weakening post-peak friction similar to its prediction
for large velocity steps.
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Fig. S19. All the velocity steps in the experimental run from which the ones reported in Figure 1A were chosen. As in Figure 1A, the changes in friction are measured from its
value at 4µm and are normalized by the maximum amplitude of this change. All the velocity steps shown in Figure 1A are shown in black. Most of the step increases were
difficult to control, owing to the velocity-weakening nature of the sliding surface.
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